Personalizing Foundation Models for Cancer Imaging: A Study on Lymph Node Segmentation with
SAM2 and MedSAM2
Accurate lymph node (LN) segmentation in abdominal CT is vital for cancer diagnosis and staging but remains a
challenging task due to the small size of LNs, high inter-patient  * | — o
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weighted BCE (WBCE). Performance was evaluated on 21 unseen validation scans (~1450 slices) using Dice and
loU metrics.

MedSAM2 achieved superior and more stable performance, with the paper loss yielding a peak Dice of 0.83 and
smoother convergence (Figure 1). SAM2, while faster to train and still competitive in Dice (up to 0.83 using Focal
Dice loss), showed higher fluctuations in training curves and less robustness under big-shot setups (Figure 2).
Visual inspection of predicted masks (Figure 3—4) confirms that both models can delineate LN boundaries with
high fidelity. Notably, SAM2 demonstrated the ability to detect multiple LNs per slice, while MedSAM2’s outputs
appeared cleaner and more focused and generated results for instance segmentation.

Performance summaries are presented in Tables 1 and 2. Despite SAM2’s speed advantage, MedSAM?2 is better
suited for clinically sensitive tasks due to its consistency and medical-specific refinement and pretraining. Our
findings underscore the potential of adapting foundation models with tailored fine-tuning strategies and
appropriate losses for small-structure segmentation in medical imaging.
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