Personalizing Foundation Models for Cancer Imaging: A Study on Lymph Node Segmentation with SAM2 and MedSAM2

Accurate lymph node (LN) segmentation in abdominal CT is vital for cancer diagnosis and staging but remains a

challenging task due to the small size of LNs, high inter-patient variability, low-contrast anatomical boundaries, and severe class imbalance. Traditional deep learning models often struggle in such settings, especially when annotated data is limited or the target structure occupies a minute portion of the image. With the emergence of large-scale vision foundation models like SAM2 and MedSAM2, there is now an opportunity to harness general-

purpose and domain-specific pretrained architectures for precise medical image segmentation under data-scarce conditions. In this study, we systematically evaluate and compare SAM2¹ and MedSAM2² for the task of abdominal LN segmentation under three training regimes—zero-shot (no fine-tuning), few-shot (5 CTs), and big-shot (65 CTs)—using loss functions tailored for extreme pixel imbalance. We used the TCIA abdominal LN dataset³ which has only ~13% of slices contain any lymph node annotations. Among these positive slices, over 97% have LN pixels occupying less than 1% of the image area, underscoring the substantial class and pixel-level imbalance that complicates automated segmentation.

For SAM2, we fine-tuned the decoder only and used single-slice

bounding box prompts for each LN instance. We experimented with three loss combinations: BCE_Dice, Focal_Dice, and Focal Tversky. In contrast, **MedSAM2** was also fine-tuned at the decoder level but used LEXPL default dual-slice bounding

boxes for CT scans and supported two loss settings: a paper-defined loss (95.2% Focal + 4.8% Dice) and

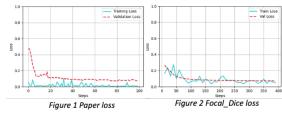


Figure 3 Original image (left), ground truth mask (middle) and MedSAM2's output (right)

Figure 4 Original image (left), ground truth mask (middle) and SAM2's output (right)

Table 1 MedSAM2 performance

Experiment	Validation Dice	Validation IOU	Training loss	Validation loss	Training time (hrs)
Zero-shot	0.751	0.656			
Few-shot, WBCE	0.776252	0.672524	0.000799	0.307458	14.07
Big-shot, WBCE	0.8163	0.705583	0.003533	0.075518	20.91
Few-shot, Paper	0.819	0.717	0.006789	0.074725	22.262
Big-shot, Paper	0.835	0.745	0.044192	0.123963	28.32

Table 2 SAM2 performance

Experiment	Validation Dice	Validation IoU	Training loss	Validation loss	Training time (hrs)
Zero-shot	0.2432	0.1482			
Few-shot, BCE_Dice (30%, 70%)	0.8092	0.6902	0.1537	0.1661	0.22
Big-shot, BCE_Dice	0.7906	0.6091	0.0876	0.2031	0.17
Few-shot, Focal_Dice	0.8204	0.6771	0.1384	0.1728	0.19
Big-shot, Focal_Dice	0.8307	0.7032	0.1763	0.1569	0.23
Few-shot, Focal_Tversky	0.8123	0.6858	0.2191	0.3069	0.21
Big-shot, Focal_Tversky	0.8234	0.6667	0.3385	0.3097	0.23

weighted BCE (WBCE). Performance was evaluated on 21 unseen validation scans (~1450 slices) using Dice and IoU metrics.

MedSAM2 achieved superior and more stable performance, with the paper loss yielding a peak Dice of 0.83 and smoother convergence (Figure 1). SAM2, while faster to train and still competitive in Dice (up to 0.83 using Focal Dice loss), showed higher fluctuations in training curves and less robustness under big-shot setups (Figure 2). Visual inspection of predicted masks (Figure 3–4) confirms that both models can delineate LN boundaries with high fidelity. Notably, SAM2 demonstrated the ability to detect multiple LNs per slice, while MedSAM2's outputs appeared cleaner and more focused and generated results for instance segmentation.

Performance summaries are presented in Tables 1 and 2. Despite SAM2's speed advantage, MedSAM2 is better suited for clinically sensitive tasks due to its consistency and medical-specific refinement and pretraining. Our findings underscore the potential of adapting foundation models with tailored fine-tuning strategies and appropriate losses for small-structure segmentation in medical imaging.

¹ https://github.com/facebookresearch/sam2

² https://github.com/SuperMedIntel/Medical-SAM2

³ H. Roth *et al.*, "A new 2.5 D representation for lymph node detection in CT [Dataset]." The Cancer Imaging Archive, 2015. doi: 10.7937/K9/TCIA.2015.AQIIDCNM.