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Abstract

In this paper, we develop a novel algorithm for constructing time-uniform, asymp-
totic confidence sequences for quantiles under local differential privacy (LDP).
The procedure combines dynamically chained parallel stochastic gradient descent
(P-SGD) with a randomized response mechanism, thereby guaranteeing privacy
protection while simultaneously estimating the target quantile and its variance. A
strong Gaussian approximation for the proposed estimator yields asymptotically
anytime-valid confidence sequences whose widths obey the law of the iterated
logarithm (LIL). Moreover, the method is fully online, offering high computational
efficiency and requiring only O(κ) memory, where κ denotes the number of chains
and is much smaller than the sample size. Rigorous mathematical proofs and ex-
tensive numerical experiments demonstrate the theoretical soundness and practical
effectiveness of the algorithm.

1 Introduction

Mobile sensor traces (accelerometer, gyroscope, wireless-charger emissions) can be reverse-
engineered to reveal routes, speech, and browsing habits [30, 57, 3, 37]. This shows privacy risks
arise whenever fine-grained data are aggregated and mined; Differential Privacy (DP) mitigates
this by adding calibrated noise so any individual’s presence has negligible effect [22]. But DP
assumes a trusted central curator, a model broken by the Netflix deanonymization and the March 2023
ChatGPT exposure [41, 34]. Local Differential Privacy (LDP) removes that single point of failure by
randomizing data on-device and is already used in Google’s RAPPOR, Apple’s iOS telemetry, and
Microsoft’s Windows diagnostics. [20, 24, 17] As data ecosystems grow, LDP shifts analytics toward
provable, user-centric privacy.

Quantile estimation and inference play a critical role in a variety of scientific and practical fields.
In finance, quantiles such as value-at-risk and expected shortfall help manage portfolio risks under
regulatory requirements and market volatility [10, 4]. Accurate estimation of extreme quantiles is
especially important for capturing heavy-tailed financial risks [51]. In healthcare, quantile methods
identify clinically significant thresholds, such as safe medication doses and treatment effectiveness
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[55], and guide resource allocation in treatment prioritization [56]. Reliability engineering also
frequently employs quantile estimation to establish conservative safety standards for machinery
in harsh operating conditions [18, 29]. In addition, policy evaluation also benefits from quantile
approaches to capture intervention effects across diverse population groups, highlighting impacts
that mean-based analyses may miss [11, 33, 15]. Unlike traditional methods focused on averages,
quantile-based methods are robust when dealing with skewed or heavy-tailed real-world data, thus
providing deeper insight into complex data distributions [9]. More discussion can be found in [31].

A substantial body of literature addresses quantile estimation under either CDP or LDP. Early
contributions in the CDP setting include [23, 36]. More recent work, such as [48], proposes a
rate-optimal sample-quantile estimator that avoids histogram evaluation, and [26] extends this line of
research to the simultaneous estimation of multiple quantiles. Quantile estimation under CDP remains
an active topic, with applications ranging from bounded-support data [2] to large-scale query systems
[5]. In online scenarios such as continual observation [21], algorithms can compress or recompute
the added noise at each time step to improve efficiency [50]. Both cases require access to raw data
and apply the privacy mechanism iteratively. In the LDP setting, the curator never observes raw data
but only privacy-protected reports supplied by users. This constraint makes it considerably more
challenging to design algorithms that achieve accurate quantile estimation while supporting rigorous
statistical inference; for example, [38] proposed an SGD-based estimator, [39] studied inference for
simultaneous quantiles, [7] investigated federated quantile inference, and [1] considered hierarchical
mechanisms and noisy binary search.

Inference on quantiles under an LDP constraint is challenging because it requires estimating the
asymptotic variance (or other normalizing constants) of the LDP quantile estimator. Classical central
limit theorem results show that the efficiency of a quantile estimator hinges on the density value at
the true quantile. For SGD-based methods, however, this density is difficult to recover using only
the iterates or perturbed gradients. Moreover, estimating the Hessian matrix is non-trivial, owing to
the non-smoothness of the quantile loss, even if one is willing to spend additional privacy budget.
Pointwise confidence intervals can be built via self-normalization or random-scaling techniques, but
asymptotic sequential inference requires an almost surely consistent variance estimator; see [52].
Recently, [58] developed a high-confidence inference framework using P-SGD with identical initial
values across chains, thus obtaining an i.i.d. sequence. In their theoretical results, the number of
chains is fixed and cannot ensure the consistency of the variance estimator. Inspired by this smart
approach, we consider a dynamically chained P-SGD whose number of chains grows with the sample
size to ensure variance consistency.

We highlight our contributions as follows:

(i) We develop a novel algorithm based on the dynamically chained P-SGD for constructing time-
uniform, asymptotic confidence sequences for quantiles under LDP. The procedure operates fully
online, offering high computational efficiency while requiring only O(κ) memory, where κ is the
number of chains and diverges to infinity at a rate much slower than T , e.g., at the order of log T .

(ii) We derive an almost surely Gaussian approximation for the Polyak-Ruppert-type estimator of
a quantile obtained by P-SGD. This result is non-trivial even in the non-private setting due to the
non-smoothness of the loss function and its gradient. Notably, our strong Gaussian approximation is
more general than those in [54] and [58], both of which address SGD with smooth loss functions.
While the latter only establishes an L2 approximation for SGD within a fixed chain, which is not
applicable to sequential inference. Our approximation rate is Oa.s.

(
(T/ log log T )−1/2

)
, faster than

the LIL rate, yielding asymptotically anytime-valid confidence sequences for quantiles.

(iii) We propose an almost surely consistent estimator of the quantile variance that relies only on the
iterates of P-SGD and incurs no additional privacy cost. Unlike [58], which uses a fixed number of
chains, we allow the number of chains to grow with the sample size T to ensure the consistency of
variance estimation. As a by-product, the true density at the target quantile can also be consistently
estimated under LDP. To the best of our knowledge, this is the first result on sequential inference for
quantiles within the LDP framework.

The remainder of this paper is organized as follows. We first review the key concepts of DP and
LDP. Next, we introduce our methodology, detailing the proposed algorithms together with the
theoretical guarantees. Finally, we present experimental results that demonstrate the effectiveness of
the approach. All theoretical proofs and additional simulation results are established in Appendix.
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2 Methodologies

First, we introduce the mathematical definition of LDP and the asymptotic confidence sequence.
Then, we will introduce the problem setting and algorithm details.

Definition 1 (Differential Privacy , see [22]) A randomized algorithm A, taking a dataset consist-
ing of individuals as its input, is (ϵ, δ)-differentially private if, for any pair of datasets S and S′ that
differ in the record of a single individual and any event E, satisfies the condition below:

P[A(S) ∈ E] ≤ eϵP [A (S′) ∈ E] + δ.

When δ = 0, A is called ϵ-differentially private (ϵ-DP).

Definition 2 (Local Differential Privacy,see [32]) An (ϵ, δ)-randomizer R : X → Y is an (ϵ, δ)-
differentially private function taking a single data point as input.

CDP regulates the distribution of released data rather than the curator’s credibility. A trusted curator
can centrally add noise, keeping algorithm design simple and accuracy loss modest [8].

LDP takes a stricter view by removing any trust assumption. The curator merely coordinates users,
each holding a private value Xi. In each round it selects a user and specifies a randomized mechanism
Ri. Users verify that the stated (ϵ, δ) guarantee suits the study, apply Ri to their data, and return
the perturbed result. Interaction may be fully adaptive, sequential, or non-interactive; we adopt the
tightest, non-adaptive model, fixing all user-randomizer pairs before data collection (Definitions 2.3
and 2.6 in [12]). Unlike CDP, where the curator adds noise, under LDP the curator must draw
inference solely from user-randomized data.

From an inference perspective, the gap between a central-DP (CDP) estimator and its non-private
analogue is typically Op(n

−1). Consequently, after
√
n scaling, both estimators share the same

asymptotic distribution, and one can estimate the associated variance from the (slightly perturbed)
data by spending a modest additional privacy budget. By contrast, for locally private procedures, the
error of an LDP estimator is usually Op(n

−1/2), which alters the limiting distribution and inflates
the asymptotic variance. Moreover, in most practical settings, the variance cannot be consistently
recovered from locally privatized data that were collected solely for point estimation.

Definition 3 (Asymptotic confidence sequences, see [52]) Let T be a totally ordered infinite set
(denoting time) that has a minimum value t0 ∈ T . We say that the intervals (θ̂t − Lt, θ̂t + Ut)t∈T
centered at the estimators (θ̂t)t∈T with non-zero bounds Lt, Ut > 0,∀t ∈ T , form a (1 − α)-
asymptotic confidence sequence (AsympCS) for a sequence of real parameters (θt)t∈T if there exists
a (typically unknown) non-asymptotic (1−α)-CS (θ̂t−L⋆

t , θ̂t+U⋆
t )t∈T for (θt)t∈T −, i.e. satisfying

P
(
∀t ∈ T , θt ∈

[
θ̂t − L⋆

t , θ̂t + U⋆
t

])
⩾ 1− α,

and Lt, Ut become arbitrarily precise almost-sure approximations to L⋆
t and U⋆

t :

L⋆
t /Lt

a.s.−−→ 1 and U⋆
t /Ut

a.s.−−→ 1.

Compared with classical asymptotic confidence intervals, AsympCS offer several advantages and
have therefore attracted considerable research attention; see, for example, [40, 28, 27]. AsympCS
quantifies uncertainty uniformly over all sample sizes, rather than at a single, pre-specified size. To
guarantee valid coverage across this entire time horizon, the requisite consistency must hold almost
surely, rather than merely in probability, as emphasized by [52].

We formulate the problem as follows. Let {ξt}Tt=1 be independent observations drawn sequentially
from a distribution F . Our goal is to construct an AsympCS for the τ -quantile of F , denoted by x∗,
i.e. F (x∗) = τ , under a LDP framework.

To privatize {ξt}Tt=1 we adopt the interactive, permutation-based binary-response mechanism of [38],
which is optimal in certain regimes. Let Wt and Vt be i.i.d. Bernoulli variables, mutually independent
and also independent of ξt, with

P(Wt = 1) = r, P(Wt = 0) = 1− r, P(Vt = 1) = P(Vt = 0) = 1/2.
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For any ζ = (ξ,W, V )⊤ and scalar x, define

G(x, ζ) =
1 + r − 2rτ

2

[
1{ξ ≤ x}W+(1−W )(1−V )

]
− 1− r + 2rτ

2

[
1{ξ > x}W+(1−W )V

]
.

Given a sequence {xt}Tt=1, this yields the privatized sequence {G(xt, ζt)}Tt=1, which can be viewed
as a permuted stochastic gradient. The parameter r is the truthful-response rate, and [38] shows that
the mechanism is ϵ-LDP with ϵ = log(1 + r)− log(1− r).

Using the privatized gradients, we run the SGD iteration

xt+1 = xt − ηt G(xt, ζt+1), t = 0, . . . , T − 1.

Although this approach yields a consistent LDP estimator of the target quantile, estimating its
asymptotic variance from {G(xt, ζt)}Ti=1 alone is difficult. To address this, we employ parallel SGD
(P-SGD): the data are split into κ disjoint chains, all initialized identically,

xk,t+1 = xk,t − ηt G(xk,t, ζk,t+1), t = 0, . . . , Tk − 1, k = 1, . . . , κ. (1)

When each chain has the same length, the trajectories {xk,t}Tk
t=1 are i.i.d. across k, allowing the

asymptotic variance to be estimated by the sample variance across chains. Ensuring consistency,
however, requires κ→∞. Repartitioning the data would disrupt the SGD structure and consume
additional privacy budget, so we adopt a dynamically chained P-SGD in which κ grows with T .

To accommodate a time-varying number of chains, we let κ = h(T ), where h : Z+ → Z+ is an
increasing, piecewise-constant function. Set K0 := h(1). For each k ∈ N define mk :=

∣∣{T :

h(T ) = K0 + k}
∣∣, where | · | denotes cardinality. We require

m0 ≥ K0 and mk ≥
1

K0 + k − 1

k−1∑
i=0

mi, k ∈ Z+.

This condition ensures that no new chain will be added before the new chain is aligned in length
with the previous ones. For example, h(T ) =

⌊
c loga T

⌋
+K0 with a1/c > max{K−1

0 + 2, K0}
satisfies these conditions. Algorithm 1 provides the index of the chain to which each sample from 1
to T is assigned. Figure 1 provides a visual illustration.

When the T -th sample arrives, let Tk denote the number of observations held by the k-th chain. Our
online quantile estimator is

x̂T =
1

T

κ∑
k=1

Tk∑
t=1

xk,t =

κ∑
k=1

Tk

T

( 1

Tk

Tk∑
t=1

xk,t

)
, (2)

i.e., a weighted average of the chain-wise means. The asymptotic variance σ2 of the approximating
Gaussian variables Zi’s in Theorem 1 is estimated by the weighted sample variance

σ̂2
T =

κ∑
k=1

Tk

T

[(
T

−1/2
k

Tk∑
t=1

xk,t

)
−

κ∑
l=1

Tl

T

(
T

−1/2
l

Tl∑
t=1

xl,t

)]2
. (3)

Because both the quantile estimator (2) and the corresponding variance estimator (3) are computed
directly from the P-SGD iterates in (1), they each satisfy ϵ-LDP with ϵ = log(1 + r)− log(1− r).

3 Theoretical results

To investigate the asymptotic properties, some mild assumptions are introduced.

(A1) The density f(·) is continuous and f(x∗) > 0.

(A2) For some constant Cf ′ > 0, |f ′(·)| is uniformly bounded by Cf ′ .

(A3) For some constant a ∈ (1/2, 1), the step size ηt ≍ t−a.

(A4) As T →∞, κ→∞ and κ≪ T 1−1/(2a).
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Algorithm 1 Data allocation for parallel runs
1: Input T and function h(·).
2: Initialize array nums of length κ0 = h(0) with all zeros
3: Initialize array result of length T with all zeros
4: for i = 1 to T do
5: if h(i) > h(i− 1) then Append 0 to the end of nums
6: end if
7: k ← index of the first minimum in nums; result[i]← k; nums[k]← nums[k] + 1
8: end for
9: Output result

Update Criterion 
without New Chain

Update Criterion 
with New Chain

Initial State

New Observations Arrival

. . .
T+1T+2T+3

. .
 .

. . .

Figure 1: Overview of the Algorithm 1. (1) The left panel illustrates the initial state with T
observations partitioned into K chains. (2) When new observations arrive, the algorithm determines
whether to introduce a new chain. If not, new observations are sequentially added to existing chains,
as shown in the middle panel. (3) If required, a new chain is created, as illustrated in the right panel,
which continues receiving observations until it matches the length of existing chains. The update
criterion ensures no additional chain is required before alignment.

Assumptions (A1) and (A2) are regular conditions for the distribution function. Assumption (A3)
is standard in the literature; see [54]. Assumption (A4) restricts the rate at which the number of
chains diverges with the sample size. The divergence rate can be arbitrarily slow, which offers great
flexibility in practical implementation.

Theorem 1 Under Assumptions (A1)-(A4), for the quantile estimator (2) there exist i.i.d. normal
r.v.’s Zi’s with mean zero and variance σ2 = (1− r2(2τ − 1)2)/(4r2f2(x∗)), such that∣∣∣∣∣x̂T −

1

T

T∑
i=1

Zi

∣∣∣∣∣ = Oa.s.

(√
log log T

T

)
.

Theorem 1 establishes a strong Gaussian approximation for x̂T − x∗, providing an almost surely
result rather than one in probability. Interestingly, for each fixed k, although xt,k are dependent across
t, the deviation of the final weighted sum estimator x̂T from the true value x∗ can be approximated
by the average of T i.i.d. Gaussian random variables. Besides, the rate is significantly faster than the
law of iterated logarithm bound, which is crucial for constructing asymptotic confidence sequences.
Notably, [58] derived a Gaussian approximation result for a single chain, but their approximation
error is measured in terms of mean squared error rather than an almost surely bound, which is
not applicable to sequential inference. On the other hand, although [54] provides an almost surely
Gaussian approximation, both [54] and [58] consider smooth loss and assume average Lipschitzness
of the gradient, which does not hold for the quantile loss. In fact, the gradient of quantile loss only
enjoys average 1/2-Hölder smoothness, since

[
E{1(ξ ≤ x)− 1(ξ ≤ y)}2

]1/2
≲ |x− y|1/2 for any

random variable ξ with uniformly bounded density functions, which poses challenges for theoretically
analyzing the approximation error.
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The next theorem shows the almost surely consistency of σ̂2
T .

Theorem 2 Under Assumptions (A1)-(A4), for the variance estimator (3) as T →∞,∣∣∣∣σ̂2
T −

1− r2(2τ − 1)2

4r2f2(x∗)

∣∣∣∣ = Oa.s.(1).

A byproduct of Theorem 2 is that it enables the estimation of the density at the true quantile x∗ under
the framework of differential privacy, i.e.,

√
{1− r2(2τ − 1)2/(4r2σ̂2

T ).

Let [µT − γT,m, µT + γT,m]T≥m be any confidence sequence started from time m ≥ 1 for the
unknown mean of a Gaussian distribution with unit variance.

Theorem 3 Under Assumptions (A1)-(A4), there exists some nonasymptotic (1 − α)-confidence
sequence [x̂T −σγ⋆

T,m, x̂T +σγ⋆
T,m], i.e., P

(
∀T ≥ m,x∗ ∈

[
x̂T − σγ⋆

T,m, x̂T + σγ⋆
T,m

])
≥ 1−α,

such that (σγ⋆
T,m)/(σ̂T γT,m) = Oa.s.(1) as T →∞.

With the help of the strong consistency established in Theorem 2, Theorem 3 provides a general
framework for constructing AsympCSs for quantiles under the LDP setting, requiring only a confi-
dence sequence for Gaussian random variables with unit variance. Existing confidence sequences for
Gaussian variables in the literature include different types of boundaries, for example, the stitched
boundary developed by [28] with a concentration rate of O

(√
log log T/T

)
:

γT,m = 1.7

√
log log(max{2T/m, e}) + 0.72 log(10.4/α)

T
, (4)

or Robbins’ mixture boundary ([44] and [45]), which achieves a concentration rate ofO(
√

log T/T ):

γT,m =

√
{g−1(α)}2 + log(T/m)

T
, where g(a) = 2{1− Φ(a) + aϕ(a)}. (5)

Here, Φ(·) and ϕ(·) are the CDF and PDF of a standard Gaussian random variable, respectively. For
m = 1, the Gaussian mixture bound can be generalized to the following, see [52],

γT,1 =

√√√√2(Tρ2 + 1)

T 2ρ2
log

(√
Tρ2 + 1

α

)
, ∀ρ > 0. (6)

By tuning the hyperparameter ρ in (6), one can minimize the width of the confidence interval at a
specific time point given a significance level α.

We note that the Robbins’ boundary is not inferior due to its slower asymptotic convergence rate. On
the contrary, it is often preferable in practice because it tends to be tighter in early stages with finite
samples, as also discussed in [52].

There may be some confusion regarding the burn-in strategy used in SGD-based methods versus the
construction of AsympCSs starting from index m. The burn-in strategy discards a predetermined
number of initial iterates to mitigate the effect of unstable early updates on the final averaged
estimator, thereby reducing the effective sample size. In contrast, the coverage probability calculation
starting from m retains all iterates from 1 to m and uses them to construct the AsympCSs based
on equations (4)-(5). If a burn-in of b iterations is applied and coverage probabilities are reported
starting from index m, then the AsympCSs should begin at iteration b+m+ 1.

Combined with estimators (2), (3) and Theorems 3 ,we summarize the construction of the LDP
(1 − α)-AsympCS in Algorithm 2. It is worth noting that the entire procedure can be computed
sequentially, storing only the most recent updates from each chain, thereby requiring approximately
O(κ) memory, where κ≪ T . As a straightforward derivation, following Theorems 1 and 2, the LDP
point-wise confidence interval of quantile is concluded as follows.

Corollary 1 Under Assumptions (A1)-(A4), the asymptotically correct (1 − α) point-wise
confidence interval of quantile x∗ is [x̂T − σ̂T z1−α/2/

√
T , x̂T + σ̂T z1−α/2/

√
T ], i.e.,

P
(
x∗ ∈

[
x̂T − σ̂z1−α/2/

√
T , x̂T + σ̂z1−α/2/

√
T
])
≥ 1 − α, as T → ∞, where z1−α/2 is the

(1− α/2)-quantile of standard normal random variables.
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Figure 2: Plots of trajectories when confidential data come from standard normal distributionN (0, 1)
for pointwise confidence interval from Corollary 1 (in red with upward-pointing triangles), pointwise
confidence interval from [38] (in purple with asterisks), proposed AsympCS based on (4) (in blue
with circles) and (6) (in green with squares) with τ = 0.8, r = 1, 0.9, 0.75 (left, middle and right
panel).

It is well known that the tail of a self-normalized distribution is typically heavier than that of the
normal distribution, as noted in [47]. As a result, the pointwise confidence interval constructed based
on Corollary 1 is more efficient than those proposed in [38]. We further provide a visualization
comparing our constructed AsympCSs, the pointwise confidence intervals, and the intervals from
[38] in Figures 2 and A.7. One can observe that although the asymptotic widths of both pointwise
confidence intervals are similar, our proposed intervals tend to be slightly narrower. Additionally, the
AsympCS constructed using equation (6) is numerically tighter than the one based on equation (4),
although the latter enjoys a faster asymptotic convergence rate.

Algorithm 2 Algorithm to construct LDP AsympCS of quantile
1: Input data: {ξt}Tt=1, truthful response rate r ∈ [0, 1], significance level α, initial sample size m

for sequential inference, initial number of chains κ, learning rate {ηt}Tt=1, initial index nk = 0
and initial values across all chains x̃k = x0.

2: For t = 1, . . . T ,
3: Computed the current update chain lt = result[t] from Algorithm 1.
4: If lt > κ Set κ = κ+ 1, nκ = 0, xκ,nκ = 0.
5: EndIf
6: Require perturbed gradient G(xlt,nlt

, ζt).
7: Update in lt- chain: xlt,nlt+1 = xlt,nlt

− ηnlt
G(xlt,nlt

, ζt),
8: x̃lt =

{
nlt x̃lt + xlt,nlt+1

}
/(nlt + 1), nlt = nlt + 1,

9: Update of quantile estimator and corresponding variance estimator:

x̂t =

κ∑
k=1

nk

t
x̃k, σ̂2

t =
κ∑

k=1

nk

t

[(
n
1/2
k x̃k

)
−

κ∑
l=1

nl

t

(
n
1/2
l x̃l

)]2
.

10: End For
11: Output the (1− α)-AsympCS [x̂t − σ̂tγt,m, x̂t + σ̂tγt,m] for t = m, . . . , T , where γt,m can be

computed by (4), (5) or (6)

4 Experiments

4.1 General setting

In this section, we evaluate the finite-sample performance of the proposed method. The confi-
dential data are generated from two distributions: standard Normal N (0, 1) and standard Cauchy
C(0, 1). Target quantiles are set to τ = 0.8, 0.5, 0.3. The truthful response rates are chosen as
r = 1, 0.9, 0.75, 0.5, 0.25, corresponding to privacy budgets ε = log(1 + r) − log(1 − r) of
+∞, 2.94, 1.95, 1.10, 0.51, respectively. The algorithm uses random initialization with standard
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Normal N (0, 1) of all chains and step sizes set to ηκ,t = 1/ta with a = 0.6 for all chains as well,
satisfying Assumption (A3). Following [35], we incorporate a burn-in strategy into the algorithm to
reduce the impact of initial parameter bias and enhance the stability of statistical inference, with the
number of burn-in samples being about (0.25/r2)% of the total sample size. Each experiment is
replicated 2000 times using 110 Intel® Xeon® Platinum 8352V CPU @ 2.10GHz CPUs with 360GB
memory and 1200GB storage.

4.2 Results

Our first analysis focuses on the time-uniform convergence performance. We consider the number
of chains as a function of time via h(t) = ⌊8 log10(T/5)⌋ for t < T/5, and h(t) = ⌊8 log10(t)⌋
for t ≥ T/5, where T = 5,000,000 denotes the total sample size. Time-uniform 95% AsympCSs
are constructed using the stitched boundary in (4) and the Gaussian mixture boundary in (6) with
ρ = 0.001. We report the time-uniform type I error rates and the average lengths of the resulting CSs.
As a benchmark, we include the order-statistics-based non-private method proposed in [27].

Results for the standard normal distribution based on equations (4) and (6) are presented in Figures 3
and 4, while additional results for the standard Cauchy distribution are provided in Appendix A.
These numerical results are consistent with Theorem 3. Figure 3 shows that all methods maintain the
nominal type I error rate (5%) across various values of the parameters r and τ for both AsymCSs
based on (4) and (6). Figure 4 indicates that the average length of the constructed AsympCSs
decreases as the privacy budget increases. Moreover, From Figure 3, one observes that the AsymCSs
based on (4) will be more conservative than (6) in most stages under finite sample sizes, which is
also reflected on Figure 4. Therefore, the AsymCSs based on (6) enjoys the better finite sample
performance in our setting, even its theoretically asymptotic rate is O(

√
log T/T ), which is slower

than O(
√
log log T/T ).

Notably, when r = 1, the non-DP AsympCSs based on P-SGD are tighter than the nonasymptotic
CSs from [27], while still maintaining valid type I error control. These findings suggest that our
proposed confidence sequences can provide improved efficiency for quantile inference, even in the
absence of privacy constraints. A similar phenomenon is observed under the Cauchy distribution
setting, as illustrated in Figures A.3 and A.4.

Next, we investigate finite-sample variance estimation σ̂2
T . To illustrate consistency with respect

to T , we set κ = 20, 40, 80, 100. Relative absolute errors (RAEs), defined as |σ̂2
T − σ2|/σ2, are

summarized via boxplots in Figures A.5 and A.6 in Appendix A . The results demonstrate that RAEs
consistently decrease as T increases, aligning with Theorem 2. Furthermore, for a fixed T , smaller
values of r yield lower RAEs.

Finally, to further strengthen our simulation study, we conducted additional experiments, including:
(1) sensitivity analysis of tuning parameters, (2) finite-sample performance under a mixture of Beta
distributions, and (3) a comparison between our proposed method and [38] under specific settings.
Across these settings, the results consistently demonstrate the robustness and effectiveness of our
approach; see details in Appendix A.

5 Real data application

In this section, we empirically evaluate the effectiveness of our proposed method on the following
two representative real datasets widely used in privacy research:

Law school dataset [53]. This dataset consists of 20,649 examples aiming to predict students’
undergraduate GPA based on their personal information and academic abilities. Given that GPA
reflects individual educational outcomes and is protected under strict data-use agreements [53], we
treat it as sensitive educational information requiring privacy protection.

Government salary dataset [42]. This dataset originates from the 2018 American Community
Survey conducted by the U.S. Census Bureau. It includes over 200,000 observations, with annual
salary (USD) as the response variable. Annual salary represents typical personal financial information
[26]; therefore, we treat it as sensitive data warranting privacy protection.

To facilitate analysis, we applied a logarithmic transformation for two datasets and then back-
transformed the confidence sequence bounds after prediction. We apply our proposed method:

8



Figure 3: Time-uniform type I error for AsypmCS constructed by (4) (on top panel) and (6) (on
bottom panel) and non-DP non asymptotic CS in [27], when confidential data come from standard
Normal N (0, 1) with r = 0.25, 0.5, 0.75, 0.9, 1 and τ = 0.3, 0.5, 0.8.

Figure 4: Average length for AsypmCS constructed by (4) (on top panel) and (6) (on bottom panel)
and non-DP non asymptotic CS in [27], when confidential data come from standard Normal N (0, 1)
with r = 0.25, 0.5, 0.75, 0.9, 1 and τ = 0.3, 0.5, 0.8.

AsympCS based on equation (4) and equation (6) to conduct privacy-preserving inference on the
median (τ = 0.5), targeting GPA in the first dataset and annual salary in the second. Specifically,
we construct time-uniform CS for the respective quantiles under truthful response rates r = 0.75
and 0.9, and set the hyperparameter ρ in equation (6) to ρ = 0.01, while keeping all other tuning
parameters consistent with those used in Section 4. The upper and lower bounds of the confidence
sequences are presented in Figure 5. From the results in Figure 5, we observe that the CSs produced
by our two methods under different response rates r covering similar central values. In addition, in
both datasets, the length of the constructed CS decreases as r increases. As t grows, the sequence
based on (4) becomes more conservative than that based on (6). These observations align with our
simulation findings and further demonstrate the methods’ adaptability.
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Figure 5: Confidence sequence boundaries for GPA in the Law dataset (on top panel) and annual
salary in the government salary dataset (on bottom panel). The pointwise confidence interval from
Corollary 1 (red), and the proposed AsympCS based on equation (4) (blue) and equation (6) (green),
with target quantile τ = 0.5 and truthful response rates r = 0.9, 0.8, and 0.75 (left, middle, and right
panels, respectively).

6 Concluding remark

In this paper, we introduce an online,O(κ)-memory algorithm that provides time-uniform, asymptotic
confidence sequences for quantiles under LDP. We establish an almost-sure Gaussian approximation
for the Polyak-Ruppert quantile estimator obtained via parallel SGD, which is non-trivial even
in the non-DP case at rate Oa.s.

(
(T/ log log T )−1/2

)
, thereby sharpening the L2 and smooth-loss

based results of [58] and [54]. In addition, we devise an almost-surely consistent estimator of
the quantile variance (and density) using only the SGD iterates, thus providing the first sequential
quantile-inference procedure in the LDP setting.

Nonetheless, our methodology has some limitations. First, the SGD-based procedure depends on
tuning parameters, such as the learning rate and the initial values, whose optimal calibration can be
delicate. Second, the rate of variance consistency hinges on the number of parallel chains, κ, and
the dynamically increasing-chain scheme requires relatively sharp assumptions on the relationship
between κ and T . A fixed-κ variant could leverage a t-distribution with (κ−1) degrees of freedom to
form confidence sequences, but deriving non-asymptotic t-based bounds is far from straightforward.
Finally, although non-asymptotic error bounds for SGD estimators have been extensively studied
(e.g., 9), extending these results to obtain fully non-asymptotic confidence sequences for SGD iterates
under LDP remains an attractive yet challenging avenue for future research.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have accurately summarized the paper’s contributions and scope in the
abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have provided detailed theoretical assumptions and corresponding com-
ments in Section 3, and complete proofs in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described the experimental setting in Section 4 in detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have uploaded the code that reproduces the experimental results in the
paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have established these details in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This information has been defined correctly in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have reported the computer resources in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have checked that our paper satisfies the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification:We discuss our contributions and potential future directions in the last section.
No apparent negative societal impacts are foreseen.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper doesn’t involve this.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No existing assets were used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use the LLM for writing and editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional simulation results

A.1 Other results in Section 4

In this section, we provide additional figures not shown in the main text (see Figures A.1–A.7).
Notably, in the left panel of Figure A.1, the time-uniform type I error slightly exceeds the nominal
level of 0.05 (approximately 0.08), with most errors occurring during the start of the algorithm. This
primarily occurs because the initial values (N (0, 1)) are relatively far from the true values, resulting
in poor estimation at the initial moments. Additionally, although (4) is generally more conservative
than (6) during the early stage, calculations indicate that the boundary given by (4) is narrower at
the very beginning of the algorithm, causing slightly poorer coverage during these initial moments.
Increasing the burn-in period could further reduce this error rate.

Figure A.1: Time-uniform type I error for AsypmCS constructed by (4) and non-DP non asymptotic
CS in [27], when confidential data come from standard Cauchy C(0, 1) with r = 0.25, 0.5, 0.75, 1
and τ = 0.3, 0.5, 0.8.

Figure A.2: Time-uniform type I error for AsypmCS constructed by (6) and non-DP non asymptotic
CS in [27], when confidential data come from standard Cauchy C(0, 1) with r = 0.25, 0.5, 0.75, 0.9, 1
and τ = 0.3, 0.5, 0.8.

Figure A.3: Average length for AsypmCS constructed by (4) and non-DP non asymptotic CS in
[27], when confidential data come from standard Cauchy C(0, 1) with r = 0.25, 0.5, 0.75, 0.9, 1 and
τ = 0.3, 0.5, 0.8.

Next, we evaluate the finite-sample performance under a mixture of Beta distributions and make
some discussions about our Assumptions. To be specific, for our Assumption (A1), according to
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Figure A.4: Average length for AsypmCS constructed by (6) and non-DP non asymptotic CS in
[27], when confidential data come from standard Cauchy C(0, 1) with r = 0.25, 0.5, 0.75, 0.9, 1 and
τ = 0.3, 0.5, 0.8.

Figure A.5: Relative error of the variance estimator (3) when confidential data come from standard
Normal N (0, 1) with r = 0.25, 0.5, 0.75, 0.9, 1 and τ = 0.3, 0.5, 0.8.

Corollary 2.3.3.A in [46], the asymptotic normality of the sample quantile relies on the assumption
that the distribution function F (·) is differentiable at the true quantile value x∗, with a strictly positive
derivative. While it’s not strictly necessary that a density function f(·) equals the derivative of the
distribution function, f(·) = F ′(·), this relationship holds if the density f(·) is continuous at x∗, in
which case F ′(x∗) = f(x∗) > 0. In addition, Assumption (A2) is a technical requirement crucial for
controlling a negligible term in the Gaussian approximation, where a second-order Taylor expansion
is applied (refer to equation 7). This is a mild assumption that holds for many common distributions,
including heavy-tailed ones. For example, the derivative of the density function for a standard Cauchy
random variable is:

f ′(x) =
d

dx
f(x) =

d

dx

(
1

π(1 + x2)

)
= − 2x

π(1 + x2)2
,

This derivative is both continuous and bounded, thereby satisfying Assumption (A2).

While Assumptions (A1) and (A2) hold for a wide range of distributions, our theoretical results
require the underlying density to have continuous and bounded derivatives. This condition is not met
by all irregular or "spiky" distributions. To investigate our method’s practical performance under
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Figure A.6: Relative error of the variance estimator (3) when confidential data come from standard
Cauchy C(0, 1) with r = 0.25, 0.5, 0.75, 0.9, 1 and τ = 0.3, 0.5, 0.8.

Figure A.7: Plots of trajectories when confidential data come from standard Cauchy distribution
C(0, 1), for pointwise confidence interval from Corollary 1 (in red with upward-pointing triangles),
pointwise confidence interval from [38] (in purple with asterisks), proposed AsympCS based on (4)
(in blue with circles) and (6) (in green with squares) with τ = 0.8, r = 1, 0.9, 0.75 (left, middle and
right panel).

these challenging conditions, we conducted further experiments. To be specific, we test our method
using a mixture of Beta distributions with the following density:

f(x) = {β10,100(x) + β100,100(x) + β100,10(x)} /3.

where βα,β(x) is the density of a Beta distribution with parameters α and β. This specific mixture
creates a sharp spike at τ = 0.5, resulting in a large derivative of the density at that point, which
slightly violates Assumption (A2). Despite this, our numerical simulations under r = 0.75 and
τ = 0.5 confirm that our method remains valid. The results are shown in Figure A.8.
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Figure A.8: Time-uniform type I error for AsypmCS constructed by by (4) and (6), when confidential
data come from a mixture of Beta distributions with τ = 0.5 and r = 0.75.

A.2 Comparison between the proposed method and [38]

We conduct additional experiments to compare our proposed quantile estimation and confidence
interval in Corollary 1 with [38]. Recall that [38] adopts a pointwise estimation approach and employs
self-normalization for inference. Specifically, we considered the same simulation setting as in Section
4, with total sample size T = 5, 000, 000, quantile level τ = 0.3, 0.5, 0.8, the truthful response rates
r = 0.25, 0.5, 0.75, 0.9, 1 and distribution type set to normal. The results are in figure A.9. While
both methods achieve empirical coverage rates close to the nominal confidence level, the average
length of our confidence interval is more narrow across various settings of r and τ , indicating higher
efficiency of our approach.

For point estimation accuracy of quantiles, we use the same simulation settings as in the confidence-
interval study and evaluate performance by the mean squared error (MSE) of the estimated quantiles.
The detailed comparison results are provided in fig A.10. We find that when τ is close to 0.5, our
method achieves comparable MSE to that in [38]. However, as τ deviates from 0.5, the MSE of our
method becomes slightly worse. This can be attributed to the dynamically chained parallel procedure
used procedure employed in our quantile inference.
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Figure A.9: Average length onstructed by the proposed method in Corollary 1 (on top panel) and [38])
(on bottom panel), when confidential data come from standard NormalN (0, 1) with τ = 0.3, 0.5, 0.8
and r = 0.25, 0.5, 0.75, 0.9, 1.

Figure A.10: MSE constructed by the proposed method in Corollary 1 (on top panel) and [38]) (on
bottom panel), when confidential data come from standard Normal N (0, 1) with τ = 0.3, 0.5, 0.8
and r = 0.25, 0.5, 0.75, 0.9, 1.
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A.3 The selection and sensitivity analysis of tuning parameters

The proposed method requires the selection of several tuning parameters. This subsection conducts a
comprehensive sensitivity analyses to show that the results are robust to variations in these choices.

Note that our tuning parameters fall into three categories. The first includes SGD-based parameters
(e.g., the learning rate–related parameter a). Selecting the learning rate is indeed a well-known
challenge in practice: SGD can be sensitive to this choice, especially in high-dimensional sparse
settings and in rare–frequent or heavy-tailed regimes; see [6, 13, 19]. Nevertheless, under appropriate
conditions, for example, when the objective is convex and smooth, or when the initialization is
sufficiently close to the true parameter, Polyak–Ruppert averaged SGD enjoys provable convergence
with tolerable sensitivity to the learning rate [43, 49, 16]. As later reported in our sensitivity studies,
our results are robust to reasonable variations in this hyperparameter. The second category includes
tuning parameters related to time-uniform inference, such as the AsympCS starting index m and the
hyperparameter ρ in the Gaussian mixture bound (equation (6)). The third category consists of tuning
parameters specific to our proposed method, such as the number of chains h(t). We find that the
results are not sensitive to these parameters; thus, recommendations from the time-uniform inference
literature [54] and the default setting provided in our paper (e.g., h(t) = ⌊8 log10(t)⌋) can serve as
practical choices.

We next conduct comprehensive sensitivity analyses for the aforementioned tuning parameters (i.e.,
a, m, ρ, and h(t)). Specifically, we consider one of the simulation settings from Section 4, with a
total sample size of T = 5,000,000, 1, 000 repetitions, truthful response rate r = 0.75, quantile level
τ = 0.5, and normally distributed data. We evaluate the time-uniform type I error for AsympCS
across a range of hyperparameter choices. The results are summarized in the following Figures
A.11 to A.14. The proposed methods maintain the nominal type I error rate (5%) for nearly all
hyperparameter choices, demonstrating its insensitivity to these tuning parameters.

Figure A.11: Time-uniform type I error for AsypmCS constructed by (4) (on left panel) and
(6) (on right panel), when confidential data come from standard Normal N (0, 1) with a =
0.55, 0.6, 0.65, 0.7.
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Figure A.12: Time-uniform type I error for AsypmCS constructed by (4) (on left panel) and
(6) (on right panel), when confidential data come from standard Normal N (0, 1) with h(t) =
6 log10(t), 7 log10(t), 8 log10(t), 9 log10(t), 10 log10(t).

Figure A.13: Time-uniform type I error for AsypmCS constructed by (4), when confidential data
come from standard Normal N (0, 1) with m = 1, 10000, 100000, 500000.
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Figure A.14: Time-uniform type I error for AsypmCS constructed by (6), when confidential data
come from standard Normal N (0, 1) with 0.0005, 0.001, 0.002, 0.005.
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B Proofs

This section includes detailed proofs of the theoretical results in the main article.

Elementary calculation shows that

g(x) := EG(x, ζ) = r {F (x)− F (x∗)} ,

which will be frequently used in our proofs.

Proofs of Theorem 1: Define the weight ωk = Tk/T . One rewrites

1

T

κ∑
k=1

Tk∑
j=1

(xk,j − x∗) =

κ∑
k=1

Tk

T

1

Tk

Tk∑
j=1

(xk,j − x∗) =:

κ∑
k=1

ωkTk.

There are two possible cases for the value of Tk: either Tk ∈ (T/κ− 1, T/κ+ 1) for all 1 ≤ k ≤ κ
(case 1), or T1 = T2 = · · · = Tκ0

≥ Tκ0+1 = · · · = Tκ−1 ≥ Tκ and |Tκ0
− Tκ0+1| ≤ 1, Tk ≍ T/κ

for any 1 ≤ k ≤ κ− 1 (case 2). Define

εk,t = g(xk,t−1)−G(xk,t−1, ζk,t), ε̃k,t = g(x∗)−G(x∗, ζk,t).

Elementary calculation shows that

E(ε2k,t|Fk,t−1) =
1 + r − 2rF (xk,t−1)

2
−
(
1 + r − 2rF (xk,t−1)

2

)2

=
1− r2(2F (xk,t−1)− 1)2

4

P−→ 1− r2(2τ − 1)2

4
,

where the convergence in probability holds by the consistency of the quantile estimation and the
continuous mapping theorem. Denote γk,t = xk,t − x∗, H = rf(x∗), Bt = 1 − ηtH , At

j =∑t
s=j

(∏s
i=j+1 Bi

)
ηi for any j ≤ t. We decompose that

Tk =
1

Tk

Tk∑
j=1

(xk,j − x∗) =
1

Tk

Tk∑
j=1

γk,j

=
1

Tk
ATk−1

0 B0γk,0 +
1

Tk

Tk−1∑
j=0

ATk−1
j rk,j +

1

Tk

Tk−1∑
j=0

(
ATk−1

j −H−1
)
εk,j+1

+
1

Tk

Tk−1∑
j=0

H−1 (εk,j+1 − ε̃k,j+1) +
1

Tk

Tk−1∑
j=0

H−1ε̃k,j+1

=: Tk,1 + Tk,2 + Tk,3 + Tk,4 + Tk,5,

in which

rk,j = H(xk,j − x∗)− g(xk,j).

For Tk,1: According to Lemma C.4 of [54], one has
∣∣At−1

0

∣∣ ≤ C0 uniformly for all t ≥ 1. Further
observe that γk,0 ≡ x0 − x∗ for all 1 ≤ k ≤ κ, thus one obtains∣∣∣∣∣

κ∑
k=1

ωkTk,1

∣∣∣∣∣ = O (κT−1
)
.

For Tk,2: Theorem 5 of [25] shows that

max
1≤k≤κ

E |xk,t − x∗|2 ≲ ηt.
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Since |rk,t| ≲ |xk,t − x∗|2 by Assumption (A2), we show that

∞∑
t=2

E
∑κ

k=1 ωk|rk,t|
t1−a log1+ϵ(t)

≲
∞∑
t=2

∑κ
k=1 ωkE |xk,t − x∗|2

t1−a log1+ϵ(t)

≲
∞∑
t=2

max1≤k≤κ E |xk,t − x∗|2

t1−a log1+ϵ(t)
(7)

≲
∞∑
t=2

1

t log1+ϵ(t)
<∞.

Hence, with probability one,
∞∑
t=2

∑κ
k=1 ωk|rk,t|

t1−a log1+ϵ(t)
<∞.

According to the uniform boundedness of
∣∣At−1

j

∣∣, for case 1, one shows that∣∣∣∣∣
κ∑

k=1

ωkTk,2

∣∣∣∣∣ ≲
κ∑

k=1

ωk
1

Tk

Tk−1∑
j=0

|rk,j |

≤ ⌊T/κ+ 1⌋
⌈T/κ− 1⌉

1

⌊T/κ+ 1⌋

⌊T/κ+1⌋−1∑
j=0

κ∑
k=1

ωk |rk,j |

= Oa.s.

(
(κ/T )a log1+ϵ(T )

)
.

For case 2, one shows that∣∣∣∣∣
κ∑

k=1

ωkTk,2

∣∣∣∣∣ ≲
κ∑

k=1

ωk
1

Tk

Tk−1∑
j=0

|rk,j |

≤
κ0∑
k=1

ωk
1

Tk

Tk−1∑
j=0

|rk,j |+
κ−1∑

k=κ0+1

ωk
1

Tk

Tk−1∑
j=0

|rk,j |+
1

T

Tκ−1∑
j=0

|rκ,j |

= Oa.s.

(
(κ/T )a log1+ϵ(T )

)
.

For Tk,3: For any fixed p > 0 (large enough), note that max1≤k≤κ E|εk,j |2p = E|ε1,j |2p is bounded.

Following the arguments in [54], one has ∥T3,k∥2p = O
(
T

−1+a/2
k

)
. Then, using the Lemma A in

Chapter 9.2.6 of [46] and the independence over k, one has that∥∥∥∥∥
κ∑

k=1

ωkTk,3

∥∥∥∥∥
2p

= O
(
κ−1/2(T/κ)−1+a/2

)
,

which implies that∣∣∣∣∣
κ∑

k=1

ωkTk,3

∣∣∣∣∣ = Oa.s.

(
κ−1/2(T/κ)−1+a/2T 1/(2p) log1/(2p)+ϵ(T )

)
.

For Tk,4: Observe that εk,j − ε̃k,j = g(xk,j−1)−G(xk,j−1, ζk,j) +G(x∗, ζk,j), and

E (εk,j − ε̃k,j)
2 ≲ Eg2(xk,j−1) + E {G(xk,j−1, ζk,j)−G(x∗, ζk,j)}2

≲ E|xk,j−1 − x∗|2 + E|xk,j−1 − x∗|

≲ E|xk,j−1 − x∗|2 +
{
E|xk,j−1 − x∗|2

}1/2
≲ η

1/2
t ,

where the last inequality holds by Theorem 5 of [25], and the constant does not depend on k.
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We rewrite
κ∑

k=1

ωkTk,4 =
tT
T

1

tT

tT∑
t=1

κt∑
k=1

H−1 (εk,t − ε̃k,t) ,

where tT = max1≤k≤κ Tk ≍ T/κ and κt = |{k : Tk ≥ t}| ≤ κ. Notice that

Var

{
κt∑
k=1

H−1 (εk,t − ε̃k,t)

}
≲ κtVar (εk,t − ε̃k,t) ≲ κη

1/2
t .

Hence,
∞∑
t=2

Var

(∑κt

k=1 H
−1 (εk,t − ε̃k,t)

κ1/2t1/2−a/4 log1/2+ϵ(t)

)
≲

∞∑
t=2

1

t log1+2ϵ(t)
<∞,

which implies that (by Kronecker’s lemma),∣∣∣∣∣
κ∑

k=1

ωkTk,4

∣∣∣∣∣ = Oa.s.

(
κ−1/2(T/κ)−1/2−a/4 log1/2+ϵ(T )

)
.

For Tk,5: Elementary calculation shows that

Eε̃2k,j =
1− r2(2τ − 1)2

4
=: S.

Applying Theorem 2.6.7 of [14] with H(x) = x2p and xn = nβ0 , there exist i.i.d. standard normal
Z̃k,j’s and some a,C > 0 (depending on the distribution of H−1ε̃k,j) such that

P

(∣∣∣∣∣
κ∑

k=1

Tk∑
t=1

H−1ε̃k,t√
H−1SH−1

−
T∑

i=1

Z̃i

∣∣∣∣∣ > T β0

)
≤ Ca−2pT 1−2pβ0 .

Thus,

P

(∣∣∣∣∣ 1T
κ∑

k=1

Tk∑
t=1

H−1ε̃k,t√
H−1SH−1

− 1

T

T∑
i=1

Z̃i

∣∣∣∣∣ > T−1+β0

)
≲ T 1−2pβ0 .

For p > 2, one selects β0 ∈ (1/p, 1/2), the Borel-Cantelli lemma leads to∣∣∣∣∣
κ∑

k=1

ωkTk,5 −
1

T

T∑
i=1

Zi

∣∣∣∣∣ = Oa.s.

(
T−1+β0

)
,

where Zi’s are i.i.d. normal r.v.’s with mean zero and covariance H−1SH−1.

Therefore, we obtain that∣∣∣∣∣ 1T
κ∑

k=1

Tk∑
t=1

(xk,t − x∗)− 1

T

T∑
i=1

Zi

∣∣∣∣∣ = Oa.s.

(√
log log T

T

)
,

which completes the proof.

Proofs of Theorem 2: Recall that the weight ωk = Tk/T . We rewrite

σ̂2
T =

κ∑
k=1

ωk

 1√
Tk

Tk∑
j=1

(xk,j − x∗)


2

−


κ∑

k=1

ωk
1√
Tk

Tk∑
j=1

(xk,j − x∗)


2

.

Recall the definitions of Tk,j , 1 ≤ j ≤ 5.

For Tk,1: According to Lemma C.4 of [54], one has
∣∣At−1

0

∣∣ ≤ C0 uniformly for all t ≥ 1. Further
observe that γk,0 ≡ x0 − x∗ for all 1 ≤ k ≤ κ, thus one obtains ∥Tk,1∥2 = O

(
T−1
k

)
, where the

constant does not depend on k.
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For Tk,2: Consider that∣∣∣∣∣∣ 1Tk

Tk−1∑
j=0

ATk−1
j rk,j

∣∣∣∣∣∣ ≲ 1

Tk

Tk−1∑
j=0

|rk,j | ≲
1

Tk

Tk−1∑
j=0

|xk,j − x∗|2.

Then, ∥∥∥∥∥∥ 1

Tk

Tk−1∑
j=0

ATk−1
j rk,j

∥∥∥∥∥∥
2

≲
1

Tk

Tk−1∑
j=0

∥xk,j − x∗∥24 .

Applying Theorem 5 of [25], we have

max
1≤k≤κ

E |xk,j − x∗|4 ≲ η2j .

Since ηj ≍ j−a with a > 1/2, it follows that ∥Tk,2∥2 = O
(
T

−1/2
k

)
.

For Tk,3: As shown in the proof of Theorem 1, one has ∥Tk,3∥2p = O
(
T

−1+a/2
k

)
= O

(
T

−1/2
k

)
,

since a < 1.

For Tk,4: Observe that
∑Tk

j=1 H
−1 (εk,j − ε̃k,j) is a martingale for each k (independent over 1 ≤

k ≤ κ), Burkholder’s inequality entails that∥∥∥∥∥∥
Tk∑
j=1

H−1 (εk,j − ε̃k,j)

∥∥∥∥∥∥
2

≲


Tk∑
j=1

∥∥H−1 (εk,j − ε̃k,j)
∥∥2
2


1/2

≲

 Tk∑
j=1

η
1/2
j

1/2

≲ T
{1−a/2}/2
k .

Hence, for any 1 ≤ k ≤ κ,

∥Tk,4∥2 =

∥∥∥∥∥∥ 1

Tk

Tk∑
j=1

H−1 (εk,j − ε̃k,j)

∥∥∥∥∥∥
2

= O
(
T

−1/2−a/4
k

)
.

For Tk,5: Applying Theorem 2.6.7 of [14] with H(x) = x2p and xn = vnβ0 , there exist i.i.d.
standard normal Z̃k,j’s and some ak, Ck > 0 (depending on the distribution of H−1ε̃k,j) such that

P

∣∣∣∣∣∣
Tk∑
j=1

H−1ε̃k,j√
H−1SH−1

−
Tk∑
j=1

Z̃k,j

∣∣∣∣∣∣ > vT β0

k

 ≤ Cka
−2p
k v−2pT 1−2pβ0

k .

Thus,

P

∣∣∣∣∣∣ 1Tk

Tk∑
j=1

H−1ε̃k,j√
H−1SH−1

− 1

Tk

Tk∑
j=1

Z̃k,j

∣∣∣∣∣∣ > vT−1+β0

k

 ≲ v−2pT 1−2pβ0

k .

Since EXp =
∫∞
0

pvp−1P(|X| > v)dv, we also have∥∥∥∥∥∥Tk,5 − 1

Tk

Tk∑
j=1

Zk,j

∥∥∥∥∥∥
2

= O
(
T−1+β0

k

)
.

According to the above results, we show that∥∥∥∥∥∥ 1

Tk

Tk∑
j=1

(xk,j − x∗)− 1

Tk

Tk∑
j=1

Zk,j

∥∥∥∥∥∥
2

= O
(
T

−1/2
k

)
,
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which implies ∥∥∥∥∥∥ 1√
Tk

Tk∑
j=1

(xk,j − x∗)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1√
Tk

Tk∑
j=1

Zk,j

∥∥∥∥∥∥
2

+ O(1) <∞,

E
1√
Tk

Tk∑
j=1

(xk,j − x∗) = E
1√
Tk

Tk∑
j=1

Zk,j + O(1) = O(1).

The SLLN (independent but not identically distributed) further yields that

κ∑
k=1

ωk
1√
Tk

Tk∑
j=1

(xk,j − x∗)
a.s.−−→ 0.

It sufficed to show

κ∑
k=1

ωk

 1√
Tk

Tk∑
j=1

(xk,j − x∗)


2

a.s.−−→ EZ2
k,j =

1− r2(2τ − 1)2

4r2f2(x∗)
.

For case 1, T1 = T2 = · · · = Tκ0
= Tκ0

+ 1 = · · · = Tκ + 1. The SLLN (i.i.d.) implies that

κ0∑
k=1

ωk

 1√
Tk

Tk∑
j=1

(xk,j − x∗)


2

a.s.−−→
κ0∑
k=1

Tk

T
EZ2

k,j =

κ0∑
k=1

Tk

T

1− r2(2τ − 1)2

4r2f2(x∗)
,

κ∑
k=κ0+1

ωk

 1√
Tk

Tk∑
j=1

(xk,j − x∗)


2

a.s.−−→
κ∑

k=κ0+1

Tk

T
EZ2

k,j =

κ∑
k=κ0+1

Tk

T

1− r2(2τ − 1)2

4r2f2(x∗)
.

The result is obtained by adding the above two expressions.

For case 2, the SLLN (i.i.d.) entails that

κ−1∑
k=1

ωk

 1√
Tk

Tk∑
j=1

(xk,j − x∗)


2

−
κ−1∑
k=1

ωkEZ2
k,j

=

κ−1∑
k=1

ωk

 1√
Tk

Tk∑
j=1

(xk,j − x∗)


2

−
(
1− Tκ

T

)
EZ2

k,j
a.s.−−→ 0,

As Tκ/T = O(1), it completes the proof of the consistency of σ̂2.

Proofs of Theorem 3: According to the law of iterated logarithm, the rate of the bound of any
confidence sequence for the unknown mean of Gaussian random variables with unit variance is at
least

√
T−1 log log T . On the one hand, Theorem 1 shows that Conditions G-1 and G-3 in [52] are

satisfied. On the other hand, Theorem 2 ensures Condition G-4 in [52]. Hence, we apply Theorem
2.4 in [52] to complete the proof.
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