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Armin Kekić1 Jan Schneider1 Dieter Büchler1,2 Bernhard Schölkopf1,3,4,* Michel Besserve1,5,*

1Max Planck Institute for Intelligent Systems, Tübingen, Germany
2University of Alberta, Canada

3Tübingen AI Center, Tübingen, Germany
4ELLIS Institute, Tübingen, Germany

5Technische Universität Braunschweig, Germany
*Joint supervision

Abstract

Why do reinforcement learning (RL) policies fail
or succeed? This is a challenging question due
to the complex, high-dimensional nature of agent-
environment interactions. In this work, we take a
causal perspective on explaining the behavior of
RL policies by viewing the states, actions, and re-
wards as variables in a low-level causal model. We
introduce random perturbations to policy actions
during execution and observe their effects on the
cumulative reward, learning a simplified high-level
causal model that explains these relationships. To
this end, we develop a nonlinear Causal Model
Reduction framework that ensures approximate in-
terventional consistency, meaning the simplified
high-level model responds to interventions in a sim-
ilar way as the original complex system. We prove
that for a class of nonlinear causal models, there ex-
ists a unique solution that achieves exact interven-
tional consistency, ensuring learned explanations
reflect meaningful causal patterns. Experiments
on both synthetic causal models and practical RL
tasksincluding pendulum control and robot table
tennisdemonstrate that our approach can uncover
important behavioral patterns, biases, and failure
modes in trained RL policies.

1 INTRODUCTION

In recent years, reinforcement learning (RL) has demon-
strated remarkable successes in diverse domains, from
achieving superhuman performance in games like Go [1]
and Atari [2], to enabling sophisticated control in
robotics [3] and optimizing resource management in com-
puter networks [4]. The field has also seen significant adop-

tion in real-world applications, including autonomous sys-
tems [5], recommendation engines [6], and process opti-
mization [7]. As RL systems continue to be deployed in
increasingly consequential settings, understanding the be-
havior and decision-making processes of trained policies
becomes a practical necessity for ensuring reliability, safety,
and trust. Hence, a natural and critical question arises: “Why
did a policy fail or succeed?” Practitioners need robust ex-
planations when and why policies exhibit unexpected be-
haviors. Identifying specific failure modes can guide more
efficient training regimes and enable improvements to policy
architecture or learning algorithms.

Despite their impressive capabilities, understanding the be-
havior of trained RL policies is challenging. These policies
often use parameter-rich neural networks to map from com-
plex observation spaces to actions through mechanisms that
are not easily accessible to human intuition. Standard per-
formance metrics, such as cumulative reward, provide only
limited insight into the behavior of an RL agent. Moreover,
the credit assignment problemdetermining which specific ac-
tions contributed most significantly to eventual outcomesis
a fundamental obstacle to developing policy explanations.

In this work, we address these challenges by taking a
causal perspective on explaining the behavior of learned RL
policies, summarized in Fig. 1. We formulate the problem
as a Causal Model Reduction (CMR), where we treat the
joint system of actions, environment variables, and rewards
as a complex low-level causal model. To probe the low-level
model, we introduce random perturbations to policy actions
as interventions and observe their impact on cumulative
rewards. We learn a simplified high-level causal model that
summarizes the most important factors determining differ-
ences in the expected reward. As our main learning signal,
we use interventional consistency: the low- and high-level
models should respond to interventions in a similar fashion.
The map from the original causal model to the reduced

Accepted for the 1st Workshop on Causal Abstractions and Representations (CAR) at UAI 2025 (CAR 2025).

mailto:<armin.kekic@tuebingen.mpg.de>?Subject=Your CAR Workshop 2025 paper


Agent

Intervention

Env

At

At+ δAt

St+1 Rt+1

δA0 δA1 · · · δAT

A0 A1 · · · AT

S0 S1 · · · ST

R0 R1 · · · RT

= Iπ(1)

= Xπ(1)

= R

J

Z

Y

ω1(Iπ(1))

τ1(Xπ(1))

τ0(R)
=

∑
t Rt

Interventions

Actions/States

Rewards

Low-level High-level

(a) From Reinforcement Learning Policies to Causal Explana-
tions.

PL(X) P̂
(0)
τ (Z, Y ) ≈ PH(Z, Y )

P
(i)
L (X) P̂

(i)
τ (Z, Y ) ≈ P

(ω(i))
H (Z, Y )

τ

τ

i ω(i)

(b) Approximately Commutative Diagram.

time
sta

te
/ a

cti
on

Xj

time
sta

te
/ a

cti
on

Φ(·)

time
sta

te
/ a

cti
on

Φ(Xj)

(c) Interpretable Reduction Function Class.

Figure 1: Learning Causal Explanations of RL Policies. (a) shows how RL policies are translated to a Causal Model Reduction problem.
We sample episodes from the interactions between a trained agent and its environment, where the sampled actions are augmented through
shift interventions δAt before they are executed. We treat the episode variables as nodes in a low-level causal graph, with the shifts
δAt acting as interventions on the actions At. Map τ condenses the low-level causal variables to a simpler high-level model with two
variables: the target Y , summarizing the rewards, and the cause Z, summarizing the subset π(1) of low-level nodes. Similarly, ω1 maps
the vector of low-level interventions I to its high-level counterpart J . The main learning signal is shown in (b). We learn the maps τ
and ω by making the diagram approximately commutative by minimizing the divergence between the distributions on each side of the
≈ sign. (c) shows a nonlinear interpretable function class that can be used to learn the reduction maps τ1 and ω1. A state/action variable’s
trajectory Xj is encoded through equally spaced Gaussian kernels to a feature vector Φ(Xj).

one can thus be used to explain the behaviors that are most
influential on the success or failure of the RL policy.

Our contributions are: (i) formulating the problem of
explaining RL policy behavior as a Causal Model Reduction
and developing a nonlinear extension of Targeted Causal
Reduction (TCR) [8] that summarizes the main factors
explaining a target phenomenon in complex systems,
(ii) providing theoretical guarantees of solution uniqueness
for a broad class of nonlinear models, ensuring unambigu-
ous explanations despite the identifiability challenges of
nonlinear systems, (iii) introducing a class of interpretable
nonlinear reduction functions that help explain the behavior
captured by the learned reductions, (iv) demonstrating
experimentally that our approach uncovers behavioral
patterns and biases in two trained RL tasks.

2 BACKGROUND

Notation. We use lowercase letters for deterministic vari-
ables and capital letters for random variables. X ∼ P means
X has distribution P . We use boldface for column vectors,
and XS for the subvector of X restricted to the components

in set S. The number of elements in a set S is #S.

2.1 STRUCTURAL CAUSAL MODELS (SCMS)

SCMs are a mathematical framework for representing
cause-effect relationships in complex systems.

Definition 2.1 (Structural Causal Model [9, 10]). An n-
dimensional SCM is a triplet M=(G,S, PU ) consisting of:
(i) a directed acyclic graph G with n vertices, (ii) a joint
distribution PU over exogenous or noise variables {Uj}j≤n,
(iii) a set S={Xj := fj(Paj , Uj), j=1, . . . , n} of structural
equations, where Paj are the variables indexed by the set
of parents of vertex j in G. This induces a joint distribution
PM over the endogenous variables X = [X1, . . . , Xn]

ᵀ.1

The endogenous variables X encode the system’s observ-

1This SCM definition allows for confounding between vari-
ables through the potential lack of independence between the ex-
ogenous variables {Uj}. Although Def. 2.1 uses the common
assumption of acyclic graphs for simplicity, our approach is also
compatible with some families of causal graphs with cycles. See
App. A.1.



ables, where each variable Xj is determined through the
deterministic causal mechanism fj , its parent variables Paj ,
and the exogenous noise variable Uj . One often encountered
class of SCMs are additive noise models where structural
equations take the simplified form Xj := fj(Paj) + Uj .

Interventions are encoded in SCMs by replacing one or
several structural equations. An intervention transforms the
original model M=(G,S, PU ) into an intervened model
M(i)=(G(i),S(i), P (i)

U ), where i is the vector parameteriz-
ing the intervention. The base probability distribution of the
unintervened model is denoted P

(0)
M or simply PM and the

interventional distribution associated with M(i) is denoted
P

(i)
M . In this work, we focus on shift interventions, which

modify the structural equation of variable Xl by shifting it
by a scalar il

{Xl := fl(Pal, Ul)} 7→ {Xl := fl(Pal, Ul) + il} . (2.1)

These can be combined to form multi-node interventions
with vector parameter i.

2.2 CAUSAL MODEL REDUCTIONS (CMRS)

Causal models with a large number of variables can be diffi-
cult to interpret and work with. Causal Model Reductions
(CMRs) [8] are dimensionality reduction approaches that
map such detailed low-level causal models to approximate
high-level descriptions with fewer variables while preserv-
ing the essential causal properties. They closely relate to
several notions of causal abstraction [11–17].

Low- and High-level SCMs. We consider two causal
models:

• A low-level SCM L with endogenous variables X ∼
PL (on range X ) with exogenous variables U ∼ PU ,
and set of possible interventions I , leading to interven-
tional distributions (P (i)

L )i∈I .

• A lower-dimensional high-level SCM H with endoge-
nous variables Z ∼ PH (on range Z), exogenous vari-
ables W ∼ PW , set of interventions J , and distribu-
tions (P (j)

H )j∈J .

X is then reduced into a Z-valued high-level random vari-
able using a deterministic map τ : X → Z .

Interventional Consistency. The key criterion for a good
reduction is interventional consistency: the high-level model
should respond to interventions in ways that correspond to
the original model’s behavior under analogous interventions
(cf. [11, 16–18]). To formalize this, we consider τ#[PL], the
so-called push-forward distribution by τ of the low level
model distribution, such that

τ(X) ∼ τ#[PL] . (2.2)

Interventional distributions are pushed forward in the same
way from the low-level to the high-level, allowing to define
the notion of an exact transformation:

Definition 2.2 (Exact transformation [17]). A map τ : X →
Z is an exact transformation from L to H if it is surjective,
and there exists a surjective intervention map ω : I → J
such that for all i ∈ I

τ#

[
P

(i)
L

]
= P

(ω(i))
H . (2.3)

That is, regardless of whether we first intervene through i
in the low-level model L and then map to the high-level H,
or first map to H and intervene with ω(i), we arrive at the
same distribution.

2.3 TARGETED CAUSAL REDUCTION (TCR)

While exact transformations are theoretically elegant, they
present two practical challenges: (i) achieving perfect equal-
ity in Eq. (2.3) is often infeasible, so we need a systematic
method to learn approximately consistent reductions from
data, and (ii) there are many possible consistent reductions
and finding a meaningful one needs additional constraints.
Targeted Causal Reduction (TCR) [8] addresses these chal-
lenges by focusing on explaining a specific target variable of
interest and providing a concrete learning objective. Below,
we describe the case of a single high-level cause, the general
case is described in App. A.2.

Definition 2.3 (General TCR Framework). In TCR, we
learn transformations (τ, ω) between models L and H under
the following assumptions:

1. Target: H contains only two nodes: a predefined
scalar target variable Y = τ0(X) that quantifies
a phenomenon of interest, and a high-level cause
Z = τ1(X) that needs to be learned.

2. Parameterized High-level Models: The high-level
SCM is constrained to a class of linear additive
Gaussian noise models {Hγ}γ∈Γ with parameters
γ to be learned, implying that (i) the mechanism
Z → Y is linear, with (linear) causal coefficient
α and additive noise W0 and (ii) the exogenous
variables {W0,W1 = Z} have a factorized Gaussian
distribution PW = PW0

PW1
.

3. Constructive Transformations: The respective
components of the maps τ and ω associated to the
high-level cause and effect depend on disjoint subsets
π(1) and π(0) of low-level variables:

τ(x) = (τ̄0(xπ(0)), τ̄1(xπ(1)) , (2.4)
ω(i) = (0, ω̄1(iπ(1))) . (2.5)

the first component of ω is set to zero to prevent direct
high-level interventions on Y , forcing changes in Y
to be explain through high-level interventions on Z.



4. Approximate Consistency Objective: Rather than
requiring exactness of Eq. (2.3), TCR minimizes the
consistency loss, quantifying an average discrepancy D
between the push-forward interventional distributions
and their corresponding high-level model distributions:

Lcons = Ei∼PI

[
D
(
P̂ (i)
τ (Y,Z)‖P (ω(i))

H (Y,Z)
)]

,

(2.6)

with P̂ (i)
τ = τ#

[
P

(i)
L

]
.

The relationship between those distributions and
the learned reduction maps is shown in Fig. 1b.
The expectation is taken over a prior distribution of
interventions PI . 2

Intuition behind TCR. TCR provides a form of etiologi-
cal explanation for the target phenomenon Y , identifying
the origins of its variation. It accomplishes this by creating
an interpretable formulation where changes in Y due to
low-level interventions are explained through a high-level
causal mechanism. TCR forces explanations to flow through
the learned high-level cause Z. When asked “What causes
changes in Y ?”, TCR answers with a specific causal state-
ment: “Y is changed by acting on the high-level cause
Z = τ1(Xπ(1)) through intervention ω(iπ(1))”. The inter-
pretability of the maps τ and ω provides valuable insights: τ
reveals which properties of the system influence Y , while ω
shows which types of interventions most effectively change
these properties.

Linear TCR. The TCR formulation by Kekić et al. [8]
imposes some significant constraints: (i) Linear transfor-
mations for τ and ω, simplifying analysis and facilitating
interpretability but limiting expressivity; and (ii) Gaussian
KL-divergence approximation for the discrepancy D in
Eq. (2.6), where distributions are approximated as Gaussians
with matched means and variances (see App. A.3), taking a
differentiable closed-form and allowing easy optimization.

3 FROM RL POLICIES TO CAUSAL
MODEL REDUCTION

RL episodes inherently form causal chains where agent
observations lead to actions, which cause environmental
changes resulting in new states and rewards. These interac-
tions naturally map to structural causal models. To identify
the causal impact of specific actions on overall performance,
we need to observe counterfactual outcomes—what would

2Remarks: In practice, π(0) and π(1) can be fixed based on
domain knowledge, with π(1) typically encompassing all vari-
ables potentially influencing the target that are not in π(0). The
intervention prior PI can be uninformative (e.g. i.i.d. Gaussian)
or informed by domain expertise.

have happened if the agent had acted differently. We achieve
this by introducing controlled perturbations to the policy’s
chosen actions and observing their effects. Specifically, we
construct episodes where each action At selected by the
policy is perturbed by a small random shift δAt ∼ N (0, σt)
before being executed in the environment:

(S0, A0+δA0, R1, . . . , AT−1+δAT−1, RT , ST ) (3.1)

These perturbations serve as shift interventions in our causal
framework and allow us to observe how deviations from
the policy’s intended actions propagate to the cumulative
reward.

To formalize this as a TCR problem, we define the
low-level endogenous variables X consisting of states
and actions Xπ(1)=(A0, . . . , AT−1, S0, . . . , ST )

ᵀ and
rewards Xπ(0)=R=(R1, . . . , RT )

ᵀ, as shown in Fig. 1a.
The interventions are Iπ(1)=(δA0, . . . , δAT−1, 0, . . . , 0)

ᵀ,
where we intervene only on actions and not on states, and
the target variable is the cumulative reward Y=

∑T
t=1 Rt.

With this formulation, we can now apply the TCR frame-
work to learn a simplified high-level model with one high-
level cause Z that best explains variations in the target vari-
able Y . The reduction maps τ1 and ω1 identify which as-
pects of the states and actions most significantly influence
the overall performance, thereby providing an interpretable
causal explanation of policy behavior.

4 NONLINEAR TARGETED CAUSAL
REDUCTION (NTCR)

While the linear TCR framework introduced in Sec. 2.3
provides a principled approach to learning simplified causal
models, many real-world phenomenaparticularly in rein-
forcement learninginvolve inherently nonlinear relation-
ships that cannot be adequately captured by linear maps.
In this section, we extend TCR to nonlinear settings while
preserving its key benefits of interpretability and causal
consistency. This extension, which we call nonlinear TCR
(nTCR), allows us to discover and represent complex causal
patterns in high-dimensional systems such as RL policies.
Despite the added flexibility of nonlinear functions, we show
that our approach maintains strong theoretical guarantees.
Specifically, we demonstrate both the existence and unique-
ness of reductions with exact interventional consistency for
a broad class of nonlinear causal models.

4.1 NORMALITY REGULARIZATION

The original discrepancy of linear TCR in Eq. (2.6) does
not enforce distributions to fully match (see App. A.3), and
the nonlinear reduction can therefore lead to a highly non-
Gaussian high-level cause. We therefore introduce a nor-
mality regularization encouraging τ1(X) to be Gaussian. In



addition to being more faithful to the initial idea of Def. 2.2,
this allows for easier interpretation of the learned causes
(as it enforces a simple unimodal cause distribution). The
theory behind the choice of consistency objective is further
discussed in App. D.

Given the push-forward distribution P̂
(i)
τ (Z) (with CDF

F
P̂

(i)
τ,std(Z)

(x)) of the high-level cause under intervention i,
we first standardize this distribution to zero mean and unit
variance to obtain P̂

(i)
τ,std(Z). We then measure the deviation

from normality as the 1-Wasserstein distance W1 between
this standardized distribution and the standard normal distri-
bution N (0, 1) (with CDF Φ(x)):

Lnorm = Ei∼P (i)

[
W1(P̂

(i)
τ,std(Z),N (0, 1))

]
(4.1)

= Ei∼P (i)

[∫
R
|F

P̂
(i)
τ,std(Z)

(x)− Φ(x)| dx
]
. (4.2)

The total optimization objective for nTCR then becomes
Ltotal = Lcons + ηnormLnorm. In practice, we compute Lnorm
using a differentiable approximation of the CDF and evalu-
ating the L1 distance at a finite set of points, as presented
in App. C.1. This approach allows for efficient optimization
while maintaining the desired distributional properties of
the high-level causes.

4.2 EXACT SOLUTIONS

Nonlinear TCR allows a much larger space of functions
to fit the learning objective. This can lead to overfitting
and even potential non-identifiability issues where multi-
ple reductions could exist, which would strongly limit the
interpretability of the approach. The following statement
provides identifiability guarantees even in the nonlinear case,
as long as we obtain exact solutions.

Proposition 4.1 (Uniqueness). Assume (i) the low-level
model is an additive noise SCM of the form[

Xπ(1),
Xπ(0)

]
:=

[
f1(Xπ(1)) +Uπ(1) + iπ(1) ,
f0(Xπ(0),Xπ(1)) +Uπ(0)

]
, (4.3)

Uπ(1) ∼ P1 indep. of Uπ(0) ∼ P0 , (4.4)

(ii) P1 admits a probability density with non-vanishing
Fourier transform, (iii) The high-level model has a non-
zero causal effect (α 6= 0). Then, if there exists a construc-
tive transformation following Def. 2.3 that is exact for all
i ∈ R#π(1), it is also unique up to multiplicative and addi-
tive constants.

See App. B.2 for the proof. The above result does not guar-
antee the existence of such exact transformations. The fol-
lowing proposition shows we can construct families of low-
level additive noise models that admit a nonlinear exact
transformation τ1(Xπ(1)) → τ0(Xπ(0)).

Proposition 4.2 (Existence). Assume a low-level additive
SCM following Eq. (D.2). Assume additionally that (i) U
is jointly Gaussian, (ii) f0(Xπ(0),Xπ(1)) = h0(Xπ(0)) +
B(Xπ(1) − f1(Xπ(1))), for some functions h0,f1, some
matrix B ∈ R#π(0)×#π(1)), and (iii) Y = τ0(Xπ(0)) =

a>(Xπ(0) − h0(Xπ(0))) for arbitrary non-vanishing a ∈
R#π(0), then the transformation defined by the following
maps is exact

τ̄1(Xπ(1)) = a>B(Xπ(1) − f1(Xπ(1))) , (4.5)

ω̄1(iπ(1)) = a>Biπ(1) . (4.6)

See App. B.1 for the proof. Although we do not expect to
cover all possible nonlinear exact transformations with this
class of models, this can be used to validate our algorithms,
as discussed in Sec. 5.1.

4.3 INTERPRETABLE NONLINEAR FUNCTION
CLASS

When the reduction is allowed to be nonlinear, it can be chal-
lenging to interpret what the high-level cause and interven-
tion represent in the system without constraints on the map-
pings τ1 and ω1. For example, RL episodes possess inherent
temporal structure that we can exploit to build more inter-
pretable function classes for these mappings. We can express
X as a Cartesian product across d features, with each feature
represented as a time series X=X 1× · · ·×X d, where X j

represents the space of possible trajectories for the j-th fea-
ture over time. Each feature’s trajectory space can be further
decomposed as X j=X j

1× · · ·×X j
T . The intervention space

I can be decomposed similarly. Leveraging this structure,
we define our interpretable nonlinear function class for τ1 as:

τ1(X) =

d∑
j=1

τ j1 (X
j) =

d∑
j=1

T∑
t=1

wj,t · φj,t(X
j
t ) (4.7)

=

d∑
j=1

T∑
t=1

wj,t · exp

(
− (x− µj,t)

2

2σ2
j,t

)
. (4.8)

Where wj,t are learned weights, and Xj
t is the value of fea-

ture j at time t. For our implementation, we use Gaussian
kernels φj,t as the basis functions, where {µj,t, σj,t} are
fixed parameters, set to span the range of values typically en-
countered, see Fig. 1c.3 This can be viewed as a continuous
one-hot encoding of variable-value pairs across the episode,
allowing for smooth interpolation between similar states.
This approach ensures that our nonlinear reduction remains
interpretable, as we can identify which features, at which
time steps, contribute most significantly to the high-level
causal explanation by examining the learned weights wj,t.

3The function ω1 is defined analogously, operating on the
intervention space Iπ(1).
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Figure 2: Identification of Ground-Truth Solutions for Synthetic Low-Level Models. Consistency loss (left) and the identification
losses measuring agreement with the ground-truth solutions (definition in App. E.1) for the τ - and ω-functions (middle and right) over the
reduction training run.

5 CASE STUDIES

5.1 EXPERIMENTS ON SYNTHETIC DATA

Before applying our approach to RL problems, we first
validate its theoretical properties on synthetic data generated
from known low-level causal models. This controlled
setting serves two important purposes: (i) it demonstrates
that for this model class, nTCR can indeed find the unique
solution that perfectly minimizes the causal consistency
loss, confirming our theoretical guarantees; and (ii) it
validates that our training methodology successfully
converges to the correct solution.

We generate synthetic data from 10 randomly sampled
low-level causal models following the structure described
in Prop. 4.2 with dim(X0) = 1, dim(X1) = 9, and
h0(X0) ≡ 0. Each entry in the matrix B is sampled from a
standard normal distribution, and we set a = 1. For these
experiments, we use neural networks as generic function
approximators for both τ1 and ω1. For more details on the
experimental setting, please refer to App. E.1.

Fig. 2 shows the consistency loss and an identification mea-
sure that quantifies how closely the learned τ - and ω-maps
match the ground truth solutions.4 We observe that nTCR
successfully finds reductions with near-zero consistency
loss and converges to the theoretical solution outlined in
Prop. 4.2, validating both our theory and implementation.

5.2 PENDULUM

Pendulum [19] is a classic swing-up control task where
a pendulum must be brought to the upright position. With
limited torque, the agent must develop momentum through
strategic oscillations rather than directly moving to the goal
position. The state space comprises three variables: x-y
coordinates (cos(θ), sin(θ)) and angular velocity, while the
action is the applied torque. The reward function penalizes
deviation from the upright position, angular velocity, and

4A normalized L2 loss between the learned and ground-truth
high-level cause; see App. E.1 for more details.

action magnitude. For the reductions, we choose the more
natural feature θ instead of the x- and y-positions. More
details on the experiment setting, and the agent and nTCR
training are given in App. E.2.

Fig. 3 (left, Policy A) shows that nTCR identifies two trajec-
tory groups with significant reward variations: pendulums
starting in the bottom-right corner swinging clockwise
(red, higher rewards) versus those starting bottom-left
swinging counterclockwise (blue, lower rewards). The
reduction shows that the agent performs better clockwise
than counterclockwisea surprising bias given that initial
conditions are uniformly sampled and the environment has
mirror symmetry along the axis of gravitation.

For Policy B (Fig. 3, right), the learned omega map reveals
that shifting torque to more negative values would improve
performance, particularly towards the end of the episode.
Analysis confirms this (Fig. 3, bottom-right): the policy fails
to consistently stabilize the pendulum upright, allowing
it to tip over in the positive θ direction before applying
positive torque for a full rotation recovery. nTCR correctly
identifies that applying more negative torque at the top
position would prevent this instability.

5.3 TABLE TENNIS

We evaluate our approach on a robot table tennis simulation
based on the real-world setup developed in [20, 21]. The
environment features a four degrees-of-freedom robot arm
actuated by pneumatic artificial muscles, positioned on
one side of a table tennis table, shown in Fig. 4 (a,b). The
robot’s task is to return incoming balls launched by a ball
gun to a desired landing point on the opponent’s side of the
table. The state space includes the robot state (joint angles,
joint velocities, and air pressures in each muscle) and the
ball state (position and velocity). The action space consists
of the changes in desired pressures for each of the eight
pneumatic muscles. The task requires precise timing and
positioning to successfully intercept the ball and direct it
toward the target. More details on the environment, the RL-
and nTCR-training are given in App. E.3.
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Figure 3: Pendulum task. The top two rows show the learned nTCR τ - and ω-maps for two policies A and B. The heatmaps show the
learned reductions τ j

1 (x
j) and ωj

1(i
j), where j indexes the state/action variables (angular velocity, theta, and torque). Note that since we

only intervene on the torque, this is the only variable for which there is a nonzero ω-map. The bottom left plot shows the pendulum system
setting. The middle plot on the bottom row shows the mean reward for Policy A for pendulums starting in the left quadrant (Condition 1)
and those starting in the right quadrant (Condition 2). The standard error of the mean is shown (the error bars are smaller than the data point
in the plot). The bottom right plot shows the mean x-position of the pendulum for episodes under Policy B and the 90% confidence interval.

The learned τ maps for the joint positions 0-2 and the
ball positions are shown in Fig. 4. We make two key
observations: one regarding the movements of the robot
arm and another with respect to performance differences
across ball trajectories. Joint 0 is the main axis used to
swing the robot arm to accelerate the ball (see Fig. 4 (b)).
The τ -map for this variable is shown in Fig. 4 (d). The
map highlights two critical state regions for joint position 0
during the period when the arm is swinging towards the ball
(regions A and B in Fig. 4 (d)): (A) the arm swings back
(negative angle values) before the ball arrives and forward
when the ball arrives, leading to high rewards, and (B) the
arm swings forward too early, leading to low rewards.

The TCR reductions for the ball position reveal two clear
trends: (i) balls that travel further toward the outside edge of
the table are more difficult to hit (Fig. 4 (g)), and (ii) balls
that bounce further from the robot, or closer to the net,
present greater challenges (Fig. 4 (h, i)). We validate these
findings with an analysis of the missed balls, shown in
Fig. 4(c). We observe that more balls miss the racket toward
the top compared to the bottom, and more to the left (cor-
responding to the direction toward the outside of the table)
than to the right. These observations are consistent with
the τ reduction values for joint positions 1 and 2, shown in
Fig. 4 (h, i). Around the time of ball contact, they have their
largest positive contributions near π/4—corresponding to
a relatively high and further out racket—and their largest

negative contributions for larger angles—corresponding to
a lower racket closer to its base.

6 RELATED WORK

Explainable reinforcement learning (XRL) focuses on
understanding the decision-making processes of learning
RL agents. Milani et al. [22] propose a taxonomy for
XRL approaches into three categories: feature importance
(FI) methods explaining the immediate context for single
actions (e.g. [23–25]), learning process methods (LPM) that
reveal influential experiences from training (e.g. [26–28]),
and policy-level (PL) methods that summarize the agent’s
behavior as a whole. Our work is a policy-level explana-
tion [29–31], and specifically, our nTCR is a technique that
extracts abstract states, as we reduce the dimensionality of
the states, actions, and reward spaces into high-level vari-
ables. A notable causal approach to XRL is Madumal et al.
[32], who introduce action influence models based on SCMs
to generate contrastive explanations for agent behavior
through counterfactual analysis, though their approach dif-
fers from ours in that they require a predefined causal graph
structure and focus on explaining individual actions rather
than identifying high-level causal patterns across episodes.

Our approach is an extension of linear TCR [8] which is it-
self grounded in theoretical work on causal abstraction [11–
14, 17]. While these works establish formal conditions for
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Figure 4: Table tennis task. The task involves training a robot arm to return incoming balls to a target location on the opponent’s side
of the table (a). The robot arm and its rotational axes are shown in (b). (c) shows the positions of 400 balls that the robot missed relative
to the racket. The racket is shown in the typical angle it is in when it hits the ball. (d-i) show the learned τ reduction maps for the joint
positions 0-2 and the ball position. The reduction maps for the other variables are shown in App. E.3. The dotted vertical lines show
the time range where the robot typically hits the ball.

valid causal abstractions, relatively few have addressed the
challenge of learning such abstractions from low-level sys-
tems. Geiger et al. [15, 33] focus on language models, where
high-level variables and interpretations are already available
and can be used to constrain a neural network to align with
a desired high-level causal structure. Our approach takes
the opposite direction: we develop a general approach to
building the high-level abstraction from the ground up. This
is conceptually related to causal feature learning [16], which
partitions input and output spaces to identify discrete high-
level models consistent with low-level observations and
interventions that fix the value of the causes. In contrast,
TCR differs in two key aspects: it uses shift interventions
that are more natural perturbations for many natural and
engineered low-level systems, and focuses on continuous
rather than strictly discrete high-level representations.

7 DISCUSSION

In this work, we have presented nonlinear Targeted Causal
Reduction (nTCR), a nonlinear dimensionality reduction
framework, and have shown that it can be used to generate
policy-level explanations for the behavior of RL approaches.
We have experimentally demonstrated that nTCR can iden-
tify biases and failure modes in trained RL policies on Pen-
dulum and a robot table tennis simulation.

Our theoretical analysis in Sec. 4 provides uniqueness and
existence guarantees of non-linear exact transformations.
However, those are limited to the class of nonlinear causal
models presented in Props. 4.1 and 4.2, and extending

these guarantees to more general model classes should be
addressed by future work. Notably, dropping the linear and
Gaussian high-level model assumptions may be needed in
some applications, although it poses further interpretability
challenges.

While nTCR overcomes the limitations of linear TCR by
allowing for arbitrary functions as reduction maps, one of
the central challenges for methods generating explanations
is balancing expressivity with interpretability. Our Gaussian
kernel-based function class (Sec. 4.3) represents a middle
ground, offering more expressivity than linear maps
while maintaining interpretability. More complex or less
structured state/action data, such as for policies using on
image inputs may require additional steps for representing
them appropriately, e.g. segmentation methods [34] or
saliency maps [23, 35].

Finally, we use shift interventions in our theory and exper-
iments, which naturally align with continuous action spaces
in RL. However, there are no fundamental restrictions
preventing the use of other interventions more adapted
to discrete action spaces, which are common in many RL
settings. Those could be implemented as perturbations of
the continuous parameters controlling the policy function
used to sample discrete actions.
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A ADDITIONAL BACKGROUND

A.1 CYCLIC STRUCTURAL CAUSAL MODELS

Definition A.1 (SCM (with cycles allowed)). An n-dimensional SCM is a triplet M = (G,S, PU ) consisting of:

• a joint distribution PU over exogenous variables {Uj}j≤n,

• a directed graph G with n vertices,

• a set S = {Xj := fj(Paj , Uj), j = 1, . . . , n} of structural equations, where Paj are the variables indexed by the set of
parents of vertex j in G,

such that for almost every u, the system {xj := fj(paj , uj)} has a unique solution x = g(u), with g measurable.

The unique solvability condition allows to consider a very general class of SCMs by allowing cycles (G may not be a
DAG, while a DAG would imply unique solvability). Moreover, we allow hidden confounding through the potential lack of
independence between the exogenous variables {Uj}. See Bongers et al. [36] for a thorough study of these models. Under
these conditions, the distribution PU entails a well-defined joint distribution over the endogenous variables P (X). By
unique solvability, we define the mapping from exogenous to endogenous variables of this model under interventions as
M (i) : u 7→ x such that M (i)(U) ∼ P

(i)
M (X).

A.2 TARGETED CAUSAL REDUCTION (MULTIPLE CAUSES)

In this paper, we focus on a single high-level cause for Targeted Causal Reduction, as this is case used to develop our RL
explainability method. Here, we present the more general TCR formulation with multiple high-level causes.

TCR Framework with Multiple Causes. The general TCR framework with multiple causes extends the single-cause
version as follows:

1. Target-oriented Structure: We designate a scalar target variable Y = τ0(X) that quantifies a phenomenon of interest.
The high-level model has (n+1) endogenous variables {Y, Z1, . . . , Zn}, where Z1, . . . , Zn are the learned high-level
causes of Y .

2. Parameterized High-level Models: The high-level SCM is constrained to a class of linear additive Gaussian noise
models {Hγ}γ∈Γ with parameters γ to be learned. The exogenous variables {W0,W1, . . . ,Wn} have a factorized
Gaussian distribution PW =

∏
PWk

.

3. Constructive Transformations: The linear maps τ and ω are constructive, meaning each dimension depends only on a
designated subset of low-level variables:

τ = (τ0, τ1, . . . , τn) with τk : x 7→ τ̄k(xπ(k)) (A.1)
ω = (ω0, ω1, . . . , ωn) with ωk : i 7→ ω̄k(iπ(k)) . (A.2)

Here, the alignment function π partitions the N low-level variables into non-overlapping subsets. Specifically, π(0)
identifies indices of low-level variables that determine the target Y , while π(1), . . . , π(n) identify indices for each of
the high-level causes. These subsets satisfy π(k) ∩ π(l) = ∅ for all k 6= l, ensuring each low-level variable contributes
to at most one high-level variable.

Our non-linear TCR framework may in principle be extended to this multiple cause setting, but it would require the
introduction of extra regularization term in the optimized objective in order to constrain the method to separate distinct
causes, as elaborated in [8].



A.3 KL DIVERGENCE AND INFORMATION GEOMETRY

The Kullback-Leibler divergence can be used as a pseudo-metric in the space of probability densities with common support
over a given space that we take to be R[d] for simplicity. By definition for two densities p, q over the same support

DKL(p‖q) =
∫

p(x) log
p(x)

q(x)
dx .

It turns out this can be used to define projections on specific manifolds of probability densities. In particular, one can define
the projection of density p on the manifold of Gaussian densities MG.

ProjG(p) = N (µ(p),Var(p))

where µ(p) and Var(p) are the mean and covariance matrix associated to density p.

It is easy to check that ProjG(p) is the closest point to p on the manifold of Gaussian densities in the sense that

DKL(p, ProjG(p)) = min
q∈MG

DKL(p, q)

This moreover leads to a property analogous to the Pythagorean theorem in Euclidean spaces: for any Gaussian density q
and any (possibly non-Gaussian) density q we have the decomposition (see [37] for details)

DKL(p, q) = DKL(p, ProjG(p)) +DKL(ProjG(p), q) .

While the second term DKL(ProjG(p), q) has a classic analytic expression that is optimized in linear TCR [8], the first
term can be written

DKL(p, ProjG(p)) = H(ProjG(p))−H(p)

where H(q) = −
∫
p(x) log(p(x))dx denotes the entropy associated to density q. Using invariance of the KL divergence by

parameter transformation, we also have

DKL(p, ProjG(p)) = DKL(pnorm,N (0, Id)) = H(N (0, Id))−H(pnorm) ,

where pnorm denotes the density obtain by normalizing the first and second order statistics of p (by removing the mean and
dividing by the standard deviation), and Id denotes the identity matrix for the dimension d of the considered space. This
term is called negentropy, as it is up to an additive constant the opposite of the entropy, with the additional specificity that it
vanishes when the density is Gaussian (hence with maximum entropy).

The entropy is very challenging to estimate for arbitrary distributions. In contrast, the KL divergence between two (possibly
multivariate) Gaussians has an analytic expression.

DKL(N (µ1,Σ1)‖N (µ2,Σ2))

=
1

2

[
log(det(Σ2)/det(Σ1))− d+ tr(Σ−1

2 Σ1) + (µ2 − µ1)
>Σ−1

2 (µ2 − µ1)
]

(A.3)

Hence, [8] use a Gaussian KL-divergence approximation to optimize linear TCR, defined as

DG(p, q) = DKL(ProjG(p), q) . (A.4)

where q is the density of the high-level model, and p is the push-forward density of the low-level model. Because q is
assumed Gaussian, this discrepancy has an analytic expression which allows optimizing the loss of Eq. (2.6). From the
above development we immediately get that

DG(p, q) ≤ DKL(p, q) = DKL(p, ProjG(p)) +DKL(ProjG(p), q) . (A.5)

and in particular, the inequality is strict if p is not Gaussian. As a consequence, minimizing DG does not guarantee a priori
that the KL divergence is minimized.

The resulting expression of the consistency loss for linear TCR used by Kekić et al. [8] is thus

Lcons(τ, ω, γ) = Ei∼PI

[
DG

(
P̂ (i)
τ (Y,Z)‖P (ω(i))

H (Y,Z)
)]

, with P̂ (i)
τ = τ#

[
P

(i)
L

]
, (A.6)

with the above defined DG.



B PROOFS OF MAIN TEXT RESULTS

B.1 ANALYTICAL SOLUTION

Proposition 4.2 (Existence). Assume a low-level additive SCM following Eq. (D.2). Assume additionally that (i) U is
jointly Gaussian, (ii) f0(Xπ(0),Xπ(1)) = h0(Xπ(0)) +B(Xπ(1) − f1(Xπ(1))), for some functions h0,f1, some matrix
B ∈ R#π(0)×#π(1)), and (iii) Y = τ0(Xπ(0)) = a>(Xπ(0) − h0(Xπ(0))) for arbitrary non-vanishing a ∈ R#π(0), then
the transformation defined by the following maps is exact

τ̄1(Xπ(1)) = a>B(Xπ(1) − f1(Xπ(1))) , (4.5)

ω̄1(iπ(1)) = a>Biπ(1) . (4.6)

Proof. Because of the choice of τ0, we have

Y = a>B
(
X1 − f1(X1)

)
+ a>U0 = a>B

(
U1 + iπ(1)

)
+ a>U0 .

Such that for some constant “Cst.” independent of iπ(1)

E[Y ] = Cst.+ a>Biπ(1) .

Moreover, the high-level model’s interventional marginal distribution of Y is given by

Y = αZ +W0 = τ1(X
(0)
π(1)) + αω1(iπ(1)) +W0 = ατ1((id − f1)

−1(U1)) + αω1(iπ(1)) +W0 ,

with W0 an exogenous variable independent of τ1(X1), where we use the map “(id−f1)
−1” from exogenous to endogenous

variables of the low-level model restricted to nodes in π(1). Note that “(id−f1)” is invertible by directed acyclic assumption
on the graph. If we would allow cycles in the graph, this condtion would be obtained by the unique solvability assumption of
[36]. By matching the expectation of Y , this implies that up to an arbitrary additive constant β (that depends on the choice
of τ1, we have

αω1(i1) = β + a>Biπ(1) .

and we fix α = 1 to remove one degree of freedom (τ1 can be chosen accordingly). Now by cause consistency we get that
the pushforward distribution associated to

τ1(X
(i)
π(1)) = τ1((id − f1)

−1(U1 + iπ(1))) ,

matches the shifted high level distribution

W1 + β + a>Biπ(1) .

If we reparametrize using τ1(.) = γ1 ◦ (id − f1) we get

γ1(Uπ(1) + iπ(1)) = W1 + β + a>Biπ(1)

A Gaussian high-level cause satisfying consistency can thus be achieved by using γ1 : u 7→ β + a>Bu (because a linear
combination of jointly Gaussian random variables is Gaussian, and distribution shifts due to interventions are consistent).
Such that we obtain

τ1 : x 7→ β + a>B(xπ(1) − f1(xπ(1)))

This is also a sufficient condition to have a valid exact transformation given the Gaussian assumptions.



B.2 UNIQUENESS OF EXACT TRANSFORMATION

Proposition 4.1 (Uniqueness). Assume (i) the low-level model is an additive noise SCM of the form[
Xπ(1),
Xπ(0)

]
:=

[
f1(Xπ(1)) +Uπ(1) + iπ(1) ,
f0(Xπ(0),Xπ(1)) +Uπ(0)

]
, (4.3)

Uπ(1) ∼ P1 indep. of Uπ(0) ∼ P0 , (4.4)

(ii) P1 admits a probability density with non-vanishing Fourier transform, (iii) The high-level model has a non-zero causal
effect (α 6= 0). Then, if there exists a constructive transformation following Def. 2.3 that is exact for all i ∈ R#π(1), it is
also unique up to multiplicative and additive constants.

Proof. If there is an exact transformation, marginal probability densities of the target and its corresponding push-forward
are matched for all interventions. So the expectations of the target with respect to these densities are matched across
interventions, such that

EP̂ (i) [Y ] = EP (ω(i)) [Y ]

which means (using linearity of the high-level cause-effect mechanism)

EP̂ (i) [τ0(X0)] = αEP (ω(i)) [Z1] + E[W0] = αEP̂ (i) [Z1] = αEP (i) [τ1(X1)] + E[W0]

Assuming there exist a solution achieving consistency for all i, it must therefore satisfy

αEP (i) [τ1(X1)] = EP (i) [τ0(X0)] .

Consider an alternative solution
αEP (i) [τ̃1(X1)] = EP (i) [τ0(X0)] .

Then for all iπ(1) ∈ R#π(1)

αEP (i) [τ̃1(X1)− τ1(X1)] = 0 .

Assume a non-trivial model, then α 6= 0. Using g = (id − f1)
−1, the mapping from exogenous to endogenous variables

(restricted to nodes in π(1)), we can rewrite the condition as

EP1(U−i)[τ̃1(g(U))− τ1(g(U))] =

∫
p1(u− i)δτ1(g(u))du = p1 ∗ δτ1 ◦ g(i) = 0 ,

where “∗” denotes the convolution operation. Applying the Fourier transform we get

F [p1 ∗ δτ1 ◦ g] (ξ) = F [p1](ξ) · F [δτ1 ◦ g](ξ) = 0, for all ξ ∈ R#π(1)

we get that if the Fourier transform of p does not vanish, then the Fourier transform of δτ1 ◦ g must vanish everywhere,
leading to τ1 ◦ g = 0. Assuming g invertible, we get δτ1 = 0 so the reductions are identical.

C ADDITIONAL METHOD DETAILS

C.1 DIFFERENTIABLE NORMALITY REGULARIZATION

In Sec. 4.1, we introduced a normality regularization term that encourages the high-level cause distribution to be Gaussian
by measuring the Wasserstein distance between the standardized pushforward distribution P̂

(i)
τ,std(Z) and the standard normal

distribution N (0, 1). To implement this regularization in a way that allows end-to-end gradient-based optimization, we need
a differentiable approximation of both the empirical cumulative distribution function (CDF) and the distance measure.

Our approach consists of three main steps:



Standardization. Given mini-batches of samples from the pushforward distribution of the high-level cause, we first
standardize these samples to have zero mean and unit variance:

zstd =
z − µz

σz
(C.1)

where µz and σz are the empirical mean and standard deviation of the samples.

Differentiable CDF approximation. For a differentiable approximation of the empirical CDF, we add smooth step
functions of the samples:

F̂ (x) =
1

n

n∑
i=1

σ((x− zi) · s) (C.2)

where σ(t) = 1
1+e−t is the sigmoid function serving as a smooth version of the step function, zi are the standardized

samples, n is the number of samples, and s is a smoothing factor that controls the sharpness of the transitions in the CDF
approximation. Higher values of s create sharper transitions that better approximate the true step function but may lead to
sharper gradients.

Wasserstein distance approximation. We approximate the 1-Wasserstein distance between distributions by computing
the L1 distance between their CDFs at a finite set of evaluation points {x1, x2, . . . , xm} uniformly spaced in the interval
[−4, 4] (covering most of the probability mass of a standard normal distribution):

Ŵ1 ≈ 1

m

m∑
j=1

|F̂ (xj)− Φ(xj)| (C.3)

where Φ is the CDF of the standard normal distribution, computed using the error function: Φ(x) = 1
2 (1 + erf(x/

√
2)).

This approximation gives us a fully differentiable loss function that effectively measures how closely the distribution of
our high-level cause follows a Gaussian distribution. In practice, we use the same number of evaluation points as we have
samples in our mini-batch, and we set the smoothing factor s = 10.0, which provides a good balance between approximation
accuracy and gradient stability.

D ADDITIONAL THEORETICAL RESULTS

As explained in App. A.3, the consistency loss Lcons used in linear TCR [8] is only a KL divergence between the Gaussian
approximation of the push-forward distribution of the low-level model and the (Gaussian) high-level model. Therefore,
it does not explicitly enforce a perfect match between distributions, which is the theoretical requirement of an exact
transformation according to Eq. (2.3).

In principle, however, the setting of Prop. 4.1 does provide additional constraints that theoretically allow identifiability when
Lcons vanishes, as shown below.

Proposition D.1 (Identifiability using DG). We assume that the prior PI over interventions has a strictly positive density
with respect to the Lebesgue measure. Additionally, we assume the setting of Prop. 4.1: (i) the low-level model is an additive
noise SCM of the form[

Xπ(1),
Xπ(0)

]
:=

[
f1(Xπ(1)) +Uπ(1) + iπ(1) ,
f0(Xπ(0),Xπ(1)) +Uπ(0)

]
, Uπ(1) ∼ P1 indep. of Uπ(0) ∼ P0 , (D.1)

(ii) P1 admits a probability density with non-vanishing Fourier transform, (iii) The high-level model has a non-zero
causal effect (α 6= 0). Then, if there exists a constructive transformation that makes Lcons vanish, it is also unique up to
multiplicative and additive constants.

Proof. We notice that the proof of Prop. 4.1 only exploits equality between the expectations of Z or Y obtained under,
on the one hand, the high-level model distribution and, on the other hand, the push-forward low-level distribution (for all
possible interventions). Since we assume that Lcons vanishes, then the discrepancy DG must vanish for all i1 and therefore
there is a match between the interventional expectations of τ1(X) for all i, and therefore τ1 is identified following the same
argumentation.

1by continuity in i and because its probability density is strictly positive, if the discrepancy was non-zero at any point it would lead to
a strictly positive expectation, thus a strictly positive Lcons.



Potential Limitations to Identifiability based on Lcons. However, the above theoretical identifiability guaranty requires
optimizing with respect to an expectation that integrates over all possible values of the intervention vector, which cannot
be evaluated in practice, as we necessarily sample from a finite number of interventions. In contrast, linear TCR has
theoretical identifiability guaranties under a finite number of interventions [8]. While we could not derive an equivalent
result for nonlinear TCR, we conjecture instead a negative result for the loss Lcons of linear TCR that illustrates the practical
difficulties of the optimization of Lcons.

Conjecture D.2. We assume that the prior PI has a density that vanishes on an open subset of its domain. Additionally, we
assume the setting of Prop. 4.1: (i) the low-level model is an additive noise SCM of the form[

Xπ(1),
Xπ(0)

]
:=

[
f1(Xπ(1)) +Uπ(1) + iπ(1) ,
f0(Xπ(0),Xπ(1)) +Uπ(0)

]
, Uπ(1) ∼ P1 indep. of Uπ(0) ∼ P0 , (D.2)

(ii) P1 admits a probability density with non-vanishing Fourier transform, (iii) The high-level model has a non-zero causal
effect (α 6= 0). Then, if there exists a constructive transformation that makes Lcons vanish, there are infinitely many other
constructive transformations that also make Lcons vanish.

Justification for the Conjecture.

Having Lcons vanish only entails equality between first and second order moments of the low-level and high-level push-
forward distributions lead to constraints on the convolutions of τ1 with the exogenous density p1. As exemplified in the
proof of Prop. 4.1, using g = (id − f1)

−1 leads to conditions of the form

EP (U−i)[τ̃1(g(U))− τ1(g(U))] =

∫
p1(u− i)δτ1(g(u))du = p1 ∗ δτ1 ◦ g(i) = 0

on the support of PI. So we can choose any non-vanishing function δτ1 such that p1 ∗ δτ1 ◦ g vanishes outside the support
of PI to obtain a different τ̃1 satisfying this constraint. This can be done by choosing a function in the Fourier domain of the
form h(ξ) = F{p1}−1(ξ)F{k}(ξ) with k non-zero but vanishing on the support of PI, such that h is k deconvolved by p1.
Then we obtain that p1 ∗ h = k, such that δτ = k ◦ g−1. Given the set of such k is infinite, we conjecture that it is possible
to find a class of function satisfying both the constraints on first and second order moments at the same time.

Practical Issues with the Optimization of Lcons and Enforcing Non-Gaussianity. Following the reasoning of the above
conjecture, we speculate that optimizing Lcons with a highly expressive function class may lead to overfitting, in the sense
that many highly nonlinear functions can be found that satisfy the first and second order moment constraints of the Gaussian
approximation of the KL divergence. Enforcing an exact match between distributions instead of only first and second order
moments may help avoid this behavior, e.g. by avoiding the nonlinear function to generate multimodal distributions.

While this can be done by adding to Lcons an addition negentropy term enforcing Gaussianity (see App. A.3), entropy is
very challenging to estimate from finite samples and use as a differentiable objective. Instead, we resort to the differentiable
measure of non-Gaussianity introduced in Sec. 4.1 based on a Wasserstein distance (see App. C.1) that proved stable in our
experiments, and is known to have numerical benefits over the KL divergence.

Experiments using this measure as a regularizer are shown in App. F.1 and are compatible with our theoretical insights, in
the sense that it improve performance when the sampling of the intervention does not cover a broad enough range of the
exogenous distribution.

E EXPERIMENTAL DETAILS

Data. For each experiment we sample Nint distinct interventions and for each distinct intervention, we generate Nep RL
episodes that apply that intervention. For the synthetic experiments, we equivalently sample Nep SCM samples that apply
the same intervention. That is, we keep the intervention fixed but re-sample the exogenous noise. For all datasets, we use
80% for training and 10% for validation and test, respectively.

E.1 SYNTHETIC EXPERIMENTS

Nonlinear Causal Model for Synthetic Data. For our synthetic experiments, we implement a class of nonlinear causal
models that follow the structure described in Prop. 4.2. That is, we sample SCMs with the structure given in Eq. (D.2),
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Figure A: Relationship Between Intervention Strength and Task Performance. These plots illustrate how the average episode reward
varies as a function of the intervention strength σ (standard deviation of the Gaussian perturbations δAt ∼ N (0, σ2)) for both RL tasks.
The shaded regions represent ±1 standard deviation of the reward distribution across episodes. The star markers indicate our selected
intervention strengths, which were chosen at the threshold where increased perturbation begins to significantly degrade policy performance.
This selection balances between introducing sufficient causal signal for the reduction algorithm and preserving the policy’s core behavior
patterns.

where, |π(0)| = 1 and |π(1)| = 9, , creating a 10-dimensional system (9 low-level cause variables plus 1 target variable).
We set h0(X0) ≡ 0 and a = 1. The matrix B ∈ R1×9 has entries sampled from a standard normal distribution, providing
the linear mapping from causes to effect as required by Prop. 4.2. The exogenous noise variables Uπ(1) and Uπ(0) are
sampled from a normal distribution with zero mean and standard deviation 1.0. The nonlinear function f1 consists of
component-wise nonlinear mechanisms represented by randomly initialized two-layer neural networks with 10 hidden units
and tanh activation functions.

Intervention Generation. For each experiment, we generate interventions by sampling from a standard normal distribution,
creating shift interventions iπ(1) ∼ N (0,1). We generate Nint = 107 distinct interventions, and for each intervention, we
sample Nep = 1024 data points from the causal model.

Neural Network Architecture for nTCR. For these synthetic data experiments, the reduction maps τ1 and ω1 are
parameterized using neural networks with residual connections. Each network consists of a first linear layer that maps the
input dimension to a hidden dimension of 256, followed by 8 hidden layers with Softplus activation functions and residual
connections. The final layer maps the hidden representation to the high-level cause/intervention. This architecture with
residual connections helps in learning complex functions while maintaining gradient flow during training. This amounts to
approximately 1.2 · 107 parameters for τ1, ω1 and the high-level causal model combined. Unlike our RL experiments, we do
not use the Gaussian kernel representation described in Sec. 4.3 since we are only interested in verifying the identification
properties of our approach, not interpretability.

nTCR Training. We train our nTCR model using the Adam optimizer with an initial learning rate of 5 · 10−4 and a
cosine annealing learning rate scheduler that gradually reduces the learning rate to zero over the course of training. For the
normality regularization, we set ηnorm = 1.0 to encourage the learned high-level cause to follow a Gaussian distribution.
We use a batch size of 512, meaning that each training step processes 512 distinct interventions sampled from our prior
distribution P (i).

Identification Metric. To quantify how well our learned reduction maps align with the ground truth solutions from
Prop. 4.2, we employ a normalized, debiased L2 loss. Let zlearned

i = τ learned
1 (Xi) be the high-level cause computed using our

learned reduction, and zgt
i = τ gt

1 (Xi) be the corresponding ground truth value for sample i. We first standardize both sets of
samples:

z̃learned
i =

zlearned
i − zlearned√∑
j(z

learned
j − zlearned)2

(E.1)

z̃gt
i =

zgt
i − zgt√∑
j(z

gt
j − zgt)2

(E.2)



where zlearned and zgt are the respective sample means. We then find the optimal rescaling coefficient c that minimizes the L2
distance:

c = argmin
c

∑
i

(c · z̃learned
i − z̃gt

i )
2 =

∑
i z̃

learned
i · z̃gt

i∑
i(z̃

learned
i )2

(E.3)

The final identification loss is the normalized minimum L2 distance:

Lid(τ) =
1√
n

√∑
i

(c · z̃learned
i − z̃gt

i )
2 (E.4)

where n is the number of samples. The same procedure is applied to evaluate the ω1 map. This metric accounts for the fact
that the theoretical solutions are only identified up to multiplicative and additive constants, while measuring how well the
learned reductions capture the structural properties of the ground truth solutions.

Compute Resources. All synthetic experiments were conducted on NVIDIA Quadro RTX 6000 GPUs with 4 CPU cores
allocated per run. Each complete training run required approximately 48 hours of computation time. We performed 10
different runs, each with a different randomly generated causal model.

E.2 PENDULUM
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Figure B: Episodes with Highest and Lowest Predicted Reward. The plot shows episodes from the test dataset with the highest and
lowest cumulative reward predicted by nTCR for Policy A. The red lines display the 10 episodes with highest predicted rewards, while
the blue lines show the 10 episodes with lowest predicted rewards.

Each episode in the Pendulum task [19] has a length of T = 200 steps. We apply interventions to the actions for the first 75
steps, and define the target variable as the cumulative reward for the remainder of the episode Y=

∑200
t=76 Rt. The reward of

the Pendulum task is defined as Rt = −θ2t−1 − 0.1 θ̇2t−1 − 0.001A2
t , which penalizes deviations from the upright position,

large angular velocities, and large torque applied by the policy.

RL Agent Training. We train the policies for Sec. 5.2 with the Stable-Baselines 3 [38] implementation of Proximal Policy
Optimization (PPO) [39]. For the Pendulum experiments, we use the default hyperparameters of Stable-Baselines 3. The
RL agent collects 1 million environment transitions, and the total wall-clock training time is 50 minutes on an Intel Xeon
W-2245 CPU. The training requires less than 1 GB of memory.

Policy Data. For the analysis of the Pendulum policy, we collect a dataset of Nint = 100,000 interventions with Nep = 100
episodes per intervention. Collecting the datasets of Policy A and B in Sec. 5.2 takes about 150 CPU core-hours each on a
compute cluster, with 4GB of memory per core.

nTCR. We train our nTCR model using the Adam optimizer with an initial learning rate of 0.01 and a cosine annealing
learning rate scheduler that reduces the learning rate to zero over the course of training. We use a batch size of 64 and train
for 90 epochs with weight decay of 0.01. For the normality regularization, we set ηnorm = 10.



For our interpretable nonlinear function class (Sec. 4.3), we use 128 Gaussian kernels for each variable at each time step.
Before training, we determine the minimum and maximum values xj

min and xj
max for each variable j across all episodes.

The kernel centers {µj,t,k}128k=1 are equally spaced over the range [xj
min, x

j
max], and the kernel widths are set as:

σj,t = c · x
j
max − xj

min

128
(E.5)

where the constant c = 8 acts as a smoothing parameter—higher values lead to smoother learned reduction functions.

For computational convenience, we pre-sample all episodes under interventions and store the data rather than simulating
episodes during training, though the latter approach would also be feasible in principle.

Episodes with High and Low Predicted Reward. Fig. B displays episodes from the test set with the highest and
lowest predicted cumulative rewards according to the learned nTCR model for Policy A. These episodes correspond to the
characteristic trajectory patterns identified in Fig. 3(left): clockwise swinging motions starting from the right quadrant tend
to have higher rewards than episodes with counterclockwise motion originating from the left quadrant.

Compute Resources for nTCR. All nTCR training experiments for the Pendulum task were conducted on NVIDIA
Quadro RTX 6000 GPUs with 8 CPU cores allocated per run. Each complete training run required approximately 2 hours of
computation time and used roughly 4 GB of GPU memory.

E.3 TABLE TENNIS

Table A: Stable-Baselines 3 PPO hyperparameters used for training the table tennis policy.

Parameter name Value

batch_size 310
clip_range 0.4

clip_range_vf 0.3
ent_coef 7× 10−6

gae_lambda 1
gamma 0.9999

learning_rate 0.00015
max_grad_norm 0.1

n_epochs 34
n_steps 5000

num_hidden 380
num_layers 1
vf_coef 0.56

In the simulated table tennis task [20, 21], episodes terminate when the racket hits the ball, which typically happens between
steps 90 and 100. The environment then continues simulating the ball to determine its landing position. If the agent does not
hit the ball, the episode terminates as soon as the ball falls below the height of the table, which typically happens after 125
to 135 steps. Since our method requires episodes of fixed length, we pad the data to T = 150 steps by appending zeros after
episode termination.

The agent receives a non-zero reward only at the end of the episode, which depends on whether the agent managed to hit the
ball. This reward is given by

Rt =


Rtt racket touches the ball
Rhit ball below the table
0 otherwise ,

(E.6)
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Figure C: nTCR Reduction Maps for Table Tennis Task. Linear parameter in high-level model 0.0013 (bias 0.5964).

where Rtt rewards the agent for hitting the ball close to the desired position on the table and Rhit penalizes missing the ball
depending on the minimum distance between the ball and the racket. These reward terms are defined as

Rtt = max

1−

(
‖pland − pdes‖

3

) 3
4

, −0.2

 (E.7)

Rhit = −min
t
‖pball

t − pracket
t ‖2, (E.8)

where pland is the landing point of the ball on the table, pdes is the desired landing point at the center of the opponent’s side,
and pball

t and pracket
t are the 3D positions of ball and racket at timestep t, respectively.



RL Agent Training. Similar to the Pendulum task, we train the table tennis policies in Sec. 5.3 with the Stable-
Baselines 3 [38] implementation of PPO [39]. We use the algorithm hyperparameters tuned by Guist et al. [21], which
are displayed in Tab. A. The RL agent collects 3 million environment transitions, and the total wall-clock training time is
roughly 10 hours on an Intel Xeon W-2245 CPU. Running the simulation and the RL training requires 8 GB of memory.

Policy Data. For the table tennis analysis, collecting the dataset of Nint = 100,000 interventions with Nep = 100 episodes
per intervention takes about 3400 CPU core-hours, with 8GB of memory per core.

nTCR. We use similar nTCR training settings as for the Pendulum task, with the following modifications: learning rate
of 0.0001 and weight decay of 0.1 (manually tuned for optimization stability), 32 Gaussian kernels per variable-time pair
(chosen to fit GPU memory constraints), and smoothing parameter c = 1 (smaller than Pendulum to provide necessary
resolution and avoid oversmoothing with fewer kernels). Fig. C shows the full set of nTCR maps for the table tennis task.

Compute Resources for nTCR. All nTCR training experiments for the table tennis task were conducted on NVIDIA
A100-SXM4-40GB GPUs with 8 CPU cores allocated per run. Each complete training run required approximately 5 hours
of computation time and used around 20 GB of GPU memory.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 EFFECT OF NORMALITY REGULARIZATION

To better understand the role of our normality regularization introduced in Sec. 4.1, we conduct an ablation study on synthetic
data across different noise regimes. We vary the variance of the intervention distribution while keeping the exogenous noise
levels in the low-level SCM constant, effectively creating different signal-to-noise ratios.
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Figure D: Effect of Normality Regularization on Achieved Consistency and Identification of Ground-Truth Solution. The figure
shows the consistency loss (left) and the identification losses measuring agreement with the ground-truth solutions (definition in App. E.1)
for the τ - and ω-functions (middle and right) over the reduction training run for synthetic low-level SCMs with 3 low-level variables. The
interventions are sampled as iπ(1) ∼ N (0, h · 1), with h ∈ {0.1, 1.0, 10.0} for the high-, medium- and low-exogenous-noise settings,
respectively. Note that, since we keep the exogenous noise levels in the low-level SCM constant, a low variance of the intervention
distribution corresponds to high exogenous noise relative to the interventions. The lines for normality regularization have ηnorm = 1;
to turn off regularization we set ηnorm = 0. We show average values over 10 sampled SCMs.

Fig. D shows several important insights about the effect of normality regularization across different noise regimes. First, the
identifiability metrics demonstrate that learning ground truth reduction maps becomes progressively more challenging as we
move from the low-noise setting (high intervention variance) to the high-noise setting (low intervention variance). This
reflects the fundamental signal-to-noise ratio: when interventions have small variance relative to the exogenous noise, the
signal about the most influential factors for the target becomes harder to detect and extract.

Most significantly, we observe that normality regularization has the strongest beneficial effect in the high-noise regime,
where it substantially improves the identification of ground truth solutions for both τ and ω maps. In contrast, for the low-
and medium-noise settings, the regularization provides minimal additional benefit, suggesting that when the signal-to-noise
ratio is favorable, the consistency loss alone is sufficient to guide the learning toward the correct solution. To understand
why normality regularization is particularly crucial in the high-noise regime, Fig. E shows the empirical CDF of the learned
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Figure E: Non-Gaussianity of the high-level cause. The figure shows the empirical CDF (blue) for the high-level cause for an SCM
sampled in Fig. E (high noise setting) for an nTCR with ηnorm = 0. The yellow dashed line shows the CDF for a Gaussian distribtuion
with the same mean and variance.

high-level cause distribution in the high-noise setting without normality regularization. The distribution shows highly non-
Gaussian behavior with multiple peaks, indicating that the τ reduction is exploiting the flexibility of the nonlinear function
class to minimize the consistency loss by artificially shaping the high-level pushforward distribution. Such multi-modal
distributions are undesirable for interpretability, as they introduce additional complexity that obscures the underlying causal
structure (see also our discussion of Gaussianity in App. D).

These results demonstrate that normality regularization serves as an important inductive bias that prevents overfitting to
the training data while maintaining the interpretability of the learned high-level causes. The regularization ensures that
interventions must be sufficiently strong relative to the exogenous noise to be effectively learneda principle that aligns with
the fundamental requirement that causal interventions should produce detectable changes in the target phenomenon (see also
Fig. A).

F.2 LINEAR TCR FOR PENDULUM POLICIES
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Figure F: Linear TCR [8] for Pendulum Task. Linear parameters in high-level model: 5.6821 (bias −28.5229) for Policy A and
94.0380 (bias −115.0152) for Policy B.

The reduction maps for linear TCR [8] for policies A and B are shown in Figs. Fa and Fb, respectively. These provide a
baseline for comparison with our nonlinear approach (nTCR).

Policy A: Limitations of Linear TCR. For Policy A, linear TCR identifies predominantly negative weights in the second
half of the episode for the τ -maps for Theta and Torque. While this correctly captures that deviations from the upright
position (nonzero Theta) and large corrective actions (high Torque) late in episodes correlate with lower rewards, the linear
approach fails to capture the more nuanced pattern revealed by nTCR. For the first half of the episode, the linear weights
show inconsistent, unstable patterns without a clear interpretable structure. The τ -map for Angular Velocity appears largely



neutral except for an unexplained positive peak at the final time step.

In contrast, nTCR (as shown in Fig. 3, left) clearly distinguishes between two distinct trajectory classes: clockwise swinging
(from the right quadrant) versus counterclockwise swinging (from the left quadrant). This critical asymmetry in policy
performance is entirely missed by the linear model, which can only capture monotonic relationships between state variables
and expected reward.

Policy B: Observations Consistent with nTCR. For Policy B, linear TCR shows a strongly negative τ -map for Torque at
the start of episodes and a relatively neutral pattern in the second half. This suggests episodes starting with positive torque
tend to have worse outcomes. The ω-map indicates shifting torque toward more negative values would be beneficial, which
aligns with nTCR’s findings. These two observations are consistent with Policy B’s failure mode—allowing the pendulum
to tip over in the positive θ direction before applying corrective torque—can be captured by linear relationships. In this
case, both linear TCR and nTCR correctly identify the key intervention (applying more negative torque) that would improve
policy performance.

Comparative Advantages of nTCR. Overall, we observe that linear TCR has fundamental limitations in capturing
complex behavioral patterns in RL policies:

• Non-monotonic relationships: Linear TCR cannot capture U-shaped or other non-monotonic relationships between
states and expected rewards.

• Trajectory classes: Linear TCR fails to distinguish between qualitatively different trajectory classes (like clockwise vs.
counterclockwise motion) that are not linearly separable.

These results empirically validate the need for our nonlinear extension to TCR, demonstrating that nTCR can uncover
important qualitative patterns in policy behavior that remain hidden to linear approaches.

F.3 LINEAR TCR FOR TABLE TENNIS POLICIES

The reduction maps for linear TCR [8] for the table tennis task are shown in Fig. G. While linear TCR provides a
computationally simpler baseline, it reveals fundamental limitations when applied to complex robotic control tasks.

Temporal Importance Identification. Linear TCR successfully identifies that the most crucial periods for policy success
or failure occur just before and during ball contact. This can be observed from the largest magnitude contributions in the
linear reduction maps, which appear predominantly around the time window when the robot typically hits the ball (indicated
by the dotted vertical lines). This temporal insight aligns with the physical intuition that precise timing and positioning
during ball contact are critical for successful returns.

Limited State Representation. However, the resolution of linear TCR is fundamentally constrained: it can only indicate
whether a particular variable at a specific time contributes positively or negatively to the expected reward on average over
the entire state and action distribution observed in the dataset. Linear reductions cannot distinguish between different values
that a variable might take at any given time step. For instance, while nTCR can identify that balls bouncing closer to the net
present greater challenges for the robot (Fig. 4(h,i)), it would be hard to deduce such value-dependent relationships from
linear TCR. The linear approach averages over all ball positions at each time step, obscuring the specific spatial patterns that
influence task difficulty.

Expressivity vs. Simplicity Trade-off. While linear TCR offers benefits in terms of training simplicity and straightforward
interpretation of the learned reductions, its limited capacity to represent state-dependent relationships severely constrains its
applicability to complex control scenarios. The table tennis task exemplifies this limitation: successful policy explanation
requires understanding not just when certain variables matter, but also which specific values of those variables lead to success
or failure. This distinction between temporal importance and state-value dependencies shows the necessity of our nonlinear
extension for capturing meaningful causal patterns in more complex tasks.
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Figure G: Linear Reduction Maps for Table Tennis Task. Linear parameter in high-level model 0.6933 (bias 0.6780).
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