
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AGILE FLIGHT WITH OPTIMIZATION EMBEDDED NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

To bridge the gap between perception and planning in traditional navigation sys-
tems, we address the challenge of learning optimal trajectories directly from
depth information in an end-to-end fashion. Using neural networks as black-
box replacements for traditional modules can compromise robustness and stability.
Moreover, such methods often fail to adequately account for the robot’s kinematic
constraints, leading to trajectories that may not be satisfactorily executable. In this
paper, we integrate the strengths of conventional methods and neural networks by
introducing an optimization-embedded neural network based on a compact trajec-
tory library. Neural networks establish spatial constraints for model-based trajec-
tory planning, followed by robust numerical optimization to achieve feasible and
optimal solutions. By making the process differentiable, our model seamlessly ap-
proximates the optimal trajectory. Additionally, the introduction of a regularized
trajectory library enables the method to efficiently capture the spatial distribution
of optimal trajectories with minimal storage cost, ensuring multimodal planning
characteristics. Evaluations in complex, unseen environments demonstrate our
method’s superior performance over state-of-the-art algorithms. Real-world flight
experiments with a small onboard computer showcase the autonomous quadrotor’s
ability to navigate swiftly through dense forests.

1 INTRODUCTION

Unmanned aerial vehicles (UAVs) (Fan et al., 2020; Muchiri & Kimathi, 2022), owing to their
compact and straightforward hardware structure combined with agile and high maneuverability,
have found extensive applications across various fields such as aerial photography, exploration,
and search and rescue operations. As a critical component for achieving these tasks, efficient
and robust autonomous navigation modules have garnered significant attention from both indus-
try and academia. Traditionally, navigation modules employ sensors like depth cameras to perceive
the environment,explicitly constructing occupancy maps and computing environment representa-
tions favorable for motion planning, such as Euclidean signed distance fields (ESDF) (Oleynikova
et al., 2016; Han et al., 2019; Reijgwart et al., 2019; Finean et al., 2021) or neural radiance fields
(NeRF) (Adamkiewicz et al., 2022; Pantic et al., 2022; Lin & Yi, 2022). Subsequently, motion
planning algorithms based on search or optimization are utilized on these maps to compute optimal
trajectories that account for initial and final states as well as obstacle avoidance. Although intuitive
from an engineering perspective, this modular decomposition framework inevitably introduces addi-
tional physical delays. Additionally, this modular approach often leads to a lack of cohesion between
sub-modules and requires extensive manual parameter tuning by engineers. Recently, learning-based
navigation (Tang et al., 2018; Xiao et al., 2022; Dong et al., 2023) has gained widespread attention
due to its efficient integration of perception and planning modules. This end-to-end approach di-
rectly outputs trajectories from raw sensor data, bypassing explicit mapping. However, this method-
ology heavily relies on the neural network’s capabilities, leading to a black-box system that poses
challenges for debugging and reduces the system’s extensibility and interpretability. Furthermore,
given the constraints of physical platforms or specific task scenarios, there is a need to impose vari-
ous custom constraints on the trajectory, such as the kinematic constraints of the robot. This imposes
significant challenges on the network. Researchers often devise more complex strategies for the net-
work to address these constraints, but these strategies can sometimes compromise optimality or fail
to ensure constraint satisfaction adequately, affecting the overall system’s completeness.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To address the limitations of existing methods, this work integrates traditional trajectory optimiza-
tion with neural networks to create an end-to-end visual navigation system that directly generates
kinematically feasible spatial-temporal optimal trajectories from depth images without explicit map-
ping. Compared to conventional learning-based motion planning algorithms, our approach is distin-
guished by the use of implicit differentiation to embed the trajectory optimization within the neural
network, enabling coupled training. This method ensures optimality while alleviating the burden
on the network, enhancing the system’s interpretability and extensibility, and fundamentally guar-
anteeing the feasibility of kinematic constraints. Specifically, rather than naively producing a series
of trajectory points, our neural network extracts safe guiding regions from depth images and re-
constructs them as geometric space constraints for trajectory optimization, which then incorporates
user-specified kinematic constraints to efficiently and robustly converge (∼ 1ms) to high-quality
trajectories. Making numerical optimization differentiable allows it to be modeled as a layer within
the neural network, enabling direct backpropagation of the trajectory evaluation loss gradient and
encouraging the network to focus on regions yielding optimal trajectories. To fully explore the en-
vironment and align the multimodal nature of local motion planning, our neural network outputs a
mixture distribution over an offline regularized lightweight motion primitive library. Based on the
probabilities, specific motion primitives are selected and allocated safe feasible spaces, which are
subsequently input into the optimization module to generate maneuverable and agile motion. We
conduct extensive comparative experiments against various state-of-the-art motion planning algo-
rithms across multiple scenarios, including both traditional and learning-based methods. The results
demonstrate that our method has significant advantages in success rate, optimality, and constraint
satisfaction. Moreover, as shown in Figure 1. B, we carry out real-world experiments to validate the
practical applicability of our algorithm on fully autonomous physical platform without relying on
external perception and localization.

2 RELATED WORK

2.1 TRADITIONAL MOTION PLANNING

Search or sampling-based algorithms in discrete configuration spaces (Pivtoraiko & Kelly, 2005;
Webb & Van Den Berg, 2013; Klemm et al., 2015) are prevalent in robotic motion planning, in-
tegrating custom constraints and avoiding local optima. However, they require numerous samples
for high-quality trajectories, impairing real-time efficiency. Conversely, optimization-based meth-
ods (Zhou et al., 2019; Gao et al., 2020; Zhou et al., 2020; Tordesillas & How, 2021) leverage
gradient information to efficiently converge to feasible trajectories in continuous spaces, balancing
quality and time, and becoming mainstream for UAV local planners. These methods often require
explicit environmental modeling through depth information and manual safety constraint extraction,
for example, using ESDF to construct safety constraints (Zhou et al., 2021; 2019). However, con-
structing ESDF incurs additional computational costs and involves a trade-off between efficiency
and accuracy. The ego planner (Zhou et al., 2020) avoids ESDF construction by iteratively gener-
ating safe guidance paths for obstacle avoidance gradients, but it lacks convergence guarantees and
may get trapped in unsafe local minima in complex environments. Using guidance paths to deform
trajectories can also deviate from the original optimization problem, affecting optimality. Corridor-
based methods (Gao et al., 2020; Tordesillas & How, 2021) gain popularity in local motion planning
by extracting feasible convex hulls from environment point clouds using geometric computations to
model safety constraints. However, they require a collision-free path to seed the convex hull, often
obtained using low-dimensional algorithms like A*(Choset, 2007) or hybrid A*(Ding et al., 2018),
which typically do not consider the robot’s higher-order kinematics, resulting in convex hulls that
are not conducive to generating agile trajectories.

2.2 LEARNING-BASED MOTION PLANNING

Learning-based methods (Loquercio et al., 2021; Allen & Pavone, 2019; Chou et al., 2021; Yang
et al., 2023; Roth et al., 2023; Kulkarni & Alexis, 2024; Jacquet & Alexis, 2024; Han et al., 2024;
Wu et al., 2024) emerge as promising approaches in local planning, eliminating the need for explicit
mapping and reducing latency. Loquercio et al. (2021) leverage deep convolutional neural networks
to learn flight trajectories from depth images, using human pilot trajectories as supervision. How-
ever, this method requires high-quality and large-scale datasets. Recently, some approaches combine

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

networks with numerical optimization. For instance, Jacquet & Alexis (2024) learn collision prob-
abilities for any point in space using a network, which are then modeled as safety constraints in
trajectory optimization. Similarly, Han et al. (2024) address finer obstacle avoidance by modeling
the robot’s shape as a convex hull and predicting the signed distance between the hull and the nearest
obstacle using a neural network. Although these works integrate networks and optimization, they
differ from our approach in that the network and optimization are independent components. In con-
trast, our algorithm incorporates differentiable optimization as part of the network training process,
facilitating the evolution of the network in directions beneficial for subsequent optimization and
generating higher-quality solutions while ensuring maneuverability and agile flight. Some works
also apply the concept of bilayer optimization. Chen et al. (2024) propose the IA* algorithm, which
extends the traditional A* search algorithm by embedding it within a neural network for training.
However, the paths generated by this algorithm consist of discrete grid points, rendering it unsuitable
for direct tracking by high-speed drones. Wu et al. (2024) utilize LSTM(Graves & Graves, 2012) to
learn time allocation for piecewise polynomial trajectories, achieving optimal solutions under ideal
conditions. This method, however, requires a known global map and offline convex decomposition
of safe regions, making it impractical for vision-based end-to-end local planners. Iplanner (Yang
et al., 2023) is an end-to-end local planner that generates trajectories from depth images, validated
by numerous real-world experiments. This approach uses closed-form cubic splines to interpolate
the points output by the network, approximating a feasible solution to the original trajectory plan-
ning problem. Despite being lightweight, this approximation does not strictly guarantee adherence
to dynamic constraints, potentially resulting in trajectories that are difficult for the physical platform
to execute during high-speed flight, leading to crashes.

3 SPATIAL-TEMPORAL TRAJECTORY OPTIMIZATION FORMULATION

The objective of visual navigation is to find a dynamically feasible trajectory within a safe region
Efree, guided by depth observations D ∈ RH×W , while satisfying initial and terminal state con-
straints. In this paper, the trajectory ξ(t) : [0, T] → R3 is represented using MINCO (Wang et al.,
2022), a special piecewise polynomial that adheres to the principle of minimum energy, and is
parameterized by trajectory duration T ∈ R+ and a series of waypoints Q = [q1, ..., qN−1] ∈
R3×(N−1). N is the number of pieces of the trajectory. With this compact representation, our trajec-
tories inherently satisfy the initial and terminal state conditions and ensure high-order continuity at
waypoints between adjacent polynomials. These features formally lay a solid foundation for smooth
and coherent motion. Subsequently, as shown in Figure 1. A, we use flight corridors F to represent
free space, which are modeled as safety constraints to restrict the shape of the trajectory space. Con-
sequently, the trajectory optimization that minimizes control energy and includes first-order time
regularization is formulated as follows:

min
ξ(Q,T),F

J =

∫ T

0

(υ(t))TWυ(t)dt+ ρT (1)

s.t. C(ξ(t), ξ(1)(t), ..., ξ(u)(t)) ≤ 0,∀t ∈ [0, T], (2)

||ξ(t)− ζ(t)||22 ≤ γ2(t),∀t ∈ [0, T], (3)
F(ζ, γ)(t) ∈ Efree,∀t ∈ [0, T], (4)

υ(t) = ξ(u)(t),∀t ∈ [0, T], (5)

where W ∈ R3×3 is a positive diagonal matrix to penalize control efforts and ρ ∈ R+ is the time
regularization. u denotes the derivative order of the control input υ with respect to the trajectory
ξ. C generally refers to various user-defined constraints tailored to specific task scenarios, such
as constraints on velocity, acceleration, thrust, torque, and others. In this paper, F represents the
flight corridors, modeled as spheres with centers at ζ and radii γ. Eq. (3) serves as a spatial con-
straint to confine the trajectory within the safe corridors. In traditional algorithms (Gao et al., 2020;
Tordesillas & How, 2021) , it is worth noting that flight corridors are typically predetermined and
do not participate in the optimization process. These algorithms usually involve using a frontend
path planning algorithm to find a path on a grid map, followed by computational geometry meth-
ods to derive the corridors along this path. However, this extensive modular layering introduces
latency and reduces the optimality of the solution. To ensure efficiency, the cost function of the
frontend path planning algorithm often differs from the final trajectory’s evaluation metrics, lead-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

A

Time = 0.0 s Time = 0.8 s Time = 1.0 s

Time = 1.5 s Time = 1.7 s Time = 1.9 s

B

Trajectory

Corridor

Figure 1: Quadrotor flight in forests. The top figure illustrates the visualization of the trajectory and
corridors. The bottom figure showcases the real high-speed autonomous flight of the quadrotor in
the wild.

ing to corridors that may not be conducive to subsequent trajectory optimization. Additionally, this
explicit decoupling strategy eliminates the possibility of dynamically adjusting the corridors based
on the optimized trajectory quality. In this paper, we utilize neural networks to learn corridors in
an end-to-end manner. By integrating coupled training with trajectory optimization, as discussed
in subsequent sections, we directly propagate the gradient related to trajectory quality back to the
corridor network, ensuring adaptive dynamic adjustment.

4 NETWORK ARCHITECTURE

4.1 END-TO-END NAVIGATION SYSTEM OVERVIEW

The planning pipeline is illustrated in Figure 2. Our method addresses a bilevel optimization form
that is equivalent in optimality to the original optimization problem Eq. (1-5):

min
ϕ

J = J(ξ∗(Q∗, T ∗)) (6)

s.t. Fϕ(ζ, γ) ∈ Efree, (7)
ξ∗(Q∗, T ∗) = arg min

ξ(Q,T)
J = J(ξ(Q, T)), s.t.Eq.(2− 5)(ϕ), (8)

where ϕ is the parameters of the neural network and ξ∗ denotes the optimal trajectory derived from
the objective J within the given spatial constraints. Intuitively, the model-free neural network un-
dertakes the outer optimization, extracting the corridor from the depth information, while the model-
based trajectory planning performs the inner optimization, determining the spatial-temporal optimal
trajectory. After obtaining the trajectory, the corresponding metric will backpropagate through the
differentiable trajectory optimization layer, thereby updating the network’s parameters. This syner-
gistic process of network updating and trajectory optimization constitutes a nested, coupled bilevel
optimization framework, enabling the network to directly output the safe regions most conducive to
trajectory generation. Moreover, this bilevel optimization Eq. (6-8) formulation does not sacrifice
optimality in principle, as demonstrated in the Appendix A, it shares the same optimal solution as
the original optimization problem Eq. (1-5).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 SAFE SPACE EXTRACTION LAYER

Start & End State
A. Input B. Primitive Library

C. Network

Corridor Refinement Layer

Corridor

Images Encoder States Encoder

Clipping & Normalizing

History States

Coordinate System Transformation

Primitive Encoder

Primitive Output Layer

Time
Expected

Transformation

TimeGradient
Constraint Point

Offline DatasetNormalization

Differentiable Optimization

MINCO Waypoints

Primitive Library

Numerical Solver (L-BFGS)

Obstacle

𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Refined Corridor

D. Spatial-Temporal Trajectory Optimization

The Selected Motion
Primitive

Latent Feature

Coupled Feature

Probability Distribution

Depth Images

Forward

Backward

K-means Clustering
𝒙𝒙𝑛𝑛𝑙𝑙𝑛𝑛𝒚𝒚𝑛𝑛𝑙𝑙𝑛𝑛

Figure 2: Planning pipeline.

Before delving into the specific details of the network structure, we first instantiate its output rep-
resentation. To address the time-continuous constraint Eq. (2, 3), similar to the work (Han et al.,
2023), we discretize each piece ξi(t) : [0,

T
N] → R3 of the piecewise polynomial trajectory into λ

constraint points. By imposing constraints at these discrete points, we can effectively control the
entire trajectory:

C(ξ(t), ξ(1)(t), ..., ξ(u)(t)) ≤ 0,∀t ∈ [0, T],

||ξ(t)− ζϕ(t)||22 ≤ γ2
ϕ(t),∀t ∈ [0, T] ⇐⇒

C(ξi(
jT

λN
), ξ

(1)
i (

jT

λN
), ..., ξ

(u)
i (

jT

λN
)) ≤ 0,∀i ∈ {1, ..., N},∀j ∈ {1, ..., λ}, (9)

||ξi(
jT

λN
)− ζϕ,i,j ||22 ≤ γ2

ϕ,i,j ,∀i ∈ {1, ..., N},∀j ∈ {1, ..., λ}. (10)

The physical significance of Eq. (10) lies in the fact that the neural network needs to assign a safety
sphere parameterized by ζϕ,i,j , γϕ,i,j to each constraint point ξi,j = ξi(

jT
λN) along the trajectory.

Consequently, the network is required to output a total of Nλ spheres. Moreover, we would like to
emphasize that the network has the theoretical capability to output convex hulls of arbitrary shapes.
However, for the sake of simplicity and ease of understanding, we use spheres as the representation
form for the corridor.

To achieve the aforementioned goals, we design a specialized motion primitive-based network
architecture πϕ that effectively estimates the optimal trajectory’s mixture distribution within the
workspace and further refines the corridors. Firstly, to mitigate the risk of overfitting due to absolute
coordinates in the world frame, we transform both the start and end states of the trajectory planning
problem into the robot’s current local coordinate system. Moreover, to ensure more stable training
and enhance gradient descent efficiency, we preprocess the depth values of the image by clipping
and normalizing them to a range of 0 to 1, with the maximum depth value set to 10 meters. Our
network begins by utilizing residual convolutions to encode multiple frames of depth images. Si-
multaneously, it employs multilayer perceptrons (MLPs) to encode the start and end states along

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

with the past odometry frames. The outputs from these processes are then seamlessly integrated to
form the latent feature, denoted as M. Assuming we have pre-constructed an offline motion prim-
itive library M that represents the spatial topology, the latent feature will then be fed into another
multilayer perceptron network to output a probability distribution N over this primitive library. It is
worth mentioning that each motion primitive µ ∈ M, in order to align with the subsequent corridor
parameters, is represented by Nλ points. To enhance the accuracy, the selected motion primitive µ∗

is further coupled with the latent features M and fed into the final corridor refinement layer. This
layer applies the precise positional adjustment ∆p to each point p on the motion primitive, treating
the adjusted result as the corresponding sphere center. Additionally, this module is responsible for
assigning the corresponding safety radius to each sphere. This primitive-based network architecture
essentially approximates the spatial mixture distribution of the optimal trajectory, thereby match-
ing the inherently multimodal nature of local planning problems. Furthermore, this unique network
structure has the potential to endow our planner with the capability to explore multiple topological
spaces. Next, we discuss the method of constructing the motion primitive library

Assuming we have pre-collected hundreds of thousands of UAV flight trajectories, each trajectory is
uniformly discretized into Nλ points Pworld = [pworld

1 , ...,pworld
Nλ] ∈ RNλ×3 and transformed into

the local coordinate system of the robot:

plocal
i = RT

b (p
world
i − b),∀i ∈ {1, ..., Nλ}, (11)

where Rb and b represent the rotation matrix and position offset of the robot’s current body frame
relative to the world coordinate system, respectively. To eliminate unnecessary duplicate motion
primitives and limit the size of the library, as shown in Figure 2. B, we define another navigation
frame Rnav = [xnav,ynav, znav] ∈ R3×3 based on the body frame, with its origin coinciding with
the start point of the body frame and the X-axis pointing towards the endpoint position:

xnav =
plocal
end − plocal

start

||plocal
end − plocal

start||2
, (12)

ynav =
e3 × xnav

||e3 × xnav||2
, (13)

znav = xnav × ynav, (14)

where e3 = [0, 0, 1]T. Similar to Eq. (11), by transferring the motion primitives from the body
frame to the navigation frame defined here, we achieve regularization in the direction towards the
endpoint. Furthermore, to avoid a large number of redundant motion primitives that are actually
very similar in shape but differ in spatial scale during planning, we also normalize the distance to
the endpoint. The resulting processed motion primitives P normalized are as follows:

pnormalized
i =

RT
nav(p

local
i − plocal

start)

||plocal
end − plocal

start||2
,∀i ∈ {1, ..., Nλ}. (15)

Finally, we employ the K-Means (MacQueen et al., 1967) algorithm to cluster the processed dataset
and collect 30 elite motion primitives as the library.

4.3 DIFFERENTIABLE TRAJECTORY OPTIMIZATION LAYER

Before discussing gradient backpropagation, we first reformulate the inner optimization in Eq. (8)
and introduce its solution approach (forward process). Similar to the approach (Zhou et al., 2022),
we relax the original time-continuous constraint Eq. (2,3) using a time-discrete penalty term. Con-
sequently, the original trajectory planning problem is reformulated as an unconstrained nonlinear
optimization:

min
ξ(Q,T)

LF(ζϕ,γϕ) =

∫ T

0

(ξ(u)(t))TW ξ(u)(t)dt+ ρT

+

N∑
i=1

λ∑
j=1

wCL1(C(ξi,j , ξ(1)i,j , ..., ξ
(u)
i,j)) + wFL1(||ξi,j − ζϕ,i,j ||22 − γ2

ϕ,i,j). (16)

Here, wC and wF are the weights corresponding to the penalty terms. The physical meaning of
||ξi,j − ζϕ,i,j ||22 − γ2

ϕ,i,j is the violation of trajectory points within the spatial corridor constraints,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

denoted as Si,j for simplicity. L1(·) is a first-order relaxation function to guarantee the continuous
differentiability and non-negativity of penalty terms:

L1(x) =


0 x ≤ 0,

− 1

2a3
0

x4 +
1

a2
0

x3 0 < x ≤ a0

x− a0

2
a0 < x.

(17)

Here a0 = 10−4 is the demarcation point. This reformulated problem can then be robustly solved using
common gradient-based numerical solvers, such as L-BFGS (Liu & Nocedal, 1989).

Defining ξ∗ is the optimal solution to this optimization problem Eq. (16), and Lξ is the evaluation loss applied
to the trajectory during training, the gradient of the neural network can be computed as follows:

∇ϕLξ = ∇ϕF∇Fξ∗∇ξ∗Lξ, (18)

where all gradient derivations in the paper adhere to the denominator layout1. Generally, the term ∇ξ∗Lξ can be
analytically computed and ∇ϕF is also easily computed using automatic differentiation based on the network
structure. Therefore, we primarily focus on discussing the computation of the gradient of the optimal solution
with respect to the spatial constraint descriptors ∇Fξ∗. Due to the use of gradient-based numerical solvers,
an intuitive method for estimating parameter gradients, known as unrolling Finn et al. (2017); Bhardwaj et al.
(2020); Pearlmutter & Siskind (2008); Zhang & Lesser (2010); Han et al. (2017), involves maintaining the
entire computational graph throughout the iteration process. However, this approach presents significant chal-
lenges in terms of memory usage and efficiency, particularly when dealing with complex problem formulations.
Additionally, it may also encounter issues related to gradient divergence or vanishing (Pineda et al., 2022). In
this work, since we have already obtained the optimal solution ξ∗ to the problem, we use the implicit function
differentiation theorem (Dontchev & Rockafellar, 2009) to analytically derive the gradients without the need
for explicit unrolling of the entire iteration process. Based on the first-order optimality condition of nonlinear
programming (Amos & Kolter, 2017), the optimal solution of Eq. (16) should satisfy the following equation:

∇ξLF(ζϕ,γϕ)(ξ
∗) = ∇ξJ(ξ

∗) +

N∑
i=1

λ∑
j=1

wCL
′
1(C∗

i,j)

u∑
k=1

∇ξξ
(k)
i,j (ξ

∗)∇
ξ
(k)
i,j

C(ξ(k)i,j

∗
)

+ 2wFL
′
1(S∗

i,j)∇ξξi,j(ξ
∗)(ξ∗i,j − ζϕ,i,j) = 0. (19)

Here, as an example, ∇ξξ
(k)
i,j (ξ

∗) represents the gradient of the higher-order state of the constraint point ξ(k)i,j

with respect to the trajectory ξ when ξ = ξ∗. Then, we apply the total differential operator to this first-order
optimality condition Eq. (19):

(∇ξ,ξLF(ζϕ,γϕ)(ξ
∗))Tdξ∗ + (∇ξ,ζϕLF(ζϕ,γϕ)(ξ

∗))Tdζϕ + (∇ξ,γϕLF(γϕ,γϕ)(ξ
∗))Tdγϕ = 0, (20)

where each term here can be analytically derived, such as the partial differential formula for the network output
shown below:

∇ξ,ζϕLF(ζϕ,γϕ)(ξ
∗) = −2wF

N∑
i=1

λ∑
j=1

(2L
′′
1 (S∗

i,j)Di,jDT
i,j + L

′
1(S∗

i,j)I)(∇ξξi,j(ξ
∗))T, (21)

∇ξ,γϕLF(γϕ,γϕ)(ξ
∗) = −4wF

N∑
i=1

λ∑
j=1

γϕ,i,jL
′′
1 (S∗

i,j)DT
i,j(∇ξξi,j(ξ

∗))T, (22)

where Di,j = ξ∗i,j − ζϕ,i,j . Subsequently, through matrix operations, we equivalently transform Eq. (20) into
the following compact form:

dξ∗ = (∇ξ,ξLF(ζϕ,γϕ)(ξ
∗))−1

[
∇ξ,ζϕLF(ζϕ,γϕ)(ξ

∗)
∇ξ,γϕLF(γϕ,γϕ)(ξ

∗)

]T [
dζϕ
dγϕ

]
(23)

By solving this system of equations, we can analytically obtain the desired Jacobian matrix ∇F(ζϕ,γϕ)ξ
∗ in Eq.

(18), which in turn allows us to derive the final parameter gradients ∇ϕLξ:

∇ϕLξ = ∇ϕF
[
∇ξ,ζϕLF(ζϕ,γϕ)(ξ

∗)
∇ξ,γϕLF(γϕ,γϕ)(ξ

∗)

]
(∇ξ,ξLF(ζϕ,γϕ)(ξ

∗))−1∇ξ∗Lξ. (24)

1https://en.wikipedia.org/wiki/Matrix_calculus

7

https://en.wikipedia.org/wiki/Matrix_calculus

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

EgoPlanner

proposed

EgoPlanner

IPlanner

FastPlanner

Proposed EgoPlanner IPlannerFastPlanner

Start

Goal

Collision

Figure 3: The simulation scenario and trajectory visualization at high aggressiveness.

5 EVALUATIONS

We execute all training procedures on an Nvidia RTX 4090 GPU with a batch size of 64, utilizing the Adam
optimizer with a learning rate of 1.0e-5. Details on the training procedure and loss functions can be found in the
Appendix B. Subsequently, all testing within the simulation environment is conducted on an RTX 2060 GPU,
an Intel 10700 CPU, and an Ubuntu 20.04 operating system. For real-world experiments, we deploy them on
a fully autonomous quadcopter equipped with a RealSense D430 camera and NVIDIA Jetson Orin NX. The
detailed hardware and software specifications are outlined in the Appendix C.

5.1 BENCHMARKS

In this section, we compare our approach with two traditional algorithms and a SOTA learning-based method
that receive widespread acclaim and is applied in real-world environments: 1. Fast-Planner (Zhou et al., 2019):
A hierarchical motion planner where kinodynamic search is used to construct an initial solution, followed by us-
ing ESDF to enforce safety constraints required for subsequent trajectory optimization. 2. Ego-Planner (Zhou
et al., 2020): A lightweight optimization-based motion planner that utilizes graph search to obtain a collision-
free guiding path, guiding trajectories to safe regions, thus eliminating the need for ESDF construction. 3.
IPlanner (Yang et al., 2023): A powerful learning-based motion planner integrates the core concept of im-
plicit optimization (IO) into the overarching pipeline of High-Speed Flight (HSF) (Loquercio et al., 2021),
demonstrating enhanced performance in experiments. Utilizing IO, Iplanner reduces the dependency on expert
trajectory data compared to HSF, and also possesses enhanced generalization performance. Moreover, by di-
rectly approximating the original optimization problem, it exhibits a better performance in terms of optimality
and constraint satisfaction compared to HSF. For comprehensive comparison, we categorize scenarios into low,
medium, and high aggressiveness based on varying velocity and acceleration limits of the robot. For each sce-
nario, we randomly generate 200 navigation tasks, each approximately 70 meters in distance, within previously
unseen environments containing hundreds of obstacles, as illustrated in Figure 3. Moreover, various custom
parameters of traditional methods, such as convergence accuracy and the number of iterations for each case,
are fine-tuned by experienced researchers in the field. For each planning instance, the local target is selected
from the straight line pointing towards the destination at a specific distance (12m) from the current position.
Furthermore, the replanning logic for each planner follows a time-triggered approach, with a fixed replanning
frequency of 10Hz. During each replanning process, we output the three most probable candidate corridors
and optimize trajectories in parallel. The execution trajectory is selected based on a weighted combination of
trajectory quality J(ξ) and corridor probability P (F): J(ξ) + w(1− P (F)), with a weight w of 400.

We collect and summarize the dynamic parameters and success rate during flight, presenting the results in Table
1. In various settings, our method demonstrates the highest success rate. Although the Ego-planner also shows
impressive robustness at low aggressiveness, its success rate drops sharply in high aggressiveness scenarios.
This is because the Ego-planner uses an iterative framework for obstacle avoidance that lacks convergence
guarantees, often failing to find safe solutions in challenging high-speed cases. Moreover, in terms of optimal-
ity, our method achieves a shorter flight time and effectively reduces peak jerk compared to the Ego-planner,
which means our flights are smoother and place less strain on the motors, thereby better preserving hardware
longevity (Mellinger & Kumar, 2011a). As for the Fast-planner, it requires maintaining an ESDF, which sig-
nificantly increases mapping time, resulting in planning delays that are tens of times longer than our method.
This delay reduces the system’s responsiveness to unknown environments, particularly affecting performance
at high speeds. Moreover, the substantial computational power required for mapping on onboard computers
limits the resources available for other modules, such as localization, thereby compromising the overall system
robustness. Additionally, the discrete nature of the search strategy in this method lacks completeness within
limited computation time, further reducing success rate. Although the learning-based Iplanner demonstrates

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Quantitative benchmarks in various cases. ”Delay Time” refers to the computational
time required by each module after receiving the depth image. For the ego planner, ”Mapping” is
the time to transform the depth image into a grid map via raycasting. ”Solution” is the time spent on
trajectory optimization. In Fastplanner, ”Mapping ” additionally includes the maintenance of ESDF,
and ”Solution” also additionally encompasses the time spent utilizing kinodynamic search to acquire
initial values required for optimization. For our approach, ”Model” denotes neural network inference
time, and ”Solution” is the subsequent numerical optimization time. In assessing dynamic metrics,
we capture the maximum velocity (M.V), acceleration (M.A), and jerk (M.JK) in each navigation
mission and subsequently calculate the average and peak values derived from these metrics across
multiple navigations. For instance, in the case of M.V, the external value signifies the average of
the maximum velocities recorded in multiple navigations, whereas the internal value illustrates the
absolute peak value. ”Execution Time” is the average flight duration per navigation task. A task
is a failure if the robot contacts any obstacle; otherwise, it is successful. Constraint violations are
marked in red, while the highest success rates are highlighted in blue.

Methods
Delay Time (ms) Dynamics Execution

Time ↓

(s)

Success

Rate ↑

(%)
Mapping Model Solution Total ↓

M.V

(m/s)

M.A

(m/s2)

M.JK ↓

(m/s3)

Low Aggressiveness vlimit = 2m/s, alimit = 3m/s2

Proposed 0.0 4.1 1.3 5.4 2.0 (2.0) 1.5 (2.0) 6.9 (13.6) 35.45 100.0

Fastplanner 54.9 0.0 6.0 60.9 2.0 (2.0) 1.8(2.9) 9.4 (32.1) 36.33 92.5

EgoPlanner 5.5 0.0 1.8 7.3 2.0 (2.0) 2.2 (3.0) 15.7 (27.6) 35.45 100.0

Iplanner 0.0 3.0 0.0 3.0 2.3 (5.4) 3.4 (14.8) 23.9 (124.6) 42.67 93.0

Medium Aggressiveness vlimit = 5m/s, alimit = 6m/s2

Proposed 0.0 4.0 1.2 5.2 5.0 (5.0) 6.0 (6.0) 29.5 (50.0) 13.66 97.5

Fastplanner 60.0 0.0 4.9 64.9 5.0 (5.0) 5.9 (6.0) 30.9 (46.1) 13.54 88.0

EgoPlanner 6.7 0.0 3.0 9.7 5.0 (5.0) 6.0 (6.0) 50.1 (89.2) 14.67 91.0

Iplanner 0.0 3.0 0.0 3.0 4.8 (4.9) 6.5 (22.5) 41.4 (362.7) 13.69 90.5

High Aggressiveness vlimit = 8m/s, alimit = 10m/s2

Proposed 0.0 4.0 0.9 4.9 8.0 (8.0) 6.5 (8.5) 27.5 (54.4) 10.13 93.0

Fastplanner 62.3 0.0 3.9 66.2 7.9 (8.0) 7.52 (10.0) 39.4 (71.5) 10.50 75.0

EgoPlanner 6.7 0.0 5.5 12.2 7.5 (8.0) 9.5 (10.0) 118.2 (311.9) 12.88 78.0

Iplanner 0.0 3.1 0.0 3.1 7.6 (8.0) 6.8 (44.3) 51.6 (629.5) 9.28 71.5

the highest time efficiency, our method is only 2ms slower, which is also greatly satisfies the real-time require-
ments of the system. However, IPlanner’s lack of consideration for multimodal problem characteristics makes
it prone to unsafe local optima. Notably, although Iplanner incorporates penalties for dynamic constraints dur-
ing offline training based on IO to guide the network towards constraint compliance, it is less comprehensive
compared to our explicit spatial-temporal optimization applied directly to the trajectory online. For instance, In
highly aggressive scenarios, the peak acceleration exceed constraints by more than four times, which is clearly
outside the robot’s expected operational mode and risks severe crashes.

5.2 REAL-WORLD EXPERIMENTS

To validate the effectiveness of our framework in the real world, we create a point cloud simulating a wooded
area and utilize this environment to generate the dataset and train the network. In the simulation, the depth
images are obtained just by ray casting in parallel using GPU, without further processing the depth data to
make it close to that in the real world as Song et al. (2020). Instead, we chose to patch the depth images from

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Start

Goal

Environment :

3.3-4.5Height (m) :

Trajectory :

5.0
3.9

0.0Velocity
(m/s)

: Local
Trajectory

Quadcopter :

:

Corridors : 10m

0.1m

Figure 4: Real-world Experiments.

Table 2: Statistics in Real-World Experiments. Speed and attitude data of the drone are derived
from visual-inertial odometry. Acceleration is the norm of the acceleration vector in the world frame
minus gravity. We use the attitude of the drone to transfer the data from the accelerometer in the
IMU to the world frame. The angular velocity data comes from the gyroscope of the IMU, which is
in the body frame.

Statistic
Speed
(m/s)

Roll
(deg)

Pitch
(deg)

Yaw
(deg)

Acceleration
(m/s2)

Norm of Angular
Velocity (rad/s)

Max 5.0 6.9 25 9.3 5.6 2.7
Mean 3.7 0.068 5.7 -0.49 1.6 0.47
STD 1.2 2.6 10 3.9 1.2 0.44

the D430 in the real world to reduce the sim2real gap, which would even allow the drone to fly agilely when
the camera lens are blurred, as demonstrated in Appendix C.4.

We conduct real-world experiments in a wooded area, randomly selecting goals more than 50m away from the
robot, one of which is illustrated in Figure 4. In this case, the maximum speed and acceleration of drone are
limited to 5m/s and 6m/s2 respectively. The grid map representing the environment is obtained by recording
rosbag and projecting the depth data to the world frame by aligning the depth images and odometry after the
experiment.

Table 2 shows statistics in the real-world experiments corresponding to the case shown in Figure 4. As we
can see, the robot maintains a relatively high speed throughout to reach the target state without violating the
maximum speed and acceleration constraints we set. Curves of some physical quantities and more moments
from the real-world experiments are detailed in Appendix C.3.

6 CONCLUSION

In this paper, we propose an end-to-end visual navigation system that learns optimal trajectories from depth
images and integrates a spatial-temporal trajectory optimizer to ensure adherence to kinematic constraints,
enhancing interpretability and debugging. Additionally, our regularized trajectory design ensures thorough ex-
ploration of feasible spaces with minimal memory consumption. Extensive experiments demonstrate that our
method excels in guiding drones through complex environments, outperforming both traditional and learning-
based methods. Real-world tests on an onboard computer confirm the system’s capability for high-speed, safe
flight in dense forests. In the future, we plan to expand our method by incorporating task-specific objective
functions or constraints into the optimization process to better adapt to specific task scenarios, such as explo-
ration and tracking. Moreover, we intend to imbue the extracted spatial corridors with temporal information to
enhance UAV robustness against dynamic obstacles and enable application in multi-robot collaboration.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide the following illustrations in appendix and supplementary
material:

• Training Setup: We provide details of the training in Appendix B, including how to collect data and
configure the training strategy.

• Simulation Environment: We provide the code and guidelines used to deploy the proposed frame-
work in a simulation environment based on Robot Operating System (ROS) in the supplementary
material.

• Real Robot Setup: In Appendix C, we provide the details of the real-world experiments, including
the software and hardware we use.

Besides, to make it even easier for interested researchers to reproduce our work, we promise to further open
source more complete code at a later date, encompassing everything from data collection to deployment, in a
github repository with an easy-to-follow guide. We believe the open source repository will be an important
contribution to the community.

REFERENCES

Michal Adamkiewicz, Timothy Chen, Adam Caccavale, Rachel Gardner, Preston Culbertson, Jeannette Bohg,
and Mac Schwager. Vision-only robot navigation in a neural radiance world. IEEE Robotics and Automation
Letters, 7(2):4606–4613, 2022. 1

Sameer Agarwal, Keir Mierle, and The Ceres Solver Team. Ceres Solver. 10 2023. URL https://github.
com/ceres-solver/ceres-solver. 16

Ross E Allen and Marco Pavone. A real-time framework for kinodynamic planning in dynamic environments
with application to quadrotor obstacle avoidance. Robotics and Autonomous Systems, 115:174–193, 2019. 2

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
International Conference on Machine Learning, pp. 136–145. PMLR, 2017. 7

Marcelo Bertalmio, Andrea L Bertozzi, and Guillermo Sapiro. Navier-stokes, fluid dynamics, and image and
video inpainting. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001, volume 1, pp. I–I. IEEE, 2001. 16

Mohak Bhardwaj, Byron Boots, and Mustafa Mukadam. Differentiable gaussian process motion planning. In
2020 IEEE international conference on robotics and automation (ICRA), pp. 10598–10604. IEEE, 2020. 7

Xiangyu Chen, Fan Yang, and Chen Wang. ia∗: Imperative learning-based a∗ search for pathfinding, 2024. 3

Howie Choset. Robotic motion planning: A* and d* search. Robotics Institute, pp. 16–735, 2007. 2

Glen Chou, Dmitry Berenson, and Necmiye Ozay. Uncertainty-aware constraint learning for adaptive safe
motion planning from demonstrations. In Conference on Robot Learning, pp. 1612–1639. PMLR, 2021. 2

Wenchao Ding, Wenliang Gao, Kaixuan Wang, and Shaojie Shen. Trajectory replanning for quadrotors using
kinodynamic search and elastic optimization. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 7595–7602. IEEE, 2018. 2

Lu Dong, Zichen He, Chunwei Song, and Changyin Sun. A review of mobile robot motion planning methods:
from classical motion planning workflows to reinforcement learning-based architectures. Journal of Systems
Engineering and Electronics, 34(2):439–459, 2023. 1

Asen L Dontchev and R Tyrrell Rockafellar. Implicit functions and solution mappings, volume 543. Springer,
2009. 7

Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. Differential flatness of quadrotor dynamics sub-
ject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robotics and Automation Letters, 3
(2):620–626, 2017. 17

Bangkui Fan, Yun Li, Ruiyu Zhang, and Qiqi Fu. Review on the technological development and application of
uav systems. Chinese Journal of Electronics, 29(2):199–207, 2020. 1

11

https://github.com/ceres-solver/ceres-solver
https://github.com/ceres-solver/ceres-solver

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mark Nicholas Finean, Wolfgang Merkt, and Ioannis Havoutis. Predicted composite signed-distance fields for
real-time motion planning in dynamic environments. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 31, pp. 616–624, 2021. 1

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017. 7

Fei Gao, Luqi Wang, Boyu Zhou, Xin Zhou, Jie Pan, and Shaojie Shen. Teach-repeat-replan: A complete
and robust system for aggressive flight in complex environments. IEEE Transactions on Robotics, 36(5):
1526–1545, 2020. 2, 3

Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with recurrent neural
networks, pp. 37–45, 2012. 3

Luxin Han, Fei Gao, Boyu Zhou, and Shaojie Shen. Fiesta: Fast incremental euclidean distance fields for
online motion planning of aerial robots. In 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4423–4430. IEEE, 2019. 1

Ruihua Han, Shuai Wang, Shuaijun Wang, Zeqing Zhang, Jianjun Chen, Shijie Lin, Chengyang Li, Chengzhong
Xu, Yonina C Eldar, Qi Hao, et al. Neupan: Direct point robot navigation with end-to-end model-based
learning. arXiv preprint arXiv:2403.06828, 2024. 2, 3

Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Alternating back-propagation for generator network.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017. 7

Zhichao Han, Yuwei Wu, Tong Li, Lu Zhang, Liuao Pei, Long Xu, Chengyang Li, Changjia Ma, Chao Xu,
Shaojie Shen, et al. An efficient spatial-temporal trajectory planner for autonomous vehicles in unstructured
environments. IEEE Transactions on Intelligent Transportation Systems, 2023. 5

Martin Jacquet and Kostas Alexis. N-mpc for deep neural network-based collision avoidance exploiting depth
images. arXiv preprint arXiv:2402.13038, 2024. 2, 3

Sebastian Klemm, Jan Oberländer, Andreas Hermann, Arne Roennau, Thomas Schamm, J Marius Zollner, and
Rüdiger Dillmann. Rrt*-connect: Faster, asymptotically optimal motion planning. In 2015 IEEE interna-
tional conference on robotics and biomimetics (ROBIO), pp. 1670–1677. IEEE, 2015. 2

Mihir Kulkarni and Kostas Alexis. Reinforcement learning for collision-free flight exploiting deep collision
encoding. arXiv preprint arXiv:2402.03947, 2024. 2

Kevin Lin and Brent Yi. Active view planning for radiance fields. In Robotics Science and Systems, 2022. 1

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical
programming, 45(1):503–528, 1989. 7

Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias Müller, Vladlen Koltun, and Davide Scaramuzza.
Learning high-speed flight in the wild. Science Robotics, 6(59):eabg5810, 2021. 2, 8

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In Pro-
ceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pp. 281–297.
Oakland, CA, USA, 1967. 6

Lorenz Meier, Dominik Honegger, and Marc Pollefeys. Px4: A node-based multithreaded open source robotics
framework for deeply embedded platforms. In 2015 IEEE international conference on robotics and automa-
tion (ICRA), pp. 6235–6240. IEEE, 2015. 16

Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control for quadrotors. In 2011
IEEE international conference on robotics and automation, pp. 2520–2525. IEEE, 2011a. 8

Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control for quadrotors. In 2011
IEEE international conference on robotics and automation, pp. 2520–2525. IEEE, 2011b. 17

GN Muchiri and S Kimathi. A review of applications and potential applications of uav. In Proceedings of the
Sustainable Research and Innovation Conference, pp. 280–283, 2022. 1

Helen Oleynikova, Alexander Millane, Zachary Taylor, Enric Galceran, Juan Nieto, and Roland Siegwart.
Signed distance fields: A natural representation for both mapping and planning. In RSS 2016 workshop: ge-
ometry and beyond-representations, physics, and scene understanding for robotics. University of Michigan,
2016. 1

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael Pantic, Cesar Cadena, Roland Siegwart, and Lionel Ott. Sampling-free obstacle gradients and reactive
planning in neural radiance fields. In Workshop on” Motion Planning with Implicit Neural Representations
of Geometry” at 2022 IEEE International Conference on Robotics and Automation (ICRA 2022), 2022. 1

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019. 17

Barak A Pearlmutter and Jeffrey Mark Siskind. Reverse-mode ad in a functional framework: Lambda the
ultimate backpropagator. ACM Transactions on Programming Languages and Systems (TOPLAS), 30(2):
1–36, 2008. 7

Chuck Pheatt. Intel® threading building blocks. J. Comput. Sci. Coll., 23(4):298, apr 2008. ISSN 1937-4771.
17

Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky TQ Chen, Joseph
Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, et al. Theseus: A library for differentiable nonlinear
optimization. Advances in Neural Information Processing Systems, 35:3801–3818, 2022. 7

Mihail Pivtoraiko and Alonzo Kelly. Efficient constrained path planning via search in state lattices. In Interna-
tional Symposium on Artificial Intelligence, Robotics, and Automation in Space, pp. 1–7. Munich Germany,
2005. 2

Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monocular visual-inertial state
estimator. IEEE transactions on robotics, 34(4):1004–1020, 2018. 16

Victor Reijgwart, Alexander Millane, Helen Oleynikova, Roland Siegwart, Cesar Cadena, and Juan Nieto.
Voxgraph: Globally consistent, volumetric mapping using signed distance function submaps. IEEE Robotics
and Automation Letters, 5(1):227–234, 2019. 1

Pascal Roth, Julian Nubert, Fan Yang, Mayank Mittal, and Marco Hutter. Viplanner: Visual semantic imperative
learning for local navigation. arXiv preprint arXiv:2310.00982, 2023. 2

Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and Davide Scaramuzza. Flightmare: A flexible
quadrotor simulator. In Conference on Robot Learning, 2020. 9

Stanford Artificial Intelligence Laboratory et al. Robotic operating system. URL https://www.ros.org.
17

Gao Tang, Weidong Sun, and Kris Hauser. Learning trajectories for real-time optimal control of quadrotors. In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3620–3625. IEEE,
2018. 1

Jesus Tordesillas and Jonathan P How. Mader: Trajectory planner in multiagent and dynamic environments.
IEEE Transactions on Robotics, 38(1):463–476, 2021. 2, 3

Zhepei Wang, Xin Zhou, Chao Xu, and Fei Gao. Geometrically constrained trajectory optimization for multi-
copters. IEEE Transactions on Robotics, 38(5):3259–3278, 2022. 3

Michael Watterson and Vijay Kumar. Control of quadrotors using the hopf fibration on so (3). In Robotics
Research: The 18th International Symposium ISRR, pp. 199–215. Springer, 2019. 17

Dustin J Webb and Jur Van Den Berg. Kinodynamic rrt*: Asymptotically optimal motion planning for robots
with linear dynamics. In 2013 IEEE international conference on robotics and automation, pp. 5054–5061.
IEEE, 2013. 2

Yuwei Wu, Xiatao Sun, Igor Spasojevic, and Vijay Kumar. Deep learning for optimization of trajectories for
quadrotors. IEEE Robotics and Automation Letters, 2024. 2, 3

Xuesu Xiao, Bo Liu, Garrett Warnell, and Peter Stone. Motion planning and control for mobile robot navigation
using machine learning: a survey. Autonomous Robots, 46(5):569–597, 2022. 1

Fan Yang, Chen Wang, Cesar Cadena, and Marco Hutter. iplanner: Imperative path planning. arXiv preprint
arXiv:2302.11434, 2023. 2, 3, 8

Chongjie Zhang and Victor Lesser. Multi-agent learning with policy prediction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 24, pp. 927–934, 2010. 7

Boyu Zhou, Fei Gao, Luqi Wang, Chuhao Liu, and Shaojie Shen. Robust and efficient quadrotor trajectory
generation for fast autonomous flight. IEEE Robotics and Automation Letters, 4(4):3529–3536, 2019. 2, 8

13

https://www.ros.org

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Boyu Zhou, Jie Pan, Fei Gao, and Shaojie Shen. Raptor: Robust and perception-aware trajectory replanning
for quadrotor fast flight. IEEE Transactions on Robotics, 37(6):1992–2009, 2021. 2

Xin Zhou, Zhepei Wang, Hongkai Ye, Chao Xu, and Fei Gao. Ego-planner: An esdf-free gradient-based local
planner for quadrotors. IEEE Robotics and Automation Letters, 6(2):478–485, 2020. 2, 8

Xin Zhou, Xiangyong Wen, Zhepei Wang, Yuman Gao, Haojia Li, Qianhao Wang, Tiankai Yang, Haojian Lu,
Yanjun Cao, Chao Xu, et al. Swarm of micro flying robots in the wild. Science Robotics, 7(66):eabm5954,
2022. 6

A OPTIMALITY ANALYSIS

In our work, we aim to solve the decomposed dual-layer optimization problem Eq. (6-8). However, we argue
that we do not compromise on optimality because this decomposition is tight, implying that the dual-layer
optimization and the original optimization problem Eq. (1-5) share the same optimal solution. In other words,
for the optimal solution of the original problem ξ∗,F∗, it necessarily satisfy the following conditions:

ξ∗ = argmin
ξ

J = J(ξ), s.t.Eq.(2− 5)(F∗). (25)

Here we give the proof by contrapositive. If the optimal solution of the original problem is not the optimal
solution of the subproblem, let’s assume that the optimal solution of the subproblem is represented by ξ̂, where
J(ξ̂) < J(ξ∗). Thus, we obtain a new set of solutions, ξ̂ and F∗, which necessarily satisfy the constraints of
the original problem and have a more optimal objective function than the original solution ξ∗,F∗. That is, for
the original problem, we have a set of better solutions ξ̂,F∗, which contradicts the assumption that ξ∗,F∗ are
the optimal solution of the original problem. Therefore, the hypothesis is not valid, and the original proposition
is proven.

B IMPLEMENTATION DETAILS

B.1 DATA COLLECTION

In our experiments, we conduct training across various parameter settings. For each configuration, we randomly
generate 200 forest environments, each measuring 75m by 75m, and sample numerous start and end points to
construct motion planning problems. To collect trajectory and flight sensor data, we first use high-resolution
hybrid A* as the frontend method in the simulation environment to search for a rough topological path. This
path then serves as an initial guess for further backend trajectory optimization. Additionally, for obstacle avoid-
ance, we maintain a precise ESDF to push the trajectory away from obstacles. The local ESDF is set to cover 14
meters forward and backward in the local coordinate system, encompassing the entire local trajectory (around
12 meters long) to prevent map boundary issues during optimization and enhance trajectory foresight. However,
maintaining a large ESDF field and the delays between perception, frontend, and backend processes result in
a total navigation framework latency of a few hundred milliseconds, even on high-performance personal com-
puters, making it unsuitable for high-speed UAV flight scenarios. Therefore, to successfully collect data in the
simulation environment, we deliberately adjust the simulator’s time to 1/10 of real-time. Although this method
reduces data collection efficiency, the server’s excellent multi-threading capabilities allow us to collect data in
large batches. Even with a target of 400000 data points, the total collection time does not exceed 10 hours.
It is worth noting that due to perception errors and various infeasible local optimizations, the collected local
trajectories may not always be completely safe or physically feasible. However, through our designed unsuper-
vised loss functions and gradually transitioning to a reference-free training strategy, we reduce our method’s
dependence on reference trajectories and enhance robustness.

B.2 LOSS FUNCTION

Our network architecture is based on following a trajectory library, which approximates a spatial mixture dis-
tribution of near-optimal trajectories. Consequently, the evaluation function of the network is designed as the
expected loss of the policy: Lϕ = EF∼Pϕ(F)[L(F)] =

∑
F L(F)Pϕ(F). In implementation, we output

the probability distribution over a discrete set of motion primitives, and each generated flight corridor de-
terministically depends on the selected primitive without any randomness: Pϕ(F) = Pϕ(F(µ)) = Pϕ(µ).
Consequently, the expected loss of the network is instantiated as follows:

Lϕ =
∑
µ∈M

Pϕ(µ)(wJJ(ξ
∗(F(µ)) + wsfLsafe(F(µ)) + wfbLfeasible(F(µ)))). (26)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Here, wJ = 0.05,wsf = 10 and wfb = 0.05 are the weights corresponding to the respective losses. Pϕ(µ)
represents the probability of selecting motion primitive µ, which is output by the network. J is the evaluation
metric of the trajectory optimized based on the flight corridor F , defined as a combination of energy and
execution time, as described in Eq. (1). Lsafe represents the safety condition of the corridor, acting as a
penalty term during training to push the corridor away from obstacle regions. To prevent the generation of
unreasonable safety corridors by the network’s initial parameters, which could render the inner optimization
problem infeasible, we introduce Lfeasible to penalize such infeasible corridors.

Due to our use of a series of spheres (ζ, γ)to represent F , the safety condition is modeled as follows:

Lsafe(F) =

N∑
i=1

λ∑
j=1

L1(γi,j − Sd(ζi,j , ϵ)), (27)

where Sd is the signed distance from the sphere center to the obstacle, which can be efficiently obtained via
trilinear interpolation from a precomputed ESDF field ϵ bound to the local environment. Furthermore, we
utilize an ELU function with a constant bias as the activation function for the final layer outputting the radius,
ensuring that the sphere is always larger than the robot’s shape. Upon obtaining the inner optimization output,
we verify the corridor constraints Eq. (3) to assess the degree of violation. If the constraint violation exceeds a
predetermined threshold δ = 0.0005, the output corridor is deemed invalid and a penalty is applied. To mitigate
the infeasibility of the corridor, we adjust the sphere by moving its center closer to the detached constraint point
ξ̂i,j and appropriately increasing its radius:

Lfeasible(F) = L1(−δ +

N∑
i=1

λ∑
j=1

||ξ̂i,j − ζi,j ||22 − γ2
i,j). (28)

Commencing training directly on the original task Eq. (26) could propel the network to undesirable local min-
ima or saddle points. To counter this predicament, we employ a curriculum learning strategy, progressively
guiding the network to navigate the complexity of the problem in a well-structured, incremental manner. Ini-
tially, we decouple the network’s primitive probability layer from the corridor refinement layer, training each
layer on their respective outputs independently. Notably, both layers share a common perceptual convolutional
layer. The primitive probability layer involves the calculation of the cross-entropy loss between the output
probability distribution and the ground truth labels: −

∑
µ∈M yµ log(Pϕ(µ)), where yµ is the ground truth

label. Conversely, the corridor refinement layer, during its training phase, avoids selecting the primitive with
the highest probability output generated by the network. Instead, the ground truth primitive µ∗ is directly in-
put into the model. The centers of the resulting corridor F(µ∗) are supervised by the constraint points of the
offline-collected reference trajectory, and the radii are supervised by the signed distance to obstacles at those
points. The losses from the primitive probability layer and the corridor refinement layer are combined using
a weighted sum, which is then backpropagated to update the network parameters. Ultimately, after the train-
ing approaches convergence, we build upon the foundation of the previously trained model to reconnect the
primitive probability layer and the corridor refinement layer, facilitating further refinement using Lϕ.

C REAL-WORLD DEPLOYMENT DETAILS

C.1 HARDWARE SETTINGS

Camera
(RealSense D430)

Onboard Computer
(NVIDIA Orin NX)

85 m
m

Flight Cntroller
(KakuteH7 Mini)

Optical Flow Sensor

Motors

Battery

ESC

Figure 5: Hardware Settings.

All the experiments are performed on a 120-mm wheelbase microplatform that we designed and assembled.
The drone is mainly made up of the following four subsystems, as shown in Figure 5.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1) Power and movement suite. We use a 3400-mAh LiPo battery with 12.6-V voltage as the energy source
for the quadcopter. Four 4600-kv brushless motors (model 1404) incorporating 3-inch, three-blade propellers
and a four-in-one electronic speed controller with a 50-A maximum current are used to constitute the power
module of it. The propellers are mounted at the bottom of the airframe, and therefore, a strong downwash flow
will not blow directly onto the body.

2) Low-level control unit. The 20 mm by 20 mm sized Holybro Kakute H7 Mini v1.3 is chosen to be the
flight control unit (FCU) running PX4 Autopilot (Meier et al., 2015). The FCU is equipped with a STM32 H7
MCU and a BMI270 IMU, receiving angular velocity and thrust commands from the high-level navigation unit,
controlling the pose of the UAV in SE(3) space, and sending IMU data to the navigation unit.

3) High-level navigation unit. All the localization, planning, and high-level control codes are run in this unit,
whose hardware configuration is NVIDIA Orin NX, a powerful compute for embedded and edge systems with
a six-core CPU, 1024-CUDA-core GPU, and 8 GB of RAM, which is strong enough to support high-frequency
calls to our algorithms.

4) Sensors. A grayscale and depth camera Intel Realsense D430 is used for localization and perception, where
the grayscale images are fused with the IMU data from FCU and utilized by the visual-inertial odometry (VIO).
The output depth images is processed and fed as the input to the planner. Besides, we use an optical flow sensor
to estimate the height and correct the error of VIO.

C.2 SOFTWARE SETTINGS

Camera Optical Flow
Sensor

Inpainting

Visual Inertia
Odometry

Neural Planner
Depth
Queue Flight

Controller Unit

IMU

Relative Height
Odometry Fusion

Odom Queue

Tracking Controller
ESC Motors

Depth

Gray

Figure 6: Software Settings.

The real-world software setup consists of three main parts, as shown in Figure 6. The grayscale images output
by the D430 module and the IMU data from the FCU are received by the visual-inertial odometry module
to compute the raw odometry. Based on the relative altitude values provided by the optical flow sensor, the
odometry fusion module corrects the drift of the raw odometry on Z-axis of the world frame, yielding high-
frequency, robust odometry for supplying to the neural planner and the trajectory tracking controller. Depth
data from the D430 module pass through the image inpainting module and is synchronized with the odometry
from the odometry fusion module, which are used as inputs of the neural planner. The data input to the neural
planner is projected to the local frame of the UAV. After the inference of the optimization-embedded neural
network, the replanned trajectory is generated at a frequency of 10Hz and is sent to the trajectory tracking
controller to compute the final desired thrust and angular velocity. The obtained thrust and angular velocity
commands are given to the FCU, which is converted to the final motor speed by the ESC.

1) Multi-sensor fusion localization system. For VIO, we refer to the framework VINS (Qin et al., 2018) and
use Ceres (Agarwal et al., 2023) as the optimizer. Based on this framework, to obtain more high-frequency
(200Hz) odometry for more accurate trajectory tracking control, we integrate between each odometry frame
(15Hz) with the measurements of angular velocity and acceleration from the IMU. In addition, to compensate
the error of VINS in Z-axis of the world frame, extended Kalman filter is adopted to fuse the altitude data from
the optical flow sensor and raw odometry.

2) Perception and motion planning. In the real world, owing to reasons such as excessive ambient lighting,
depth images from d430 are usually incomplete, with some regions of the image having no data, as shown in
the upper left corner of Figure 6. To reduce the sim2real gap, treating the image as the ”stream function” of
a 2D incompressible flow, we propagate information into regions needing inpainting by solving an equation
similar to the Navier-Stokes equations numerically (Bertalmio et al., 2001). Then, the inpainted images are
downsampled to the size allowed by the neural planner, where the depth values are also limited to the range

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

of 0 ∼ 10m. To synchronize the depth measurements and odometry, we use synchronizer of message filter
implemented in Robot Operating System (ROS) (Stanford Artificial Intelligence Laboratory et al.). Further,
a finite length queue is maintained, which will be accessed when the neural planner is asked to replan. For
deploying the proposed framework, we use Libtorch (Paszke et al., 2019) as the C++ library to implementing
neural network inference and tensor computation. Besides, TBB (Pheatt, 2008) is adopted for multi-process
management to enable parallel trajectory optimization based on multiple alternative safe corridors.

3) Controllers For trajectory tracking, we use a differential flatness based controller (Mellinger & Kumar,
2011b). To minimize the singularities in the attitude solution results due to the UAV approaching the singulari-
ties of the differential flatness when high maneuvering flying, we switch to quaternions to describe the attitude
and adopt Hopf fibration (Watterson & Kumar, 2019) to solve the SO(3) state of the UAV. We also refer to
Faessler et al. (2017) to consider air resistance during high-speed flight in the differential flatness computation.
After getting the desire attitude and angular velocity, we use feedforward with feedback control to calculate
the final angular velocity command. In FCU, PD controller is used to control the angular velocity command,
whose measurement is from filtered IMU data with Butterworth filter.

C.3 SOME DATA FROM REAL-WORLD EXPERIMENTS

We capture some moments from real-world experiments. Figure 7 shows the behavior of the robot in the first
person view while avoiding obstacles. Figure 8 shows the variation of the relevant physical quantities of the
robot for one complete flight corresponding to Figure 4, where the speed and attitude data are derived from
visual-inertial odometry, the angular velocity data is output by the gyroscope in the FCU. We align the attitude
and body acceleration from IMU to compute the norm of the acceleration vector minus gravity.

Figure 7: Some great moments with the robot from D430 module as the first view. We use the
pose estimation of the robot from VIO and camera intrinsic matrix, extrinsic matrix to project the
optimized trajectory to the gray image, represented by rainbow-colored lines, where red to purple
indicate that the positions in the trajectory are near to far from the robot. In the depth images, the
colors from blue to red indicate the depth values from small to large, where the circles indicate the
corridor with the highest probability of the neural network output. The radius of the circle indicates
the size of the corridor.

C.4 ROBUSTNESS AND RISKY SITUATIONS

In the real world, drones can get dust, water droplets, and other foreign objects, which can contaminate the lens
and thus create holes in the depth image. These untreated pixels may be perceived as obstacles by the robot and
cause it to fail to pass through the region or behave conservatively. After inpainting, the robot can still able to
demonstrate agile flights, as shown in Figure 9, where the grid maps in the upper right corner of two cases are
constructed by aligning the odometry and inpainted depth images offline after the flight.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

6.0

5.0

Total Length = 45. 4 m

Figure 8: Curves of some physical quantities corresponding to Figure 4. The three axes of
angular velocity are the three axes corresponding to the robot body frame, where the X-axis is
perpendicular to the camera lens in the outward direction and the Z-axis is perpendicular to the
paddle plane in the skyward direction. The Y-axis can then be determined via the right-hand rule.

Occlusion

Inpainting

Agile Flying Occlusion

Inpainting

Agile Flying

Figure 9: Image inpainting makes the system more stable.

One of the limitations of our framework is the need for the goal to be sufficiently secure. As shown in Figure
10, if the goal selected in an experiment is closer to obstacles, the robot is likely to face danger in approaching
it. In the future, we will consider replacing the fixed endpoint selection strategy by utilizing another neural
agent in order for the robot to intelligently choose a safe area near the goal to stop.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Danger

The drone
is close to
obstacles

Figure 10: The drone is approaching some dangerous goals.

19

	Introduction
	Related Work
	Traditional Motion Planning
	Learning-based Motion Planning

	Spatial-Temporal Trajectory Optimization Formulation
	Network Architecture
	End-to-End Navigation System Overview
	Safe Space Extraction Layer
	Differentiable Trajectory Optimization Layer

	Evaluations
	Benchmarks
	Real-world Experiments

	Conclusion
	Reproducibility Statement
	Optimality Analysis
	Implementation Details
	Data Collection
	Loss Function

	Real-world Deployment Details
	Hardware Settings
	Software Settings
	Some Data from Real-world Experiments
	Robustness and Risky Situations

