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ABSTRACT

Diffusion models (DMs) have achieved record-breaking performance in image
generation tasks. Nevertheless, in practice, the training-sampling discrepancy,
caused by score estimation error and discretization error, limits the modeling abil-
ity of DMs, a phenomenon known as exposure bias. To alleviate such exposure
bias and further improve the generative performance, we put forward a prompt
learning framework built upon a lightweight prompt prediction model. Concretely,
our model predicts an anti-bias prompt for the generated sample at each sampling
step, aiming to compensate for the exposure bias that arises. Following this design
philosophy, our framework rectifies the sampling trajectory to match the training
trajectory, thereby reducing the divergence between the target data distribution and
the modeling distribution. To train the prompt prediction model, we simulate ex-
posure bias by constructing training data and introduce a time-dependent weight-
ing function for optimization. Empirical results on various DMs demonstrate the
superiority of our prompt learning framework across three benchmark datasets.
Importantly, the optimized prompt prediction model effectively improves image
quality with only a 5% increase in sampling overhead, which remains negligible.

1 INTRODUCTION

Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) rep-
resent a novel generative paradigm that has become de facto standard for image generation, and
also showcasing impressive results in many downstream tasks (Luo et al., 2023; Shue et al., 2023;
Liu et al., 2023a; Mokady et al., 2023). In particular, the seminal work (Song et al., 2021b) unifies
the design philosophy of DMs through continuous diffusion using stochastic differential equations
(SDEs), boosting them for achieving start-of-the-art image quality (Kim et al., 2023a; Peebles &
Xie, 2023) and improved mode coverage (Kingma et al., 2021; Song et al., 2021a; Lu et al., 2022a;
Kim et al., 2022). More recently, stable diffusion (Rombach et al., 2022) has bridged the gap in
both text-to-image (Nichol et al., 2022; Ramesh et al., 2022; Saharia et al., 2022) and text-to-video
generation (Blattmann et al., 2023; Khachatryan et al., 2023), further enhancing the modeling ca-
pability for high fidelity, controllable content synthesis (Gao et al., 2023; Ruiz et al., 2023) and
demonstrating great potential for practical applications (Xu et al., 2024; Sauer et al., 2023).

The core idea of DMs is to establish a diffusion path between the target data distribution and a prior
distribution and simulate this path in the opposite direction for image generation, dubbed forward
diffusion and reverse sampling, respectively (Sohl-Dickstein et al., 2015; Song & Ermon, 2020). In
the diffusion process, a forward SDE is employed to formulate the diffusion path via perturbing the
data distribution with a well-designed multilevel noise schedule (Song et al., 2021b; Karras et al.,
2022). Concretely, different noise scales represent distinct time steps in the diffusion path, with the
transition between adjacent time steps characterized by a Gaussian transition kernel. The reverse
sampling can be achieved by traversing the diffusion path with the opposite direction (Kim & Ye,
2022; Lu et al., 2022b; Zhang & Chen, 2022). Crucially, the reverse process satisfies a reverse-time
SDE or a probability flow (PF) ordinary differential equation (ODE) (Song et al., 2021b). Both
can be derived from the forward SDE by considering the score of the marginal probability densities
as a function of time (Anderson, 1982; Luo, 2022). We can, therefore, approximate the reverse-
time S/ODE by training a time-dependent deep neural network to estimate the scores (Hyvärinen &
Dayan, 2005; Song et al., 2020b; Song & Ermon, 2019), and generate new images using numerical
S/ODE solvers (Song et al., 2021b; Lu et al., 2022b; Zhang & Chen, 2022; Zhang et al., 2023).
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Figure 1: Anti-Exposure Bias Prompt Learning. The exposure bias arises from the training-
sampling discrepancy of model inputs. As clearly illustrated in this figure, the sampling trajectory
gradually deviates from the training trajectory due to accumulated score estimation and discretiza-
tion errors at each time step, leading to an increase in bias. To alleviate this bias and enhance
modeling performance, our prompt learning framework employs a lightweight parameterized model
to generate an anti-bias prompt from the current time-step sample, compensating for exposure bias
in the model input at the next time step. In addition to delivering excellent performance, the resulting
extra sampling overhead is less than 5%, which can be considered negligible (Best viewed in color).

However, in practice, a training-sampling discrepancy exists at each time step concerning the input
to the time-dependent neural network model, resulting in an exposure bias problem (Ning et al.,
2023b; Li et al., 2023a; Ning et al., 2023a) and, consequently, a degradation in image quality (Kim
et al., 2023a). As illustrated in Figure 1, this issue arises because, during training, the model inputs
for DMs are derived from ground truth samples, while during sampling, the inputs are predictions
from the previous time step. Practically, the predictions cannot completely match the ground truth
samples due to two fundamental errors: the score estimation error (Bao et al., 2022a) and the dis-
cretization error (Zhang & Chen, 2022). The score estimation error is primarily caused by the
score conflict (Hang et al., 2023), data sparsity (Kim et al., 2022) and model capacity (Karras et al.,
2022), as well as an imperfect diffusion schedule (Dhariwal & Nichol, 2021). Regarding the latter,
since integration in high-dimensional spaces is intractable, we can only approximate reverse-time
S/ODEs using numerical solvers to the best of our ability, which inevitably results in discretization
error (Wang et al., 2021; Bao et al., 2022c; Lu et al., 2022b). Due to these two types of errors, ex-
posure bias inherently arises during the sampling process in DMs. Furthermore, this bias becomes
increasingly pronounced along the sampling trajectory, as each time step accumulates newly result-
ing score estimation and discretization errors (De Bortoli et al., 2021; Xiao et al., 2021). As a result,
exposure bias has a significant impact on the generative performance of DMs.

To illuminate exposure bias, we first thoroughly examine the training-sampling discrepancy problem
from an analytical perspective. Theoretically, the denoising distribution between adjacent time steps
follows a naive Gaussian distribution (Ho et al., 2020; Sohl-Dickstein et al., 2015). We can, there-
fore, approximate it by a Gaussian transition kernel. However, when considering the phenomenon
of exposure bias, there is a gap at each time step between the true Gaussian distribution and the
transition kernel modeled by a pre-trained DM (Luo et al., 2024). Moreover, the magnitude of this
gap increases when fewer sampling time steps are used (Kim et al., 2023a), resulting in a reduction
in image quality, as the Gaussian assumption holds only in the infinitesimal limit of small denoising
steps (Xiao et al., 2021). While the gap in each denoising step can be quantified using the Kullback-
Leibler (KL) divergence between the true Gaussian kernel and the modeling transition kernel at the
current time step, accessing these latent distributions is not feasible (Kingma & Gao, 2024).

To remedy this, we propose a novel exposure bias prompt learning framework that uses a param-
eterized prompt prediction model to rectify biases in the generated samples at each time step. To
effectively optimize the prompt prediction model, we construct training data that simulates exposure
bias and introduce a time-dependent weighting function for stable training. During the sampling
process, the optimized prompt prediction model predicts an exposure bias prompt based on the gen-
erated sample at the current time step. This prompt is then used to correct the bias in the model
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input for the next step. The combination of the generated sample and its anti-exposure bias prompt
creates an improved sample input for the subsequent time step. In this manner, we alleviate the
exposure bias caused by the score estimation and discretization errors during sampling, effectively
rectifying sampling trajectories through iterative execution of this process. Importantly, the prompt
prediction model is a lightweight backbone that requires only a 5% increase in sampling time, which
can be considered negligible. Furthermore, our framework provides significant flexibility, enabling
enhancements to guidance sampling (Dhariwal & Nichol, 2021), alleviating exposure bias in latent
diffusion (Vahdat et al., 2021; Rombach et al., 2022), and improving fast samplers (Song et al.,
2020a; Bao et al., 2022b; Zhang & Chen, 2022; Lu et al., 2022b). Notably, compared to merely in-
creasing DM parameters to alleviate exposure bias, our framework can serve as a plug-in to enhance
various DMs parameterized by different model sizes and architectures. The former requires training
the model from scratch, incurring significant computational costs and human effort, while we only
necessitate training a lightweight backbone, demonstrating both flexibility and efficiency.

In a nutshell, our contributions can be summarized as follows: 1) We analyze the phenomenon of
exposure bias in DMs caused by score estimation and discretization errors; 2) To alleviate exposure
bias and enhance generative performance, we propose a prompt learning framework that employs a
lightweight parameterized model to predict an anti-bias prompt for rectifying the next model input;
3) A novel training strategy is proposed to simulate exposure bias and ensure stable training; 4) Ex-
tensive experiments demonstrate the effectiveness of our prompt learning framework across various
datasets and different DMs, with only a negligible increase in sampling overhead.

2 BACKGROUD

Overview DMs (Song & Ermon, 2019; Ho et al., 2020) are a new class of generative models that
synthesize images by gradually denoising random points sampled from a prior distribution. Specifi-
cally, for a given D-dimensional image x0, we assume it satisfies a distribution x0 ∼ p(x0). Thus,
the diffusion path leading to a prior distribution can be constructed via the following forward SDE:

dx = Ftxdt+Gtdω, (1)
where Ft ∈ RD×D denotes the linear drift coefficient, Gt ∈ RD×D denotes the diffusion coeffi-
cient, ω is a standard Wiener process and t ∼ U [0, 1]. Under some mild assumptions (Song et al.,
2021b), the forward SDE in Eq. (1) is associated with a reverse-time diffusion process:

dx =
[
Ftx−GtG

T
t ∇ log pt(x)

]
dt+Gtdω̄, (2)

where ω̄ denotes a standard Wiener process in the reverse-time direction, and∇ log pt(x) represents
the gradient of the log probability density with respect to the perturbed data at time step t, a.k.a.
score (Hyvärinen & Dayan, 2005; Vincent, 2011). In theory, with a known prior distribution π, such
as the normal distribution, one can generate new images via solving Eq. (2) using initial samples
xT ∼ π (Anderson, 1982).

Training In practice,∇ log pt(x) is inaccessible due to the high dimensionality of data, which leads
to the analytical intractability of the probability density function (Hyvärinen & Dayan, 2005). To
remedy this, prior works (Song et al., 2020b; Vincent, 2011; Song & Ermon, 2019) employ a time-
dependent neural network sθ(xt, t) to approximate the score:

JSM (θ;ω(·)) = 1

2

∫ 1

0

Ex0,xt

[
ω(t) ∥∇ log p0t(xt|x0)− sθ(xt, t)∥22

]
dt. (3)

Here,∇ log p0t(xt|x0) has a closed form expression as p0t(xt|x0) is a simple Gaussian distribution
obtained from a given SDE (Song et al., 2021b), and ω(t) denotes a time-dependent weighting
function used for stable training (Kingma et al., 2021; Kim et al., 2022). When implementing
advanced score matching techniques, Eq. (3) can be optimized using empirical samples via Monte
Carlo methods (Hyvärinen & Dayan, 2005; Song & Ermon, 2019; 2020).

3 DISCUSSION

3.1 EXPOSURE BIAS PHENOMENON

Score Estimation Error Once the score network sθ(xt, t) ≈ ∇ log pt(x) is matched for almost
all x ∈ RD and t ∼ U [0, 1], one enables to generate images by solving Eq. (2) with ∇ log pt(x)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

replaced by sθ(xt, t):
dx =

[
Ftx−GtG

T
t sθ(xt, t)

]
dt+Gtdω. (4)

However, this process will results in score estimation error because of the discrepancy between
∇ log pt(x) and sθ(xt, t). This discrepancy is primarily attributed to factors such as data bias, model
robustness, and training techniques (Kim et al., 2022; Hoogeboom et al., 2023), which cannot be
easily resolved by merely increasing model parameters due to the intrinsic limitations in DMs.

Discretization Error In practice, directly solving the integral in Eq. (4) is intractable. Instead, it
is approximated by discretizing it into T steps with T − 1 intervals, where the transition from time
step t+1 to t is governed by a Gaussian kernel q(xt | xt+1). For simplicity, we next investigate the
discretization error via using the PF ODE, where xt can be obtained via the following formulation:

xt = Ψ(t, t+ 1)xt+1 +

∫ t

t+1

Ψ(t, τ)

[
−1

2
GτG

T
τ sθ(xτ , τ)

]
dτ, (5)

where ∂Ψ(t,t+1)
∂t = FtΨ(t, t + 1), and Ψ(t + 1, t + 1) = I represents the transition function from

time t + 1 to time t, which can be derived from Fτ (Zhang & Chen, 2022). In this manner, new
images x0 can be generated by iteratively solving Eq. (5) from the initial time step T to the final
time step. Nevertheless, it is also intractable to directly solve the integral part in Eq. (5) because of
its ultra-high dimensional nature. In practice, one can utilize a numerical solver (Lu et al., 2022b;
Karras et al., 2022; Zhang & Chen, 2022; Li et al., 2023b) to approximate each integral part:

x̂t = Ψ(t, t+ 1)xt+1 +
∆t

2
Gt+1G

T
t+1sθ(xt+1, t+ 1), (6)

where ∆t is the integration interval between time step t + 1 and t. For simplicity, we demonstrate
only the first-order Euler sampler for solving the integral part. Obviously, using Eq. (6) to solve each
integral instead of Eq. (5) will cause the discretization error. This happens because linear solutions
provide only a rough approximation of the integral, particularly over large integration intervals.

Exposure Bias Phenomenon When accounting for score estimation and discretization errors, ex-
posure bias occurs at each time step along the sampling trajectory, as shown Figure 1. Formally,
the model inputs during training are derived from the ground truth images, while the inputs during
sampling are the model prediction outputs from previous steps. Due to these two errors, the model
predictions cannot exactly match the ground truth value, leading to the exposure bias phenomenon.
Based on the analysis, the modeling Gaussian kernel can be formulated as pθ(x̂t | xt+1). In this
context, the exposure bias at each time step is actually the discrepancy between the ground truth
output q(xt | xt+1) and its predicted output pθ(x̂t | xt+1). Although we can express it as a KL
divergence DKL(q(xt | xt+1) ∥ pθ(x̂t | xt+1), directly minimizing this KL divergence to alleviate
exposure bias is intractable, as we do not have access to the true Gaussian kernel.

3.2 DESIGN PRINCIPLE

To elucidate exposure bias, we conduct an in-depth investigation into the gap between the true Gaus-
sian kernel q(xt | xt+1) and its modeling counterpart pθ(x̂t | xt+1) from an analytical perspective.
Concretely, in each sampling iteration, we can formulate the distinction between the ground truth
sample and its biased sample as follows:

Φ(x̂t, xt) =

∫ t

t+1

Ψ(t, τ)

[
−1

2
GτG

T
τ ∇ log p(xτ )

]
dτ︸ ︷︷ ︸

integral term

− ∆t

2
Gt+1G

T
t+1sθ(xt+1, t+ 1)︸ ︷︷ ︸

linear term

. (7)

Here, Φ(x̂t, xt) represents the exposure bias in the sample x̂t compared to xt, stemming from dis-
cretization and score estimation errors. Though we do not have access to integral term in Eq. (7),
we can employ Φ to present the ground truth sample as xt = x̂t +Φ(x̂t, xt). In this manner, we can
present this formulation as a transition kernel p(xt | x̂t). Formally, the expression of q(xt) is:

q(xt) =

∫
p(xt | x̂t)p(x̂t)dx̂t.

However, we cannot directly obtain p(x̂t) due to its high-dimensional property. In theory, the score
of the integral term in Eq. (7) is based on xt+1, thereby also forming the basis of Φ(x̂t, xt). More-
over, x̂t is actually derived from xt+1 via Eq. (6). It is reasonable to reformulate the transition
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Figure 2: Prompt Learning Framework Training. For convenience, we employ the VE SDE
and a first-order sampler to demonstrate the training process. 1) Data construction: obtain xt and
xt+1 via a forward SDE with randomly selected noises σt and σt+1, and denoise xt+1 to x̂t with a
deterministic sampler (i.e., DDIM); 2) Training optimization: minimize the difference between the
prompt υϕ(x̂t) and the exposure bias Φ(x̂t, xt) via the training function Eq. (12), where Φ(x̂t, xt)
represents the discrepancy between the ground truth image xt and the modeling sample x̂t.

kernel p(xt | x̂t) as p(xt | x̂t, xt+1). We can deconstruct the true Gaussian kernel q(xt | xt+1) into
the combination of the modeling kernel and an extra transition kernel p(xt | x̂t, xt+1) as follows:

q(xt | xt+1) =

∫
p(xt | x̂t, xt+1)pθ(x̂t | xt+1)dx̂t. (8)

In Eq. (8), pθ(x̂t | xt+1) is the modeling Gaussian kernel simulated by a pre-trained DM, which is
fixed during sampling. Thus, we can mitigate exposure bias at each time step by using the newly
introduced anti-bias kernel p(xt | x̂t, xt+1), contributing to a smaller training-sampling discrepancy.

3.3 CONVERGENCE INVESTIGATION

From a theoretical perspective, our anti-bias transition kernel p(xt | x̂t, xt+1) can help the sampling
bound better align with the training KL divergence DKL(p(x0) ∥ pθ(x̂0)). To illustrate this advan-
tage, we first review the diffusion training objective function, which serves as the theoretical bound
for the optimization tasks. Specifically, DMs aim to minimize DKL(p(x0) ∥ pθ(x̂0)) via optimizing
the score matching loss with the weighting function g(·)2 (Song et al., 2021a; Lu et al., 2022a):

DKL(p(x0) ∥ pθ(x̂0)) ≤ DKL(p(xT ) ∥ π) + JSM
(
θ; g(·)2

)
.

Here, g(·)2 is the diffusion coefficient in forward SDE, and π is a prior distribution. In this context,
we can achieve an optimized KL divergence via minimizing JSM

(
θ; g(·)2

)
, as DKL(p(xT ) ∥ π)

is a constant. However, during sampling, this bound will be enlarged due to exposure bias phe-
nomenon. Concretely, the score matching in Eq. (3) essentially optimizes the discrepancy between
∇ log p0t(xt|x0) and sθ(xt, t). During training, the input for sθ(xt, t) consists of the training data
perturbed by a noise scale at time step t, whereas during sampling, the input for sθ(x̂t, t) is the bias
sample x̂t. In this context, sθ(x̂t, t) cannot exactly match ∇ log p0t(xt|x0) because of the discrep-
ancy between x̂t and xt, thus amplifying the upper bound of DKL(p(x0) ∥ pθ(x̂0)). Ideally, our
framework can help sθ(x̂t, t) better approximate sθ(xt, t) since the anti-bias kernel p(xt | x̂t, xt+1)
can enable x̂t to match xt, resulting in a sampling bound closer to the the training bound. By ad-
hering to this design philosophy, our framework enables the simulation of a more realistic transport
path between the target data and prior distributions, thereby enhancing generative performance.

4 PROMPT LEARNING FRAMEWORK

To alleviate exposure bias, we propose a novel prompt learning framework that parameterizes a
lightweight model υϕ(·) to simulate the anti-bias kernel p(xt | x̂t, xt+1) in Eq. (8). Concretely,
we simulate the bias and introduce a time-dependent weighting function to train the model. Once
the model is optimized, a prompt can be learned based on x̂t, thereby compensating for the bias
Φ(x̂t, xt) in Eq. (7) for the next model input. By adopting this approach, we can rectify the sampling
trajectory by mitigating exposure bias at each time step, resulting in enhanced image quality.
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4.1 FRAMEWORK TRAINING

As previously mentioned, based on the modeling Gaussian kernel pθ(x̂t | xt+1), we aim to construct
an anti-bias transition kernel p(xt | x̂t, xt+1) to match the true kernel q(xt | xt+1). To accomplish
this goal, we employ a parameterized model υϕ(·) to simulate p(xt | x̂t, xt+1). Below, we provide
a detailed introduction on how to optimize υϕ(·), with the conceptual framework shown in Figure 2.

Overview Based on the previous analysis, our prompt prediction model υϕ(·) is designed to predict
an anti-bias prompt that approximates the exposure bias defined in Eq. (7):

υϕ(x̂t) 7→ Φ(x̂t, xt), (9)

where t is the time index of xt. Since we do not adjust the parameters θ in the pre-trained DM, the
term pθ(x̂t | xt+1) remains fixed and can be used to generate x̂t. For a given prompt prediction
model υϕ(·), we have υϕ(x̂t) = Φ(x̂t, xt), where t ∈ (0, T ). Suppose we have a free-form deep
neural network to represent our prompt prediction model, we can train it with our prediction loss:

L(ϕ, t) = E [d(υϕ(x̂t),Φ(x̂t, xt))] (10)

and d(·, ·) is a metric function that satisfies ∀x, y : d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.
The metric function is designed to minimize the difference between υϕ(x̂t) and Φ(x̂t, xt). Inspired
by this, there are several classic loss functions that satisfy our requirements, such as the squared l2
norm d(x, y) = ∥x− y∥22 and the l1 norm d(x, y) = ∥x− y∥1. Additionally, we also consider the
contrastive loss (He et al., 2020; 2022) to maximize the similarity between the prompt and the bias.
This loss has been successfully used in recent works on training or fine-tuning DMs, thanks to its
theoretical guarantees (Daras et al., 2024; Zhang et al., 2024), with details provided in the Appendix.

Bias Simulation In practice, accessing xt is intractable because we cannot obtain the ground truth
sampling trajectory. We only have the bias sample x̂t due to the accumulation of exposure bias.
Therefore, to address this issue, we seek help from the deterministic solver (Song et al., 2020a;
2021b) to simulate the bias Φ(x̂t, xt). More concretely, we first utilize a forward SDE to perturb the
target image x0, allowing us to obtain the unbiased samples xt+1 and xt. For simplicity, we use the
variance-exploding (VE) SDE (Song et al., 2021b) to illustrate this process:

xt+1 = x0 +
√

σ2(t+ 1)− σ2(0)zt+1, (11)

where σ(t+1) is the noise at time t+1, and zt+1 is sampled from π, detailed in (Song et al., 2021b).
Similarly, we can obtain xt by replacing σ(t+1) with σ(t) in Eq. (11). Subsequently, we employ the
deterministic solver to denoise xt+1 for just one time step, the detailed process is presented by Eq.
(6). In this way, we have successfully simulated the exposure bias Φ(x̂t, xt) = xt − x̂t that arises
at time step t. This is because the exposure bias problem is primarily caused by score estimation
and discretization errors, both of which are simulated within one time step in Eq. (6). Although the
deterministic solver may not fully denoise x̂t+1 to the final image, our goal is to model this deviation
to rectify the sampling trajectory. Thus, we simulate exposure bias in a reasonable manner.

Optimization To optimize the prompt prediction model υϕ(x̂t), we utilize Eq. (10) to train the pa-
rameters ϕ. However, in practice, the discrepancy between υϕ(x̂t) and Φ(x̂t, xt) can be substantial
across different time steps, resulting in irregular fluctuations in the training loss. This is due to the
fact that noisy samples at different noise scales contain entirely different structural information. For
instance, samples with low noise levels may provide preferable detailed information (Lou & Ermon,
2023), while samples with high noise levels may only capture coarser shapes.

Motivated by this observation, we propose a time-dependent weighting schedule designed to en-
hance training stability. To be specific, we utilize the signal-to-noise ratio (SNR) (Kingma et al.,
2021; Choi et al., 2022) to formulate our weighting function, which is based on the coefficients of
the forward SDE. The forward diffusion kernel can be represented as q(xt | x0) = N (αtx0, σ

2
t I),

and therefore, our weighting function can be expressed as:

SNR(t) = α2
t /σ

2
t .

In practice, for a given forward SDE, both αt and σt can be derived from the diffusion kernel
q(xt | x0). For example, in the variance preserving (VP) SDE (Song et al., 2021b; Ho et al., 2020),
αt =

√
1− σ2

t , while in the variance exploding (VE) SDE (Song et al., 2021b; Song & Ermon,
2019), αt = 1. With the newly proposed weighting function, our training loss can be expressed as:

L(ϕ, SNR(t)) = E [SNR(t)d(υϕ(x̂t),Φ(x̂t, xt))] . (12)

6
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Algorithm 1: Anti-Bias Sampling
Data: pre-trained DM sθ, optimized prompt prediction model υϕ∗ , default sampler S,

pre-defined noise schedule L = {σt0 , . . . , σtT }, total sampling steps T
Result: New Images xanti−bias

t0
1 sample xT from a prior distribution π;
2 xtemp = xT ;
3 for ti ← tT to t0 do
4 x̂ti = S(sθ, σti , xtemp);
5 xanti−bias

ti = υϕ∗(x̂ti) + x̂ti ; This anti-bias rectification is the only difference compared to the original sampling schedule.

6 xtemp = xanti−bias
ti ;

7 xanti−bias
t0 = xtemp;

During the training process, we employ stochastic gradient descent on the model parameters ϕ via
minimizing L(ϕ, SNR(t)), and updating ϕ− with exponential moving average (EMA). We perform
the following update with EMA after each training iteration:

ϕ− ←− stopgrad(µϕ− + (1− µ)ϕ).

Here, µ is a decay rate with 0 ≤ µ < 1 (Song et al., 2023), with details provided in Appendix. When
implementing these training techniques, we can effectively optimize the prompt prediction model.

4.2 ANTI-BIAS SAMPLING

Once the prompt prediction model υϕ∗(·) is optimized, it can be used to improve sampling perfor-
mance by reducing the exposure bias in the input of the pre-trained DMs for future steps, based on
the bias predicted for the output of the model at the current step. To be specific, we utilize υϕ∗(·) to
predict an anti-bias prompt using the input x̂t, and the anti-bias image can thus be expressed as:

xanti−bias
t = υϕ∗(x̂t) + x̂t. (13)

In the next time step, xanti−bias
t serves as the input of pre-trained DMs, allowing us to obtain x̂t−1 via

Eq. (6). Subsequently, our model υϕ∗(x̂t−1) predicts the prompt using the input x̂t−1. By iteratively
implementing Eq. (6) and Eq. (13), xanti−bias

0 can be generated with a high image quality, detailed
shown in Figure 3 and Algorithm 1. Therefore, the prompting sampling trajectory can more closely
match the training trajectory. Compared to the original diffusion sampling schedule, we retain the
main procedure and only compensate a prompt for the output of a pre-trained DM at each time step.

On the other hand, our method can also improve the guidance sampling mechanism (Dhariwal &
Nichol, 2021), which is a milestone technique to guide a sample with a pre-trained classifier p(c |
xt, t), where c represents a class label. The classifier guidance provides auxiliary information on the
sampling trajectory by evaluating whether the sample is correctly classified according to the class
label c. This is equivalent to sampling from the joint distribution p(xt, c) because:

∇ log p(xt, c) = ∇ log p(xt) +∇ log p(c | xt) ≈ sθ(x̂t, t) +∇ log p(c | x̂t).

However, due to the presence of exposure bias, the biased image x̂t may lead to inaccuracies in
classification. This, in turn, results in a biased gradient ∇ log p(c | x̂t). Based on the previous
analysis, our method enables further improvement in guided sampling via alleviating exposure bias:

∇ log p(xt, c) = sθ(x̂t + υϕ∗(x̂t), t) +∇ log p(c | x̂t + υϕ∗(x̂t)). (14)
It is worth noting that visual prompting method is indeed beneficial for image classification task (Jia
et al., 2022; Bahng et al., 2022). Therefore, using a prompt prediction model to guide the score
direction is a reasonable approach, as it can significantly enhance the guidance gradient. Moreover,
our framework has great potential for controllable generation (Ruiz et al., 2023; Nichol et al., 2022;
Ramesh et al., 2022) via replacing c to a text prompt, we leave this exploration for future work.

4.3 PROMPTING LATENT DIFFUSION

Recently, latent diffusion models (LDM) (Rombach et al., 2022; Peebles & Xie, 2023) have sig-
nificantly enhanced the performance in image generation task. They employ an encoder E to map
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Table 1: Performance on CIFAR-10. Here, we se-
lect NSCNv2 (Song & Ermon, 2020), DDPM (Ho
et al., 2020), SDE (VE) (Song et al., 2021b), SDE
(deep, VE) (Song et al., 2021b), ADM (Dhariwal &
Nichol, 2021; Ning et al., 2023b) and ADM-IP (Ning
et al., 2023b), as well as EDM (Karras et al., 2022)
to serve as the baselines. When implementing our
framework to them, the optimized prompt prediction
models facilitate significant improvements in image
quality, as evidenced by lower FID scores and bet-
ter IS results. Notably, we use the original samplers
proposed by the baselines, with the only difference
being bias rectification, as shown in Algorithm 1.

Models FID↓ IS↑ NFEs↓
NSCNv2 10.87 8.40 1000
NSCNv2+ours 9.56 8.65 1000
DDPM 3.17 9.46 1000
DDPM+ours 2.99 10.01 1000
SDE (VE) 2.55 9.83 1000
SDE (VE)+ours 2.41 9.91 1000
SDE (deep, VE) 2.20 9.89 1000
SDE (deep, VE)+ours 2.10 9.99 1000
ADM 3.56 - 100
ADM+ours 3.28 - 100
ADM-IP 3.12 - 100
ADM-IP+ours 3.06 - 100
EDM 2.04 9.84 35
EDM+ours 1.91 9.94 35

Table 2: Performance on ImageNet 256×
256. We select ADM (Dhariwal & Nichol,
2021) and ADM-U (Dhariwal & Nichol,
2021) to serve as the baselines. After ap-
plying the optimized prompt model to the
default sampler in ADM, they both achieve
improvements on image quality.

Models FID↓ IS↑ NFEs↓
ADM 10.94 100.98 250
ADM+ours 10.37 112.00 250
ADM-U 7.49 127.49 250
ADM-U+ours 7.29 134.95 250

Table 3: Boosting Latent Diffusion. We
use LDM (Rombach et al., 2022) as our
baseline and test its performance on Ima-
geNet at a resolution of 256 × 256. Both
LDM-4 and LDM-8 demonstrate signifi-
cant improvements after applying the opti-
mized model to rectify the bias arising from
the default sampler in LDM.

Models FID↓ IS↑ NFEs↓
LDM-4 10.56 103.49 250
LDM-4+ours 10.02 111.69 250
LDM-8 15.51 79.03 200
LDM-8+ours 14.03 91.02 200

training images into latent representations z = E(x), and the decoder D to reconstruct the image
from the latent z with x̂ = D(E(x)). Given their promising future (He et al., 2023; Poole et al.,
2022), it is meaningful to further enhance their generative performance using our framework.

Though their sampling trajectories traverse latent space, the exposure bias phenomenon still occurs
due to the discrepancy between zt and ẑt. Here, zt represents the ground truth latent and ẑt is the
latent simulated by the pre-trained LDM. To remedy this, we put forward a variant of the prompt
prediction model. Compared to diffusion in data space, the only difference is that we predict the
prompt in the latent space. Concretely, the prompt sampling in latent space can be written as:

zanti−bias
t = υϕ∗(ẑt) + ẑt,

where υϕ∗(·) can be optimized via minimizing the metric function d(υϕ(ẑt),Φ(ẑt, zt)) using a gra-
dient descent algorithm. In this manner, our prompt learning framework effectively reduces the bias
between ẑt and zt, thereby contributing to improved sampling trajectories in latent diffusion.

5 EXPERIMENTS

To evaluate the effectiveness of our prompt learning framework in reducing exposure bias, we
conduct experiments on three benchmark datasets: CIFAR-10 (Krizhevsky et al., 2009), CelebA
64× 64 (Liu et al., 2015), and ImageNet 256× 256, utilizing various pre-trained DMs. Concretely,
for CIFAR-10, we select NSCNv2 (Song & Ermon, 2020), DDPM (Ho et al., 2020), SDE (VE)
and SDE (deep, VE) (Song et al., 2021b), ADM (Ning et al., 2023b) and ADM-IP (Ning et al.,
2023b), as well as EDM (Karras et al., 2022) to serve as the baseline models. For CelebA, we utilize
ADM (Dhariwal & Nichol, 2021; Ning et al., 2023b) and ADM-IP (Ning et al., 2023b) as baseline
models. In contrast, for ImageNet, we select ADM (Dhariwal & Nichol, 2021) and ADM-U (Dhari-
wal & Nichol, 2021) to serve as the baseline models. We then employ prompt models customized
for different DMs to mitigate exposure bias at each step, aiming to enhance image quality. To quan-
titatively evaluate the performance of our framework, we utilize standard metrics, including Fréchet
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Table 4: Connection to Fast Samplers. Exper-
iments are conducted on CIFAR-10. Here, we
employ several classic samplers as our baselines,
such as DDIM (Song et al., 2020a), Analytic-
DPM (Bao et al., 2022b), DEIS (Zhang & Chen,
2022) and DPM-Solver(VP) (Lu et al., 2022b).
For fairness, we use the same DMs as those used
by the samplers in their papers. We confirm that
our framework reduces the exposure bias caused
by fast samplers with large step sizes, and the re-
sults are tested across various NFEs using FID↓.

NFEs 10 20 50

DDIM 13.36 6.84 4.67
DDIM+ours 12.94 6.71 4.59

Analytic-DPM 14.4 6.87 4.15
Analytic-DPM+ours 13.98 6.76 4.10

DEIS (VP) 4.17 2.86 2.57
DEIS (VP)+ours 4.08 2.80 2.51
DEIS (VE) 20.89 16.59 16.31
DEIS (VE)+ours 19.76 16.21 16.08

NFEs 12 24 48

DPM-Solver-2 5.28 3.02 2.69
DPM-Solver-2+ours 5.22 2.95 2.65
DPM-Solver-3 6.03 2.75 2.65
DPM-Solver-3+ours 5.93 2.69 2.61

Table 5: Performance of EDM (Karras et al.,
2022) with More NFEs and Model Parameters
on CIFAR-10. To verify the efficiency, we uti-
lize more NFEs to test FID via sampling 50K
images, and also present the time cost as below.

Models*NFEs FID↓ Time ↓
EDM*35 2.04 28min
EDM*35 + Ours *34 1.91 30.3min
EDM*37 2.03 30.1min
EDM*47 2.02 38.3min
EDM*57 2.02 45.7min

�� �� �0… …

Table 6: Side-by-Side Visualization Compar-
ison. Images in the first row are generated by
pre-trained LDM, while the second row displays
images selected from our prompting sampling
trajectory, both starting from the same xT . In
the second row, the dog’s coat appears smoother
and brighter, and the background is more vivid.

Inception Distance (FID) (Heusel et al., 2017), Inception Score (IS) (Salimans et al., 2016) and
Spatial Fréchet Inception Distance (sFID) (Nash et al., 2021), as well as neural function evaluations
(NFEs) (Vahdat et al., 2021), to verify them on 50K newly generated samples.

As mentioned previously, our framework demonstrates good theoretical flexibility, such as enhanc-
ing guidance mechanism, alleviating exposure bias in latent space, and improving image quality for
training-free fast samplers. To verify this, we choose ADM-G (Dhariwal & Nichol, 2021) to assess
the effectiveness of our framework on classifier guidance methods. Moreover, we also evaluate the
performance of improving the latent diffusion model, thus choosing LDM-4 and LDM-8 (Rombach
et al., 2022) as the baseline models. For evaluating the effectiveness on rectifying high-order solvers,
we employ our framework to improve several classic training-free fast samplers.

To design the architecture of prompt prediction model, we employ a lightweight U-shaped network,
with a backbone similar to that of EDM (Karras et al., 2022). We design the model architecture
according to different data resolutions. Specifically, we set the model channels for resolutions 32, 64,
and 256 as 32, 32, and 64, respectively. The corresponding model parameters are 3.2M, 3.2M, and
12.7M. We maintain these settings on all experiments, more training details refer to the Appendix.

5.1 PERFORMANCE EVALUATION

Quantitative Comparison To evaluate performance in the data space, we conduct multi-group ex-
periments on various datasets. In Table 1, we first present the evaluation of two well-known DMs
in discrete diffusion, as well as the classic SDE DM, all of which demonstrate significant improve-
ments. Importantly, we also demonstrate further improvements on the pioneering work of ADM-
IP (Ning et al., 2023b), the ADM-IP, which first investigates the exposure bias problem. For per-
formance evaluation on CelebA and ImageNet, we utilize ADM (Dhariwal & Nichol, 2021) and
ADM-IP (Ning et al., 2023b) for verification, with results depicted in Table 2 and Table 10, respec-
tively. On the other hand, our framework also possesses the capacity to reduce exposure bias in latent
diffusion, demonstrating great flexibility. To be specific, our customized models for latent diffusion
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Table 7: Enhancing Guidance Mechanism.
We evaluate performance in a guidance set-
ting using unconditional ADM-G (Dhariwal
& Nichol, 2021) with ImageNet at a resolu-
tion of 256 × 256. Here, ”Scale” indicates
the degree of guidance provided by the clas-
sifier. After applying our prompt prediction
model, they enable to achieve improvements
in image quality, as reflected by better FID
and higher IS scores. All results are based on
50k samples generated using 250 NFEs.

Models Scale FID↓ IS↑
ADM-G 1.0 33.03 32.92
ADM-G+ours 1.0 31.64 36.00

ADM-G 10.0 12.00 95.41
ADM-G+ours 10.0 10.64 106.13

Table 8: Ablation Studies on Different Metric
Functions. Here, we employ EDM (Karras et al.,
2022) to test three different metric functions, includ-
ing contrastive loss, L1 norm, and L2 norm, to train
our prompt prediction model on CIFAR-10. For
fairness, we set the batch size to 1024 and the model
channels to 32 in all experiments. Obviously, the
contrastive loss presents enhanced performance due
to its theoretical guarantees in the training bound.

Metric Functions FID↓ NFEs↓ Iterations

EDM (baseline) 2.04 35 -

L1 norm 1.96 35 100k
L2 norm 1.94 35 100k
Contrastive loss 1.96 35 80k
Contrastive loss 1.93 35 100k
Contrastive loss 1.91 35 150k

enable to improve LDM-4 and LDM-8 in terms of FID and IS, as detailed in Table 2. Moreover, we
also test the effectiveness of our framework in enhancing guidance sampling, as shown in Table 3.
This is because lower bias samples enable better classification accuracy, thus providing more effi-
cient classifier gradients. In this context, our framework naturally improves generative performance
when combined with guidance methods. As mentioned earlier, the exposure bias is notably larger
in cases with fewer NFEs because the discretization error increases with a larger sampling step size.
When implementing our framework with fast samplers such as DDIM (Song et al., 2020a), Analytic-
DPM (Bao et al., 2022b) and DEIS (VP) (Zhang & Chen, 2022), as well as DPM-Solver (Lu et al.,
2022b), the resulting sampling trajectory yields good results, as detailed in Table 4. Moreover,
Table 5 presents the efficiency of our model in comparison with the settings by using more NFEs.

Qualitative Comparison To demonstrate the effectiveness of our approach from a qualitative per-
spective, we present some visualization results in Figure 7 and Figure 6. In Figure 7, the generated
images exhibit rich semantic information along with vivid visual effects. For a thorough validation
of the performance in alleviating exposure bias, we display the visualization comparison in Figure 6.
Obviously, our framework indeed reduces exposure bias, as we achieve a more coherent semantic
structure in the generated images. Additional side-by-side comparisons are shown in the Appendix.

Ablation Study To evaluate the effectiveness with different metric functions, we conduct ablations
on CIFAR-10 with EDM. For fairness, we train the prompt prediction model under the same settings.
In this context, our model achieves great improvements on EDM, as shown in Table 8. In particu-
lar, the contrastive loss even slashes the FID from 2.04 to 1.91, effectively increasing the anti-bias
performance regarding image quality. Though L1 norm and L2 norm do not achieve such remark-
able improvements on EDM, they effectively validate the performance of our framework. Thus, our
framework is validated in its ability to improve image quality by alleviating exposure bias.

6 CONCLUSION

In this paper, we conduct an in-depth investigation into the training-sampling discrepancy, referred to
as exposure bias, which arises from score estimation and discretization errors. To alleviate exposure
bias and thereby improve image quality, we put forward a prompt learning framework that employs
a lightweight parameterized model to compensate for the bias. The optimized prompt prediction
model can improve various pre-trained DMs on different beachmark datasets, with the additional
sampling overhead being less than 5%. Moreover, our framework demonstrates great flexibility in
adapting to various DM settings, including guidance mechanism, latent diffusion, and fast samplers.

Broader Impacts and Limitations While our method has achieved significant improvements, it still
requires overhead for training and sampling. Besides, it is important to acknowledge that generating
deepfake images using our model also entails the potential risk of negative misuse of this technology.
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A RELATED WORKS

Diffusion Models DMs (Dhariwal & Nichol, 2021; Ho et al., 2020; Kingma et al., 2021; Nichol
& Dhariwal, 2021) are a new family of generative models with remarkable performance, particu-
larly in the field of 2D image generation (Gao et al., 2023; Vahdat et al., 2021; Rombach et al.,
2022), due to their ability to model complex data distributions. This is mainly because DM training
directly models the target data distribution via minimizing the upper bound of the model log likeli-
hood (Sohl-Dickstein et al., 2015; Luo, 2022). In this manner, DMs enable to achieve comparable
mode coverage (Kingma et al., 2021; Song et al., 2021a; Lu et al., 2022a; Kim et al., 2022), re-
flected at lower negative log likelihood. Based on the rigorous SDE framework (Song et al., 2021b;
Anderson, 1982), some classic DMs contribute the image quality from different aspects, including
deeper model structure (Song & Ermon, 2020; Song et al., 2021b; Kingma et al., 2021; Peebles &
Xie, 2023; Kim et al., 2023b), diffusion schedule (Lin et al., 2024), diffusion in latent space (Vahdat
et al., 2021; Rombach et al., 2022; Jing et al., 2022), refined weighting schedules (Choi et al., 2022;
Kim et al., 2022; Song et al., 2021a) and well-designed training objectives (Kingma et al., 2021;
Nichol & Dhariwal, 2021; Karras et al., 2022), as well as rational optimization strategies (Hang
et al., 2023; Wu et al., 2023). Moreover, recent works utilize conditional information to guide the
image generation (Dhariwal & Nichol, 2021; Ho & Salimans, 2022), such as class label and text
prompt (Ramesh et al., 2022; Ruiz et al., 2023; Saharia et al., 2022; Li et al., 2023c), which further
improve the image quality. With the help of those techniques, DMs achieve new SoTA modeling
ability (Kim et al., 2023a; Peebles & Xie, 2023; Kim et al., 2023b) and better class diversity com-
pared to previous SoTA generative models. Although they enable the generation of high-quality
images, they cannot avoid the exposure bias problem, which does influence the image quality.
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Figure 3: Anti-Bias Sampling. Our framework employs the prompt prediction model υϕ∗(·) to
predict a prompt with the input of x̂t+1, and compensate the bias in the current time step t + 1.
Better samples can be obtained via υϕ∗(x̂t+1) + x̂t+1, serving the input of DMs in next time step t.
We can therefore enhance the image quality by iteratively running this process.

Exposure Bias Problem The exposure bias problem is originally mainly studied for language mod-
els by the nature language process community (Ranzato et al., 2015), and the exposure bias of
diffusion model is less explored (Ning et al., 2023b; Li et al., 2023a). Some classic works propose
various methods to reduce the score estimation and discretization errors, i.e., the underlying source
of the exposure bias, to handle the exposure bias problem indirectly. For instance, some methods
make great efforts using high order numerical solvers (Zhang & Chen, 2022; Li et al., 2023b; Zhao
et al., 2023; Zhang et al., 2023). Stable diffusion (Rombach et al., 2022) matches the score in latent
space (Vahdat et al., 2021), which naturally reduce the discretization error by solving the integral in a
lower dimension. DMCMC (Kim & Ye, 2022) utilizes MCMC to obtain a good initialization points
close to the modeling distribution, aiming to reduce the accumulation of errors. Besides, (Kim et al.,
2023a; Chao et al., 2022) propose to adjust the matched score via a robust discriminator. Beyond
the usual treatment, certain works (Salimans & Ho, 2022; Song et al., 2023; Meng et al., 2023; Kim
et al., 2023b) mitigate the sampling errors in small time steps of model sampling by distilling knowl-
edge from larger sampling steps. Specifically, Consistency Model (Song et al., 2023) even slashes
the neural function evaluations (NFEs) to only two steps with improved score matching accuracy.
Recently, rectified flow (Liu et al., 2022; 2023c; Esser et al., 2024; Ma et al., 2024) simulates the
optimal transport between prior distribution and target data distribution via straightening the sam-
pling trajectory. Orthogonal to them, we present a prompt learning framework, which employs a
transition function to learn an anti-bias prompt to compensate the next model input and handle the
exposure bias in a direct manner.

Prompt Learning Prompt learning is first proposed in natural language processing (NLP) (Liu
et al., 2023b), which employs a text to help pre-trained large models (LMs) ”understand” the task.
Subsequently, GPT-3 (Brown et al., 2020) demonstrates remarkable performance to downstream
transfer learning tasks even in the shot or zero-shot settings (Radford et al., 2021; Ouyang et al.,
2022). To improve the readability of prompting text for LMs, some methods (Jiang et al., 2020;
Shin et al., 2020) propose constructing more plentiful prompting texts. Recently, some heuristic
approaches consider a more efficient way, treating prompt as task-specific continuous vectors and
fine-tuning them via gradient propagation, namely Prompt Tuning (Lester et al., 2021; Li & Liang,
2021; Liu et al., 2021). Based on the great success on LMs, there are lots of vision LMs (He
et al., 2021; Radford et al., 2021; Yao et al., 2021; Zhou et al., 2022) employ the text encoder to
extract more information from the text prompt. More recently, Jia et al. (Jia et al., 2022) explored
visual prompting in recognition tasks. As a concurrent work, Bahng et al. (Bahng et al., 2022)
demonstrated that visual prompting is effective for CLIP and distribution shift. In this paper, we
propose our anti-bias prompt learning, a novel variant of the visual prompting, aimed at alleviating
the exposure bias problem in DMs.

B EXPERIMENTAL DETAILS

Architecture We follow the EDM framework (Karras et al., 2022), which adopts the NCSN++
model proposed by (Song et al., 2021b) as the backbone of our prompt model, as shown in Table
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8 of EDM paper. To be specific, NCSN++ is a U-shaped architecture based on (Ho et al., 2020)
that uses Finite Impulse Response (FIR) upsampling and downsampling, rescales skip connections,
and employs four BigGAN (Brock, 2018) residual blocks at each resolution. Moreover, NCSN++
incorporates additional residual skip connections from the input image to each block in the encoder.
The only difference between NCSN++ and our prompt model backbone is that we remove the time
embedding and reduce the number of model channels for greater efficiency. Concretely, we set
the model channels in the NCSN++ backbone for resolutions 32, 64, and 256 to 32, 32, and 64,
respectively. As a result, the corresponding model parameters for the different prompt models are
3.2M, 3.2M, and 12.7M. The code for training the prompt model for EDM on CIFAR-10 is: Prompt.

Training As mentioned before, we employ the EDM backbone to serve as our prompt prediction
model and train our prompt model on the same datasets used to train the baseline models for a fair
comparison. In practice, we exclude the time embedding setting from the architecture of EDM, thus
reducing some model parameters. For instance, the original EDM backbone contains 56M parame-
ters, whereas the backbone without time embedding contains 51M parameters. During training, we
set the batch size to 1024 for all experiments and keep other hyperparameters the same as in EDM
training. Detailed training settings can be found in (Karras et al., 2022), and we maintain the default
values. To train the model, we allocate A100 GPUs to optimize them and test the experimental
results on just one A100 GPU. Specifically, we employ 8 A100 GPUs for training CIFAR-10 and
CelebA, while we use 16 A100 GPUs for training on ImageNet. Additionally, we allocate only 4
A100 GPUs for training the prompt prediction model for latent diffusion. For most experiments,
the training iterations range from 100k to 150k across all datasets, which are considered acceptable
training expenses. In practice, for the EMA selection, we maintain the same settings as those used
in the consistency models (Song et al., 2023). Specifically, we set the EMA value to 0.9999 when
training our model on CIFAR-10, and we set the EMA to 0.999943 for LSUN and ImageNet.

Sampling After completing the training process, we employ the optimized model to reduce exposure
bias using the sampling process shown in Figure 3 and Algorithm 1. It is worth noting that if the total
sampling NFEs for the original sampler is T , our prompt prediction model will be employed T − 1
times within the same sampler when aiming to mitigate exposure bias. For sampling computation,
our prompt prediction model only increase the sampling time less than 5%. To verify this, we test it
on an A100 GPU via sampling 1k images with 35 NFEs. Concretely, EDM requires 33.9 seconds,
while our model increases the time to only 36.3 seconds, with a cost increase of 2.4 seconds. When
sampling one image, the overhead can be almost ignored. For side-by-side comparison, we present
more results in Figure 4 to Figure 6. Other results are shown in Figure 7 and Figure 8, all are
randomly generated. Moreover, we present an additional ablation study to evaluate performance
with different model parameters, as shown in Table 11. In this paper, we employ the backbone with
3.2M parameters to serve as our prompt model, to ensure the efficiency in sampling process.

Comparison on larger model or more sampling steps We also conduct experiments to test whether
using more NFEs or additional parameters can achieve better results, detailed shown in Table 5.
While employing a larger model has the potential to decrease score estimation errors, it necessitates
substantial training resources and considerable human effort. This is because the exposure bias
phenomenon is caused by inherent factors within the diffusion modeling framework. Analogously,
increasing NFEs will improve the image quality, but the performance marginally improves and does
not increase indefinitely. Hence, our framework is meaningful for the diffusion community as it
provides a special case for reducing exposure bias. Furthermore, we test more metrics to verify the
effectiveness of our model, including sFID and NFEs, detailed shown in Table 9. Specifically, we
achieve improvements on both CIFAR-10 and ImageNet when using our model to enhance ADM-IP.

Diversity Testing Following the main design philosophy, our model can improve the image quality
without affecting the image diversity. Because the diversity in diffusion modeling framework is
mainly depends on the diffusion term Gtzt in Eq. (1). On the contrary, our model only change
the score term to sθ(x̂t+1 + υϕ∗(x̂t+1), t + 1), thus our model will not affect diversity. To verify
this, we also conduct experiments to test precision and recall on ADM, which are common metrics
for evaluating diversity. Specifically, the precision and recall values are 0.69 and 0.63, respectively.
These values are still 0.69 and 0.63 after employing our framework. Since precision and recall
remain the same, our model has no negative effects on the diversity.

Comparison with training free anti-bias model We conducted experiments on the recent training-
free method (Ning et al., 2023a), which is effective in reducing the exposure bias without any train-
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Table 9: More Metrics for Evaluating Perfor-
mance in Comparison with ADM-IP. To better test
the effectiveness of our prompt prediction model, we
employ more metrics, such as sFID↓ and NFEs↓, to
test it on different datasets, including CIFAR-10 and
ImageNet. Moreover, we employ the classic ADM-
IP (Ning et al., 2023b), the first work to address the
exposure bias issue, to verify these results. As shown
below, our prompt model further reduces the expo-
sure bias for ADM-IP on these datasets with different
NFEs, despite ADM-IP being designed with a train-
ing strategy to mitigate exposure bias, demonstrating
the flexibility of our model.

Models Dataset sFID↓ NFEs↓
ADM-IP CIFAR-10 3.86 100
ADM-IP+Ours CIFAR-10 3.80 100
ADM-IP CIFAR-10 3.89 80
ADM-IP+Ours CIFAR-10 3.84 80
ADM-IP ImageNet 3.11 100
ADM-IP+Ours ImageNet 3.04 100
ADM-IP ImageNet 3.36 80
ADM-IP+Ours ImageNet 3.33 80

Table 10: Performance on CelebA. To evalu-
ate effectiveness, we employ ADM (Dhariwal
& Nichol, 2021) and ADM-IP (Ning et al.,
2023b) as baseline models, using the default
samplers from the original papers.

Models FID↓ NFEs↓ sFID↓
ADM 3.02 100 5.76
ADM+ours 2.93 100 4.74
ADM-IP 2.21 100 4.33
ADM-IP+ours 2.15 100 4.19

Table 11: Ablation Study on Model Pa-
rameters. We design various prompt mod-
els (PM) with different parameters to enhance
EDM (Karras et al., 2022) on CIFAR-10, the
detailed FID↓ results are shown as below.

Models Parameters FID↓
EDM - 2.04
EDM+PM (large) 12.7M 1.90
EDM+PM (regular) 3.2M 1.91
EDM+PM (small) 0.8M 2.02

Figure 4: Side-by-Side Comparison. We use ADM trained on ImageNet 256 as the baseline, with
the sampler set to DDIM. The first row displays images generated by ADM, while the second row
shows images improved by our prompt model, with both rows using the same initial noise. The
difference is highlighted by a red box, indicating that our model can mitigate unrealistic features.

ing. The FID values for EDM and EDM-ES presented in (Ning et al., 2023a) are 1.97 and 1.95,
respectively, because they were calculated using a fixed seed. For a fair comparison, we recalcu-
lated the FID using a random seed, resulting in values of 2.04 and 2.01. Compared to EDM-ES,
our prompt model significantly improves generative performance, as the FID decreases from 2.04 to
1.91. Although our method achieves much better performance than EDM-ES, it requires additional
training computation, which is unfair for comparison. Hence, we do not present it in our main paper.

C PROOFS OF CONTRASTIVE LOSS

In our experiments, the best results are achieved by using contrastive loss as the metric function.
This is mainly because the contrastive loss theoretically assured that can further reduce the KL
divergence DKL (p(xt | xt+1)∥pϕ(xt | x̂t, xt+1)) between the true Gaussian kernel p(xt | xt+1)
and the modeling kernel pϕ(xt | x̂t, xt+1). Below, we provide a detail proof for this bound.
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Figure 5: Side-by-Side Comparison. We use ADM trained on ImageNet 256 as the baseline, with
the sampler set to DDIM. The first row displays images generated by ADM, while the second row
shows images improved by our prompt model, with both rows using the same initial noise. The
difference is highlighted by a red box, indicating that our model can mitigate unrealistic features.

Figure 6: Side-by-Side Comparison. We use ADM trained on ImageNet 256 as the baseline, with
the sampler set to DDIM. The first row displays images generated by ADM, while the second row
shows images improved by our prompt model, with both rows using the same initial noise. The
difference is highlighted by a red box, indicating that our model can mitigate unrealistic features.

Theorem 1. Let p(xt) be the marginal probability density at time step t that locates in the diffusion
path, pθ(x̂t) be the distribution from the reverse path that simulated by a pre-trained DM. Assume Xt

and X̂t represent two batches images of xt and x̂t that sampled from p(xt) and pθ(x̂t) respectively.
Then we can derive the upper bound of the gap between the true and the modeling transition kernels
is actually the InfoNCE loss LInfoNCE(·, ·)

DKL (p(xt | xt+1)∥pϕ(xt | x̂t, xt+1)) ≤ LInfoNCE(Xt, X̂t). (15)

Proof. Before derive the Eq. (15), we first consider the mutual information (MI) Poole et al.
(2019) between two batches of images Xt and X̂t at time step t, denoted as I(Xt; X̂t). We can
build a tractable variational upper bound by introducing the true distribution p(xt) in the diffu-
sion path to the intractable marginal p(xt | xt+1) =

∫
dx̂tpθ(x̂t | xt+1)pϕ(xt | x̂t, xt+1). In

theory, it is tractable to map xt+1 to xt with the state transition matrix. By multiplying and divid-
ing the integrand in MI by p(xt) and dropping a negative KL term, we enable to get the tractable
variational upper bound (Poole et al., 2019): I(Xt; X̂t) ≥ DKL (p(xt | xt+1)∥pϕ(xt | x̂t, xt+1)).
Analogously, by optimizing LInfoNCE(·, ·), we can connect the InfoNCE loss with MI (Oord
et al., 2018) via LInfoNCE ≥ log (N) − I(Xt; X̂t). Here, N is the number of images in each
training batch that containing one positive sample and N − 1 negative samples. Remarkably, a
large N will make this bound tighter. In this context, we enable to derive the upper bound of
DKL (p(xt | xt+1)∥pϕ(xt | x̂t, xt+1)) is actually a well-designed contrastive loss LInfoNCE(·, ·) via
employing Jensen’s inequality.
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Figure 7: Randomly selected 256×256 images improved by our prompt learning framework.

Figure 8: Randomly selected 256×256 images improved by our prompt learning framework.
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