

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HIPPOTUNE: A HIPPOCAMPAL ASSOCIATIVE LOOP-INSPIRED FINE-TUNING METHOD FOR CONTIN- UAL LEARNING

Anonymous authors

Paper under double-blind review

## ABSTRACT

Studies have shown that catastrophic forgetting primarily stems from the difficulty of reactivating old memories; although parameter-efficient fine-tuning can mitigate forgetting while keeping most model parameters frozen, it still falls short in fully reawakening knowledge of prior tasks. In contrast, humans can efficiently retrieve and flexibly integrate existing experiences when learning new tasks, thereby maintaining stable performance on earlier ones. During cognition, the hippocampal EC–DG–CA3–CA1 circuit engages in multiple rounds of associative recall, and its pattern-separation and memory-completion mechanisms excel at activating historical information. Inspired by this mechanism, we propose HippoTune, a latent-space iterative retrieval strategy that embeds a query–retrieve–feedback loop within each Transformer layer. Starting from the hidden state as an initial query, the model performs a few rounds of soft key–value retrieval, projects the retrieved signals back into the query, and updates it iteratively until convergence or a preset iteration limit. Theoretically, we show this process implements a Krylov-style polynomial approximation, equivalent to a differentiable second-order preconditioner, thereby deepening retrieval in a principled way. Empirically, HippoTune outperforms classical buffer-free PEFT-CL methods by 5–8% in accuracy across three vision benchmarks, while reducing training FLOPs by 50%, effectively mitigating forgetting under tight compute constraints. Code is available at: <https://anonymous.4open.science/r/HippoTune-1DF2>.

## 1 INTRODUCTION

Deep neural networks excel under independent and identically distributed (i.i.d.) data, yet in *continual learning* (CL) settings where tasks arrive sequentially and distributions shift, they often suffer *catastrophic forgetting*: performance on earlier tasks degrades sharply when learning new ones McCloskey & Cohen (1989); Kirkpatrick et al. (2017). Classical approaches such as replay, regularization, and structural isolation often require large-scale fine-tuning of the entire network, leading to high computational and storage costs as models grow. Moreover, many such methods are largely model-agnostic and do not leverage inductive biases of prevalent architectures such as Transformers Rebuffi et al. (2017); Kirkpatrick et al. (2017); Mallya & Lazebnik (2018); Vaswani et al. (2017).

Parameter-efficient fine-tuning (PEFT) mitigates these costs by inserting a small number of trainable modules (e.g., adapters, LoRA modules, or prompts) into an otherwise frozen backbone, substantially reducing training overhead Houlsby et al. (2019); Hu et al. (2022); Lester et al. (2021); Li & Liang (2021). Recent PEFT-CL methods further maintain a “parameter/prompt pool” and, at inference time, retrieve and activate a subset of submodules using the sample representation as a query. However, this *single-step* retrieval can under-activate old-task memories and often requires a full backbone forward pass to extract high-level features for the query, introducing additional latency. In contrast, humans performing previously learned tasks engage in multiple rounds of associative recall and integration, leading to richer reactivation of historical knowledge. Concretely, sparse cues can trigger multi-round recall via the hippocampal EC–DG–CA3–CA1 circuit, enabling pattern separation and completion without repeatedly reconstructing high-level semantic representations. This circuit serves as a core pathway for memory formation and retrieval in the brain: information flows from the entorhinal cortex (EC), through the dentate gyrus (DG) for pattern separation, is completed via auto-associative

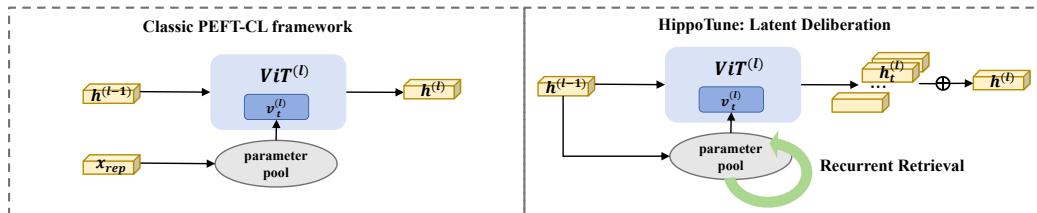


Figure 1: **Classic PEFT-CL vs. HippoTune.** (Left) Standard prompt-based continual learning retrieves a single prompt  $v^{(l)}$  per ViT layer to compute  $h^{(l)}$ . (Right) HippoTune iteratively retrieves and integrates multiple prompts  $\{v_1^{(l)}, \dots, v_T^{(l)}\}$  using  $h^{(l-1)}$ , enabling deeper memory activation and improved retention.

recurrence in CA3, and finally integrated in CA1 into a coherent memory trace Yassa & Stark (2011); Treves & Rolls (1994).

Inspired by the pattern separation, association, and integration mechanisms of the EC–DG–CA3–CA1 circuit, we propose **Latent Deliberation**, a *layer-internal, differentiable, iterative* retrieval mechanism. At each Transformer layer, we embed a light-weight associative loop: the previous layer’s hidden state serves as the initial query; we perform soft key–value retrieval to activate relevant memories; the retrieved signal is linearly projected and fed back to update the query; the loop continues until convergence or a maximum number of iterations; finally, we fuse the per-iteration outputs to realize multi-level completion and integration of prior-task knowledge. Operating entirely in latent space avoids repeated construction of high-level features, and exposes practical budget controls via the maximum iteration count, a convergence threshold, and top- $k$  sparsity. This unified view also clarifies relationships to *prompt-pool* methods such as L2P Wang et al. (2022b), DualPrompt Wang et al. (2022a), and CODA-Prompt Smith et al. (2023): these can be seen as *single-depth retrieval*, whereas our method provides a *differentiable deepening of retrieval depth* to increase expressiveness and precision in memory access. See Fig. 1 for the differences between our method and the classic PEFT-CL approaches.

On the theory side, we characterize two key properties. First, near a fixed point, multi-step iteration implements a *Krylov subspace polynomial approximation* to the inverse Hessian, yielding an *implicit second-order preconditioner* for gradient propagation, achieving curvature correction in a finite number of steps without explicitly computing or storing second-order information Saad (2003); Martens & Grosse (2015). Second, we provide *convergence and stability* conditions based on step sizes and Jacobian spectral bounds, which translate into actionable choices for maximum iteration count, temperature, and entropy regularization; in effect, they operationalize the intuition that “longer deliberation/retrieval leads to better old-task performance” into verifiable and tunable optimization criteria Boyd & Vandenberghe (2004).

### We highlight four key contributions:

- **A unified retrieval perspective for PEFT-CL.** We distill existing prompt-pool continual learning methods into a single key–value formulation, clarifying their shared trade-offs and the limits of one-shot retrieval.
- **Latent Deliberation: hippocampal-inspired iterative retrieval.** Drawing on the EC–DG–CA3–CA1 circuit, we embed a lightweight, multi-step soft lookup–and–feedback process within each Transformer layer, deepening memory activation without extra backbone passes.
- **Krylov-subspace preconditioning theory.** We prove that our finite-step loop implements a polynomial approximation to the inverse Hessian, acting as an implicit second-order preconditioner. We also derive convergence and stability criteria to guide iteration count, temperature, and regularization.
- **Strong performance at low compute cost.** On three vision benchmarks, HippoTune delivers substantial accuracy gains over one-shot PEFT-CL baselines while using only about half the training FLOPs, demonstrating efficiency under tight resource constraints.

108 

## 2 RELATED WORK

110 **Continual Learning with Parameter-Efficient Fine-Tuning** Within PEFT paradigm, continual  
 111 learning has evolved into a prominent direction, now marked by the convergence of *modularity*,  
 112 *routing*, and *theoretical grounding*. Early methods such as L2P Wang et al. (2022b), DualPrompt Wang  
 113 et al. (2022a), and CoDA-Prompt Smith et al. (2023) introduced learnable prompt pools with  
 114 key–query retrieval to select modules during training and inference, mitigating forgetting without  
 115 relying on replay. Later approaches such as LAE Gao et al. (2023a), HiDe Zuo et al. (2023), and MoE-  
 116 Adapter Yu et al. (2024) have further improved adaptability and efficiency via dynamic expansion,  
 117 module merging, and expert routing. Theoretical work, including NTK analysis Doan et al. (2021)  
 118 and loss landscape studies, has provided insights into how routing reduces gradient interference.  
 119 However, most methods lack end-to-end optimization and seldom explore fundamental architectural  
 120 principles for CL, limiting their scalability.

121 **Hippocampus–Neocortex Inspired Continual Learning** Inspired by the hippocampus–neocortex  
 122 interplay, continual learning research has proposed the Complementary Learning Systems (CLS)  
 123 theory: the hippocampus rapidly encodes new experiences, while the neocortex gradually extracts  
 124 generalized knowledge. Building on this, models like FearNet Kemker & Kanan (2018), CLS-  
 125 ER Arani et al. (2022), and Triple Memory Networks Wang et al. (2021) employ short- and long-term  
 126 memory modules to balance fast adaptation with long-term retention via experience replay. **Key**  
 127 **cognitive mechanisms such as hippocampal replay, pattern separation (DG), and pattern completion**  
 128 **(CA3) have been abstracted into algorithmic strategies.** Some models adopt key–value memory for  
 129 associative retrieval, while GATE Liu et al. (2025) simulates gated pathways across hippocampal  
 130 subregions. Despite improving the stability–plasticity trade-off, these brain-inspired methods are  
 131 often architecturally complex, replay-dependent, and rarely applied under the PEFT paradigm. In  
 132 this work, we propose a fine-grained emulation of hippocampal associative memory, aligned with the  
 133 EC–DG–CA3–CA1 circuit. We further validate its biological plausibility and computational efficacy  
 134 from both theoretical and empirical perspectives.

135 

## 3 METHODOLOGY

138 We unify all PEFT modules into a shared retrieval pool and perform iterative key–value lookups  
 139 and one-shot fusion at each Transformer layer, mimicking EC–DG–CA3–CA1 hippocampal loops  
 140 to **dynamically activate and integrate past-task knowledge**. The model is trained end-to-end with  
 141 classification, orthogonality, and entropy losses, using truncated BPTT to align training and inference  
 142 budgets.

143 

### 3.1 PROBLEM DEFINITION

144 In the continual learning (CL) setting, the model is exposed to a sequence of tasks  $\{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_L\}$ ,  
 145 each associated with a dataset  $\mathcal{D}_t = \{(x_i, y_i)\}$ . The goal is to learn a new task  $\mathcal{T}_t$  while maintaining  
 146 performance on previous tasks  $\{\mathcal{T}_1, \dots, \mathcal{T}_{t-1}\}$ . Formally, given a model output  $f(x; \Theta)$ , we aim to  
 147 optimize:

$$148 \min_{\Theta} \sum_{k=1}^t \mathcal{L}_{\text{cls}}^{(k)}(f(x; \Theta)), \quad (1)$$

149 where  $\mathcal{L}_{\text{cls}}^{(k)}$  denotes the cross-entropy classification loss for task  $k$ .

150 

### 3.2 PEFT-CL FRAMEWORK FORMALIZATION

151 In this subsection, we present a formalization of the PEFT-CL framework: we unify all lightweight  
 152 modules into a shared retrieval pool, define how to compute relevance scores from a frozen backbone  
 153 state, and show how to aggregate module outputs to update the model representation.

154 We collect all  $m$  parameter-efficient modules into a single pool

$$155 \mathcal{V} = \{\theta^{(1)}, \dots, \theta^{(m)}\},$$

162 indexed by a learnable key matrix  
 163

$$164 \quad K = [k^{(1)}, \dots, k^{(m)}]^\top \in \mathbb{R}^{m \times d}.$$

165 Each  $\theta^{(i)}$  parameterizes a small PEFT block that takes a layer hidden state as input and produces a  
 166 residual update (for example, an adapter, a prompt-induced projection, or a LoRA-style low-rank  
 167 block).  
 168

169 Following prior works Gao et al. (2023b); He et al. (2022), we use  $\phi(x; \theta^{(i)})$  as an abstract notation  
 170 to unify these different PEFT modules; details of the specific form are provided in Appendix A. Here  
 171  $\phi(\cdot; \theta^{(i)})$  denotes the forward mapping of the  $i$ -th PEFT module applied to the hidden state  $x$ .  
 172

173 Given a frozen-backbone hidden state  $x \in \mathbb{R}^d$ , we first compute the routing scores  
 174

$$175 \quad s = \frac{x K^\top}{\tau}, \quad g = \text{softmax}(s) \in \Delta^{m-1}, \quad (2)$$

176 with optional Top- $k$  truncation. Each module then emits a residual  $\Delta h^{(i)} = \phi(x; \theta^{(i)}) \in \mathbb{R}^d$ , which  
 177 can be understood as the effect of the  $i$ -th PEFT module on this layer’s representation. We stack all  
 178 residuals as  
 179

$$\Delta H = [\Delta h^{(1)}, \dots, \Delta h^{(m)}]^\top.$$

180 Starting from the current backbone state  $h = x$ , we conceptually update it by mixing all module  
 181 outputs with the routing weights  $g$ :  
 182

$$183 \quad h \leftarrow h + g^\top \Delta H. \quad (3)$$

185 In implementation, this update is realized by integrating the PEFT modules into the backbone block  
 186 so that the layer directly outputs the updated  $h$ ; the residual formulation above is an equivalent,  
 187 unified view used for analysis. We provide a detailed explanation in Appendix A on how classical  
 188 PEFT-CL methods correspond to this framework.  
 189

## 190 Why this unification matters.

- 191 1. **Query cost.** Using the model’s hidden output as the retrieval query leverages rich semantic  
 192 features but incurs extra computation.
- 193 2. **Retrieval depth.** All existing PEFT-CL methods perform only a single retrieval; this  
 194 framework points naturally to deeper, iterative retrieval strategies.
- 195 3. **Key-gating design.** Learning and regularizing  $K$ , and choosing temperature, Top- $k$  or  
 196 entropy penalties, determines which modules activate.

### 200 3.3 LATENT DELIBERATION

201 At each Transformer layer, we extend the standard forward pass into a controllable dynamic process,  
 202 modeled as an iterative associative loop.  
 203

204 We treat the hidden state from the previous layer  $h^{(l-1)} \in \mathbb{R}^d$  as the initial query:  $q^{(1)} = h^{(l-1)}$ . Each  
 205 layer maintains a learnable *key* matrix  $K^{(l)} \in \mathbb{R}^{M \times d}$  and *value* matrix  $V^{(l)} \in \mathbb{R}^{M \times d_v}$  to capture  
 206 old-task subspaces. This is inspired by the EC-DG structure in the hippocampus, where  $K^{(l)}$  acts as  
 207 a guide to fixed-point memory.

208 At step  $t$ , the query  $q^{(t)}$  retrieves from memory via:  
 209

$$210 \quad S^{(t)} = \text{softmax} \left( \frac{q^{(t)} K^{(l)^\top}}{T} \right), \quad v^{(t)} = S^{(t)} V^{(l)}, \quad (4)$$

213 where the temperature  $T > 0$  modulates retrieval sharpness. Optionally, Top- $k$  filtering can be applied  
 214 to  $S^{(t)}$  to retain only the most relevant memory slots. The top- $k$  hyperparameter is robust within the  
 215 range of 3 to 10. As this is a standard setting for prompt-based methods, we omit it from further  
 discussion.

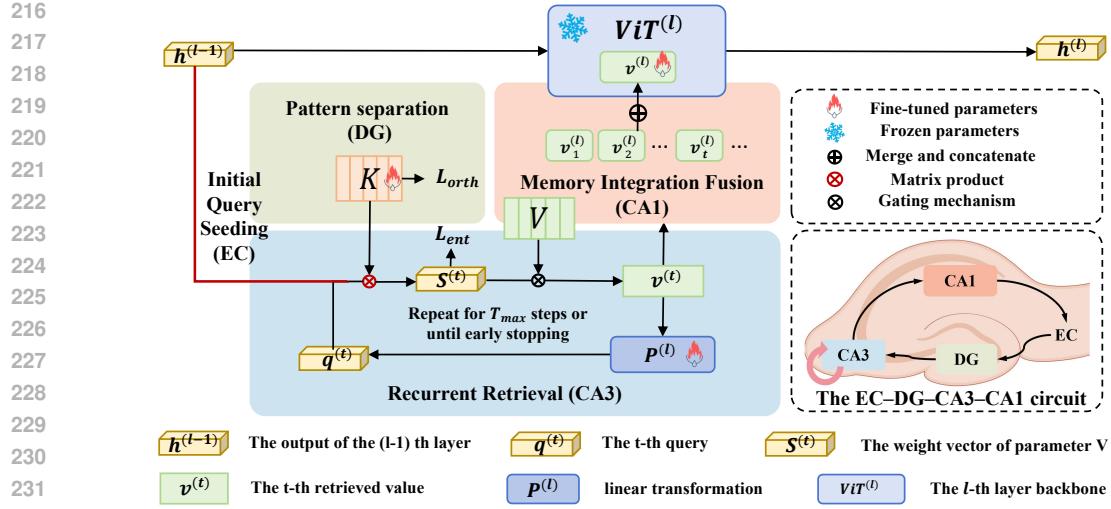


Figure 2: **A comparative illustration of HippoTune.** At each Transformer layer, use the hidden state as an initial query to iteratively perform key–value soft retrieval (with orthogonality and entropy regularization), update the query via projected residual feedback until convergence or max iterations, then fuse all retrievals into a memory-enhanced output, enabling selective multi-round activation of parameter-pool submodules.

Then, the query is updated by incorporating the retrieved memory:

$$q^{(t+1)} = \alpha q^{(t)} + (1 - \alpha) P^{(l)}(v^{(t)}), \quad (5)$$

where  $P^{(l)}$  is a layer-specific linear transformation, and  $\alpha \in [0, 1]$  controls the blending. *The CA3 region features an auto-associative recurrent mechanism and can be regarded as the core of associative memory. This can be seen as a minimal abstraction of the recurrent CA3 circuit performing memory completion and state integration.* The loop terminates when either  $\|v^{(t)} - v^{(t-1)}\|^2 < \varepsilon$  or  $t = T_{\max}$ .

To avoid repeated forward passes after each retrieval iteration, we adopt a one-shot fusion strategy, which integrates all retrieved vectors within the latent space in a unified manner. Specifically, the retrieval vector  $v^{(t)}$  obtained at each iteration  $t$  is concatenated along the feature dimension to form an aggregated retrieval vector:

$$V_{\text{cat}} = [v^{(1)} \| v^{(2)} \| \cdots \| v^{(T)}] \in \mathbb{R}^{T d_v}, \quad (6)$$

where  $\|$  denotes vector concatenation.

Next, the output of the  $(l-1)$ -th layer, denoted as  $h^{(l-1)}$ , is combined with the concatenated retrieval vector  $V_{\text{cat}}$  and fed into the  $l$ -th layer’s ViT block to produce the output of layer  $l$ :

$$h^{(l)} = \text{ViT}^{(l)}([h^{(l-1)} \| V_{\text{cat}}]), \quad (7)$$

where  $\text{ViT}^{(l)}$  represents the backbone network of the  $l$ -th layer. This one-shot fusion operation corresponds to the *CA1* region in the hippocampal circuit, which is responsible for integrating the retrieved information from both *DG* and *CA3* and producing a complete memory representation.

Importantly, this mechanism enables explicit controllability during inference via hyperparameters such as  $T_{\max}$ ,  $\varepsilon$ , and  $\text{Top-}k$ , allowing flexible trade-offs between retrieval quality and efficiency. The method framework is shown in Fig. 2. The pseudocode is provided in Appendix B.

### 3.4 END-TO-END TRAINING OBJECTIVE

We design a unified loss to jointly optimize task performance, retrieval sparsity, and module disentanglement:

$$\mathcal{L} = \mathcal{L}_{\text{cls}} + \lambda_{\text{orth}} \mathcal{L}_{\text{orth}} + \lambda_{\text{ent}} \mathcal{L}_{\text{ent}}. \quad (8)$$

270 • **Classification Loss**  $\mathcal{L}_{\text{cls}}$ : Cross-entropy loss supervising downstream performance:  
 271

$$272 \quad 273 \quad 274 \quad \mathcal{L}_{\text{cls}} = -\frac{1}{N} \sum_{i=1}^N \sum_{c=1}^C y_{i,c} \log p_{i,c}, \quad (9)$$

275 where  $y_{i,c}$  is the one-hot label and  $p_{i,c}$  the predicted probability.

276 • **Orthogonality Regularization**  $\mathcal{L}_{\text{orth}}$ : Encourages keys  $K^{(l)}$  to be orthogonal, reducing memory  
 277 interference:  
 278

$$279 \quad \mathcal{L}_{\text{orth}} = \sum_l \left\| K^{(l)\top} K^{(l)} - I \right\|_F^2. \quad (10)$$

280 • **Entropy Regularization**  $\mathcal{L}_{\text{ent}}$ : Controls the entropy of retrieval weights  $S^{(t)}$ , balancing sharpness  
 281 and robustness:  
 282

$$283 \quad 284 \quad \mathcal{L}_{\text{ent}} = -\sum_l \sum_{t=1}^T S_i^{(t)} \log S_i^{(t)}. \quad (11)$$

285 The weights  $\lambda_{\text{orth}}$  and  $\lambda_{\text{ent}}$  balance these objectives, guiding the model towards disentangled,  
 286 controllable, and generalizable behaviors.

287 During training, we adopt **Truncated Backpropagation Through Time (BPTT)**, propagating  
 288 gradients only through the final steps of the retrieval loop. This design aligns with the dynamic budget  
 289 at inference (e.g.,  $T_{\text{max}}$ , Top- $k$ ), ensuring consistency between training and deployment.  
 290

291 **4 THEORETICAL ANALYSIS: MULTI-STEP RECURRENCE AND HIGHER-ORDER  
 292 PRECONDITIONING**

293 We abstract a single-layer “recurrence” as gradient descent on a smooth potential function  $\phi(q)$ :

$$294 \quad q^{(t+1)} = q^{(t)} - \eta \nabla \phi(q^{(t)}), \quad t = 1, 2, \dots, T_{\text{max}} - 1, \quad (12)$$

295 with step size  $\eta > 0$ . The outer loss depends only on the final state  $q^{(T_{\text{max}})}$ , so we denote

$$300 \quad 301 \quad 302 \quad g_{\text{out}} = \frac{\partial \mathcal{L}}{\partial q^{(T_{\text{max}})}}. \quad (13)$$

303 **Proposition 1** (Krylov Subspace Polynomial Approximation). *Suppose  $\phi$  is twice differentiable near  
 304 a fixed point  $q^*$ , and its Hessian  $H = \nabla^2 \phi(q^*)$  is symmetric positive definite. Further assume the  
 305 step size satisfies  $\rho(I - \eta H) < 1$ . Define*

$$306 \quad 307 \quad 308 \quad J = I - \eta H, \quad P = \frac{\partial(\text{step})}{\partial \theta} \Big|_{q^*}, \quad b_{\theta} = P^{\top} g_{\text{out}}. \quad (14)$$

309 Then the leading term of the gradient w.r.t. parameters  $\theta$  after  $T_{\text{max}}$  steps is

$$310 \quad 311 \quad 312 \quad \nabla_{\theta} \mathcal{L}_{T_{\text{max}}} = \sum_{k=0}^{T_{\text{max}}-1} (J^{\top})^k b_{\theta} = \mathcal{K}_{T_{\text{max}}}(H) b_{\theta}, \quad (15)$$

313 where

$$314 \quad 315 \quad 316 \quad \mathcal{K}_{T_{\text{max}}}(H) = \sum_{k=0}^{T_{\text{max}}-1} (I - \eta H^{\top})^k \quad (16)$$

317 is the Krylov series operator. As  $T_{\text{max}} \rightarrow \infty$ , the Neumann series converges and

$$318 \quad 319 \quad \mathcal{K}_{T_{\text{max}}}(H) \rightarrow (\eta H^{\top})^{-1}, \implies \nabla_{\theta} \mathcal{L}_{\infty} \approx H^{-1} b_{\theta}. \quad (17)$$

320 The detailed proof is provided in Appendix C.

321 **Corollary 1** (Effect of Finite-step Preconditioning). *For any finite  $T_{\text{max}}$ , the operator  $\mathcal{K}_{T_{\text{max}}}(H)$  is  
 322 a truncated polynomial approximation of  $H^{-1}$  in the Krylov subspace. In practice,  $T_{\text{max}} = 2 \sim 4$   
 323 already yields effective second-order correction at only linear computational cost.*

| 324                             | 325   | Method                           | GFLOPs                           | Seq-CIFAR100                     |                                  | Seq-ImageNet-R                   |                                  | Seq-CUB200 |     |
|---------------------------------|-------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------|-----|
|                                 |       |                                  |                                  | 326                              | 327                              | Acc                              | AAA                              | 328        | 329 |
| <b>Classical-CL (w/ buffer)</b> |       |                                  |                                  |                                  |                                  |                                  |                                  |            |     |
| LwF Li & Hoiem (2016)           | 16.88 | 80.29 $\pm$ 0.86                 | 87.33 $\pm$ 0.73                 | 60.74 $\pm$ 0.51                 | 68.55 $\pm$ 0.65                 | 69.75 $\pm$ 1.37                 | 80.45 $\pm$ 2.08                 |            |     |
| DER++ Buzzega et al. (2020)     | 16.88 | 84.50 $\pm$ 1.67                 | 90.16 $\pm$ 0.61                 | 54.21 $\pm$ 0.52                 | 65.26 $\pm$ 0.58                 | 77.42 $\pm$ 0.71                 | 83.61 $\pm$ 0.09                 |            |     |
| <b>PEFT-CL (w/o buffer)</b>     |       |                                  |                                  |                                  |                                  |                                  |                                  |            |     |
| L2P Wang et al. (2022b)         | 35.20 | 82.76 $\pm$ 1.17                 | 88.48 $\pm$ 0.83                 | 71.26 $\pm$ 0.44                 | 76.13 $\pm$ 0.46                 | 68.39 $\pm$ 0.46                 | 78.29 $\pm$ 0.38                 |            |     |
| DualPrompt Wang et al. (2022a)  | 35.38 | 85.56 $\pm$ 0.33                 | 90.33 $\pm$ 0.33                 | 68.22 $\pm$ 0.20                 | 73.81 $\pm$ 0.39                 | 66.00 $\pm$ 0.57                 | 77.92 $\pm$ 0.50                 |            |     |
| CODA-Prompt Smith et al. (2023) | 35.84 | 86.28 $\pm$ 0.26                 | 91.05 $\pm$ 0.37                 | 74.05 $\pm$ 0.41                 | 78.14 $\pm$ 0.39                 | 72.45 $\pm$ 0.51                 | 78.94 $\pm$ 0.37                 |            |     |
| LAE-PreT Gao et al. (2023a)     | 35.68 | 85.25 $\pm$ 0.66                 | 89.71 $\pm$ 0.42                 | 62.81 $\pm$ 0.48                 | 69.47 $\pm$ 0.44                 | 77.48 $\pm$ 0.79                 | 85.83 $\pm$ 0.68                 |            |     |
| HiDe-Prompt Zuo et al. (2023)   | 35.25 | <b>88.25<math>\pm</math>0.24</b> | <b>92.69<math>\pm</math>0.27</b> | <b>74.65<math>\pm</math>0.14</b> | <b>78.46<math>\pm</math>0.18</b> | <b>84.27<math>\pm</math>0.16</b> | <b>88.64<math>\pm</math>0.19</b> |            |     |
| <b>Ours (w/o buffer)</b>        |       |                                  |                                  |                                  |                                  |                                  |                                  |            |     |
| HippoTune (ours)                | 16.92 | 87.65 $\pm$ 0.21                 | 92.07 $\pm$ 0.25                 | <b>74.85<math>\pm</math>0.17</b> | <b>79.92<math>\pm</math>0.22</b> | <b>81.12<math>\pm</math>0.34</b> | 86.63 $\pm$ 0.41                 |            |     |

Table 1: Comparison of Continual Learning Methods on Seq-CIFAR100, Seq-ImageNet-R, and Seq-CUB200 in terms of Accuracy (Acc) and Average Accuracy Across All Tasks (AAA), along with Training Time.

## Practical Guidelines

1. **Ensure convergence:** Spectrally normalize  $H$  or choose a sufficiently small  $\eta$  so that  $\rho(I - \eta H) < 1$ .
2. **Choose  $T_{max}$ :** A small constant  $T_{max} \approx 2\text{--}4$  balances second-order preconditioning with computational budget.
3. **Early stopping:** When  $\|q^{(t+1)} - q^{(t)}\|$  falls below a threshold, the Krylov polynomial has effectively converged and further iterations are unnecessary.

**Conclusion.** The revised derivation eliminates the erroneous “product = series sum” step and uses the chain rule and recursive expansion to rigorously demonstrate how multi-step recurrence implicitly implements Newton or natural-gradient second-order preconditioning in the gradient.

## 5 EXPERIMENTS

### 5.1 EXPERIMENTAL SETUPS

**Benchmarks** We evaluate on three mainstream vision continual-learning benchmarks: **Seq-CIFAR100** Krizhevsky (2009); Lomonaco et al. (2021) is randomly split by class into 10 subtasks, each with 10 categories; **Seq-ImageNet-R** Boschini et al. (2022) is divided into 10 subtasks of 20 classes each; **Seq-CUB200** Wah et al. (2011); Lomonaco et al. (2021) is split into 10 subtasks, each containing 20 bird species. [We conduct evaluations under the Class-Incremental Learning](#).

**Compared Methods** We evaluate two broad classes of methods. [First, classical continual learning methods: LwF Li & Hoiem \(2016\) is a regularization-based approach and does not use any replay buffer, while DER++ Buzzega et al. \(2020\) is replay-based and in our experiments maintains a memory buffer of 1000 images.](#) Second, buffer-free PEFT-CL methods, including L2P Wang et al. (2022b), DualPrompt Wang et al. (2022a), CODA-Prompt Smith et al. (2023), LAE-PreT Gao et al. (2023a), and HiDe-Prompt Zuo et al. (2023), freeze the backbone and train only lightweight inserted modules. We include HippoTune in the buffer-free setting and re-implement all baselines under the same backbone and training regime, using published results for LAE-PreT and HiDe-Prompt.

**Implementation Details** We adopt ViT-Base/16 as the backbone Dosovitskiy et al. (2021), freeze all non-PEFT parameters, and fine-tune only the key-value projection layers of the inserted prompt modules. Training uses the Adam optimizer Kingma & Ba (2015) with a base learning rate of 0.01, a batch size of 128, and 5 epochs per subtask. Unless otherwise noted, modules are inserted into layers 1–7 and an orthogonality regularization coefficient of  $\lambda = 1$  is applied. All experiments run on NVIDIA L40S GPUs without any replay buffer, and results are averaged over three random seeds. The detailed hyperparameter settings and code link are provided in Appendix D.

| 378                             | 379   | 380                              | 381                              | 382                              | 383                              | 384                              | 385                              | Method | GFLOPs | ImageNet-R (N = 5) |     | ImageNet-R (N = 10) |     | ImageNet-R (N = 20) |     |     |     |     |     |     |     |     |  |  |  |
|---------------------------------|-------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------|--------|--------------------|-----|---------------------|-----|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|
|                                 |       |                                  |                                  |                                  |                                  |                                  |                                  | 386    | 387    | Acc                | AAA | Acc                 | AAA | Acc                 | AAA |     |     |     |     |     |     |     |  |  |  |
|                                 |       |                                  |                                  |                                  |                                  |                                  |                                  |        |        | 388                | 389 | 390                 | 391 | 392                 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 |  |  |  |
| Full Fine-Tuning                | 16.88 | 64.92 $\pm$ 0.87                 | 75.57 $\pm$ 0.50                 | 60.57 $\pm$ 1.06                 | 72.31 $\pm$ 1.09                 | 49.95 $\pm$ 1.31                 | 65.32 $\pm$ 0.84                 |        |        |                    |     |                     |     |                     |     |     |     |     |     |     |     |     |  |  |  |
| <b>PEFT-CL (w/o buffer)</b>     |       |                                  |                                  |                                  |                                  |                                  |                                  |        |        |                    |     |                     |     |                     |     |     |     |     |     |     |     |     |  |  |  |
| L2P Wang et al. (2022b)         | 35.20 | 73.04 $\pm$ 0.71                 | 76.94 $\pm$ 0.41                 | 71.26 $\pm$ 0.44                 | 76.13 $\pm$ 0.46                 | 68.97 $\pm$ 0.51                 | 74.16 $\pm$ 0.32                 |        |        |                    |     |                     |     |                     |     |     |     |     |     |     |     |     |  |  |  |
| DualPrompt Wang et al. (2022a)  | 35.38 | 69.99 $\pm$ 0.57                 | 72.24 $\pm$ 0.41                 | 68.22 $\pm$ 0.20                 | 73.81 $\pm$ 0.39                 | 65.23 $\pm$ 0.45                 | 71.30 $\pm$ 0.16                 |        |        |                    |     |                     |     |                     |     |     |     |     |     |     |     |     |  |  |  |
| CODA-Prompt Smith et al. (2023) | 35.84 | 76.63 $\pm$ 0.27                 | 80.30 $\pm$ 0.28                 | 74.05 $\pm$ 0.41                 | 78.14 $\pm$ 0.39                 | 69.38 $\pm$ 0.33                 | 73.95 $\pm$ 0.63                 |        |        |                    |     |                     |     |                     |     |     |     |     |     |     |     |     |  |  |  |
| HiDe-Prompt Zuo et al. (2023)   | 35.25 | 74.77 $\pm$ 0.25                 | 78.15 $\pm$ 0.24                 | 74.65 $\pm$ 0.14                 | 78.46 $\pm$ 0.18                 | 73.59 $\pm$ 0.19                 | 77.93 $\pm$ 0.19                 |        |        |                    |     |                     |     |                     |     |     |     |     |     |     |     |     |  |  |  |
| <b>Ours (w/o buffer)</b>        |       |                                  |                                  |                                  |                                  |                                  |                                  |        |        |                    |     |                     |     |                     |     |     |     |     |     |     |     |     |  |  |  |
| HippoTune (ours)                | 16.92 | <b>77.16<math>\pm</math>0.28</b> | <b>81.04<math>\pm</math>0.37</b> | <b>74.85<math>\pm</math>0.17</b> | <b>79.92<math>\pm</math>0.22</b> | <b>74.06<math>\pm</math>0.25</b> | <b>79.33<math>\pm</math>0.49</b> |        |        |                    |     |                     |     |                     |     |     |     |     |     |     |     |     |  |  |  |

Table 2: Comparison of Continual Learning Methods on ImageNet-R under different task numbers (N), including GFLOPs. Results are reported in terms of final Accuracy (Acc  $\uparrow$ ) and Average Accuracy Across All Tasks (AAA  $\uparrow$ ).

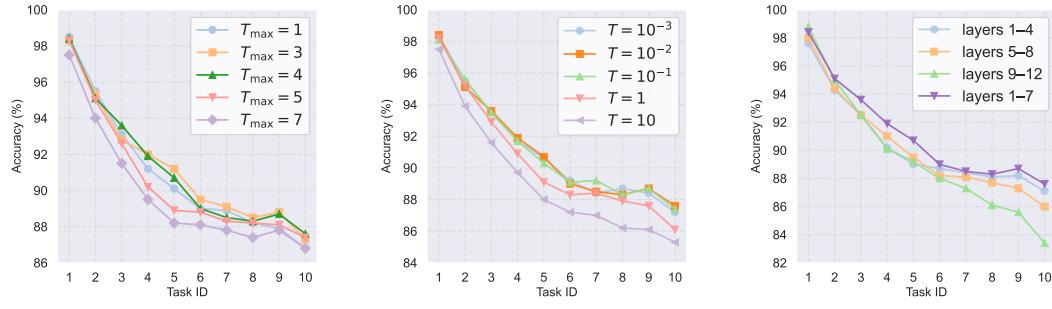


Figure 3: Further analysis on Seq-CIFAR100 for three design choices. **(Left)** Moderate max iterations (e.g.,  $T_{\max} = 4$ ) balance early gains and late stability; too few/many degrade results. **(Middle)** Temperature  $T$  tunes retrieval softness: mid-range ( $10^{-1}$ ) is best; extremes underperform. **(Right)** PEFT depth: combining shallow+middle (1–7) beats shallow (1–4), middle (5–8), or deep (9–12), highlighting multi-level memory.

## 5.2 EXPERIMENTAL RESULTS

In this section, we adopt Acc and AAA as evaluation metrics. Table 1 presents the results of various methods on three benchmarks, along with their respective computational cost (GFLOPs).

- Comparison with Classical CL Methods Using Replay Buffers** Without relying on sample replay, HippoTune achieves Acc improvements of approximately 7.4, 14.1, and 11.4 percentage points over LwF on Seq-CIFAR100, Seq-ImageNet-R, and Seq-CUB200, respectively. Compared to DER++, it yields gains of around 3.2, 20.6, and 3.7 points. In terms of AAA, HippoTune also outperforms LwF (+4.7%) and DER++ (+1.9%), clearly demonstrating that the latent-space iterative retrieval mechanism can effectively suppress forgetting without any additional memory overhead.
- Comparison with Other PEFT-CL Methods** Compared to typical prompt-tuning methods (L2P, DualPrompt, CODA-Prompt, LAE-PreT), HippoTune achieves the highest performance on Seq-ImageNet-R with 74.85% Acc and 79.92% AAA. On Seq-CIFAR100 (87.65%/92.07%) and Seq-CUB200 (81.12%/86.63%), it also surpasses most PEFT-CL baselines, second only to HiDe-Prompt with 88.25%/92.69% and 84.27%/88.64%, respectively. The superior performance of HiDe-Prompt on these two datasets can be largely attributed to its higher computational budget and more sophisticated multi-step prompting design. Notably, HippoTune achieves better results than HiDe-Prompt on Seq-ImageNet-R (despite using only 16.92 GFLOPs compared to 35.25 GFLOPs), and delivers comparable performance on the other two benchmarks—demonstrating its efficiency and competitiveness under limited computational resources.
- Resource Efficiency and Training Speed** With a computational cost of only 16.92 GFLOPs, approximately half that of most mainstream PEFT-CL methods (around 35 GFLOPs), HippoTune significantly improves training speed and GPU memory efficiency. Under identical hardware

432 settings, its training time is reduced by approximately 30% on average, confirming its practicality  
 433 for scenarios with constrained computational resources.  
 434

### 435 5.3 ABLATION STUDY

437 In the ablation study, constraining  
 438 the number of iterative retrieval steps  
 439 to just one ( $T_{\max} = 1$ ) leads to a  
 440 notable performance drop: Acc/AAA  
 441 on Seq-CIFAR100 declines from  
 442 87.65%/92.07% to 86.81%/90.63%,  
 443 and on Seq-ImageNet-R from  
 444 74.85%/79.92% to 73.25%/78.62%.  
 445 See Table 3 for the detailed results.  
 446 This highlights the critical role of  
 447 multi-step retrieval in integrating  
 448 historical information and mitigating  
 449 forgetting. Removing orthogonality  
 450 regularization has a limited effect on  
 451 Seq-CIFAR100, but results in a nearly  
 452 1.2-point drop in AAA on the more  
 453 complex Seq-ImageNet-R, indicating  
 454 that maintaining the diversity of  
 455 retrieved vectors is especially important for leveraging prior knowledge in challenging domains.  
 456 In contrast, removing entropy regularization or adopting a fusion strategy that only integrates  
 457 the last-step retrieval affects overall performance by less than 0.6 points, suggesting their roles  
 458 are more in stabilizing and fine-tuning the core mechanism. These findings suggest that iterative  
 459 retrieval and orthogonality regularization are central to preventing catastrophic forgetting, while  
 460 entropy regularization and fusion strategy can be flexibly adjusted in resource-constrained or  
 461 inference-sensitive settings.

### 462 5.4 FURTHER ANALYSIS

463 **ImageNet-R under Varying Task Counts** We split ImageNet-R into sequences of  $N = 5, 10$ , and  
 464 20 tasks. HippoTune consistently outperforms leading prompt-based PEFT-CL methods—gaining  
 465 around 0.5–0.8 points at  $N = 5$  versus CODA-Prompt and 0.2–1.5 points at  $N = 10$  versus  
 466 HiDe-Prompt—and even in the hardest  $N = 20$  setting maintains a similar margin. Over the range  
 467  $N = 5 \rightarrow 20$ , its overall accuracy drops by only about 3 points, far less than typical PEFT-CL declines.  
 468 Crucially, these gains come at just 16.92 GFLOPs, underscoring HippoTune’s efficiency and resilience  
 469 to forgetting. See Table 2 for the detailed results.

470 **Impact of Iteration Length** We sweep  $T_{\max} \in \{1, 3, 4, 5, 7\}$  on Seq-CIFAR100 (Fig. 3). In-  
 471 creasing from  $T_{\max} = 1$  to 3 yields clear gains on tasks 2–6, while  $T_{\max} = 4$  delivers the best  
 472 overall accuracy—particularly mid-sequence—improving by about 1–2 points over  $T_{\max} = 1$ . Larger  
 473 budgets (5 or 7) offer only marginal early-task gains and actually degrade later-task performance,  
 474 suggesting that excessive iterations introduce noise or redundancy. Thus,  $T_{\max} = 4$  strikes the right  
 475 balance between effective memory reuse and stability.

477 **Accuracy Comparison Across All Tasks After Training** Figure 4 in Appendix E.4 shows that  
 478 HippoTune consistently outperforms both DER++ and DualPrompt throughout the full task sequence.  
 479 In the early tasks it gains a clear lead, demonstrating its ability to recall prior knowledge immediately.  
 480 This advantage persists in the mid-stage, with baseline methods trailing by a noticeable margin, and  
 481 even as all methods degrade in later tasks, HippoTune’s drop is the smallest. Overall, iterative retrieval  
 482 both reinforces early memories and promotes steadier performance across all ten tasks.

484 **Impact of Temperature and Insertion Depth** We swept the retrieval temperature  $T$  from  $10^{-3}$  to  
 485 10 on Seq-CIFAR100 (Fig. 3). Accuracy peaks at  $T = 10^{-1}$ , with mid-phase tasks (3–7) improving  
 by 1–2 points versus  $T = 10^{-3}$  and smoother convergence later. Extremes ( $T = 10$  or  $10^{-3}$ ) degrade

| Variant                                    | Seq-CIFAR100 |              | Seq-ImageNet-R |              |
|--------------------------------------------|--------------|--------------|----------------|--------------|
|                                            | Acc          | AAA          | Acc            | AAA          |
| <b>Full Method</b>                         | <b>87.65</b> | <b>92.07</b> | <b>74.85</b>   | <b>79.92</b> |
| <b>Baseline</b>                            | 86.28        | 90.33        | 72.93          | 78.16        |
| w/o Orthogonality Regularization           | 87.32        | 91.87        | 74.09          | 78.77        |
| w/o Entropy Regularization                 | 87.43        | 91.30        | 74.67          | 79.55        |
| w/o Iterative Retrieval ( $T_{\max} = 1$ ) | 86.51        | 90.63        | 72.89          | 78.10        |
| w/o Orthogonality & Entropy (Loop only)    | 87.24        | 91.11        | 74.37          | 78.53        |
| w/o Iterative Retrieval & Orthogonality    | 86.40        | 90.43        | 72.74          | 77.92        |
| w/o Iterative Retrieval & Entropy          | 86.32        | 90.41        | 72.72          | 78.09        |
| w/o Fusion Strategy (last-step only)       | 87.27        | 91.28        | 74.13          | 79.04        |
| w/o Early Stopping                         | 87.36        | 91.39        | 74.22          | 79.13        |

486 performance, especially in mid-to-late tasks, indicating that moderate temperature best balances  
 487 knowledge sharing and task isolation. Insertion depth experiments (Fig. 3) compare placing the  
 488 module in shallow (layers 1–4), middle (5–8), deep (9–12), or shallow+middle (1–7) blocks. The  
 489 1–7 configuration wins—outperforming shallow-only and middle-only by 0.5–1 point and showing  
 490 smaller late-task drops than deep-only. This confirms that early-layer feature retrieval plus mid-layer  
 491 memory integration yields the strongest continual-learning gains.

492  
 493 **Model Performance in Online Continual Learning Setting** Our method remains highly effective  
 494 even in the online setting with just one epoch of training. On seq-CIFAR100, it achieves 84.52%  
 495 accuracy—less than 3% below the offline result—and surpasses the offline performance (epoch = 5)  
 496 of some competing methods (see Appendix E.1).

497  
 498  
 499 **Effectiveness on Diverse Pre-trained Backbones** Experiments using DINO and SAM backbones  
 500 further demonstrate the strong generalization of HippoTune. As shown in Table 6 (see Appendix  
 501 E.2), our method consistently achieves superior final and average accuracy across both architectures,  
 502 significantly outperforming baselines like L2P and DualPrompt. Notably, it surpasses CODA-Prompt  
 503 by over 4% on the SAM backbone. These results indicate that the latent iterative deliberation  
 504 mechanism is architecture-agnostic and adapts well to feature distributions from diverse pre-training  
 505 objectives, effectively leveraging heterogeneous representations while minimizing forgetting.

506  
 507  
 508 **Stability and Backward Transfer Analysis** As shown in Table 7 (see Appendix E.3), in experi-  
 509 ments on ImageNet-R split into 10 tasks, HippoTune outperforms standard prompt-based baselines in  
 510 both accuracy and retention. While LoRA and adapter-based methods such as SD-Lora and EASE  
 511 achieve high plasticity due to their architectural capacity, they suffer from significant catastrophic  
 512 forgetting. In contrast, HippoTune maintains a Forgetting Measure of 4.03%, which is significantly  
 513 lower than the 6% to 7% range observed in these adapter variants. This demonstrates that our method  
 514 offers superior stability and effectively mitigates the interference common in high-capacity adapter  
 515 approaches.

516  
 517  
 518 **Results in the Task-Incremental Setting** Table 8 (see Appendix E.5) presents the comparative  
 519 results under the Task-Incremental Learning (TIL) setting. HippoTune consistently outperforms the  
 520 PEFT-CL baselines across both Seq-CIFAR100 and ImageNet-R benchmarks. While existing methods  
 521 like CODA-Prompt already mitigate interference by conditioning on task identities, our approach  
 522 further pushes the performance boundary, achieving the highest average accuracy and the lowest  
 523 forgetting measures. This superiority indicates that HippoTune effectively leverages task-specific  
 524 contexts to refine feature representations, ensuring robust learning of new tasks without compromising  
 525 the stability of previously acquired knowledge.

## 526 6 CONCLUSION

527  
 528 We introduced HippoTune, a hippocampal-inspired continual learning method that embeds an iterative  
 529 retrieval loop into each Transformer layer. By simulating the brain’s multi-round associative recall  
 530 and integration—combining pattern separation (DG) and completion (CA3–CA1)—HippoTune  
 531 deepens memory access within PEFT frameworks without incurring repeated backbone passes. Our  
 532 convergence analysis establishes a connection to Krylov-subspace second-order preconditioning,  
 533 guiding choices of iteration count, temperature, and regularization. Experimentally, HippoTune  
 534 delivers buffer-free gains across visual benchmarks, outperforms prompt-pool methods, and halves  
 535 PEFT-CL’s computational cost. Limitations include evaluation on two-level hierarchies and image  
 536 classification; future work will explore deeper loops, broader modalities, and adaptive retrieval  
 537 budgets to further bridge biological memory mechanisms and scalable continual learning.

540 REFERENCES  
541

542 Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual  
543 learning method based on complementary learning system. In *International Conference on*  
544 *Learning Representations (ICLR)*, 2022.

545 Matteo Boschini, Lorenzo Bonicelli, Angelo Porrello, Giovanni Bellitto, Matteo Pennisi, Simone  
546 Palazzo, Concetto Spampinato, and Simone Calderara. Transfer without forgetting. In *European*  
547 *conference on computer vision*, pp. 692–709. Springer, 2022.

548 Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.

549 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark  
550 experience for general continual learning: A strong, simple baseline. In *Advances in Neural*  
551 *Information Processing Systems (NeurIPS)*, 2020.

552 Thang Doan, Mehdi Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier. A  
553 theoretical analysis of catastrophic forgetting through the NTK overlap matrix. In *Proceedings of*  
554 *the International Conference on Machine Learning (ICML)*, 2021.

555 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
556 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,  
557 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.  
558 In *International Conference on Learning Representations (ICLR)*, 2021.

559 Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A  
560 unified continual learning framework with general parameter-efficient tuning. In *Proceedings of*  
561 *the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 11483–11493, 2023a.

562 Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang.  
563 A unified continual learning framework with general parameter-efficient tuning. In *Proceedings of*  
564 *the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 11483–11493,  
565 2023b. URL [https://openaccess.thecvf.com/content/ICCV2023/html/Gao\\_A\\_Unified\\_Continual\\_Learning\\_Framework\\_with\\_General\\_Parameter-Efficient\\_Tuning\\_ICCV\\_2023\\_paper.html](https://openaccess.thecvf.com/content/ICCV2023/html/Gao_A_Unified_Continual_Learning_Framework_with_General_Parameter-Efficient_Tuning_ICCV_2023_paper.html).

566 Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards  
567 a unified view of parameter-efficient transfer learning. In *International Conference on Learning*  
568 *Representations*, 2022. URL <https://openreview.net/forum?id=0RDcd5Axok>. ICLR 2022 Spotlight.

569 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea  
570 Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In  
571 *International Conference on Machine Learning (ICML)*, 2019.

572 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
573 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *International Conference*  
574 *on Learning Representations (ICLR)*, 2022.

575 Ronald Kemker and Christopher Kanan. FearNet: Brain-inspired model for incremental learning. In  
576 *International Conference on Learning Representations (ICLR) Workshop Track*, 2018.

577 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *International*  
578 *Conference on Learning Representations (ICLR)*, 2015.

579 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, et al.  
580 Overcoming catastrophic forgetting in neural networks. *Proceedings of the National Academy of*  
581 *Sciences*, 114(13):3521–3526, 2017.

582 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University  
583 of Toronto, 2009.

584 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt  
585 tuning. In *EMNLP*, pp. 3045–3059, 2021.

594 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In  
 595 *ACL*, pp. 4582–4597, 2021.  
 596

597 Zhizhong Li and Derek Hoiem. Learning without forgetting. In *European Conference on Computer*  
 598 *Vision (ECCV)*, pp. 614–629, 2016.

599 Yuechen Liu, Zishun Wang, Chen Qiao, and Zongben Xu. GATE: Adaptive learning with work-  
 600 ing memory by information gating in multi-lamellar hippocampal formation. arXiv preprint  
 601 arXiv:2501.12615, 2025.

602 Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L.  
 603 Hayes, Matthias De Lange, et al. Avalanche: An end-to-end library for continual learning. In  
 604 *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, 2021.  
 605

606 Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative  
 607 pruning. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018.

608 609 James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate  
 610 curvature. In *International Conference on Machine Learning (ICML)*, pp. 2408–2417, 2015.

611 Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The  
 612 sequential learning problem. *Psychology of Learning and Motivation*, 24:109–165, 1989.

613 614 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL:  
 615 Incremental classifier and representation learning. In *IEEE Conference on Computer Vision and*  
 616 *Pattern Recognition (CVPR)*, 2017.

617 Yousef Saad. *Iterative Methods for Sparse Linear Systems*. SIAM, 2 edition, 2003.

618 619 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf  
 620 Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. CODA-Prompt: Continual decomposed  
 621 attention-based prompting for rehearsal-free continual learning. In *Proceedings of the IEEE/CVF*  
 622 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.

623 Alessandro Treves and Edmund T. Rolls. A computational analysis of the role of the hippocampus in  
 624 memory. *Hippocampus*, 4(3):374–391, 1994.

625 626 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz  
 627 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information*  
 628 *Processing Systems (NeurIPS)*, 2017.

629 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd  
 630 birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology,  
 631 2011.

632 Liyuan Wang, Bo Lei, Qian Li, Hang Su, Jun Zhu, and Yi Zhong. Triple memory networks: A brain-  
 633 inspired method for continual learning. *IEEE Transactions on Neural Networks and Learning*  
 634 *Systems*, 33(5):1925–1934, 2021.

635 636 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,  
 637 Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. Dualprompt: Complementary prompt-  
 638 ing for rehearsal-free continual learning. In *Proceedings of the European Conference on Computer*  
 639 *Vision (ECCV)*, 2022a.

640 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent  
 641 Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings*  
 642 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022b.

643 Michael A. Yassa and Craig E. L. Stark. Pattern separation in the hippocampus. *Trends in Neuro-  
 644 sciences*, 34(10):515–525, 2011.

645 646 Jiazu Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting  
 647 continual learning of vision-language models via mixture-of-experts adapters. In *Proceedings of*  
 the *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.

648 Yukun Zuo, Hantao Yao, Lu Yu, Liansheng Zhuang, and Changsheng Xu. Hierarchical decomposition  
649 of prompt-based continual learning. In *Advances in Neural Information Processing Systems*  
650 (*NeurIPS*), 2023.  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701

702 A DETAILED EXPLANATION OF THE PEFT-CL FRAMEWORK  
703704 A.1 SPECIFIC METHODS WITHIN THE PEFT-CL FRAMEWORK  
705706 **L2P** L2P maintains a fixed pool of  $m$  prompt vectors and, for each example, uses the frozen  
707 backbone feature  $\Phi(x)$  as the retrieval query. It computes the score vector  
708

709 
$$710 s = \frac{\Phi(x) K^\top}{\tau} \in \mathbb{R}^m,$$
  
711

712 applies a hard top- $k$  operator to obtain a sparse, one-hot-like weight  $g \in \{0, 1\}^m$ , and concatenates  
713 the selected prompts into the input. In our PEFT-CL framework, this corresponds to  $x_{\text{rep}} = \Phi(x)$ ,  
714  $g(s) = \text{top-}k\{s\}$  at both train and test time, and a frozen key matrix  $K$ , so that  
715

716 
$$h \leftarrow h + \text{top-}k\{s\} \Delta H.$$
  
717

718 **DualPrompt** DualPrompt extends L2P by maintaining two disjoint pools—“general” and “domain-  
719 specific”—and by using a one-hot teacher signal  $\delta_t$  during training to force selection of the correct  
720 domain prompt. At train time it sets  
721

722 
$$g(\Phi(x)K; t) = \delta_t,$$
  
723

724 and at test time uses  
725

726 
$$g(\Phi(x)K) = \arg \max_i [\Phi(x)K^\top]_i,$$
  
727

728 both yielding a one-hot weight vector. Under our formulation,  $x_{\text{rep}} = \Phi(x)$ , the branch outputs  
729  $\Delta H$  are mixed by these one-hot weights, and  $K$  remains frozen—thus decoupling routing from the  
730 cross-entropy loss—so that  
731

732 
$$h \leftarrow h + g \Delta H.$$
  
733

734 **CoDA-Prompt** CoDA-Prompt replaces hard, discrete routing with a fully differentiable soft router.  
735 Given the frozen feature  $\Phi(x)$ , it computes the same score  $s = \Phi(x)K^\top/\tau$  but applies  
736

737 
$$g(s) = \text{softmax}(s) \in \Delta^{m-1}$$
  
738

739 to produce a dense mixture weight over all  $m$  prompt branches. Importantly, both  $K$  and the prompt  
740 parameters  $\Delta H$  are updated via the downstream cross-entropy loss  $L_{\text{CE}}$ . In our unified framework  
741 this corresponds to  $x_{\text{rep}} = \Phi(x)$ , a trainable, differentiable routing function  $g$ , and joint optimization  
742 of  $K$ , yielding  
743

744 
$$h \leftarrow h + \text{softmax}(s) \Delta H.$$
  
745

746 **HiDe-Prompt** HiDe-Prompt refines the query representation itself by learning a lightweight adapter  
747  $\tilde{\Phi}(x)$  on top of the frozen backbone. It then reuses the DualPrompt routing strategy—one-hot teacher  
748  $\delta_t$  during training and arg max at inference—while keeping  $K$  frozen. Thus, in our PEFT-CL notation  
749 one sets  $x_{\text{rep}} = \tilde{\Phi}(x)$  and  
750

751 
$$g(\tilde{\Phi}(x)K; t) = \delta_t, \quad g(\tilde{\Phi}(x)K) = \arg \max(\tilde{\Phi}(x)K),$$
  
752

753 so that  
754

755 
$$h \leftarrow h + g \Delta H,$$

756 with all other design choices—single retrieval, hard routing, frozen key—identical to DualPrompt.  
 757  
 758  
 759

## 760 A.2 INSTANTIATION OF $\phi$ FOR COMMON PEFT MODULES.

761 For completeness, we spell out the concrete functional form of  $\phi(x; \theta^{(i)})$  for several standard PEFT  
 762 blocks, where  $x \in \mathbb{R}^d$  denotes the layer hidden state and  $\Delta h^{(i)} = \phi(x; \theta^{(i)})$ .  
 763

764 **Prefix Tuning.** Given a query projection  $W_q^{(i)}$ , a key prefix matrix  $P_k^{(i)}$  and a value prefix matrix  
 765  $P_v^{(i)}$ , the residual contributed by the  $i$ -th prefix block is  
 766

$$\phi_{\text{Prefix}}(x; \theta^{(i)}) = \text{softmax}\left(x W_q^{(i)} P_k^{(i)\top}\right) P_v^{(i)}. \quad (18)$$

767  
 768  
 769 **Adapter.** For a bottleneck adapter with down- and up-projection matrices  $W_{\text{down}}^{(i)}$  and  $W_{\text{up}}^{(i)}$ , we have  
 770

$$\phi_{\text{Adapter}}(x; \theta^{(i)}) = \text{ReLU}\left(x W_{\text{down}}^{(i)}\right) W_{\text{up}}^{(i)}. \quad (19)$$

771  
 772  
 773 **LoRA.** For a low-rank LoRA block parameterized by  $W_{\text{down}}^{(i)}$  and  $W_{\text{up}}^{(i)}$ , the residual update is  
 774

$$\phi_{\text{LoRA}}(x; \theta^{(i)}) = x W_{\text{down}}^{(i)} W_{\text{up}}^{(i)}. \quad (20)$$

775  
 776 These instantiations are all special cases of our unified notation  $\Delta h^{(i)} = \phi(x; \theta^{(i)})$  used in the main  
 777 text.  
 778

## 779 B PSEUDOCODE

---

### 780 Algorithm 1 Latent Deliberation: Iterative Retrieval and Integration

---

781 **Require:** Backbone depth  $L$ , max iterations  $T_{\text{max}}$ , tolerance  $\varepsilon$ , temperature  $T$ , blend factor  $\alpha$ ,  
 782 (optional) Top- $k$   
 783 1: **for**  $l = 1$  **to**  $L$  **do**  
 784   2:   **Input:** previous hidden state  $h^{(l-1)} \in \mathbb{R}^d$   
 785   3:   Initialize query:  $q^{(1)} \leftarrow h^{(l-1)}$   
 786   4:   Initialize empty list  $\mathcal{V} \leftarrow []$   
 787   5:   **for**  $t = 1$  **to**  $T_{\text{max}}$  **do**  
 788   6:    Compute retrieval weights:  $S^{(t)} \leftarrow \text{softmax}\left(q^{(t)}(K^{(l)})^\top / T\right)$   
 789   7:    **if** Top- $k$  enabled **then**  
 790   8:      Keep only top- $k$  entries of  $S^{(t)}$ , zero out others  
 791   9:    **end if**  
 792   10:    Retrieve memory:  $v^{(t)} \leftarrow S^{(t)} V^{(l)}$   
 793   11:    Append  $v^{(t)}$  to  $\mathcal{V}$   
 794   12:    Update query:  $q^{(t+1)} \leftarrow \alpha q^{(t)} + (1 - \alpha) P^{(l)}(v^{(t)})$   
 795   13:    **if**  $t > 1$  **and**  $\|v^{(t)} - v^{(t-1)}\|^2 < \varepsilon$  **then**  
 796   14:      **break**  
 797   15:    **end if**  
 798   16:   **end for**  
 799   17:   **One-shot fusion:**  $V_{\text{cat}} \leftarrow \text{concat}(\mathcal{V}) \in \mathbb{R}^{T_{\text{max}} d_v}$   
 800   18:   Compute layer output:  $h^{(l)} \leftarrow \text{ViT}^{(l)}([h^{(l-1)} \parallel V_{\text{cat}}])$   
 801   19: **end for**  


---

## 802 C PROOF OF PROPOSITION 1

803  
 804 *Proof of Proposition 1.* We regard one gradient-descent “inner” step as a map  
 805

$$F(q; \theta) = q - \eta \nabla \phi(q), \quad q^{(t+1)} = F(q^{(t)}; \theta),$$

810 where  $\theta$  denotes *outer* parameters that may affect the step only through some auxiliary operation  
 811 (e.g. the retrieval projection in our Latent Deliberation loop). Let  $q^*$  be a fixed point of the inner  
 812 dynamics so that  $\nabla\phi(q^*) = 0$ . Linearising  $F$  at  $(q^*, \theta)$  gives the *state Jacobian*  $J = \frac{\partial F}{\partial q}\Big|_{q^*} =$   
 813  $I - \eta \nabla^2\phi(q^*) = I - \eta H$  and the *parameter Jacobian*  $P = \frac{\partial F}{\partial \theta}\Big|_{q^*}$ .  
 814

815 **Step 1: Recursion on sensitivities.** Differentiating the inner recurrence w.r.t.  $\theta$  yields

$$817 \quad \frac{\partial q^{(t+1)}}{\partial \theta} = J \frac{\partial q^{(t)}}{\partial \theta} + P, \quad t = 0, \dots, T_{\max} - 1,$$

820 with the base term  $\frac{\partial q^{(0)}}{\partial \theta} = 0$  because the initial hidden state is taken as constant for the outer  
 821 optimisation. Solving the first-order, non-homogeneous linear recursion gives  
 822

$$823 \quad \frac{\partial q^{(T_{\max})}}{\partial \theta} = \sum_{k=0}^{T_{\max}-1} J^k P.$$

826 **Step 2: Chain rule for the outer loss.** Applying the chain rule,

$$827 \quad \nabla_{\theta} \mathcal{L}_{T_{\max}} = \left( \frac{\partial q^{(T_{\max})}}{\partial \theta} \right)^{\top} g_{\text{out}} = \sum_{k=0}^{T_{\max}-1} (J^{\top})^k P^{\top} g_{\text{out}} = \sum_{k=0}^{T_{\max}-1} (J^{\top})^k b_{\theta},$$

832 where  $b_{\theta} := P^{\top} g_{\text{out}}$ . This is exactly the Krylov series operator  $\mathcal{K}_{T_{\max}}(H) = \sum_{k=0}^{T_{\max}-1} (I - \eta H^{\top})^k$   
 833 acting on  $b_{\theta}$ .

834 **Step 3: Convergence to the Neumann-series inverse.** Because  $H$  is symmetric positive definite  
 835 and  $0 < \eta < 2/\lambda_{\max}(H)$ , the spectral radius  $\rho(J) = \rho(I - \eta H) < 1$ . Hence the Neumann series  
 836 converges:

$$837 \quad \lim_{T_{\max} \rightarrow \infty} \mathcal{K}_{T_{\max}}(H) = (I - J^{\top})^{-1} = (\eta H^{\top})^{-1}.$$

839 Taking the limit in the gradient expression gives  $\nabla_{\theta} \mathcal{L}_{\infty} = H^{-1} b_{\theta}$ , which corresponds to exact  
 840 second-order (Newton-style) preconditioning.  
 841

842 **Step 4: Finite-step interpretation.** For any finite  $T_{\max}$ ,  $\mathcal{K}_{T_{\max}}(H)$  is a degree- $(T_{\max}-1)$  polynomial  
 843 that approximates  $H^{-1}$  in the Krylov subspace  $\text{span}\{b_{\theta}, H^{\top} b_{\theta}, \dots, (H^{\top})^{T_{\max}-1} b_{\theta}\}$ . Because the  
 844 error decays geometrically in  $\rho(J)$ , practitioners often find  $T_{\max} = 2-4$  iterations already provide  
 845 most of the curvature correction at only linear cost.

846 This completes the proof. □  
 847

## 848 D EVALUATION METRICS AND HYPERPARAMETERS

850 Our code is available at <https://anonymous.4open.science/r/HippoTune-1DF2> and also included in  
 851 the supplementary material archive.  
 852

853 **Accuracy (Acc)** For any evaluation point  $i$  and task  $j$ , the *accuracy* is simply  
 854

$$855 \quad \text{Acc}(i, j) = a_{i,j},$$

856 i.e. the test accuracy on task  $j$  immediately after learning task  $i$ .  
 857

858 **Average Accuracy Across Tasks (AAA)** At the end of task  $i$ , the *average accuracy* across all seen  
 859 tasks is  
 860

$$861 \quad \text{AAA}(i) = \frac{1}{i} \sum_{j=1}^i a_{i,j}.$$

863 In particular,  $\text{AAA}(T)$  summarizes overall performance after the final task.

864 **Forgetting Measure (FM)** For each earlier task  $j < i$ , its *forgetting* after learning up to task  $i$  is  
 865

$$f_j^i = \max_{1 \leq l < i} a_{l,j} - a_{i,j},$$

866 i.e. the largest drop from its best-seen accuracy to its current accuracy. The *average forgetting* at the  
 867 end of all tasks is then

$$\text{FM} = \frac{1}{T-1} \sum_{j=1}^{T-1} f_j^T.$$

872 A smaller FM indicates less catastrophic forgetting.  
 873

874 We now introduce the hyperparameters one by one, including key hyperparameters of the ViT  
 875 backbone as well as those specific to our HippoTune training procedure.

876 **learning\_rate** Initial learning rate used by the optimizer.  
 877

878 **batch\_size** Number of samples processed in each training batch.  
 879

880 **epoch** Number of full passes over the training dataset.  
 881

882 **pretrained** Whether to load pretrained backbone weights (1: yes; 0: no).  
 883

884 **clip\_grad** Maximum norm for gradient clipping to prevent exploding gradients.  
 885

886 **size** Number of prompt vectors in the prompt pool.  
 887

888 **length** Length of each prompt vector (in tokens).  
 889

890 **initializer** Initialization scheme for prompt values (e.g. uniform for uniform distribution).  
 891

892 **prompt\_key\_init** Initialization scheme for prompt keys (e.g. uniform).  
 893

894 **batchwise\_prompt** Whether to share the same prompt across the entire batch (1: yes; 0: per-  
 895 example).  
 896

897 **global\_pool** Pooling method over ViT outputs: token (use class token) or avg (global average  
 898 pooling).  
 899

900 **head\_type** Input to the classification head: token, gap (global average pooling), prompt, or  
 901 token+prompt.  
 902

903 **freeze** List of backbone submodules to freeze during training, e.g. [blocks, patch\_embed,  
 904 cls\_token, norm, pos\_embed].  
 905

906  $\lambda_{\text{orth}}$  Weight of the orthogonality regularization term on prompt keys.  
 907

908 **layer\_idx** Indices of Transformer layers where prompting/retrieval is applied, e.g.  
 909 [0, 1, 2, 3, 4, 5, 6].  
 910

911 **T** Softmax temperature for computing attention weights over keys.  
 912

913 **delib\_steps** ( $T_{\text{max}}$ ) Maximum number of latent deliberation (iterative retrieval) steps.  
 914

915  $\alpha$  Query blending ratio in each iteration:  $q_{t+1} = \alpha q_t + (1 - \alpha) P(v_t)$ .  
 916

917 **eps\_stop** Early-stop threshold on  $\|v_t - v_{t-1}\|$  for terminating latent deliberation.  
 918

919 **topk** Number of top keys to retain for sparse retrieval; None means full softmax.  
 920

921 **fuse** Method to combine outputs across steps: mean (average) or last.  
 922

923  $\lambda_{\text{ent}}$  Weight for entropy regularization on the retrieval distribution.  
 924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

| 918 | Dataset        | pretrained | clip_grad | size | length | initializer | prompt_key_init | batchwise_prompt | lr    | batch_size | epochs |
|-----|----------------|------------|-----------|------|--------|-------------|-----------------|------------------|-------|------------|--------|
| 919 | Seq-CIFAR100   | 1          | 1.0       | 30   | 10     | uniform     | uniform         | 1                | 0.001 | 128        | 5      |
| 920 | Seq-ImageNet-R | 1          | 1.0       | 30   | 10     | uniform     | uniform         | 1                | 0.001 | 128        | 5      |
| 921 | Seq-CUB200     | 1          | 1.0       | 30   | 10     | uniform     | uniform         | 1                | 0.001 | 128        | 5      |

(a) Basic Training Hyperparameters

| 923 | Dataset        | global_pool | head_type | freeze                                            |
|-----|----------------|-------------|-----------|---------------------------------------------------|
| 924 | Seq-CIFAR100   | token       | token     | [blocks, patch_embed, cls_token, norm, pos_embed] |
| 925 | Seq-ImageNet-R | token       | token     | [blocks, patch_embed, cls_token, norm, pos_embed] |
| 926 | Seq-CUB200     | token       | token     | [blocks, patch_embed, cls_token, norm, pos_embed] |

(b) ViT-related Hyperparameters

| 928 | Dataset        | $\lambda_{orth}$ | layer_idx           | $T$  | delib_steps( $T_{max}$ ) | $\alpha$ | eps_stop | topk | fuse | $\lambda_{ent}$ |
|-----|----------------|------------------|---------------------|------|--------------------------|----------|----------|------|------|-----------------|
| 929 | Seq-CIFAR100   | 1.0              | [0,1,2,3,4,5,6]     | 0.01 | 4                        | 0.2      | 1e-5     | 5    | mean | 1               |
| 930 | Seq-ImageNet-R | 1.0              | [0,1,2,3,4,5,6]     | 0.01 | 4                        | 0.2      | 1e-5     | 5    | mean | 1               |
| 931 | Seq-CUB200     | 1.0              | [0,1,2,3,4,5,6,7,8] | 0.01 | 4                        | 0.2      | 1e-5     | 5    | mean | 1               |

(c) Hyperparameter Settings for Multi-Key Retrieval and Latent Deliberation

## E ADDITIONAL EXPERIMENTS

### E.1 ONLINE CONTINUAL LEARNING

Our method remains highly effective in the strictly online setting with a single data pass: on Seq-CIFAR100, **HippoTune-PreT** achieves **84.52%  $\pm$  0.23** Acc, **89.09%  $\pm$  0.21** AAA, and **7.48  $\pm$  0.17** FM—only  $\sim$ 2.8% below its offline (5-epoch) result and clearly outperforming buffer-free baselines such as L2P ( $75.38\% \pm 1.05$  Acc) and DualPrompt ( $80.89\% \pm 0.58$  Acc) (Table 5). On Seq-CUB200, it attains **65.99%  $\pm$  0.24** Acc, **74.52%  $\pm$  0.64** AAA, and **3.55  $\pm$  0.35** FM, surpassing CODA-Prompt’s  $62.63\% \pm 0.34$  Acc. The efficient variant **HippoTune-PreT-E** also yields strong performance ( $84.07\% \pm 0.28$  Acc,  $88.62\% \pm 0.36$  AAA,  $8.07 \pm 0.15$  FM on Seq-CIFAR100;  $64.69\% \pm 0.53$  Acc,  $72.94\% \pm 0.48$  AAA,  $4.19 \pm 0.32$  FM on Seq-CUB200). Moreover, a sharing-favored prompt allocation ( $T = 1$ ) outperforms an isolation-favored one ( $T = 0.01$ ) by  $\sim$ 0.8% on Seq-CIFAR100 and  $\sim$ 1.3% on Seq-CUB200, indicating that emphasizing shared knowledge significantly aids convergence in the challenging one-pass online regime.

### E.2 EFFECTIVENESS ON DIVERSE PRE-TRAINED BACKBONES

Experiments using DINO and SAM backbones further demonstrate the strong generalization of HippoTune. As shown in Table 6, our method consistently achieves superior final and average accuracy across both architectures, significantly outperforming baselines like L2P and DualPrompt. Notably, it surpasses CODA-Prompt by over 4% on the SAM backbone. These results indicate that the latent iterative deliberation mechanism is architecture-agnostic and adapts well to feature distributions from diverse pre-training objectives, effectively leveraging heterogeneous representations while minimizing forgetting.

### E.3 STABILITY AND BACKWARD TRANSFER ANALYSIS

As shown in Table 7, in experiments on ImageNet-R split into 10 tasks, HippoTune outperforms standard prompt-based baselines in both accuracy and retention. While LoRA and adapter-based methods such as SD-Lora and EASE achieve high plasticity due to their architectural capacity, they suffer from significant catastrophic forgetting. In contrast, HippoTune maintains a Forgetting Measure of 4.03%, which is significantly lower than the 6% to 7% range observed in these adapter variants. This demonstrates that our method offers superior stability and effectively mitigates the interference common in high-capacity adapter approaches.

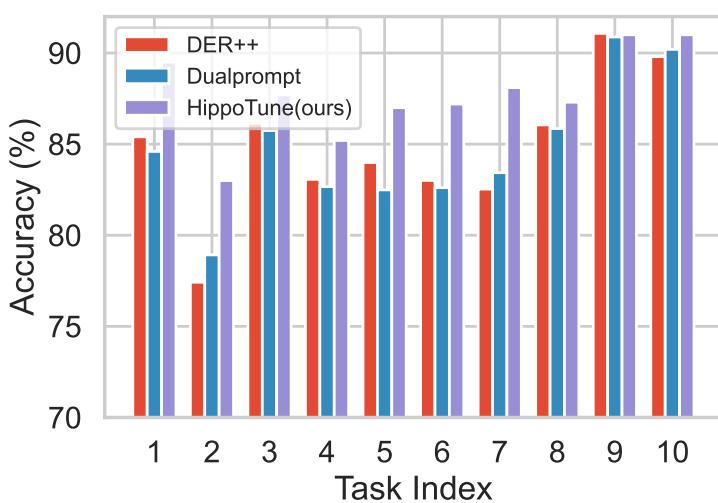


Figure 4: **Per-task accuracy comparison across 10 sequential tasks.** We report the task-wise Accuracy (%) of DER++, Dualprompt, and our HippoTune method on Seq-CIFAR100. HippoTune consistently outperforms the baselines, especially on early and late tasks, demonstrating its effective latent deliberation mechanism.

#### E.4 ACCURACY COMPARISON ACROSS ALL TASKS AFTER TRAINING

We provide a detailed visualization of the accuracy evolution across all tasks to evaluate the stability of the model throughout the training process. As shown in Figure 4, HippoTune consistently maintains a significant performance advantage over the baseline methods across the entire sequence.

#### E.5 RESULTS IN THE TASK-INCREMENTAL SETTING

Table 8 presents the comparative results under the Task-Incremental Learning (TIL) setting. HippoTune consistently outperforms the PEFT-CL baselines across both Seq-CIFAR100 and ImageNet-R benchmarks. While existing methods like CODA-Prompt already mitigate interference by conditioning on task identities, our approach further pushes the performance boundary, achieving the highest average accuracy and the lowest forgetting measures. This superiority indicates that HippoTune effectively leverages task-specific contexts to refine feature representations, ensuring robust learning of new tasks without compromising the stability of previously acquired knowledge.

Table 5: Comparison of Continual Learning Methods on Seq-CIFAR100 and Seq-CUB200 in Terms of Accuracy, Average Accuracy Across All Tasks (AAA), and Forgetting Measure (FM).

| Method                      | Seq-CIFAR100     |                  |                  | Seq-CUB200       |                  |                 |
|-----------------------------|------------------|------------------|------------------|------------------|------------------|-----------------|
|                             | Acc              | AAA              | FM               | Acc              | AAA              | FM              |
| <b>PEFT-CL (w/o buffer)</b> |                  |                  |                  |                  |                  |                 |
| L2P                         | 75.38 $\pm$ 1.05 | 84.38 $\pm$ 0.58 | 10.17 $\pm$ 0.62 | 60.78 $\pm$ 0.42 | 69.21 $\pm$ 0.46 | 5.37 $\pm$ 0.23 |
| DualPrompt                  | 80.89 $\pm$ 0.58 | 86.74 $\pm$ 0.37 | 10.32 $\pm$ 0.55 | 62.79 $\pm$ 0.27 | 71.25 $\pm$ 0.53 | 4.87 $\pm$ 0.25 |
| CODA-Prompt                 | 82.68 $\pm$ 0.39 | 88.01 $\pm$ 0.46 | 9.96 $\pm$ 0.53  | 62.63 $\pm$ 0.34 | 71.63 $\pm$ 0.41 | 4.79 $\pm$ 0.52 |
| <b>Ours (w/o buffer)</b>    |                  |                  |                  |                  |                  |                 |
| HippoTune                   | 84.52 $\pm$ 0.23 | 89.09 $\pm$ 0.21 | 7.48 $\pm$ 0.17  | 65.99 $\pm$ 0.24 | 74.52 $\pm$ 0.64 | 3.55 $\pm$ 0.35 |

1026 Table 6: Performance comparison of PEFT-CL methods and HippoTune on ImageNet-R (N=10) with  
 1027 DINO and SAM backbones (metrics: Acc, AAA, FM).

| Method           | ImageNet-R (N=10, Dino) |              |             | ImageNet-R (N=10, SAM) |              |             |
|------------------|-------------------------|--------------|-------------|------------------------|--------------|-------------|
|                  | Acc                     | AAA          | FM          | Acc                    | AAA          | FM          |
| <b>PEFT-CL</b>   |                         |              |             |                        |              |             |
| L2P              | 51.12                   | 62.68        | <b>1.34</b> | 56.93                  | 59.38        | 6.46        |
| DualPrompt       | 60.18                   | 66.91        | 4.40        | 65.13                  | 70.05        | 5.29        |
| CODA-Prompt      | 63.74                   | 69.07        | 5.43        | 66.61                  | 71.63        | 5.72        |
| <b>Ours</b>      |                         |              |             |                        |              |             |
| <b>HippoTune</b> | <b>65.62</b>            | <b>70.29</b> | 3.78        | <b>70.92</b>           | <b>75.54</b> | <b>5.16</b> |

Table 7: Forgetting rates (FM) and backward transfer (bwt).

| Metric | l2p   | dualprompt | codaprompt | sdlora | ease  | ranpac | hippotune |
|--------|-------|------------|------------|--------|-------|--------|-----------|
| FM     | 4.11  | 5.18       | 5.39       | 7.34   | 6.37  | 4.62   | 4.03      |
| bwt    | -4.03 | -5.18      | -5.26      | -7.24  | -6.21 | -4.56  | -3.94     |

1041 Table 8: Task-Incremental Learning (TIL) performance comparison on Seq-CIFAR100 and ImageNet-  
 1042 R. We report Average Accuracy (Acc), Average After Accuracy (AAA), and Forgetting Measure  
 1043 (FM). Best results are highlighted in **bold**.

| Method           | Seq-CIFAR100 |              |             | ImageNet-R   |              |             |
|------------------|--------------|--------------|-------------|--------------|--------------|-------------|
|                  | Acc          | AAA          | FM          | Acc          | AAA          | FM          |
| <b>PEFT-CL</b>   |              |              |             |              |              |             |
| L2P              | 96.84        | 97.04        | 0.57        | 89.45        | 89.24        | 0.53        |
| DualPrompt       | 97.25        | 97.52        | 0.62        | 87.72        | 88.21        | 0.71        |
| CODA-Prompt      | 97.83        | 98.04        | 0.50        | 89.57        | 89.66        | 0.52        |
| <b>Ours</b>      |              |              |             |              |              |             |
| <b>HippoTune</b> | <b>98.54</b> | <b>98.68</b> | <b>0.44</b> | <b>90.43</b> | <b>90.41</b> | <b>0.48</b> |

## F THE USE OF LARGE LANGUAGE MODELS (LLMs)

1062 In this paper, large language models (LLMs) were used only as general-purpose assistive tools for  
 1063 language polishing, improving writing structure, and retrieving and organizing references. LLMs did  
 1064 not contribute to research ideation, method design, experiment execution, or result analysis, and thus  
 1065 do not constitute a substantive scholarly contribution.