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ABSTRACT

Studies have shown that catastrophic forgetting primarily stems from the difficulty
of reactivating old memories; although parameter-efficient fine-tuning can miti-
gate forgetting while keeping most model parameters frozen, it still falls short in
fully reawakening knowledge of prior tasks. In contrast, humans can efficiently re-
trieve and flexibly integrate existing experiences when learning new tasks, thereby
maintaining stable performance on earlier ones. During cognition, the hippocam-
pal EC–DG–CA3–CA1 circuit engages in multiple rounds of associative recall,
and its pattern-separation and memory-completion mechanisms excel at activat-
ing historical information. Inspired by this mechanism, we propose HippoTune,
a latent-space iterative retrieval strategy that embeds a query–retrieve–feedback
loop within each Transformer layer. Starting from the hidden state as an ini-
tial query, the model performs a few rounds of soft key–value retrieval, projects
the retrieved signals back into the query, and updates it iteratively until conver-
gence or a preset iteration limit. Theoretically, we show this process implements
a Krylov-style polynomial approximation, equivalent to a differentiable second-
order preconditioner, thereby deepening retrieval in a principled way. Empirically,
HippoTune outperforms classical buffer-free PEFT-CL methods by 5–8% in ac-
curacy across three vision benchmarks, while reducing training FLOPs by 50%,
effectively mitigating forgetting under tight compute constraints. Code is available
at: https://anonymous.4open.science/r/HippoTune-1DF2.

1 INTRODUCTION

Deep neural networks excel under independent and identically distributed (i.i.d.) data, yet in continual
learning (CL) settings where tasks arrive sequentially and distributions shift, they often suffer catas-
trophic forgetting: performance on earlier tasks degrades sharply when learning new ones McCloskey
& Cohen (1989); Kirkpatrick et al. (2017). Classical approaches such as replay, regularization, and
structural isolation often require large-scale fine-tuning of the entire network, leading to high compu-
tational and storage costs as models grow. Moreover, many such methods are largely model-agnostic
and do not leverage inductive biases of prevalent architectures such as Transformers Rebuffi et al.
(2017); Kirkpatrick et al. (2017); Mallya & Lazebnik (2018); Vaswani et al. (2017).

Parameter-efficient fine-tuning (PEFT) mitigates these costs by inserting a small number of trainable
modules (e.g., adapters, LoRA modules, or prompts) into an otherwise frozen backbone, substantially
reducing training overhead Houlsby et al. (2019); Hu et al. (2022); Lester et al. (2021); Li & Liang
(2021). Recent PEFT-CL methods further maintain a “parameter/prompt pool” and, at inference time,
retrieve and activate a subset of submodules using the sample representation as a query. However, this
single-step retrieval can under-activate old-task memories and often requires a full backbone forward
pass to extract high-level features for the query, introducing additional latency. In contrast, humans
performing previously learned tasks engage in multiple rounds of associative recall and integration,
leading to richer reactivation of historical knowledge. Concretely, sparse cues can trigger multi-round
recall via the hippocampal EC–DG–CA3–CA1 circuit, enabling pattern separation and completion
without repeatedly reconstructing high-level semantic representations. This circuit serves as a core
pathway for memory formation and retrieval in the brain: information flows from the entorhinal
cortex (EC), through the dentate gyrus (DG) for pattern separation, is completed via auto-associative
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Figure 1: Classic PEFT-CL vs. HippoTune. (Left) Standard prompt-based continual learning
retrieves a single prompt v(l) per ViT layer to compute h(l). (Right) HippoTune iteratively retrieves
and integrates multiple prompts {v(l)1 , . . . , v

(l)
T } using h(l−1), enabling deeper memory activation

and improved retention.

recurrence in CA3, and finally integrated in CA1 into a coherent memory traceYassa & Stark (2011);
Treves & Rolls (1994).

Inspired by the pattern separation, association, and integration mechanisms of the EC–DG–CA3–CA1
circuit, we propose Latent Deliberation, a layer-internal, differentiable, iterative retrieval mechanism.
At each Transformer layer, we embed a light-weight associative loop: the previous layer’s hidden
state serves as the initial query; we perform soft key–value retrieval to activate relevant memories;
the retrieved signal is linearly projected and fed back to update the query; the loop continues until
convergence or a maximum number of iterations; finally, we fuse the per-iteration outputs to realize
multi-level completion and integration of prior-task knowledge. Operating entirely in latent space
avoids repeated construction of high-level features, and exposes practical budget controls via the
maximum iteration count, a convergence threshold, and top-k sparsity. This unified view also clarifies
relationships to prompt-pool methods such as L2P Wang et al. (2022b), DualPrompt Wang et al.
(2022a), and CODA-Prompt Smith et al. (2023): these can be seen as single-depth retrieval, whereas
our method provides a differentiable deepening of retrieval depth to increase expressiveness and
precision in memory access. See Fig. 1 for the differences between our method and the classic
PEFT-CL approaches.

On the theory side, we characterize two key properties. First, near a fixed point, multi-step iteration
implements a Krylov subspace polynomial approximation to the inverse Hessian, yielding an implicit
second-order preconditioner for gradient propagation, achieving curvature correction in a finite
number of steps without explicitly computing or storing second-order information Saad (2003);
Martens & Grosse (2015). Second, we provide convergence and stability conditions based on step
sizes and Jacobian spectral bounds, which translate into actionable choices for maximum iteration
count, temperature, and entropy regularization; in effect, they operationalize the intuition that “longer
deliberation/retrieval leads to better old-task performance” into verifiable and tunable optimization
criteria Boyd & Vandenberghe (2004).

We highlight four key contributions:

• A unified retrieval perspective for PEFT-CL. We distill existing prompt-pool continual learning
methods into a single key–value formulation, clarifying their shared trade-offs and the limits of
one-shot retrieval.

• Latent Deliberation: hippocampal-inspired iterative retrieval. Drawing on the
EC–DG–CA3–CA1 circuit, we embed a lightweight, multi-step soft lookup–and–feedback process
within each Transformer layer, deepening memory activation without extra backbone passes.

• Krylov-subspace preconditioning theory. We prove that our finite-step loop implements a poly-
nomial approximation to the inverse Hessian, acting as an implicit second-order preconditioner. We
also derive convergence and stability criteria to guide iteration count, temperature, and regulariza-
tion.

• Strong performance at low compute cost. On three vision benchmarks, HippoTune delivers
substantial accuracy gains over one-shot PEFT-CL baselines while using only about half the training
FLOPs, demonstrating efficiency under tight resource constraints.
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2 RELATED WORK

Continual Learning with Parameter-Efficient Fine-Tuning Within PEFT paradigm, continual
learning has evolved into a prominent direction, now marked by the convergence of modularity,
routing, and theoretical grounding. Early methods such as L2P Wang et al. (2022b), DualPrompt Wang
et al. (2022a), and CoDA-Prompt Smith et al. (2023) introduced learnable prompt pools with
key–query retrieval to select modules during training and inference, mitigating forgetting without
relying on replay. Later approaches such as LAE Gao et al. (2023a), HiDe Zuo et al. (2023), and MoE-
Adapter Yu et al. (2024) have further improved adaptability and efficiency via dynamic expansion,
module merging, and expert routing. Theoretical work, including NTK analysis Doan et al. (2021)
and loss landscape studies, has provided insights into how routing reduces gradient interference.
However, most methods lack end-to-end optimization and seldom explore fundamental architectural
principles for CL, limiting their scalability.

Hippocampus–Neocortex Inspired Continual Learning Inspired by the hippocampus–neocortex
interplay, continual learning research has proposed the Complementary Learning Systems (CLS)
theory: the hippocampus rapidly encodes new experiences, while the neocortex gradually extracts
generalized knowledge. Building on this, models like FearNet Kemker & Kanan (2018), CLS-
ER Arani et al. (2022), and Triple Memory Networks Wang et al. (2021) employ short- and long-term
memory modules to balance fast adaptation with long-term retention via experience replay. Key
cognitive mechanisms such as hippocampal replay, pattern separation (DG), and pattern completion
(CA3) have been abstracted into algorithmic strategies. Some models adopt key–value memory for
associative retrieval, while GATE Liu et al. (2025) simulates gated pathways across hippocampal
subregions. Despite improving the stability–plasticity trade-off, these brain-inspired methods are
often architecturally complex, replay-dependent, and rarely applied under the PEFT paradigm. In
this work, we propose a fine-grained emulation of hippocampal associative memory, aligned with the
EC–DG–CA3–CA1 circuit. We further validate its biological plausibility and computational efficacy
from both theoretical and empirical perspectives.

3 METHODOLOGY

We unify all PEFT modules into a shared retrieval pool and perform iterative key–value lookups
and one-shot fusion at each Transformer layer, mimicking EC–DG–CA3–CA1 hippocampal loops
to dynamically activate and integrate past-task knowledge. The model is trained end-to-end with
classification, orthogonality, and entropy losses, using truncated BPTT to align training and inference
budgets.

3.1 PROBLEM DEFINITION

In the continual learning (CL) setting, the model is exposed to a sequence of tasks {T1, T2, . . . , TL},
each associated with a dataset Dt = {(xi, yi)}. The goal is to learn a new task Tt while maintaining
performance on previous tasks {T1, . . . , Tt−1}. Formally, given a model output f(x; Θ), we aim to
optimize:

min
Θ

t∑
k=1

L(k)
cls

(
f(x; Θ)

)
, (1)

where L(k)
cls denotes the cross-entropy classification loss for task k.

3.2 PEFT-CL FRAMEWORK FORMALIZATION

In this subsection, we present a formalization of the PEFT-CL framework: we unify all lightweight
modules into a shared retrieval pool, define how to compute relevance scores from a frozen backbone
state, and show how to aggregate module outputs to update the model representation.

We collect all m parameter-efficient modules into a single pool

V = {θ(1), . . . , θ(m)},

3
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indexed by a learnable key matrix

K = [k(1), . . . , k(m)]⊤ ∈ Rm×d.

Each θ(i) parameterizes a small PEFT block that takes a layer hidden state as input and produces a
residual update (for example, an adapter, a prompt-induced projection, or a LoRA-style low-rank
block).

Following prior works Gao et al. (2023b); He et al. (2022), we use ϕ(x; θ(i)) as an abstract notation
to unify these different PEFT modules; details of the specific form are provided in Appendix A. Here
ϕ(·; θ(i)) denotes the forward mapping of the i-th PEFT module applied to the hidden state x.

Given a frozen-backbone hidden state x ∈ Rd, we first compute the routing scores

s =
xK⊤

τ
, g = softmax(s) ∈ ∆m−1, (2)

with optional Top-k truncation. Each module then emits a residual ∆h(i) = ϕ
(
x; θ(i)

)
∈ Rd, which

can be understood as the effect of the i-th PEFT module on this layer’s representation. We stack all
residuals as

∆H = [∆h(1), . . . ,∆h(m)]⊤.

Starting from the current backbone state h = x, we conceptually update it by mixing all module
outputs with the routing weights g:

h ← h + g⊤ ∆H. (3)

In implementation, this update is realized by integrating the PEFT modules into the backbone block
so that the layer directly outputs the updated h; the residual formulation above is an equivalent,
unified view used for analysis. We provide a detailed explanation in Appendix A on how classical
PEFT-CL methods correspond to this framework.

Why this unification matters.

1. Query cost. Using the model’s hidden output as the retrieval query leverages rich semantic
features but incurs extra computation.

2. Retrieval depth. All existing PEFT-CL methods perform only a single retrieval; this
framework points naturally to deeper, iterative retrieval strategies.

3. Key-gating design. Learning and regularizing K, and choosing temperature, Top-k or
entropy penalties, determines which modules activate.

3.3 LATENT DELIBERATION

At each Transformer layer, we extend the standard forward pass into a controllable dynamic process,
modeled as an iterative associative loop.

We treat the hidden state from the previous layer h(l−1) ∈ Rd as the initial query: q(1) = h(l−1). Each
layer maintains a learnable key matrix K(l) ∈ RM×d and value matrix V (l) ∈ RM×dv to capture
old-task subspaces. This is inspired by the EC–DG structure in the hippocampus, where K(l) acts as
a guide to fixed-point memory.

At step t, the query q(t) retrieves from memory via:

S(t) = softmax

(
q(t)K(l)⊤

T

)
, v(t) = S(t)V (l) , (4)

where the temperature T > 0 modulates retrieval sharpness. Optionally, Top-k filtering can be applied
to S(t) to retain only the most relevant memory slots. The top-k hyperparameter is robust within the
range of 3 to 10. As this is a standard setting for prompt-based methods, we omit it from further
discussion.

4
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Figure 2: A comparative illustration of HippoTune. At each Transformer layer, use the hidden
state as an initial query to iteratively perform key–value soft retrieval (with orthogonality and entropy
regularization), update the query via projected residual feedback until convergence or max iterations,
then fuse all retrievals into a memory-enhanced output, enabling selective multi-round activation of
parameter-pool submodules.

Then, the query is updated by incorporating the retrieved memory:

q(t+1) = α q(t) + (1− α)P (l)
(
v(t)
)
, (5)

where P (l) is a layer-specific linear transformation, and α ∈ [0, 1] controls the blending. The
CA3 region features an auto-associative recurrent mechanism and can be regarded as the core of
associative memory. This can be seen as a minimal abstraction of the recurrent CA3 circuit performing
memory completion and state integration. The loop terminates when either ∥v(t) − v(t−1)∥2 < ε or
t = Tmax.

To avoid repeated forward passes after each retrieval iteration, we adopt a one-shot fusion strategy,
which integrates all retrieved vectors within the latent space in a unified manner. Specifically, the
retrieval vector v(t) obtained at each iteration t is concatenated along the feature dimension to form
an aggregated retrieval vector:

Vcat =
[
v(1) ∥ v(2) ∥ · · · ∥ v(T )

]
∈ RTdv , (6)

where ∥ denotes vector concatenation.

Next, the output of the (l−1)-th layer, denoted as h(l−1), is combined with the concatenated retrieval
vector Vcat and fed into the l-th layer’s ViT block to produce the output of layer l:

h(l) = ViT(l)
([

h(l−1) ∥Vcat

])
, (7)

where ViT(l) represents the backbone network of the l-th layer. This one-shot fusion operation
corresponds to the CA1 region in the hippocampal circuit, which is responsible for integrating the
retrieved information from both DG and CA3 and producing a complete memory representation.

Importantly, this mechanism enables explicit controllability during inference via hyperparameters
such as Tmax, ε, and Top-k, allowing flexible trade-offs between retrieval quality and efficiency. The
method framework is shown in Fig. 2. The pseudocode is provided in Appendix B.

3.4 END-TO-END TRAINING OBJECTIVE

We design a unified loss to jointly optimize task performance, retrieval sparsity, and module disentan-
glement:

L = Lcls + λorth Lorth + λent Lent . (8)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Classification Loss Lcls: Cross-entropy loss supervising downstream performance:

Lcls = −
1

N

N∑
i=1

C∑
c=1

yi,c log pi,c , (9)

where yi,c is the one-hot label and pi,c the predicted probability.

• Orthogonality Regularization Lorth: Encourages keys K(l) to be orthogonal, reducing memory
interference:

Lorth =
∑
l

∥∥∥K(l)⊤K(l) − I
∥∥∥2
F
. (10)

• Entropy Regularization Lent: Controls the entropy of retrieval weights S(t), balancing sharpness
and robustness:

Lent = −
∑
l

T∑
t=1

∑
i

S
(t)
i logS

(t)
i . (11)

The weights λorth and λent balance these objectives, guiding the model towards disentangled,
controllable, and generalizable behaviors.

During training, we adopt Truncated Backpropagation Through Time (BPTT), propagating
gradients only through the final steps of the retrieval loop. This design aligns with the dynamic budget
at inference (e.g., Tmax, Top-k), ensuring consistency between training and deployment.

4 THEORETICAL ANALYSIS: MULTI-STEP RECURRENCE AND HIGHER-ORDER
PRECONDITIONING

We abstract a single-layer “recurrence” as gradient descent on a smooth potential function ϕ(q):

q(t+1) = q(t) − η∇ϕ
(
q(t)
)
, t = 1, 2, . . . , Tmax − 1, (12)

with step size η > 0. The outer loss depends only on the final state q(Tmax), so we denote

gout =
∂L

∂q(Tmax)
. (13)

Proposition 1 (Krylov Subspace Polynomial Approximation). Suppose ϕ is twice differentiable near
a fixed point q⋆, and its Hessian H = ∇2ϕ(q⋆) is symmetric positive definite. Further assume the
step size satisfies ρ(I − ηH) < 1. Define

J = I − ηH, P =
∂ (step)

∂θ

∣∣∣∣
q⋆

, bθ = P⊤ gout. (14)

Then the leading term of the gradient w.r.t. parameters θ after Tmax steps is

∇θLTmax
=

Tmax−1∑
k=0

(J⊤)k bθ = KTmax
(H) bθ, (15)

where

KTmax
(H) =

Tmax−1∑
k=0

(I − ηH⊤)k (16)

is the Krylov series operator. As Tmax →∞, the Neumann series converges and

KTmax(H)→ (η H⊤)−1, =⇒ ∇θL∞ ≈ H−1 bθ. (17)

The detailed proof is provided in Appendix C.
Corollary 1 (Effect of Finite-step Preconditioning). For any finite Tmax, the operator KTmax

(H) is
a truncated polynomial approximation of H−1 in the Krylov subspace. In practice, Tmax = 2 ∼ 4
already yields effective second-order correction at only linear computational cost.
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Method GFLOPs Seq-CIFAR100 Seq-ImageNet-R Seq-CUB200

Acc AAA Acc AAA Acc AAA

Classical-CL (w/ buffer)
LwF Li & Hoiem (2016) 16.88 80.29±0.86 87.33±0.73 60.74±0.51 68.55±0.65 69.75±1.37 80.45±2.08
DER++ Buzzega et al. (2020) 16.88 84.50±1.67 90.16±0.61 54.21±0.52 65.26±0.58 77.42±0.71 83.61±0.09

PEFT-CL (w/o buffer)
L2P Wang et al. (2022b) 35.20 82.76±1.17 88.48±0.83 71.26±0.44 76.13±0.46 68.39±0.46 78.29±0.38
DualPrompt Wang et al. (2022a) 35.38 85.56±0.33 90.33±0.33 68.22±0.20 73.81±0.39 66.00±0.57 77.92±0.50
CODA-Prompt Smith et al. (2023) 35.84 86.28±0.26 91.05±0.37 74.05±0.41 78.14±0.39 72.45±0.51 78.94±0.37
LAE-PreT Gao et al. (2023a) 35.68 85.25±0.66 89.71±0.42 62.81±0.48 69.47±0.44 77.48±0.79 85.83±0.68
HiDe-Prompt Zuo et al. (2023) 35.25 88.25±0.24 92.69±0.27 74.65±0.14 78.46±0.18 84.27±0.16 88.64±0.19

Ours (w/o buffer)
HippoTune (ours) 16.92 87.65±0.21 92.07±0.25 74.85±0.17 79.92±0.22 81.12±0.34 86.63±0.41

Table 1: Comparison of Continual Learning Methods on Seq-CIFAR100, Seq-ImageNet-R, and
Seq-CUB200 in terms of Accuracy (Acc) and Average Accuracy Across All Tasks (AAA), along
with Training Time.

Practical Guidelines

1. Ensure convergence: Spectrally normalize H or choose a sufficiently small η so that
ρ(I − ηH) < 1.

2. Choose Tmax: A small constant Tmax ≈ 2–4 balances second-order preconditioning with
computational budget.

3. Early stopping: When ∥q(t+1) − q(t)∥ falls below a threshold, the Krylov polynomial has
effectively converged and further iterations are unnecessary.

Conclusion. The revised derivation eliminates the erroneous “product = series sum” step and uses the
chain rule and recursive expansion to rigorously demonstrate how multi-step recurrence implicitly
implements Newton or natural-gradient second-order preconditioning in the gradient.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Benchmarks We evaluate on three mainstream vision continual-learning benchmarks: Seq-
CIFAR100 Krizhevsky (2009); Lomonaco et al. (2021) is randomly split by class into 10 subtasks,
each with 10 categories; Seq-ImageNet-R Boschini et al. (2022) is divided into 10 subtasks of 20
classes each; Seq-CUB200 Wah et al. (2011); Lomonaco et al. (2021) is split into 10 subtasks, each
containing 20 bird species. We conduct evaluations under the Class-Incremental Learning.

Compared Methods We evaluate two broad classes of methods. First, classical continual learning
methods: LwF Li & Hoiem (2016) is a regularization-based approach and does not use any replay
buffer, while DER++ Buzzega et al. (2020) is replay-based and in our experiments maintains a
memory buffer of 1000 images. Second, buffer-free PEFT-CL methods, including L2P Wang et al.
(2022b), DualPrompt Wang et al. (2022a), CODA-Prompt Smith et al. (2023), LAE-PreT Gao et al.
(2023a), and HiDe-Prompt Zuo et al. (2023), freeze the backbone and train only lightweight inserted
modules. We include HippoTune in the buffer-free setting and re-implement all baselines under the
same backbone and training regime, using published results for LAE-PreT and HiDe-Prompt.

Implementation Details We adopt ViT-Base/16 as the backbone Dosovitskiy et al. (2021), freeze
all non-PEFT parameters, and fine-tune only the key–value projection layers of the inserted prompt
modules. Training uses the Adam optimizer Kingma & Ba (2015) with a base learning rate of 0.01,
a batch size of 128, and 5 epochs per subtask. Unless otherwise noted, modules are inserted into
layers 1–7 and an orthogonality regularization coefficient of λ = 1 is applied. All experiments run on
NVIDIA L40S GPUs without any replay buffer, and results are averaged over three random seeds.
The detailed hyperparameter settings and code link are provided in Appendix D.
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Method GFLOPs ImageNet-R (N = 5) ImageNet-R (N = 10) ImageNet-R (N = 20)

Acc AAA Acc AAA Acc AAA

Full Fine-Tuning 16.88 64.92±0.87 75.57±0.50 60.57±1.06 72.31±1.09 49.95±1.31 65.32±0.84

PEFT-CL (w/o buffer)
L2P Wang et al. (2022b) 35.20 73.04±0.71 76.94±0.41 71.26±0.44 76.13±0.46 68.97±0.51 74.16±0.32
DualPrompt Wang et al. (2022a) 35.38 69.99±0.57 72.24±0.41 68.22±0.20 73.81±0.39 65.23±0.45 71.30±0.16
CODA-Prompt Smith et al. (2023) 35.84 76.63±0.27 80.30±0.28 74.05±0.41 78.14±0.39 69.38±0.33 73.95±0.63
HiDe-Prompt Zuo et al. (2023) 35.25 74.77±0.25 78.15±0.24 74.65±0.14 78.46±0.18 73.59±0.19 77.93±0.19

Ours (w/o buffer)
HippoTune (ours) 16.92 77.16±0.28 81.04±0.37 74.85±0.17 79.92±0.22 74.06±0.25 79.33±0.49

Table 2: Comparison of Continual Learning Methods on ImageNet-R under different task numbers
(N), including GFLOPs. Results are reported in terms of final Accuracy (Acc ↑) and Average Accuracy
Across All Tasks (AAA ↑).
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Figure 3: Further analysis on Seq-CIFAR100 for three design choices. (Left) Moderate max iterations
(e.g., Tmax = 4) balance early gains and late stability; too few/many degrade results. (Middle)
Temperature T tunes retrieval softness: mid-range (10−1) is best; extremes underperform. (Right)
PEFT depth: combining shallow+middle (1–7) beats shallow (1–4), middle (5–8), or deep (9–12),
highlighting multi-level memory.

5.2 EXPERIMENTAL RESULTS

In this section, we adopt Acc and AAA as evaluation metrics. Table 1 presents the results of various
methods on three benchmarks, along with their respective computational cost (GFLOPs).

• Comparison with Classical CL Methods Using Replay Buffers Without relying on sample replay,
HippoTune achieves Acc improvements of approximately 7.4, 14.1, and 11.4 percentage points over
LwF on Seq-CIFAR100, Seq-ImageNet-R, and Seq-CUB200, respectively. Compared to DER++,
it yields gains of around 3.2, 20.6, and 3.7 points. In terms of AAA, HippoTune also outperforms
LwF (+4.7%) and DER++ (+1.9%), clearly demonstrating that the latent-space iterative retrieval
mechanism can effectively suppress forgetting without any additional memory overhead.

• Comparison with Other PEFT-CL Methods Compared to typical prompt-tuning methods (L2P,
DualPrompt, CODA-Prompt, LAE-PreT), HippoTune achieves the highest performance on Seq-
ImageNet-R with 74.85% Acc and 79.92% AAA. On Seq-CIFAR100 (87.65%/92.07%) and
Seq-CUB200 (81.12%/86.63%), it also surpasses most PEFT-CL baselines, second only to HiDe-
Prompt with 88.25%/92.69% and 84.27%/88.64%, respectively. The superior performance of
HiDe-Prompt on these two datasets can be largely attributed to its higher computational budget and
more sophisticated multi-step prompting design. Notably, HippoTune achieves better results than
HiDe-Prompt on Seq-ImageNet-R (despite using only 16.92 GFLOPs compared to 35.25 GFLOPs),
and delivers comparable performance on the other two benchmarks—demonstrating its efficiency
and competitiveness under limited computational resources.

• Resource Efficiency and Training Speed With a computational cost of only 16.92 GFLOPs,
approximately half that of most mainstream PEFT-CL methods (around 35 GFLOPs), HippoTune
significantly improves training speed and GPU memory efficiency. Under identical hardware
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settings, its training time is reduced by approximately 30% on average, confirming its practicality
for scenarios with constrained computational resources.

5.3 ABLATION STUDY

Table 3: Ablation Study: Impact of Removing Individual
Components of Latent Deliberation on Seq-CIFAR100 and
Seq-ImageNet-R

Variant Seq-CIFAR100 Seq-ImageNet-R

Acc AAA Acc AAA

Full Method 87.65 92.07 74.85 79.92
Baseline 86.28 90.33 72.93 78.16

w/o Orthogonality Regularization 87.32 91.87 74.09 78.77
w/o Entropy Regularization 87.43 91.30 74.67 79.55
w/o Iterative Retrieval (Tmax = 1) 86.51 90.63 72.89 78.10
w/o Orthogonality & Entropy (Loop only) 87.24 91.11 74.37 78.53
w/o Iterative Retrieval & Orthogonality 86.40 90.43 72.74 77.92
w/o Iterative Retrieval & Entropy 86.32 90.41 72.72 78.09

w/o Fusion Strategy (last-step only) 87.27 91.28 74.13 79.04
w/o Early Stopping 87.36 91.39 74.22 79.13

In the ablation study, constraining
the number of iterative retrieval steps
to just one (Tmax = 1) leads to a
notable performance drop: Acc/AAA
on Seq-CIFAR100 declines from
87.65%/92.07% to 86.81%/90.63%,
and on Seq-ImageNet-R from
74.85%/79.92% to 73.25%/78.62%.
See Table 3 for the detailed results.
This highlights the critical role of
multi-step retrieval in integrating
historical information and mitigating
forgetting. Removing orthogonality
regularization has a limited effect on
Seq-CIFAR100, but results in a nearly
1.2-point drop in AAA on the more
complex Seq-ImageNet-R, indicating
that maintaining the diversity of
retrieved vectors is especially important for leveraging prior knowledge in challenging domains.
In contrast, removing entropy regularization or adopting a fusion strategy that only integrates
the last-step retrieval affects overall performance by less than 0.6 points, suggesting their roles
are more in stabilizing and fine-tuning the core mechanism. These findings suggest that iterative
retrieval and orthogonality regularization are central to preventing catastrophic forgetting, while
entropy regularization and fusion strategy can be flexibly adjusted in resource-constrained or
inference-sensitive settings.

5.4 FURTHER ANALYSIS

ImageNet-R under Varying Task Counts We split ImageNet-R into sequences of N = 5, 10, and
20 tasks. HippoTune consistently outperforms leading prompt-based PEFT-CL methods—gaining
around 0.5–0.8 points at N = 5 versus CODA-Prompt and 0.2–1.5 points at N = 10 versus
HiDe-Prompt—and even in the hardest N = 20 setting maintains a similar margin. Over the range
N = 5→20, its overall accuracy drops by only about 3 points, far less than typical PEFT-CL declines.
Crucially, these gains come at just 16.92 GFLOPs, underscoring HippoTune’s efficiency and resilience
to forgetting. See Table 2 for the detailed results.

Impact of Iteration Length We sweep Tmax ∈ {1, 3, 4, 5, 7} on Seq-CIFAR100 (Fig. 3). In-
creasing from Tmax = 1 to 3 yields clear gains on tasks 2–6, while Tmax = 4 delivers the best
overall accuracy—particularly mid-sequence—improving by about 1–2 points over Tmax = 1. Larger
budgets (5 or 7) offer only marginal early-task gains and actually degrade later-task performance,
suggesting that excessive iterations introduce noise or redundancy. Thus, Tmax = 4 strikes the right
balance between effective memory reuse and stability.

Accuracy Comparison Across All Tasks After Training Figure 4 in Appendix E.4 shows that
HippoTune consistently outperforms both DER++ and DualPrompt throughout the full task sequence.
In the early tasks it gains a clear lead, demonstrating its ability to recall prior knowledge immediately.
This advantage persists in the mid-stage, with baseline methods trailing by a noticeable margin, and
even as all methods degrade in later tasks, HippoTune’s drop is the smallest. Overall, iterative retrieval
both reinforces early memories and promotes steadier performance across all ten tasks.

Impact of Temperature and Insertion Depth We swept the retrieval temperature T from 10−3 to
10 on Seq-CIFAR100 (Fig. 3). Accuracy peaks at T = 10−1, with mid-phase tasks (3–7) improving
by 1–2 points versus T = 10−3 and smoother convergence later. Extremes (T = 10 or 10−3) degrade

9
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performance, especially in mid-to-late tasks, indicating that moderate temperature best balances
knowledge sharing and task isolation. Insertion depth experiments (Fig. 3) compare placing the
module in shallow (layers 1–4), middle (5–8), deep (9–12), or shallow+middle (1–7) blocks. The
1–7 configuration wins—outperforming shallow-only and middle-only by 0.5–1 point and showing
smaller late-task drops than deep-only. This confirms that early-layer feature retrieval plus mid-layer
memory integration yields the strongest continual-learning gains.

Model Performance in Online Continual Learning Setting Our method remains highly effective
even in the online setting with just one epoch of training. On seq-CIFAR100, it achieves 84.52%
accuracy—less than 3% below the offline result—and surpasses the offline performance (epoch = 5)
of some competing methods (see Appendix E.1).

Effectiveness on Diverse Pre-trained Backbones Experiments using DINO and SAM backbones
further demonstrate the strong generalization of HippoTune. As shown in Table 6 (see Appendix
E.2), our method consistently achieves superior final and average accuracy across both architectures,
significantly outperforming baselines like L2P and DualPrompt. Notably, it surpasses CODA-Prompt
by over 4% on the SAM backbone. These results indicate that the latent iterative deliberation
mechanism is architecture-agnostic and adapts well to feature distributions from diverse pre-training
objectives, effectively leveraging heterogeneous representations while minimizing forgetting.

Stability and Backward Transfer Analysis As shown in Table 7 (see Appendix E.3),in experi-
ments on ImageNet-R split into 10 tasks, HippoTune outperforms standard prompt-based baselines in
both accuracy and retention. While LoRA and adapter-based methods such as SD-Lora and EASE
achieve high plasticity due to their architectural capacity, they suffer from significant catastrophic
forgetting. In contrast, HippoTune maintains a Forgetting Measure of 4.03%, which is significantly
lower than the 6% to 7% range observed in these adapter variants. This demonstrates that our method
offers superior stability and effectively mitigates the interference common in high-capacity adapter
approaches.

Results in the Task-Incremental Setting Table 8 (see Appendix E.5) presents the comparative
results under the Task-Incremental Learning (TIL) setting. HippoTune consistently outperforms the
PEFT-CL baselines across both Seq-CIFAR100 and ImageNet-R benchmarks. While existing methods
like CODA-Prompt already mitigate interference by conditioning on task identities, our approach
further pushes the performance boundary, achieving the highest average accuracy and the lowest
forgetting measures. This superiority indicates that HippoTune effectively leverages task-specific
contexts to refine feature representations, ensuring robust learning of new tasks without compromising
the stability of previously acquired knowledge.

6 CONCLUSION

We introduced HippoTune, a hippocampal-inspired continual learning method that embeds an iterative
retrieval loop into each Transformer layer. By simulating the brain’s multi-round associative recall
and integration—combining pattern separation (DG) and completion (CA3–CA1)—HippoTune
deepens memory access within PEFT frameworks without incurring repeated backbone passes. Our
convergence analysis establishes a connection to Krylov-subspace second-order preconditioning,
guiding choices of iteration count, temperature, and regularization. Experimentally, HippoTune
delivers buffer-free gains across visual benchmarks, outperforms prompt-pool methods, and halves
PEFT-CL’s computational cost. Limitations include evaluation on two-level hierarchies and image
classification; future work will explore deeper loops, broader modalities, and adaptive retrieval
budgets to further bridge biological memory mechanisms and scalable continual learning.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual
learning method based on complementary learning system. In International Conference on
Learning Representations (ICLR), 2022.

Matteo Boschini, Lorenzo Bonicelli, Angelo Porrello, Giovanni Bellitto, Matteo Pennisi, Simone
Palazzo, Concetto Spampinato, and Simone Calderara. Transfer without forgetting. In European
conference on computer vision, pp. 692–709. Springer, 2022.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: A strong, simple baseline. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Thang Doan, Mehdi Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier. A
theoretical analysis of catastrophic forgetting through the NTK overlap matrix. In Proceedings of
the International Conference on Machine Learning (ICML), 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations (ICLR), 2021.

Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A
unified continual learning framework with general parameter-efficient tuning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11483–11493, 2023a.

Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang.
A unified continual learning framework with general parameter-efficient tuning. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11483–11493,
2023b. URL https://openaccess.thecvf.com/content/ICCV2023/html/Gao_A_Unified_Continual_
Learning_Framework_with_General_Parameter-Efficient_Tuning_ICCV_2023_paper.html.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=0RDcd5Axok. ICLR 2022 Spotlight.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In
International Conference on Machine Learning (ICML), 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In International Confer-
ence on Learning Representations (ICLR), 2022.

Ronald Kemker and Christopher Kanan. FearNet: Brain-inspired model for incremental learning. In
International Conference on Learning Representations (ICLR) Workshop Track, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of
Sciences, 114(13):3521–3526, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In EMNLP, pp. 3045–3059, 2021.

11

https://openaccess.thecvf.com/content/ICCV2023/html/Gao_A_Unified_Continual_Learning_Framework_with_General_Parameter-Efficient_Tuning_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Gao_A_Unified_Continual_Learning_Framework_with_General_Parameter-Efficient_Tuning_ICCV_2023_paper.html
https://openreview.net/forum?id=0RDcd5Axok


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
ACL, pp. 4582–4597, 2021.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In European Conference on Computer
Vision (ECCV), pp. 614–629, 2016.

Yuechen Liu, Zishun Wang, Chen Qiao, and Zongben Xu. GATE: Adaptive learning with work-
ing memory by information gating in multi-lamellar hippocampal formation. arXiv preprint
arXiv:2501.12615, 2025.

Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L.
Hayes, Matthias De Lange, et al. Avalanche: An end-to-end library for continual learning. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International Conference on Machine Learning (ICML), pp. 2408–2417, 2015.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation, 24:109–165, 1989.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL:
Incremental classifier and representation learning. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2 edition, 2003.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. CODA–Prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Alessandro Treves and Edmund T. Rolls. A computational analysis of the role of the hippocampus in
memory. Hippocampus, 4(3):374–391, 1994.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology,
2011.

Liyuan Wang, Bo Lei, Qian Li, Hang Su, Jun Zhu, and Yi Zhong. Triple memory networks: A brain-
inspired method for continual learning. IEEE Transactions on Neural Networks and Learning
Systems, 33(5):1925–1934, 2021.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. Dualprompt: Complementary prompt-
ing for rehearsal-free continual learning. In Proceedings of the European Conference on Computer
Vision (ECCV), 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022b.

Michael A. Yassa and Craig E. L. Stark. Pattern separation in the hippocampus. Trends in Neuro-
sciences, 34(10):515–525, 2011.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
continual learning of vision-language models via mixture-of-experts adapters. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yukun Zuo, Hantao Yao, Lu Yu, Liansheng Zhuang, and Changsheng Xu. Hierarchical decomposition
of prompt-based continual learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILED EXPLANATION OF THE PEFT-CL FRAMEWORK

A.1 SPECIFIC METHODS WITHIN THE PEFT-CL FRAMEWORK

L2P L2P maintains a fixed pool of m prompt vectors and, for each example, uses the frozen
backbone feature Φ(x) as the retrieval query. It computes the score vector

s =
Φ(x)K⊤

τ
∈ Rm,

applies a hard top-k operator to obtain a sparse, one-hot–like weight g ∈ {0, 1}m, and concatenates
the selected prompts into the input. In our PEFT-CL framework, this corresponds to xrep = Φ(x),
g(s) = top-k{s} at both train and test time, and a frozen key matrix K, so that

h ← h+ top-k{s}∆H.

DualPrompt DualPrompt extends L2P by maintaining two disjoint pools—“general” and “domain-
specific”—and by using a one-hot teacher signal δt during training to force selection of the correct
domain prompt. At train time it sets

g
(
Φ(x)K; t

)
= δt,

and at test time uses

g
(
Φ(x)K

)
= argmax

i

[
Φ(x)K⊤]

i
,

both yielding a one-hot weight vector. Under our formulation, xrep = Φ(x), the branch outputs
∆H are mixed by these one-hot weights, and K remains frozen—thus decoupling routing from the
cross-entropy loss—so that

h ← h+ g∆H.

CoDA-Prompt CoDA-Prompt replaces hard, discrete routing with a fully differentiable soft router.
Given the frozen feature Φ(x), it computes the same score s = Φ(x)K⊤/τ but applies

g(s) = softmax(s) ∈ ∆m−1

to produce a dense mixture weight over all m prompt branches. Importantly, both K and the prompt
parameters ∆H are updated via the downstream cross-entropy loss LCE. In our unified framework
this corresponds to xrep = Φ(x), a trainable, differentiable routing function g, and joint optimization
of K, yielding

h ← h+ softmax(s)∆H.

HiDe-Prompt HiDe-Prompt refines the query representation itself by learning a lightweight adapter
Φ̃(x) on top of the frozen backbone. It then reuses the DualPrompt routing strategy—one-hot teacher
δt during training and argmax at inference—while keeping K frozen. Thus, in our PEFT-CL notation
one sets xrep = Φ̃(x) and

g
(
Φ̃(x)K; t

)
= δt, g

(
Φ̃(x)K

)
= argmax

(
Φ̃(x)K

)
,

so that

h ← h+ g∆H,
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with all other design choices—single retrieval, hard routing, frozen key—identical to DualPrompt.

A.2 INSTANTIATION OF ϕ FOR COMMON PEFT MODULES.

For completeness, we spell out the concrete functional form of ϕ(x; θ(i)) for several standard PEFT
blocks, where x ∈ Rd denotes the layer hidden state and ∆h(i) = ϕ(x; θ(i)).

Prefix Tuning. Given a query projection W
(i)
q , a key prefix matrix P

(i)
k and a value prefix matrix

P
(i)
v , the residual contributed by the i-th prefix block is

ϕPrefix(x; θ
(i)) = softmax

(
xW (i)

q P
(i)
k

⊤)
P (i)
v . (18)

Adapter. For a bottleneck adapter with down- and up-projection matrices W (i)
down and W

(i)
up , we have

ϕAdapter(x; θ
(i)) = ReLU

(
xW

(i)
down

)
W (i)

up . (19)

LoRA. For a low-rank LoRA block parameterized by W
(i)
down and W

(i)
up , the residual update is

ϕLoRA(x; θ
(i)) = xW

(i)
downW

(i)
up . (20)

These instantiations are all special cases of our unified notation ∆h(i) = ϕ(x; θ(i)) used in the main
text.

B PSEUDOCODE

Algorithm 1 Latent Deliberation: Iterative Retrieval and Integration

Require: Backbone depth L, max iterations Tmax, tolerance ε, temperature T , blend factor α,
(optional) Top-k

1: for l = 1 to L do
2: Input: previous hidden state h(l−1) ∈ Rd

3: Initialize query: q(1) ← h(l−1)

4: Initialize empty list V ← []
5: for t = 1 to Tmax do
6: Compute retrieval weights: S(t) ← softmax

(
q(t)(K(l))⊤/T

)
7: if Top-k enabled then
8: Keep only top-k entries of S(t), zero out others
9: end if

10: Retrieve memory: v(t) ← S(t) V (l)

11: Append v(t) to V
12: Update query: q(t+1) ← α q(t) + (1− α)P (l)

(
v(t)
)

13: if t > 1 and ∥v(t) − v(t−1)∥2 < ε then
14: break
15: end if
16: end for
17: One-shot fusion: Vcat ← concat(V) ∈ RTmax dv

18: Compute layer output: h(l) ← ViT(l)
(
[ h(l−1) ∥ Vcat ]

)
19: end for

C PROOF OF PROPOSITION 1

Proof of Proposition 1. We regard one gradient-descent “inner” step as a map

F (q; θ) = q − η∇ϕ(q), q(t+1) = F
(
q(t); θ

)
,
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where θ denotes outer parameters that may affect the step only through some auxiliary operation
(e.g. the retrieval projection in our Latent Deliberation loop). Let q⋆ be a fixed point of the inner
dynamics so that ∇ϕ(q⋆) = 0. Linearising F at (q⋆, θ) gives the state Jacobian J = ∂F

∂q

∣∣∣
q⋆

=

I − η∇2ϕ(q⋆) = I − ηH and the parameter Jacobian P = ∂F
∂θ

∣∣
q⋆
.

Step 1: Recursion on sensitivities. Differentiating the inner recurrence w.r.t. θ yields

∂q(t+1)

∂θ
= J

∂q(t)

∂θ
+ P, t = 0, . . . , Tmax − 1,

with the base term ∂q(0)

∂θ = 0 because the initial hidden state is taken as constant for the outer
optimisation. Solving the first-order, non-homogeneous linear recursion gives

∂q(Tmax)

∂θ
=

Tmax−1∑
k=0

Jk P.

Step 2: Chain rule for the outer loss. Applying the chain rule,

∇θLTmax
=
(

∂q(Tmax)

∂θ

)⊤
gout =

Tmax−1∑
k=0

(J⊤)kP⊤gout =

Tmax−1∑
k=0

(J⊤)k bθ,

where bθ := P⊤gout. This is exactly the Krylov series operator KTmax
(H) =

∑Tmax−1
k=0 (I − ηH⊤)k

acting on bθ.

Step 3: Convergence to the Neumann–series inverse. Because H is symmetric positive definite
and 0 < η < 2/λmax(H), the spectral radius ρ(J) = ρ(I − ηH) < 1. Hence the Neumann series
converges:

lim
Tmax→∞

KTmax
(H) = (I − J⊤)−1 =

(
η H⊤)−1

.

Taking the limit in the gradient expression gives ∇θL∞ = H−1 bθ, which corresponds to exact
second-order (Newton–style) preconditioning.

Step 4: Finite-step interpretation. For any finite Tmax,KTmax
(H) is a degree-(Tmax−1) polynomial

that approximates H−1 in the Krylov subspace span{bθ, H⊤bθ, . . . , (H
⊤)Tmax−1bθ}. Because the

error decays geometrically in ρ(J), practitioners often find Tmax = 2–4 iterations already provide
most of the curvature correction at only linear cost.

This completes the proof.

D EVALUATION METRICS AND HYPERPARAMETERS

Our code is available at https://anonymous.4open.science/r/HippoTune-1DF2 and also included in
the supplementary material archive.

Accuracy (Acc) For any evaluation point i and task j, the accuracy is simply

Acc(i, j) = ai,j ,

i.e. the test accuracy on task j immediately after learning task i.

Average Accuracy Across Tasks (AAA) At the end of task i, the average accuracy across all seen
tasks is

AAA(i) =
1

i

i∑
j=1

ai,j .

In particular, AAA(T ) summarizes overall performance after the final task.
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Forgetting Measure (FM) For each earlier task j < i, its forgetting after learning up to task i is

f i
j = max

1≤l<i
al,j − ai,j ,

i.e. the largest drop from its best-seen accuracy to its current accuracy. The average forgetting at the
end of all tasks is then

FM =
1

T − 1

T−1∑
j=1

fT
j .

A smaller FM indicates less catastrophic forgetting.

We now introduce the hyperparameters one by one, including key hyperparameters of the ViT
backbone as well as those specific to our HippoTune training procedure.

learning_rate Initial learning rate used by the optimizer.
batch_size Number of samples processed in each training batch.
epoch Number of full passes over the training dataset.
pretrained Whether to load pretrained backbone weights (1: yes; 0: no).
clip_grad Maximum norm for gradient clipping to prevent exploding gradients.
size Number of prompt vectors in the prompt pool.
length Length of each prompt vector (in tokens).
initializer Initialization scheme for prompt values (e.g. uniform for uniform distribution).
prompt_key_init Initialization scheme for prompt keys (e.g. uniform).
batchwise_prompt Whether to share the same prompt across the entire batch (1: yes; 0: per-

example).
global_pool Pooling method over ViT outputs: token (use class token) or avg (global average

pooling).
head_type Input to the classification head: token, gap (global average pooling), prompt, or

token+prompt.
freeze List of backbone submodules to freeze during training, e.g. [blocks, patch_embed,

cls_token, norm, pos_embed].
λorth Weight of the orthogonality regularization term on prompt keys.
layer_idx Indices of Transformer layers where prompting/retrieval is applied, e.g.

[0,1,2,3,4,5,6].
T Softmax temperature for computing attention weights over keys.
delib_steps (Tmax) Maximum number of latent deliberation (iterative retrieval) steps.
α Query blending ratio in each iteration: qt+1 = α qt + (1− α)P (vt).
eps_stop Early-stop threshold on ∥vt − vt−1∥ for terminating latent deliberation.
topk Number of top keys to retain for sparse retrieval; None means full softmax.
fuse Method to combine outputs across steps: mean (average) or last.
λent Weight for entropy regularization on the retrieval distribution.
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Dataset pretrained clip_grad size length initializer prompt_key_init batchwise_prompt lr batch_size epochs

Seq-CIFAR100 1 1.0 30 10 uniform uniform 1 0.001 128 5
Seq-ImageNet-R 1 1.0 30 10 uniform uniform 1 0.001 128 5
Seq-CUB200 1 1.0 30 10 uniform uniform 1 0.001 128 5

(a) Basic Training Hyperparameters

Dataset global_pool head_type freeze

Seq-CIFAR100 token token [blocks, patch_embed, cls_token, norm, pos_embed]
Seq-ImageNet-R token token [blocks, patch_embed, cls_token, norm, pos_embed]
Seq-CUB200 token token [blocks, patch_embed, cls_token, norm, pos_embed]

(b) ViT-related Hyperparameters

Dataset λorth layer_idx T delib_steps(Tmax) α eps_stop topk fuse λent

Seq-CIFAR100 1.0 [0,1,2,3,4,5,6] 0.01 4 0.2 1e-5 5 mean 1
Seq-ImageNet-R 1.0 [0,1,2,3,4,5,6] 0.01 4 0.2 1e-5 5 mean 1
Seq-CUB200 1.0 [0,1,2,3,4,5,6,7,8] 0.01 4 0.2 1e-5 5 mean 1

(c) Hyperparameter Settings for Multi-Key Retrieval and Latent Deliberation

E ADDITIONAL EXPERIMENTS

E.1 ONLINE CONTINUAL LEARNING

Our method remains highly effective in the strictly online setting with a single data pass: on Seq-
CIFAR100, HippoTune-PreT achieves 84.52% ± 0.23 Acc, 89.09% ± 0.21 AAA, and 7.48 ±
0.17 FM—only ∼2.8% below its offline (5-epoch) result and clearly outperforming buffer-free
baselines such as L2P (75.38% ± 1.05 Acc) and DualPrompt (80.89% ± 0.58 Acc) (Table 5). On
Seq-CUB200, it attains 65.99% ± 0.24 Acc, 74.52% ± 0.64 AAA, and 3.55 ± 0.35 FM, surpassing
CODA-Prompt’s 62.63% ± 0.34 Acc. The efficient variant HippoTune-PreT-E also yields strong
performance (84.07%± 0.28 Acc, 88.62%± 0.36 AAA, 8.07± 0.15 FM on Seq-CIFAR100; 64.69%
± 0.53 Acc, 72.94% ± 0.48 AAA, 4.19 ± 0.32 FM on Seq-CUB200). Moreover, a sharing-favored
prompt allocation (T = 1) outperforms an isolation-favored one (T = 0.01) by ∼0.8% on Seq-
CIFAR100 and ∼1.3% on Seq-CUB200, indicating that emphasizing shared knowledge significantly
aids convergence in the challenging one-pass online regime.

E.2 EFFECTIVENESS ON DIVERSE PRE-TRAINED BACKBONES

Experiments using DINO and SAM backbones further demonstrate the strong generalization of
HippoTune. As shown in Table 6, our method consistently achieves superior final and average
accuracy across both architectures, significantly outperforming baselines like L2P and DualPrompt.
Notably, it surpasses CODA-Prompt by over 4% on the SAM backbone. These results indicate
that the latent iterative deliberation mechanism is architecture-agnostic and adapts well to feature
distributions from diverse pre-training objectives, effectively leveraging heterogeneous representations
while minimizing forgetting.

E.3 STABILITY AND BACKWARD TRANSFER ANALYSIS

As shown in Table 7, in experiments on ImageNet-R split into 10 tasks, HippoTune outperforms
standard prompt-based baselines in both accuracy and retention. While LoRA and adapter-based
methods such as SD-Lora and EASE achieve high plasticity due to their architectural capacity, they
suffer from significant catastrophic forgetting. In contrast, HippoTune maintains a Forgetting Measure
of 4.03%, which is significantly lower than the 6% to 7% range observed in these adapter variants.
This demonstrates that our method offers superior stability and effectively mitigates the interference
common in high-capacity adapter approaches.
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Figure 4: Per-task accuracy comparison across 10 sequential tasks. We report the task-wise
Accuracy (%) of DER++, Dualprompt, and our HippoTune method on Seq-CIFAR100. HippoTune
consistently outperforms the baselines, especially on early and late tasks, demonstrating its effective
latent deliberation mechanism.

E.4 ACCURACY COMPARISON ACROSS ALL TASKS AFTER TRAINING

We provide a detailed visualization of the accuracy evolution across all tasks to evaluate the stability
of the model throughout the training process. As shown in Figure 4, HippoTune consistently maintains
a significant performance advantage over the baseline methods across the entire sequence.

E.5 RESULTS IN THE TASK-INCREMENTAL SETTING

Table 8 presents the comparative results under the Task-Incremental Learning (TIL) setting. Hippo-
Tune consistently outperforms the PEFT-CL baselines across both Seq-CIFAR100 and ImageNet-R
benchmarks. While existing methods like CODA-Prompt already mitigate interference by condition-
ing on task identities, our approach further pushes the performance boundary, achieving the highest
average accuracy and the lowest forgetting measures. This superiority indicates that HippoTune
effectively leverages task-specific contexts to refine feature representations, ensuring robust learning
of new tasks without compromising the stability of previously acquired knowledge.

Table 5: Comparison of Continual Learning Methods on Seq-CIFAR100 and Seq-CUB200 in Terms
of Accuracy, Average Accuracy Across All Tasks (AAA), and Forgetting Measure (FM).

Method Seq-CIFAR100 Seq-CUB200

Acc AAA FM Acc AAA FM

PEFT-CL (w/o buffer)
L2P 75.38±1.05 84.38±0.58 10.17±0.62 60.78±0.42 69.21±0.46 5.37±0.23
DualPrompt 80.89±0.58 86.74±0.37 10.32±0.55 62.79±0.27 71.25±0.53 4.87±0.25
CODA-Prompt 82.68±0.39 88.01±0.46 9.96±0.53 62.63±0.34 71.63±0.41 4.79±0.52

Ours (w/o buffer)
HippoTune 84.52±0.23 89.09±0.21 7.48±0.17 65.99±0.24 74.52±0.64 3.55±0.35
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Table 6: Performance comparison of PEFT-CL methods and HippoTune on ImageNet-R (N=10) with
DINO and SAM backbones (metrics: Acc, AAA, FM).

Method ImageNet-R (N=10, Dino) ImageNet-R (N=10, SAM)

Acc AAA FM Acc AAA FM

PEFT-CL
L2P 51.12 62.68 1.34 56.93 59.38 6.46
DualPrompt 60.18 66.91 4.40 65.13 70.05 5.29
CODA-Prompt 63.74 69.07 5.43 66.61 71.63 5.72

Ours
HippoTune 65.62 70.29 3.78 70.92 75.54 5.16

Table 7: Forgetting rates (FM) and backward transfer (bwt).

Metric l2p dualprompt codaprompt sdlora ease ranpac hippotune

FM 4.11 5.18 5.39 7.34 6.37 4.62 4.03
bwt -4.03 -5.18 -5.26 -7.24 -6.21 -4.56 -3.94

Table 8: Task-Incremental Learning (TIL) performance comparison on Seq-CIFAR100 and ImageNet-
R. We report Average Accuracy (Acc), Average After Accuracy (AAA), and Forgetting Measure
(FM). Best results are highlighted in bold.

Method Seq-CIFAR100 ImageNet-R

Acc AAA FM Acc AAA FM

PEFT-CL
L2P 96.84 97.04 0.57 89.45 89.24 0.53
DualPrompt 97.25 97.52 0.62 87.72 88.21 0.71
CODA-Prompt 97.83 98.04 0.50 89.57 89.66 0.52

Ours
HippoTune 98.54 98.68 0.44 90.43 90.41 0.48

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, large language models (LLMs) were used only as general-purpose assistive tools for
language polishing, improving writing structure, and retrieving and organizing references. LLMs did
not contribute to research ideation, method design, experiment execution, or result analysis, and thus
do not constitute a substantive scholarly contribution.
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