
Published as a conference paper at ICLR 2021

RANK THE EPISODES:
A SIMPLE APPROACH FOR EXPLORATION IN
PROCEDURALLY-GENERATED ENVIRONMENTS

Daochen Zha1, Wenye Ma2, Lei Yuan2, Xia Hu1, Ji Liu2

1Department of Computer Science and Engineering, Texas A&M University
2AI Platform, Kwai Inc.
{daochen.zha,xiahu}@tamu.edu
{mawenye,leiyuan03}@kuaishou.com, jiliu@kwai.com

ABSTRACT

Exploration under sparse reward is a long-standing challenge of model-free re-
inforcement learning. The state-of-the-art methods address this challenge by in-
troducing intrinsic rewards to encourage exploration in novel states or uncertain
environment dynamics. Unfortunately, methods based on intrinsic rewards of-
ten fall short in procedurally-generated environments, where a different environ-
ment is generated in each episode so that the agent is not likely to visit the same
state more than once. Motivated by how humans distinguish good exploration be-
haviors by looking into the entire episode, we introduce RAPID, a simple yet
effective episode-level exploration method for procedurally-generated environ-
ments. RAPID regards each episode as a whole and gives an episodic explo-
ration score from both per-episode and long-term views. Those highly scored
episodes are treated as good exploration behaviors and are stored in a small
ranking buffer. The agent then imitates the episodes in the buffer to reproduce
the past good exploration behaviors. We demonstrate our method on several
procedurally-generated MiniGrid environments, a first-person-view 3D Maze nav-
igation task from MiniWorld, and several sparse MuJoCo tasks. The results show
that RAPID significantly outperforms the state-of-the-art intrinsic reward strate-
gies in terms of sample efficiency and final performance. The code is available at
https://github.com/daochenzha/rapid.

1 INTRODUCTION

Deep reinforcement learning (RL) is widely applied in various domains (Mnih et al., 2015; Silver
et al., 2016; Mnih et al., 2016; Lillicrap et al., 2015; Andrychowicz et al., 2017; Zha et al., 2019a; Liu
et al., 2020). However, RL algorithms often require tremendous number of samples to achieve rea-
sonable performance (Hessel et al., 2018). This sample efficiency issue becomes more pronounced
in sparse reward environments, where the agent may take an extremely long time before bumping
into a reward signal (Riedmiller et al., 2018). Thus, how to efficiently explore the environment under
sparse reward remains an open challenge (Osband et al., 2019).

To address the above challenge, many exploration methods have been investigated and demonstrated
to be effective on hard-exploration environments. One of the most popular techniques is to use in-
trinsic rewards to encourage exploration (Schmidhuber, 1991; Oudeyer & Kaplan, 2009; Guo et al.,
2016; Zheng et al., 2018; Du et al., 2019). The key idea is to give intrinsic bonus based on uncer-
tainty, e.g., assigning higher rewards to novel states (Ostrovski et al., 2017), or using the prediction
error of a dynamic model as the intrinsic reward (Pathak et al., 2017). While many intrinsic reward
methods have demonstrated superior performance on hard-exploration environments, such as Mon-
tezuma’s Revenge (Burda et al., 2018b) and Pitfall! (Badia et al., 2019), most of the previous studies
use the same singleton environment for training and testing, i.e., the agent aims to solve the same
environment in each episode. However, recent studies show that the agent trained in this way is sus-
ceptible to overfitting and may fail to generalize to even a slightly different environment (Rajeswaran
et al., 2017; Zhang et al., 2018a). To deal with this issue, a few procedually-generated environments

1

https://github.com/daochenzha/rapid

Published as a conference paper at ICLR 2021

Goal

100 episodes

Goal

100 episodes

10 possible obser vations

Procedurally-GeneratedSingleton

1.00.0 0.5
Intr insic r eward

(a) Count-based exploration

Goal

Episodic score = 0.25
Poor exploration

Not visi ted

Visi ted

Episodic score = 0.875
Good exploration

Sample episodes

(b) Episodic exploration score

Figure 1: A motivating example of count-based exploration versus episode-level exploration score.
While count-based exploration works well in singleton setting, i.e., the environment is the same in
each episode, it may be brittle in procedually-generated setting. In (a), if the observation of the third
block in an episode is sampled from ten possible values, the third block will have very high intrinsic
reward because the agent is uncertain on the new states. This will reward the agent for exploring the
third block and also its neighbors, and hence the agent may get stuck around the third block. In (b),
we score behaviors in episode-level with # visited states/ # total states. The episodic exploration
score can effectively distinguish good exploration behaviors in procedually-generated setting.

are designed to test the generalization of RL, such as (Beattie et al., 2016; Chevalier-Boisvert et al.,
2018; Nichol et al., 2018; Côté et al., 2018; Cobbe et al., 2019; Küttler et al., 2020), in which the
agent aims to solve the same task, but a different environment is generated in each episode.

Unfortunately, encouraging exploration in procedually-generated environments is a very challeng-
ing task. Many intrinsic reward methods, such as count-based exploration and curiosity-driven ex-
ploration, often fall short in procedually-generated environments (Raileanu & Rocktäschel, 2020;
Campero et al., 2020). Figure 1a shows a motivating example of why count-based exploration is
less effective in procedually-generated environments. We consider a 1D grid-world, where the agent
(red) needs to explore the environment to reach the goal within 7 timesteps, that is, the agent needs
to move right in all the steps. While count-based exploration assigns reasonable intrinsic rewards
in singleton setting, it may generate misleading intrinsic rewards in procedually-generated setting
because visiting a novel state does not necessarily mean a good exploration behavior. This issue be-
comes more pronounced in more challenging procedually-generated environments, where the agent
is not likely to visit the same state more than once. To tackle the above challenge, this work studies
how to reward good exploration behaviors that can generalize to different environments.

When a human judges how well an agent explores the environment, she often views the agent from
the episode-level instead of the state-level. For instance, one can easily tell whether an agent has
explored a maze well by looking into the coverage rate of the current episode, even if the current
environment is different from the previous ones. In Figure 1b, we can confidently tell that the episode
in the right-hand-side is a good exploration behavior because the agent achieves 0.875 coverage
rate. Similarly, we can safely conclude that the episode in the left-hand-side does not explore the
environment well due to its low coverage rate. Motivated by this, we hypothesize that episode-level
exploration score could be a more general criterion to distinguish good exploration behaviors than
state-level intrinsic rewards in procedually-generated setting.

To verify our hypothesis, we propose exploration via Ranking the Episodes (RAPID). Specifically,
we identify good exploration behaviors by assigning episodic exploration scores to past episodes.
To efficiently learn the past good exploration behaviors, we use a ranking buffer to store the highly-
scored episodes. The agent then learns to reproduce the past good exploration behaviors with imi-
tation learning. We demonstrate that RAPID significantly outperforms the state-of-the-art intrinsic
reward methods on several procedually-generated benchmarks. Moreover, we present extensive ab-
lations and analysis for RAPID, showing that RAPID can well explore the environment even without
extrinsic rewards and could be generally applied in tasks with continuous state/action spaces.

2 EXPLORATION VIA RANKING THE EPISODES

An overview of RAPID is shown in Figure 2. The key idea is to assign episodic exploration scores
to past episodes and store those highly-scored episodes into a small buffer. The agent then treats
the episodes in the buffer as demonstrations and learns to reproduce these episodes with imitation
learning. RAPID encourages the agent to explore the environment by reproducing the past good

2

Published as a conference paper at ICLR 2021

Scor e = 0.99 Scor e = 0.98 Scor e = 0.95

...

Rank ing Buf fer

Agent

Envi r onm ent

Inter eact i on

 RL Update

Episodes

Local Scor e

Global Scor e

Ex t r i nsi c Rewar d

+

Rank w i th epi sodic scor es

Im i tat i on Lear n ing

Figure 2: An overview of RAPID. The past episodes are assigned episodic exploration scores based
on the local view, the global view, and the extrinsic reward. Those highly scored episodes are stored
in a small ranking buffer. The agent is then encouraged to reproduce the past good exploration
behaviors, i.e., the episodes in the buffer, with imitation learning.

exploration behaviors. This section introduces how we define the episodic exploration score for
procedurally-generated environments and how the proposed method can be combined with state-of-
the-art reinforcement learning agents.

2.1 EPISODIC EXPLORATION SCORE

Each episode is scored from both local and global perspectives. The local score is a per-episode
view of the exploration behavior, which measures how well the current episode itself explores the
environment. The global score provides a long-term and historical view of exploration, i.e., whether
the current episode has explored the regions that are not well explored in the past. Additionally,
we consider extrinsic reward, which is the episodic reward received from the environment. It is an
external criterion of exploration since a high extrinsic reward often suggests good exploration in
sparse environments. The overall episodic exploration score is obtained by the weighted sum of the
above three scores. We expect that these scores can model different aspects of exploration behaviors
and they are complementary in procedurally-generated environments.

Local Score. The intuition of the local exploration bonus is that the agent is expected to visit as
many distinct states as possible in one episode. In our preliminary experiments on MiniGrid, we
observe that many poor exploration episodes repeatedly visit the same state. As a result, the agent
may get stuck in a well-known region but never reach out to unexplored regions. From a local view,
we can quantify this exploration behavior based on the diversity of the visited states. Specifically,
we define the local exploration score as

Slocal =
Ndistinct

Ntotal
, (1)

where Ntotal is the total number of states in the episode, and Ndistinct is the number of distinct states
in the episode. Intuitively, optimizing the local score will encourage the agent to reach out to the
unexplored regions in the current episode. In an ideal case, the episodes that never visit the same
state twice will receive a local bonus of 1. There could be various ways to extend the above definition
to continuous state space. In this work, we empirically define the local score in continuous state
space as the mean standard deviation of all the states in the episode:

Slocal =

∑l
i=1 std(si)

l
, (2)

where l is the dimension of the state, and std(si) is the standard deviation along the i-dimension of
the states in the episode. Intuitively, this score encourages the episodes that visit diverse states.

Global Score. The global score is designed to model long-term exploration behavior. While a
different environment will be generated in each episode in the procedurally-generated setting, the
environments in different episodes usually share some common characteristics. For example, in the

3

Published as a conference paper at ICLR 2021

Algorithm 1 Exploration via Ranking the Episodes (RAPID)

1: Input: Training steps S, buffer size D, RL rollout steps T
2: Initialize the policy πθ, replay buffer D
3: for iteration = 1, 2, ... until convergence do
4: Execute πθ for T timesteps
5: Update πθ with RL objective (also update value functions if any)
6: for each generated episode τ do
7: Compute episodic exploration score Sτ based on Eq. (4)
8: Give score Sτ to all the state-action pairs in τ and store them to the buffer
9: Rank the state-action pairs in D based on their exploration scores

10: if D.length > D then
11: Discard the state-action pairs with low scores so that D.length = D
12: end if
13: for step = 1, 2, .., S do
14: Sample a batch from D and train πθ using the data in D with behavior cloning
15: end for
16: end for
17: end for

MiniGrid MultiRoom environment (Figure 3a), although a different maze will be generated in a new
episode, the basic building blocks (e.g., walls, doors, etc.), the number of rooms, and the size of
each room will be similar. From a global view, the agent should explore the regions that are not well
explored in the past. Motivated by count-based exploration, we define the global score as

Sglobal =
1

Ntotal

∑
s

1√
N(s)

, (3)

where N(s) is the state count of s throughout the training process, that is, the global score is the
mean count-based intrinsic reward of all the states in the episode.

Episodic Exploration Score. Suppose Sext is the total extrinsic reward of an episode received from
the environment . The episodic exploration score is obtained by the weighted sum of the extrinsic
reward Sext, the local score Slocal, and the global score Sglobal:

S = w0Sext + w1Slocal + w2Sglobal, (4)
where w0, w1 and w2 are hyperparameters. We speculate that the three scores are complementary
and the optimal w0, w1 and w2 could vary in different environments. For example, a higher w1 will
give a higher weight to the per-episode view of exploration behavior. A higher w2 will focus more
on whether the current episode has explored the past unexplored regions. Nevertheless, we find that
a single set of w0, w1 and w2 works well across many tasks.

Comparison with Prior Work. Several papers have studied episode-level feedback to improve
the sample efficiency of RL. To the best of our knowledge, the existing work mainly focuses on
learning a meta-policy based on episodic rewards (Xu et al., 2018; Zha et al., 2019b), or imitating
the episodes with high episodic rewards (Guo et al., 2018; Srivastava et al., 2019). However, in
very sparse environments, it is not likely to receive a non-zero reward without exploration. These
methods are not suitable for very sparse environments since episodic rewards could be always zero.
In this work, we propose local and global episodic scores to quantify the exploration behaviors and
encourage the agent to visit distinct states from per-episode and long-term views.

2.2 REPRODUCING PAST GOOD EXPLORATION BEHAVIORS WITH IMITATION LEARNING

A straightforward idea is to treat the episodic exploration score as a reward signal and assign it to the
last timestamp of the episode. In this way, the agent can be updated with any reinforcement learning
objective. However, this strategy is not very effective with three potential limitations. First, the
reward remains sparse so that the reinforcement learning agents may not be able to effectively exploit
the reward signals. Second, the intrinsic exploration bonus may introduce bias in the objective.
While the local score and global score may encourage exploration at the beginning stage, they are

4

Published as a conference paper at ICLR 2021

(a) MultiRoom-N12-S10 (b) KeyCorridor-S4-R3 (c) Maze (d) Maze (top view)

Figure 3: Rendering of the procedually-generated environments in our experiments.

not true objectives and may degrade the final performance. Third, it only uses a good episode once.
In fact, many past good episodes can be exploited many times to improve sample efficiency.

To overcome the above limitations, we propose to use a small ranking buffer to store past good
state-action pairs and then use imitation objective to enhance exploration. Specifically, we assign
the same episodic exploration score to all the state-action pairs in an episode and rank all the state-
action pairs based on scores. In addition to the original RL objective, we employ behavior cloning,
the simplest form of imitation learning, to encourage the agent to reproduce the state-action pairs in
the buffer. This simple ranking buffer can effectively exploit the past good experiences since a good
state-action pair could be sampled more than once. The procedure is summarized in Algorithm 1. A
possible variant is to keep the entire episodes in the buffer. We have tried this idea and do not observe
a clear difference between this variant and Algorithm 1 (see Appendix H for more discussions).

3 EXPERIMENTS

The experiments are designed to answer the following research questions: RQ1: how is RAPID
compared with the state-of-the-art intrinsic reward methods on benchmark procedurally-generated
environments (Section 3.2)? RQ2: how will RAPID perform if removing one of the scores (i.e., the
local score, the global score, and the extrinsic reward) or the buffer (Section 3.3)? RQ3: how will
the hyperparameters impact the performance of RAPID (Section 3.3)? RQ4: can RAPID explore
the environment without extrinsic reward (Section 3.3)? RQ5: how will RAPID perform with larger
and more challenging grid-world (Section 3.3)? RQ6: can RAPID generalize to 3D navigation task
and continuous state/action space, such as MuJoCo (Section 3.4)?

3.1 ENVIRONMENTS AND BASELINES

Figure 3 shows the rendering of procedurally-generated environments used in this work. Fol-
lowing the previous studies of exploration in procedurally-generated environments (Raileanu &
Rocktäschel, 2020; Campero et al., 2020), we mainly focus on MiniGrid environments (Chevalier-
Boisvert et al., 2018), which provide procedurally-generated grid-worlds. We consider two types
of hard exploration tasks: MultiRoom-NX-SY, where X and Y indicate the number of rooms and
the room size, respectively, and KeyCorridor-SX-RY, where X and Y indicate the room size and the
number of rows, respectively. A large X or Y suggests a larger environment, which will be more
difficult to explore. The agent has a partial view of the environment and needs to navigate the green
block or the red ball under sparse rewards. These tasks are challenging because the agent needs to
explore many rooms in order to receive a reward signal so that standard RL algorithms will typi-
cally fail. To test whether RAPID can generalize to continuous state space, we consider MiniWorld
Maze (Chevalier-Boisvert, 2018), whose observation space is 60 × 80 images. Similarly, the agent
in MiniWorld Maze has a 3D partial view of the environment and needs to navigate the red box. The
maze is procedurally-generated, i.e., a different maze will be generated in each episode. We further
study RAPID in continuous state and action spaces on sparse MuJoCo tasks (Todorov et al., 2012;
Brockman et al., 2016). More details of the above environments are described in Appendx B.

While exploration has been extensively studied in the literature, very few methods are designed for
procedurally-generated environments. To better understand the performance of RAPID, we con-
sider the baselines in the following categories. Traditional Methods: we consider several popular
methods designed for singleton environments, including count-based exploration (COUNT) (Belle-
mare et al., 2016), Random Network Distillation Exploration (RANDOM) (Burda et al., 2018b),

5

Published as a conference paper at ICLR 2021

RAPID CURIOSITY RANDOMRIDE SIL PPOCOUNTAMIGO

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.2

0.0

0.2

0.4

0.6

0.8

1.0
re

tu
rn

(a) MultiRoom-N7-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.2

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N10-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(c) MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(d) MultiRoom-N10-S10

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.25

0.00

0.25

0.50

0.75

1.00

re
tu

rn

(e) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

(f) KeyCorridor-S3-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(g) KeyCorridor-S4-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(h) MultiRoom-N12-S10

Figure 4: Performance of RAPID against baselines on hard-exploration environments in MiniGrid.
All the experiments are run 5 times. The shaded area represents mean ± standard deviation.

RAPID w/o local w/o global w/o reward w/o buffer w/o ranking

MR-N7S4 0.787 ± 0.001 0.787 ± 0.000 0.787 ± 0.001 0.781 ± 0.002 0.000 ± 0.000 0.002 ± 0.002
MR-N10S4 0.778 ± 0.000 0.778 ± 0.000 0.778 ± 0.001 0.775 ± 0.002 0.000 ± 0.000 0.000 ± 0.000
MR-N7S8 0.678 ± 0.001 0.677 ± 0.002 0.677 ± 0.002 0.652 ± 0.004 0.000 ± 0.000 0.000 ± 0.000
MR-N10S10 0.632 ± 0.001 0.238 ± 0.288 0.630 ± 0.002 0.604 ± 0.010 0.000 ± 0.000 0.000 ± 0.000
MR-N12S10 0.644 ± 0.001 0.001 ± 0.001 0.633 ± 0.005 0.613 ± 0.007 0.000 ± 0.000 0.000 ± 0.000
KC-S3R2 0.934 ± 0.004 0.933 ± 0.002 0.934 ± 0.000 0.929 ± 0.003 0.018 ± 0.008 0.527 ± 0.380
KC-S3R3 0.922 ± 0.001 0.885 ± 0.022 0.912 ± 0.003 0.903 ± 0.002 0.012 ± 0.007 0.013 ± 0.006
KC-S4R3 0.473 ± 0.087 0.150 ± 0.095 0.244 ± 0.144 0.035 ± 0.035 0.000 ± 0.000 0.001 ± 0.001

Table 1: Performance of RAPID and the ablations on MiniGrid environments. The mean maximum
returns and standard deviations are reported. MR stands for MultiRoom; KC stands for KeyCorridor.
Learning curves are in Appendix C.

.

and curiosity-driven exploration (CURIOSITY) (Pathak et al., 2017). Methods for Procedurally-
Generated Environments: we consider two state-of-the-art exploration methods, including Impact-
Driven Exploration (RIDE) (Raileanu & Rocktäschel, 2020), and exploration with Adversarially
Motivated Intrinsic Goals (AMIGO) (Campero et al., 2020). Self-Imitation Methods: self-imitation
learning (SIL) (Oh et al., 2018) also exploits past good experiences to encourage exploration. We
further include PPO (Schulman et al., 2017) as a reinforcement learning baseline. All the algorithms
are run the same number timesteps for a fair comparison. More details are provided in Appendix A.

3.2 MINIGRID RESULTS

To study RQ1, we plot the learning curves of RAPID and the baselines on MiniGrid benchmarks
in Figure 4. We can make three observations. First, RAPID performs significantly better than the
state-of-the-art methods designed for singleton or procedurally-generated environments in terms of
sample efficiency and final performance. For example, on MultiRoom-N7-S8, RAPID is at least 10
times more sample efficient than RIDE. On KeyCorridor-S4-R3, RAPID is the only algorithm that
successfully navigates the goal within 20 million timesteps. Second, the traditional intrinsic reward
methods perform well on easy procedurally-generated environments but perform poorly on hard-
exploration tasks. For example, COUNT performs as well as RAPID on KeyCorridor-S3-R2 but fails
on more challenging tasks, such as MultiRoom-N7-S8. This suggests that traditional methods may
fall short in challenging procedurally-generated environments, which is consistent with the results in
previous work (Raileanu & Rocktäschel, 2020). Third, RAPID outperforms SIL across all the tasks.
Recall that both RAPID and SIL learn to reproduce past good experiences. While SIL reproduces
experiences with high rewards, RAPID additionally considers local and global exploration scores.
This verifies the effectiveness of the episodic exploration scores.

6

Published as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

re
tu

rn
1
5
10
20

(a) Impact of training steps

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

re
tu

rn

1000
5000
10000
20000
50000

(b) Imapct of buffer size

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

re
tu

rn

RAPID
PPO
SIL
COUNT
RANDOM
CURIOSITY
AMIGO
RIDE

(c) Pure exploration

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

ex
pl

or
at

io
n

sc
or

e

RAPID
PPO
SIL
COUNT
RANDOM
CURIOSITY
AMIGO
RIDE

(d) Local exploration score

Figure 5: Analysis of RAPID on MultiRoom-N12-S10. Results for other environments are in Ap-
pendix D. (a)(b): the impact of the hyperparameters. (c)(d): the returns without extrinsic rewards
(pure exploration) and the corresponding local exploration scores.

5 10 15 20 25
number of rooms

0.2

0.4

0.6

0.8

re
tu

rn

RAPID
RIDE

10 20 30
room size

0.50

0.55

0.60

0.65

0.70

0.75

0.80 RAPID
RIDE

0 1 2 3 4 5
timesteps 1e6

0.0

0.2

0.4

0.6
RAPID
PPO
SIL
RANDOM
CURIOSITY
RIDE

Figure 6: Left: the maximum returns w.r.t. the number of rooms under room size 4 (full curves
in Appendix E). Middle: the maximum returns w.r.t. the room sizes with 4 rooms (full curves in
Appendix F). Right: learning curves on MiniWolrd Maze (more results in Appendix G).

3.3 ABLATIONS AND ANALYSIS

To study RQ2, we perform ablation studies on RAPID. Specifically, we remove one of the local
score, the global score, and the extrinsic reward, and compare each ablation with RAPID. Besides,
we consider a variant that directly uses the episodic exploration score as the reward signal without
buffer. To demonstrate the effectiveness of the ranking, we further include a baseline that uses the
replay buffer without ranking. Table 1 shows the results. We observe that the local score contributes
the most to the performance. While most existing exploration methods reward exploration globally,
the global score could be not aware of generalization, which may explain the unsatisfactory perfor-
mance of COUNT and CURIOSITY. While the global score seems to play a relatively small role as
compared to local score in most MiniGrid environments, it plays an important role in KeyCorridor-
S4-R3. A possible reason is that the local score is a too weak signal in KeyCorridor-S4-R3, and
the global score may help alleviate this issue since it provides some historical information. We also
observe that the agent fails in almost all the tasks without buffer or ranking. This suggests that the
ranking buffer is an effective way to exploit past good exploration behaviors.

To study RQ3, we plot the learning curves with different training steps S and buffer size D in Fig-
ure 5a and 5b. We observe that larger number of training steps usually leads to faster learning speed
at the beginning stage but may result in sub-optimal performance. For the buffer size, we observe
that a large buffer will lead to slow learning speed with more stable performance. We speculate that
there is a trade-off between learning speed and the final performance. In our experiments, we set
training steps S to be 5 and buffer size D to be 10000, respectively, across all the tasks.

To investigate RQ4, we remove extrinsic rewards and show the learning curves of RAPID and the
baselines in Figure 5c with the corresponding local exploration scores in Figure 5d. We make two in-
teresting observations. First, without extrinsic rewards, RAPID can deliver reasonable performance.
For example, on MultiRoom-N12-S10, RAPID achieves nearly 0.5 average return with pure explo-
ration, compared with around 0.6 if using extrinsic rewards. We look into the episodes generated
by RAPID with pure exploration and observe that, in most cases, the agent is able to reach the goal
but struggles to find the optimal path to the goal. This is expected because the extrinsic reward is
obtained by whether the agent can reach the goal subtracting some penalties of the timesteps spent.
The extrinsic reward can encourage the agent to choose the shortest path to reach the goal. For other
baselines, we observe that only RIDE and AMIGO can occasionally reach the goal. Second, we
observe that some baselines, such as RIDE, are indirectly maximizing the local exploration scores.
For example, we observe that the local exploration score increases for RIDE on MultiRoom-N12-
S10. However, the local score of RAPID drops after about 10 million timesteps. This suggests the
episode-level score may better align with good exploration behaviors. A possible explanation for
the superiority of RAPID is that it is designed to directly optimize episodic exploration score.

7

Published as a conference paper at ICLR 2021

RAPID SIL PPO

0 1 2 3
timesteps 1e5

0

50

100

150

200
re

tu
rn

(a) Walker2d

0 1 2 3
timesteps 1e5

0

100

200

300

(b) Hopper

0 1 2 3
timesteps 1e5

0

100

200

300

(c) InvertedPendulum

0 1 2 3 4 5
timesteps 1e6

0

50

100

150

200

250

(d) Swimmer
Figure 7: Performance on MuJoCo tasks with episodic reward. i.e., a non-zero reward is only
provided at the end of an episode. All the experiments are run 5 times with different random seeds.

To answer RQ5, we focus on MultiRoom-NX-SY and ambitiously vary X and Y to make the en-
vironments more challenging. Specifically, we fix Y to be 4 and vary X in the left-hand-side of
Figure 6, and fix X to be 4 and vary Y in the middle of Figure 6. Compared with RIDE, our RAPID
delivers stronger performance on more challenging mini-worlds.

3.4 MINIWORLD MAZE AND SPARSE MUJOCO RESULTS

For RQ6, the learning curves on 3D Maze are shown in the right-hand-side of Figure 6. RAPID
performs significantly better than the baselines. We also conduct experiments on a subset of sparse
MuJoCo tasks (Figure 7). The results show that RAPID improves over PPO and SIL. Interestingly,
RAPID achieves more than 200 average return on Swimmer, which surpasses some previous results
reported on the dense reward counterpart (Duan et al., 2016; Henderson et al., 2018; Lai et al., 2020).
Note that the MuJoCo environments are singleton. We use these environments solely to test whether
RAPID can deal with continuous state/action spaces. We have also tried adapting Swimmer to be
procedurally-generated and observe similar results (Appendix I)

4 RELATED WORK

Count-Based and Curiosity-Driven Exploration. These two classes of intrinsic motivations are
the most popular and proven to be effective in the literature. Count-based exploration encourages
the agent to visit the novel states, which is first studied in tabular setting (Strehl & Littman, 2008)
and has been recently extended to more complex state space (Bellemare et al., 2016; Ostrovski et al.,
2017; Tang et al., 2017; Martin et al., 2017; Machado et al., 2018; Osband et al., 2019). Curiosity-
driven exploration learns the environment dynamics to encourage exploration (Stadie et al., 2015;
Pathak et al., 2017; Sukhbaatar et al., 2018; Burda et al., 2018a). However, these methods are
designed for singleton environments and often struggle to generalize to procedurally-generated en-
vironments (Raileanu & Rocktäschel, 2020).

Exploration for Procedurally-Generated Environments. Several recent studies have discussed
the generalization of reinforcement learning (Rajeswaran et al., 2017; Zhang et al., 2018a;b; Choi
et al., 2018) and designed procedurally-generated environments to test the generalization of rein-
forcement learning (Beattie et al., 2016; Nichol et al., 2018; Küttler et al., 2020). More recent
papers show that traditional exploration methods fall short in procedurally-generated environments
and address this issue with new exploration methods (Raileanu & Rocktäschel, 2020; Campero et al.,
2020). This work studies a new perspective of exploration bonus in episode-level and achieves sig-
nificantly better performance than the previous methods on procedurally-generated benchmarks.

Experience Replay Buffer and Self-Imitation Learning. Experience replay mechanism is widely
used and is initially designed to stabilize deep reinforcement learning (Lin, 1992; 1993; Mnih et al.,
2015; Zhang & Sutton, 2017; Zha et al., 2019b; Fedus et al., 2020). Self-Imitation Learning extends
the experience replay buffer and uses it to store past good experiences (Oh et al., 2018; Guo et al.,
2018; 2019; Gangwani et al., 2018). However, Self-Imitation only exploits highly rewarded experi-
ences and thus is not suitable for very sparse environments. Our work incorporates local and global
scores to encourage past good exploration behaviors in sparse procedurally-generated environments.

Episodic Memory. Inspired by the episodic memory of the animals, some studies propose to use
episodic memory to enhance sample efficiency (Blundell et al., 2016; Pritzel et al., 2017). The
key idea is to memorize and replay the good episodic experiences. More recently, episodic mem-

8

Published as a conference paper at ICLR 2021

ory is used to generate intrinsic rewards to guide exploration (Savinov et al., 2018). Never Give
Up (NGU) (Badia et al., 2019) further considers local and global novelties in the intrinsic rewards.
Our work differs from NGU in that we approach the sample efficiency from a different angle by
treating each episode as a whole and using a ranking mechanism to select good experiences. Thus,
good experiences can be exploited multiple times to improve sample efficiency.

5 LIMITATIONS AND DISCUSSIONS

RAPID is designed to study our hypothesis that imitating episode-level good exploration behaviors
can encourage exploration in procedurally-generated environments. In the presented algorithm, we
have made some simple choices. In order to make RAPID more competitive to the state-of-the-art
methods in more complicated environments, in this section, we highlight some limitations of RAPID
and the potential research directions.

First, in our work, the local and global scores are mainly calculated on low-dimensional state space.
We have not yet tested the scores on more complex procedurally-generated environments, such as
ProcGen benchmark (Cobbe et al., 2019), TextWorld (Côté et al., 2018), and NetHack Learning
Environment (Küttler et al., 2020), some of which require high-dimensional image inputs. In this
context, count-based scores may not be well-suited. Learning the state embedding (Raileanu &
Rocktäschel, 2020) and pseudo-counts (Bellemare et al., 2016; Ostrovski et al., 2017) could be the
potential ways to address this issue. Moreover, high extrinsic rewards may not necessarily mean
good exploration behaviors in these environments. The applicability of RAPID in these environ-
ments needs future research efforts.

Second, the ranking buffer greedily selects the highly-reward state-action pairs, which is the key
to boosting the performance. However, with this greedy strategy, some highly-ranked state-action
pairs may never be forgotten even if they are out-of-date, which may introduce bias. As shown in
Figure 5b, a larger buffer size will lead to more stable performance but will sacrifice the sample effi-
ciency. In more complicated environments, selecting the proper buffer size could be non-trivial.
Some forgetting mechanism (Novati & Koumoutsakos, 2019) and meta-learning strategies (Zha
et al., 2019b) could be the potential directions to better manage the buffer.

Third, in our implementation, we employ behavior cloning, the simplest form of imitation learn-
ing, to train the policy. In recent years, many more advanced imitation learning methods have been
proposed (Ho & Ermon, 2016; Hester et al., 2017). In particular, the idea of inverse reinforcement
learning (Abbeel & Ng, 2004) is to learn reward functions based on the demonstrations. An interest-
ing future direction is to study whether we can derive intrinsic rewards based on the experiences in
the buffer via inverse reinforcement learning. Specifically, is there a connection between RAPID and
intrinsic rewards from the view of inverse reinforcement learning? Can RAPID be combined with
intrinsic rewards to improve the performance? We hope that RAPID can facilitate future research to
understand these questions.

6 CONCLUSIONS AND FUTURE WORK

This work studies how we can reward good exploration behaviors in procedurally-generated envi-
ronments. We hypothesize that episode-level exploration score could be a more general criterion
to distinguish good exploration behaviors. To verify our hypothesis, we design RAPID, a practical
algorithm that learns to reproduce past good exploration behaviors with a ranking buffer. Experi-
ments on benchmark hard-exploration procedurally-generated environments show that RAPID sig-
nificantly outperforms state-of-the-art intrinsic reward methods in terms of sample efficiency and
final performance. Further analysis shows that RAPID has robust performance across different con-
figurations, even without extrinsic rewards. Moreover, experiments on a 3D navigation task and a
subset of sparse MuJoCo tasks show that RAPID could generalize to continuous state/action spaces,
showing the promise in rewarding good episode-level exploration behaviors to encourage explo-
ration. In the future, we will extend our idea and test it in more challenging procedurally-generated
environments. We will also explore the possibility of combining the episode-level exploration bonus
with intrinsic rewards. Last, we will try other imitation learning techniques beyond behavior cloning.

9

Published as a conference paper at ICLR 2021

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in Neural Information Processing Systems, 2017.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never
give up: Learning directed exploration strategies. In International Conference on Learning Rep-
resentations, 2019.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, 2016.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. In International Conference on Learning Repre-
sentations, 2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2018b.

Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim Rocktäschel,
and Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. arXiv
preprint arXiv:2006.12122, 2020.

Maxime Chevalier-Boisvert. gym-miniworld environment for openai gym. https://github.
com/maximecb/gym-miniworld, 2018.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. GitHub repository, 2018.

Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi, and
Honglak Lee. Contingency-aware exploration in reinforcement learning. In International Con-
ference on Learning Representations, 2018.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
tion to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Workshop on Computer Games, 2018.

Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng Tao. Liir: Learning individ-
ual intrinsic reward in multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems, 2019.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning,
2016.

10

https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld

Published as a conference paper at ICLR 2021

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International Con-
ference on Machine Learning, 2020.

Tanmay Gangwani, Qiang Liu, and Jian Peng. Learning self-imitating diverse policies. In Interna-
tional Conference on Learning Representations, 2018.

Xiaoxiao Guo, Satinder Singh, Richard Lewis, and Honglak Lee. Deep learning for reward design
to improve monte carlo tree search in atari games. In International Joint Conference on Artificial
Intelligence, 2016.

Yijie Guo, Junhyuk Oh, Satinder Singh, and Honglak Lee. Generative adversarial self-imitation
learning. arXiv preprint arXiv:1812.00950, 2018.

Yijie Guo, Jongwook Choi, Marcin Moczulski, Samy Bengio, Mohammad Norouzi, and Honglak
Lee. Efficient exploration with self-imitation learning via trajectory-conditioned policy. arXiv
preprint arXiv:1907.10247, 2019.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In AAAI Conference on Artificial Intelligence, 2018.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI Conference on Artificial Intelligence, 2018.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, et al. Deep q-learning from demonstra-
tions. 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in neural
information processing systems, 2016.

Heinrich Küttler, Nantas Nardelli, Alexander H Miller, Roberta Raileanu, Marco Selvatici, Ed-
ward Grefenstette, and Tim Rocktäschel. The nethack learning environment. arXiv preprint
arXiv:2006.13760, 2020.

Kwei-Herng Lai, Daochen Zha, Yuening Li, and Xia Hu. Dual policy distillation. In International
Joint Conference on Artificial Intelligence, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3-4):293–321, 1992.

Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report, Carnegie-
Mellon Univ Pittsburgh PA School of Computer Science, 1993.

Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuqing Yang, Bowen Xiao, and
Christina Dan Wang. Finrl: A deep reinforcement learning library for automated stock trading in
quantitative finance. arXiv preprint arXiv:2011.09607, 2020.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the
successor representation. arXiv preprint arXiv:1807.11622, 2018.

Jarryd Martin, S Suraj Narayanan, Tom Everitt, and Marcus Hutter. Count-based exploration in fea-
ture space for reinforcement learning. In International Joint Conference on Artificial Intelligence,
2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

11

Published as a conference paper at ICLR 2021

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, 2016.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A
new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Guido Novati and Petros Koumoutsakos. Remember and forget for experience replay. In Interna-
tional Conference on Machine Learning, 2019.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
Conference on Machine Learning, 2018.

Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International Conference on Machine Learning, 2017.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6, 2009.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2017.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech, Oriol Vinyals, Demis
Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. arXiv preprint
arXiv:1703.01988, 2017.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
procedurally-generated environments. In International Conference on Learning Representations,
2020.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade. Towards gen-
eralization and simplicity in continuous control. In Advances in Neural Information Processing
Systems, 2017.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In International Conference on Machine Learning, 2018.

Nikolay Savinov, Anton Raichuk, Damien Vincent, Raphael Marinier, Marc Pollefeys, Timothy
Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. In International Conference
on Learning Representations, 2018.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neu-
ral controllers. In International conference on simulation of adaptive behavior: From animals to
animats, 1991.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen Schmidhu-
ber. Training agents using upside-down reinforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

12

Published as a conference paper at ICLR 2021

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob Fer-
gus. Intrinsic motivation and automatic curricula via asymmetric self-play. In International
Conference on Learning Representations, 2018.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in Neural Information Processing Systems, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

Tianbing Xu, Qiang Liu, Liang Zhao, and Jian Peng. Learning to explore with meta-policy gradient.
In International Conference on Machine Learning, 2018.

Daochen Zha, Kwei-Herng Lai, Yuanpu Cao, Songyi Huang, Ruzhe Wei, Junyu Guo, and Xia Hu.
Rlcard: A toolkit for reinforcement learning in card games. arXiv preprint arXiv:1910.04376,
2019a.

Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. Experience replay optimization. In
International Joint Conference on Artificial Intelligence, 2019b.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018a.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018b.

Shangtong Zhang and Richard S Sutton. A deeper look at experience replay. NIPS Deep Reinforce-
ment Learning Symposium, 2017.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In Advances in Neural Information Processing Systems, 2018.

13

Published as a conference paper at ICLR 2021

A HYPERPARAMETERS AND NEURAL NETWORK ARCHITECTURE

For the proposed RAPID, the common hyperparameters are summarized in Table 2. RAPID is
based on the PPO implementation from OpenAI baselines1. The nstep is 128 for all MiniGrid envi-
ronments and MuJoCo environments, and 512 for MiniWorld-Maze-S5. For MuJoCo environments,
we report the results with only imitation loss since we find that the policy loss of PPO will harm the
performance in the episodic reward setting. The learning rate is 10−4 for all MiniGrid environments
and MiniWorld-Maze-S5, and 5× 10−4 for MuJoCo environments. Since MiniWorld-Maze-S5 and
MuJoCo environments have continuous state space, we set w2 = 0. In practice, in MiniWorld-
Maze-S5, we observe that counting the states will usually lead to memory error because it is not
likely to encounter the same state again in MiniWorld-Maze-S5 (COUNT is excluded in comparison
due to memory issues). Note that it is possible to use pseudo-counts (Bellemare et al., 2016; Os-
trovski et al., 2017), which we will study in our future work. For MiniGrid-KeyCorridorS2R3-v0,
MiniGrid-KeyCorridorS3R3-v0 and MiniWorld-Maze-S5, the update frequency of imitation learn-
ing is linearly annealed to 0 throughout the training process. For other environments, the imitation
learning is performed after each episode. We keep all other hyperparameters of PPO as default and
use the default CNN architecture provided in OpenAI baselines for MiniWorld-Maze-S5 and MLP
with 64-64 for other environments. The PPO also uses the same hyperparameters. We summarize
the state space of each environment and how the local and global scores are computed in Table 3.

Hyperparameter Value
w0 1
w1 0.1
w2 0.001
buffer Size 10000
batch Size 256
number of update steps 5

entropy coefficient 0.01
value function coefficient 0.5
γ 0.99
λ 0.95
clip range 0.2

Table 2: Common hyperparameters of the proposed RAPID (top) and the hyperparameters of PPO
baseline (bottom).

Environment State Space Local Score Global Score
8 MiniGrid Environments 7× 7× 3, discrete Eq. 1 Eq. 3
MiniWorld Maze 60× 80× 3, continuous Eq. 2 No
MuJoCo Walker2d 17, continuous Eq. 2 No
MuJoCo Walker2d 11, continuous Eq. 2 No
MuJoCo Walker2d 4, continuous Eq. 2 No
MuJoCo Walker2d 8, continuous Eq. 2 No

Table 3: The calculation of local and global scores for all the environments. Note that if the state
space is continuous. We disable the global score since counting continuous states is meaningless. A
possible solution is to use pseudo-counts (Bellemare et al., 2016; Ostrovski et al., 2017).

For RANDOM, we implement the two networks with 64-64 MLP. For CURIOSITY and RIDE, we
use 64-64 MLP for state embedding model, forward dynamics model and inverse dynamics model,
respectively. However, with extensive hyperparameters search, we are not able to reproduce the
RIDE results in MiniGrid environments even with the exactly same neural architecture and hyper-
parameters as suggested in (Raileanu & Rocktäschel, 2020). Thus, we use the authors’ implemen-
tation2 (Raileanu & Rocktäschel, 2020), which is well-tuned on MiniGrid tasks. Our reported result

1https://github.com/openai/baselines
2https://github.com/facebookresearch/impact-driven-exploration

14

https://github.com/openai/baselines
https://github.com/facebookresearch/impact-driven-exploration

Published as a conference paper at ICLR 2021

is on par with that reported in (Raileanu & Rocktäschel, 2020). For SIL and AMIGO, we use the
implementations from the authors34 with the recommended hyperparameters.

For the methods based on intrinsic rewards, i.e., RIDE,, AMIGO CURIOSITY, RANDOM, and
COUNT, we search intrinsic reward coefficient from {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.
For RIDE, the intrinsic reward coefficient is 0.1 for MiniGrid-KeyCorridorS2R3-v0, MiniGrid-
KeyCorridorS3R3-v0, MiniGrid-KeyCorridorS4R3-v0, MiniGrid-MultiRoom-N10S4-v0,
MiniGrid-MultiRoom-N7S4-v0 and MiniWorld-Maze-S5, and 0.5 for MiniGrid-MultiRoom-
N7S8-v0, MiniGrid-MultiRoom-N10S10-v0 and MiniGrid-MultiRoom-N12S10-v0. For AMIGO
and CURIOSITY, the intrinsic reward coefficient is 0.1 for all the environments. For COUNT,
the intrinsic reward coefficient is 0.005 for all the environments. For RANDOM, the intrinsic
reward coefficient is 0.001 for all the environemnts. We also tune the entropy coefficient of RIDE
from {0.001, 0.0005}, as suggested by the original paper. The entropy coefficient is 0.0005 for
MiniGrid-KeyCorridorS2R3-v0, MiniGrid-KeyCorridorS3R3-v0, MiniGrid-KeyCorridorS4R3-v0,
MiniGrid-MultiRoom-N10S4-v0, MiniGrid-MultiRoom-N7S4-v0 and MiniWorld-Maze-S5, and
0.001 for MiniGrid-MultiRoom-N7S8-v0, MiniGrid-MultiRoom-N10S10-v0 and MiniGrid-
MultiRoom-N12S10-v0.

The w0, w1, and w2 are selected as follows. We first run RAPID on MiniGrid-MultiRoom-N7S8-
v0. We choose this environment because it is not too hard nor too easy, so we expect that it is
representative among all the considered MiniGrid environments. We fix w0 to be 1, and select
w1 and w2 from {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}, that is, there are 9 × 9 = 81
combinations. Note that we can fix w0 because only the relative ranking matters in the ranking
buffer. The selected w1 and w2 are then directly used in other environments without tuning. We
further conduct a sensitivity analysis on MiniGrid-MultiRoom-N7S8-v0 in Figure 8. We observe
that RAPID has good performance in a very wide range of hyperparameter choices.

log10(w2)

4 3 2 1 0 1 2 3 4

log 10(w
1)

4
3

2
1

0
1

2
3

4

re
tu

rn

0.1

0.2

0.3

0.4

0.5

0.6

Figure 8: Sensitivity analysis of w1 and w2 (w0 is fixed to 1) in MiniGrid-MultiRoom-N7S8-v0. All
the experiments are run 3 × 106 timesteps. Note that 3 × 106 is more than enough for RAPID to
converge in this environment (see Figure 4). The average results over 5 independent runs are plotted.

B ENVIRONMENTS

B.1 MINIGRID ENVIRONMENTS

MiniGrid5 is a suite of light-weighted and fast gridworld environments with OpenAI gym interfaces.
The environments are partially observable with a grid size of N ×N . Each tile in the gird can have
at most one object, that is, 0 or 1 object. The possible objects are wall, floor, lava, door, key,
ball, box and goal. Each object will have an associated color. The agent can pick up at most one
object (ball or key). To open a locked door, the agent must use a key. Most of the environments in

3https://github.com/junhyukoh/self-imitation-learning
4https://github.com/facebookresearch/adversarially-motivated-intrinsic-goals
5https://github.com/maximecb/gym-minigrid

15

https://github.com/junhyukoh/self-imitation-learning
https://github.com/facebookresearch/adversarially-motivated-intrinsic-goals
https://github.com/maximecb/gym-minigrid

Published as a conference paper at ICLR 2021

MiniGrid are procedurally-generated, i.e. a different grid will be sampled in each episode. Figure 9
shows the grids in four different episodes. The procedurally-generated nature makes training RL
challenging because the RL agents need to learn the skills that can generalize to different grids. The
environments can be easily modified so that we can create different levels of the environments. For
example, we can modify the number of rooms and the size of each room to create hard-exploration
or easy-exploration environments. The flexibility of MiniGrid environments enables us to conduct
systematic comparison of algorithms under different difficulties.

Figure 9: Rendering of MultiRoom-N12-S10 (top row) and KeyCorridor-S4-R3(bottom row) in 4
different episodes. The environments are procedually-generated, i.e., a different room is generated
in a new episode.

The original observations of MiniGrid are dictionaries, which consist of a image field providing a
partially observable view of the environment, and a mission field describing the goal with texts. In
our experiments, we use ImgObsWrapper which only keeps the image field. The environment
uses a compact encoding with 3 input values per visible grid cell. Note that the cells behind the wall
or unopened doors are invisible.

The possible actions in MiniGrid are (1) turn left, (2) turn right, (3) move forward, (4) pick up an
object, (5) drop the carried object, (6) open doors/interact with objects, and (7) done. The agent will
remain in the same state if the action is not legal. For example, if there is no object in front of the
agent, the agent will remain in the same state when performing action (4) pick up an object.

We focus on MultiRoom-NX-SY and KeyCorridor-SX-RY, where X and Y are hyperparameters
specifying the number of rooms or the room sizes in the environments. With larger X and Y, the
environments will become more difficult to solve due to the sparse rewards. Figure 10 shows the
environments (with different difficulties) in this work. In MultiRoom-NX-SY, the agent needs to
navigate the green tile in the last room. If the agent successfully navigates the goal, the agent will
receive a reward of 1 subtracting some penalties of the timesteps spent. In KeyCorridor-SX-RY, the
agent needs to pick up the key, use the key to open the locked door, and pick up the ball. Similarly,
the agent will receive a reward of 1 subtracting some penalties of the timesteps spent if it picks up the
ball. Both environments are extremely difficult to solve using RL alone due to the sparse rewards.

B.2 MINIWORLD MAZE ENVIRONMENT

MiniWorld6 is a minimalistic 3D interior environment simulator. Similar to Minigrid, we can easily
create environments with different levels. We focus on MiniWorld-Maze, where the agent is asked
to navigate the goal through a procedurally-generated maze. The agent has a first-person partially
observable view of the environment. This environment is extremely difficult to solve due to sparse
reward, long-horizon, and the procedurally-generated nature of the environments.

6https://github.com/maximecb/gym-miniworld

16

https://github.com/maximecb/gym-miniworld

Published as a conference paper at ICLR 2021

(a) MultiRoom-N7-S4 (b) MultiRoom-N10-S4 (c) MultiRoom-N7-S8 (d) MultiRoom-N10-S10

(e) KeyCorridor-S3-R2 (f) KeyCorridor-S3-R3 (g) KeyCorridor-S4-R3 (h) MultiRoom-N12-S10

Figure 10: Rendering of Minigird environments used in the work.

In this work, we focus on MiniWorld-Maze-S5, a variant of the MiniWorld Maze environment with
5×5 tiles. Figure 11 shows the top view of the mazes in four different episodes. In each episode, the
agent and the goal are initialized in the top-left and bottom-right corners of the map, respectively.
In this way, we ensure that the agent and the goal are far away enough so that the agent can not
easily see the goal without exploration. A random maze will be generated in each episode. There
are three possible actions: (1) move forward, (2) turn left, and (3) turn right. The agent will move
0.4× tile length if moving forward, where tile length is the length of one side of a tile. The agent
will rotate 22.5 degrees if turning right/left. The time budget of each episode is 600. The agent will
not receive any positive reward if it can not navigate the goal under the time budget.

Figure 11: Example generated mazes in 4 diffident episodes.

B.3 SPARSE MUJOCO ENVIRONMENTS

Mujoco is a physical engine for continuous control (Todorov et al., 2012). Figure 12 shows the
rendering of the four MuJoCo tasks used in our work. The original MuJoCo environments use
dense rewards, i.e., a well-defined reward is given in each timestep. However, in many scenarios,
well-defined dense rewards may be not available. We consider a variant of MuJoCo task using only
episodic reward. Specifically, the original rewards are accumulated and only an episodic reward is
given in the final timestep. The agent will receive a 0 reward in all the other timesteps. This sparse
setting makes the tasks much more challenging to solve. Contemporary RL algorithms will usually
suffer from the sparse rewards and deliver unsatisfactory performance. We aim to use these sparse
variants to study whether our RAPID can effectively capture the sparse rewards.

17

Published as a conference paper at ICLR 2021

(a) Walker2d (b) Hopper (c) InvertedPendulum (d) Swimmer

Figure 12: Rendering of Mujoco environments.

C ABLATIONS

Figure 13 shows the learning curves of RAPID against different ablations. Without local scores, we
observe significant performance drop on challenging environments in terms of sample efficiency
and final performance, i.e., on MultiRoom-N7-S8, MultiRoom-N10-S10, MultiRoom-N12-S10,
KeyCorridor-S3-R3, and KeyCorridor-S4-R3. This suggests that the proposed local score plays
an important role in encouraging exploration. We also observe that without buffer, the agent fails
to learn a good policy. Naively using the proposed scores as intrinsic reward will harm the per-
formance. Using the extrinsic reward and the global score to rank the episodes also contribute in
the challenging environments, such as KeyCorridor-S4-R3. Therefore, the three proposed scoring
methods may be complementary and play different roles in different environments.

RAPID w/o r ewar d w/o global w /o buf ferw /o l ocal

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N7-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N10-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(c) MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(d) MultiRoom-N10-S10

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn

(e) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(f) KeyCorridor-S3-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(g) KeyCorridor-S4-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(h) MultiRoom-N12-S10

Figure 13: Learning curves of RAPID and the ablations

D FULL ANALYSIS RESULTS

D.1 IMPACT OF THE NUMBER OF UPDATE STEPS

18

Published as a conference paper at ICLR 2021

201 105

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N7-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N10-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(c) MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(d) MultiRoom-N10-S10

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn

(e) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(f) KeyCorridor-S3-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(g) KeyCorridor-S4-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(h) MultiRoom-N12-S10

Figure 14: Impact of training steps S on MiniGrid environments.

D.2 IMPACT OF BUFFER SIZE

200001000 10000 500005000

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N7-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N10-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(c) MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(d) MultiRoom-N10-S10

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn

(e) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(f) KeyCorridor-S3-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(g) KeyCorridor-S4-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(h) MultiRoom-N12-S10

Figure 15: Impact of buffer size D on MiniGrid environments.

19

Published as a conference paper at ICLR 2021

D.3 PURE EXPLORATION ON MINIGRID

RAPID CURIOSITY RANDOMRIDE SIL PPOCOUNTAMIGO

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N7-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N10-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c) MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(d) MultiRoom-N10-S10

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(e) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(f) KeyCorridor-S3-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.00

0.05

0.10

0.15

(g) KeyCorridor-S4-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(h) MultiRoom-N12-S10

Figure 16: Extrinsic rewards achieved by RAPID and baselines with pure exploration

D.4 LOCAL EXPLORATION SCORE OF PURE EXPLORATION ON MINIGRID

RAPID CURIOSITY RANDOMRIDE SIL PPOCOUNTAMIGO

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

ex
pl

or
at

io
n

sc
or

e

(a) MultiRoom-N7-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N10-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(c) MultiRoom-N7-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(d) MultiRoom-N10-S10

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

ex
pl

or
at

io
n

sc
or

e

(e) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(f) KeyCorridor-S3-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.00

0.05

0.10

0.15

0.20

0.25

(g) KeyCorridor-S4-R3

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(h) MultiRoom-N12-S10

Figure 17: Local exploration scores achieved by RAPID and baselines with pure exploration

20

Published as a conference paper at ICLR 2021

E LEARNING CURVES WITH MORE ROOMS

RAPID RIDE

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N4-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(b) MultiRoom-N8-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(c) MultiRoom-N12-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

(d) MultiRoom-N16-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.2

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(e) MultiRoom-N20-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.2

0.0

0.2

0.4

0.6

0.8

(f) MultiRoom-N24-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.2

0.0

0.2

0.4

0.6

0.8

(g) MultiRoom-N28-S4

Figure 18: The learning curves with more rooms

F LEARNING CURVES WITH LARGE ROOMS

RAPID RIDE

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

0.8

re
tu

rn

(a) MultiRoom-N4-S4

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(b) MultiRoom-N4-S8

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

(c) MultiRoom-N4-S12

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

re
tu

rn

(d) MultiRoom-N4-S16

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(e) MultiRoom-N4-S20

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(f) MultiRoom-N4-S24

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

re
tu

rn

(g) MultiRoom-N4-S28

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(h) MultiRoom-N4-S32

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

(i) MultiRoom-N4-S36

Figure 19: The learning curves with larger rooms sizes.

21

Published as a conference paper at ICLR 2021

G ABLATION AND ANALYSIS OF MINIWORLD-MAZE

0 1 2 3 4 5
timesteps 1e6

0.0

0.2

0.4

0.6
RAPID
w/o local
w/o reward
w/o buffer

Figure 20: Learning curves of RAPID and the ablations on MiniWorld Maze. We observe minor
performance drop when removing the local score, substantial performance drop when removing
extrinsic rewards or the buffer.

0 1 2 3 4 5
timesteps 1e6

0.0

0.2

0.4

0.6

0.8 1
5
10
20

Figure 21: Impact of training steps on MiniWorld Maze.

0 1 2 3 4 5
timesteps 1e6

0.0

0.2

0.4

0.6

0.8
1000
5000
10000
20000
50000

Figure 22: Impact of buffer size on MiniWorld Maze.

22

Published as a conference paper at ICLR 2021

0 1 2 3 4 5
timesteps 1e6

0.00

0.05

0.10

0.15

0.20 RAPID
PPO
SIL
RANDOM
CURIOSITY
RIDE

Figure 23: Extrinsic rewards achieved by RAPID and baselines on MiniWorld Maze with pure
exploration.

0 1 2 3 4 5
timesteps 1e6

2000

2200

2400

2600

2800

3000 RAPID
PPO
SIL
RANDOM
CURIOSITY
RIDE

Figure 24: Local exploration scores achieved by RAPID and baselines on MiniWorld Maze with
pure exploration.

H COMPARISON WITH STORING ENTIRE EPISODES IN THE BUFFER

A variant of RAPID is to keep the entire episodes in the buffer instead of state-action pairs. The
intuition of keeping the whole episode is that it is possible that a particular state-action pair may
only be good in terms of exploration, in the context of the rest of the agent’s trajectory in that
episode. To test this variant, we force the buffer to keep the entire episode by allowing the episode
at the end of the buffer to exceed the buffer size. For example, given that the buffer size is 5000, if
the length of the end episode is 160 and the number of state-action pairs in the buffer is 5120, we
do not cut off the end episode and exceptionally allow the buffer to store 5120 state-action pairs.
In this way, we ensure that the entire episodes are kept in the buffer. We run this experiment on
MiniGrid-MultiRoom-N7-S8-v0 (Figure 25). We do not observe a clear difference in the learning
curves.

23

Published as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

re
tu

rn

Not Keeping All
Keeping All

Figure 25: Comparison of keeping all the state-action pairs of an episode and not keeping all the
state-action pairs (i.e., a fixed buffer size) on MultiRoom-N7-S8. The experiments are run 5 times
with different random seeds. We observe no clear difference in the learning curves of these two
implementations.

I RESULTS ON PROCEDURALLY-GENERATED SWIMMER

The standard MuJoCo environments are singleton. Here, we modify the Swimmer-v2 environment
to make it procedurally-generated. Specifically, we make the environment in each episode different
by modifying the XML configuration file of MuJoCo engine in every new episode. We consider
two environmental properties, i.e., density and viscosity. Density is used to simulate lift and drag
forces, which scale quadratically with velocity. Viscosity is used to simulate viscous forces, which
scale linearly with velocity. In the standard Swimmer-v2 environment, the density and the viscosity
are fixed to 4000 and 0.1, respectively. In the first experiment, we uniformly sample the density in
[2000, 4000] in each new episode to make it procedurally-generated, denoted as Density-Swimmer.
Similarly, in the second environment, we uniformly sample the velocity in [0.1, 0.5], denoted as
Velocity-Swimmer. These two variants make RL training more challenging since the agent needs
to learn a policy that can generalize to different densities and velocities. Similarly, we accumulate
the rewards to the final timestep of an episode to make the environments sparse. Both environments
are provided in our code for reproducibility. The results are reported in Figure 26. We observe
that all methods learn slower on these two variants. For example, RAPID only achieves around 190
return in Density-Swimmer, while RAPID achieves more than 200 return in Swimmer. Similarly,
SIL reaches around 100 return after around 5×106 timesteps in Density-Swimmer, while it achieves
around 100 return after around 3 × 106 timesteps in Swimmer. Nevertheless, RAPID can discover
very good policies even in these challenging procedurally-generated settings.

24

Published as a conference paper at ICLR 2021

RAPID SIL PPO

0 1 2 3 4 5
timesteps 1e6

0

50

100

150

200

250

(a) Swimmer

0 1 2 3 4 5
timesteps 1e6

0

50

100

150

200

(b) Density-Swimmer

0 1 2 3 4 5
timesteps 1e6

0

50

100

150

200

250

300

(c) Velocity-Swimmer

Figure 26: (a) is the singleton swimmer environment. In (b) the density is procedurally-generated. In
(c) the velocity is procedurally-generated. All the methods tend to learn slower in the procedurally-
generated settings. Nevertheless, RAPID is still able to discover good policies in these challenging
variants.

J DISCUSSIONS OF ANNEALING

In our experiments, we find that annealing the updating step to 0 sometimes helps improve the
sample efficiency. However, in some environments, annealing will have a negative effect on the final
performance. To show the effect of annealing, we plot learning curves with or without annealing on
MiniGrid-KeyCorridorS3R2-v0 and MiniGrid-MultiRoom-N12-S10-v0 in Figure 27. We observe
that annealing can help in KeyCorridor-S3-R2. The possible explanation is that, after the agent
navigates the goal, it has access to the reward signal. the PPO objective is sufficient to train a good
policy with the extrinsic rewards. The imitation loss may harm the performance since it could be
better to perform exploitation rather than exploration at this stage. However, in MultiRoom-N12-
S10, annealing will harm the performance. In particular, the performance drops significantly in the
final stage when the updating frequency of imitation loss approaches zero. The possible reason is
that MultiRoom-N12-S10 needs very deep exploration to find the goal. Even though the PPO agent
can navigate the goal, it may easily suffer from insufficient exploration when it encounters a new
environment. As a result, the agent needs to keep exploring the environment in order to generalize.
Introducing imitation loss will ensure that the agent keeps exploring the environments.

0 1 2 3
timesteps 1e6

0.0

0.2

0.4

0.6

0.8

re
tu

rn

No Annealing
Annealing

(a) KeyCorridor-S3-R2

0.0 0.5 1.0 1.5 2.0
timesteps 1e7

0.0

0.2

0.4

0.6

re
tu

rn

No Annealing
Annealing

(b) MultiRoom-N12-S10

Figure 27: Annealing versus not annealing. Annealing is helpful in KeyCorridor-S3-R2. However,
the policy fails to converge with annealing in MultiRoom-N12-S10.

25

	Introduction
	Exploration via Ranking the Episodes
	Episodic Exploration Score
	Reproducing Past Good Exploration Behaviors with Imitation Learning

	Experiments
	Environments and Baselines
	MiniGrid Results
	Ablations and Analysis
	MiniWorld Maze and Sparse MuJoCo Results

	Related Work
	Limitations and Discussions
	Conclusions and Future Work
	Hyperparameters and Neural Network Architecture
	Environments
	MiniGrid Environments
	MiniWorld Maze Environment
	Sparse MuJoCo Environments

	Ablations
	Full Analysis Results
	Impact of the Number of Update Steps
	Impact of Buffer Size
	Pure Exploration on MiniGrid
	Local Exploration Score of Pure Exploration on MiniGrid

	Learning Curves with More Rooms
	Learning Curves with Large Rooms
	Ablation and Analysis of MiniWorld-Maze
	Comparison with Storing Entire Episodes in the Buffer
	Results on Procedurally-Generated Swimmer
	Discussions of Annealing

