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ABSTRACT

With the success of large language models (LLMs) of code and their use as code
assistants (e.g. Codex (Chen et al., 2021) used in GitHub Copilot1), techniques
for introducing domain-specific knowledge in the prompt design process become
important. In this work, we propose a framework called Repo-Level Prompt
Generator that learns to generate example-specific prompts using prompt proposals.
The prompt proposals take context from the entire repository, thereby incorporating
both the structure of the repository and the context from other relevant files (e.g.
imports, parent class files). Our technique doesn’t require any access to the weights
of the LLM, making it applicable in cases where we only have black-box access to
the LLM. We conduct experiments on the task of single-line code-autocompletion
using code repositories taken from Google Code archives. We demonstrate that
an oracle constructed from our prompt proposals gives a remarkably high relative
improvement of 36% over Codex, showing the quality of these proposals. Further,
we show that when we train a model to predict a prompt proposal, we can achieve
significant performance gains over Codex and other baselines.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance in natural language
processing tasks (Brown et al., 2020; Chowdhery et al., 2022), text-to-image generation (Ramesh
et al., 2022; Rombach et al., 2021), protein-sequencing (Rives et al., 2019) and even as a generalized
agent (Reed et al., 2022). As opposed to the pretrain-finetune paradigm, prompting these LLMs has
been found to yield good performance even with few-examples (Liu et al., 2021a). A prompt is an
input to the LM such that the desired task can be expressed as predictions generated from the LM.
Besides providing a mechanism to control and evaluate a LM, prompts have shown to elicit emergent
behaviour as well. Examples of this behavior include GPT-3 (Brown et al., 2020) doing better in
tasks it has never seen during training and improved reasoning capabilities with few-shot (Wei et al.,
2022) and zero-shot (Kojima et al., 2022) prompts that encourage a chain of thoughts. These factors
highlight the importance of designing an effective task-specific prompt 2. However, currently we
have limited understanding of how to do this (Reynolds & McDonell, 2021).

LLMs have also been used for modeling source code with impressive results (Austin et al., 2021;
Fried et al., 2022; Xu et al., 2022a). In particular, one of the best performing LLM, Codex (Chen
et al., 2021), has been deployed as part of GitHub Copilot 1, a state-of-the-art in-IDE code assistant.
Despite the growing popularity of LLMs of code, there is no work that systematically tackles different
aspects of prompt generation in relation to source code. One such aspect is that when it comes to
code, the relevant context to be put in the prompt can come from not just the current file, but also from
outside, such as imports and parent classes. Also, depending on the scenario, the relevant context
can be scattered across multiple locations. Since the LLMs have a limited context length available
for the prompt, it becomes increasing crucial for our domain-specific understanding to guide the
selection of relevant context. Currently, it is not clear how to integrate this domain knowledge of
what constitutes a relevant context, into the process of creating prompts. Addressing this question has
potential benefits in other domains such as question answering (Liu et al., 2022) and multi-document
summarization (Xiao et al., 2022), where domain-specific structured retrieval of context can be useful.

1https://copilot.github.com/
2Platforms such as PromptBase https://promptbase.com/ allow buying and selling of prompts.
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Figure 1: Repo-Level Prompt Generator: The prompt is generated by combining the context
from the predicted prompt proposal p = 14, i.e., method names and bodies from the imported file,
MaximizingGibbsSampler.java (violet) with the default Codex context (gray).

In this work, we address this problem by proposing Repo-Level Prompt Generator (RLPG), a
framework that while generating the prompt, incorporates both the structure of the repository as well
as the relevant context in all the files of the repository. In RLPG, the choice of where from and what
to take from the repository is specified by a set of prompt proposals. For example, one of the prompt
proposal can be to take all the identifiers used in the first import file. These prompt proposals allow
the prompt engineers to induce their domain expertise in the prompt-designing process. With the
increasing use of LLMs as assistive agents to humans, demand for transparency and the desire for
software engineers to take active part in tailoring prompts to suit their requirements (Jiang et al.,
2022; Sun et al., 2022), this capability becomes important. As suggested in some previous works in
NLP (Shin et al., 2020; Schick & Schütze, 2021), our prompt proposals are discrete. However, rather
than fixing one particular prompt proposal for each example, we instead predict the best prompt
proposal conditioned on the example. We do this by coming up with a neural network called Prompt
Proposal Classifier (PPC), that given an example, learns to select a prompt proposal such that the
resulting prompt is likely to produce the desired output. Therefore, RLPG allows the introduction of
domain expertise, and at the same time facilitates automatic example-specific prompt generation via
a learned neural network. Note that there are some techniques for automatic prompt generation in
NLP (Li & Liang, 2021; Shin et al., 2020; Lester et al., 2021) that require updating some or all of the
weights of the LLM. However, the strongest LLMs are not publicly available (e.g. OpenAI provides
access only to the generated output from Codex via an API 3 and no access to model weights and data
is provided), making these techniques less useful under this scenario. RLPG addresses this limitation
by generating prompts assuming only black-box access to the LLM.

We focus on the task of single-line code-autocompletion in an IDE, where the objective is to predict
the blanked-out portion (or target hole) starting from the position of an imagined cursor to the end
of line. We operate under the line-level maintenance setting (Shrivastava et al., 2020; Hellendoorn
& Devanbu, 2017) that reflects the scenario where a user is editing an existing file. This means that
there can be code following the line. Figure 1 provides an illustration of our approach. The prompt
proposal classifier takes in the hole position (position of the cursor) in the current file, the repository
to which the current file belongs and a set of repo-level prompt proposals as input, and predicts a
prompt proposal. In our illustrated example, the predicted prompt proposal corresponds to taking
the method names and bodies from MaximizingGibbsSampler.java (mg.before the hole
position indicates that a method from the imported file is likely to be invoked). The Prompt Composer
uses the context from the predicted prompt proposal and combines it with the default Codex context,

3https://openai.com/blog/openai-codex/
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i.e., code prior to the position of the hole in the current file. The resulting prompt consists of the
method name InitializeToAssignment (from the prompt proposal context) and the method
CurrentAssignments() (from the default Codex context), resulting in a successful prediction
(brown box on the top) of the target hole. Our key contributions are as follows:

• We propose a framework called the Repo-Level Prompt Generator (RLPG) that learns to generate
prompts conditioned on the example, without requiring access to the weights of the LLM.

• To incorporate domain-knowledge in the prompt design process, RLPG uses a set of repository-level
prompt proposals. These prompt proposals are designed to incorporate both the structure of the
repository as well as the relevant context from all files in the repository.

• On the task of single-line code-autocompletion, we show that an oracle constructed from our
proposed prompt proposals gives up to 36% relative improvement over Codex. This improvement
is pleasantly surprising as Codex has never seen prompts made from these prompt proposals during
training. Further, we show that when we use our prompt proposal classifier to predict the best
prompt proposal, we can achieve up to 17% relative improvement over Codex.

2 REPO-LEVEL PROMPT GENERATOR (RLPG)

In this section, we provide details of our framework. We start by describing our prompt proposals and
then discuss our prompt proposal classifier which is followed by a description of prompt composer.

2.1 REPO-LEVEL PROMPT PROPOSALS

The core idea of RLPG consists of substituting part of the default context used by Codex with context
coming from somewhere else in the repository. The decision of what to take and from where in
the repository to take from is governed by a set of prompt proposals. These prompt proposals were
decided based on manual inspection of our training data and intend to capture common coding
patterns (but more generally can also include project/organization-specific coding practises). A
prompt proposal can be thought of as a function that takes as input a target hole’s position and the
repository that the hole is a part of, and that returns the prompt proposal context (a string constituted
by the context from the prompt proposal). A prompt proposal is specified by a prompt source and a
prompt context type. We mention each of these along with their motivation below.

Prompt Source: For a target hole position, a prompt source determines from where should we take
code that will be part of the prompt proposal context. We propose ten different prompt sources:

1. Current: take code from the current file excluding the contents of the target hole. The
current file is the file that contains the target hole. The code in the current file (e.g. the lines
after the hole position) can be very useful in predicting the target hole.

2. Parent Class: take code from the file that contains the parent of the class to which the target
hole belongs. The intuition behind this is to account for cases where a method present in the
parent class is invoked in the current file (i.e. the child class).

3. Import: take code from the import files used in the current file. The dependencies specified
via imports can provide useful cues to predict the target hole.

4. Sibling: take code from the files that are in the same directory as the current file. Files in
the same directory tend to share code variables (e.g. identifiers).

5. Similar Name: take code from files that have a similar name as the current file. Similar
names are determined by doing a splitting of the file name based on underscore or camel-case
formatting and then matching parts of the filename. If one or more parts matches, two files
are considered to have similar names. The intuition behind this is that software developers
tend to name files based on the functionality of the code written in that file. Therefore, a
similar name file might contain some portion of the code that is common with the current
file and hence might be useful for predicting the target hole.

6. Child Class: take code from files that have the current file as their parent class file.
7. Import of Parent Class: take code from the import files used in the parent class files.
8. Import of Sibling: take code from the import files used in the sibling files.
9. Import of Similar Name: take code from the import files used in the similar name files.

10. Import of Child Class: take code from the import files used in the child class files.
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The last four prompt sources are useful when the target hole occurs at the very beginning of the
current file. In these cases, there would be less context coming from other prompt sources. For each
prompt source, we can get either a single file or a ranked list of files (see Appendix B.1). In the latter
case, we will take context from these files until we exhaust the maximum context length allocated to
the prompt proposal.

Prompt Context Type: The prompt context type determines what code to take from the prompt
source. We propose seven different prompt context types (Appendix B.2 has examples of each type):

1. Post Lines (PL): Take all the lines after the target hole line till we reach the end of the file.
This context type is applicable only when prompt source is the current file 4.

2. Identifiers (I): Take all the identifiers used in the prompt source.
3. Type Identifiers (TI): Take all the type identifiers used in the prompt source.
4. Field Declarations (FD): Take all the field declarations used in the prompt source.
5. String Literals (SL): Take all the string literals used in the prompt source.
6. Method Names (MN): Take all the method names along with their signatures that are used

in the prompt source.
7. Method Names and Bodies (MNB): Take all the method names along with their signatures

and corresponding bodies used in the prompt source.

By combining prompt sources with prompt context types, we get a total of 63 prompt proposals (see
Appendix B.4 for details). Note that depending on the target hole, not all prompt proposals would be
applicable (e.g. if there are no parent classes in the current file, prompt proposals with prompt source
as parent class file won’t be applicable). In Figure 1, the predicted prompt proposal corresponds to
taking prompt source Import and prompt context type MNB. We aimed for a set of prompt proposals
that offer more diversity rather than a set of prompt proposals that are all good. This in turn ensures
that for any hole position, a significant number of prompt proposals are applicable.

2.2 PROMPT PROPOSAL CLASSIFIER (PPC)

Given a hole position, the goal of the prompt proposal classifier is to predict the prompt proposal p
that will lead to success, where success happens when the predicted hole ĥ exactly matches the target
hole h. This task is formulated as a multi-label binary classification problem since for a given target
hole, more than one prompt proposals can lead to success. In this formulation, we treat the default
Codex context as one of the prompt proposals. Next, we describe the training procedure for PPC.

Training: For each target hole h, we generate a ground-truth vector Y h = [yhp ]
M
p=1 which is a

multi-hot vector of size M , where M is the total number of prompt proposals. This vector is obtained
by feeding the prompt generated from prompt proposal p into Codex and then seeing whether ĥ = h.
If there is a match, we say that the prompt proposal p is successful. For hole h, if a prompt proposal
p is applicable and leads to success, yhp = 1 and will be zero otherwise. For each hole h, we obtain a
mask Th where Th

p = 1 when p is applicable or zero otherwise. The overall training loss L can be
expressed as the sum of individual hole losses Lh as follows:

L =
1

N

N∑
h=1

Lh =
1

N

N∑
h=1

1

Mh

Mh∑
p=1

BCE(ŷhp , y
h
p ) ∗ Th

p where Mh =
∑
p

Th
p (1)

In the above equation, N is the total number of holes encountered while training, Mh denotes the
total number of applicable prompt proposals for h and BCE corresponds to the binary cross entropy
loss. Masking ensures that we consider only the prompt proposals that are applicable. Next, we
describe our two variants of PPC that can be used to obtain the prediction ŷhp .

RLPG-H: Let Hh be the hole window that includes code present around the hole h excluding the
hole itself. In our work, we take two lines before the hole position, the code up to the hole position
and two lines after the hole position. We use a pretrained model Fϕ to obtain a context representation
vector of size Z, where Z is the dimension of the hidden state of the model. Specifically, we take the
hidden state at the first position, i.e. the representation of the [CLS] token. To make training of PPC

4We also conducted experiments (Appendix D.2) where we take lines starting from the 4th line after the hole.
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computationally efficient, the parameters ϕ are frozen during training. The RLPG-H model takes the
context representation of the hole window and projects it to the prompt proposal space of size M via
two dense layers with a non-linearity in between (see Equation 2). Taking the sigmoid of this output
gives the prediction of the prompt proposal.

ŷhp = P (yhp = 1|Hh) = sigmoid(W 2(relu(W 1(Fϕ(H
h)) + b1)) + b2) (2)

RLPG-R: The motivation behind this variant is to use the similarity of the hole window and the
prompt proposal context to determine which prompt proposal can be useful. Given a particular
hole h, let Ch

p denote the prompt proposal context from prompt proposal p . Intuitively, if the hole
window contains variables (e.g. identifiers) that are similar to the variables in the prompt proposal
context, then there are chances that h might occur somewhere in Ch

p . The similarity is modeled using
a multiheaded attention mechanism (Vaswani et al., 2017), by treating the projected hole window
representation as a query Qh and the projected prompt proposal context representation Kh

p as a key
(Equation 3). The value V h

p is the same as the key.

Qh = Fϕ(H
h), Kh

p = Fϕ(C
h
p ), V h

p = Fϕ(C
h
p ) (3)

Att(Qh,Kh
p , V

h
p ) = V h

p softmax
(Qh⊤Kh

p√
dk

)
(4)

MultiHead(Qh,Kh
p , V

h
p ) = WOconcat(headi, head2, . . . headτ ) (5)

where headi = Att(WQ
i Qh,WK

i Kh
p ,W

V
i V h

p )

ŷhp = P (yhp = 1|Hh, Ch
p ) = sigmoid

(
WpG(MultiHead(Qh,Kh

p , V
h
p )) + bp

)
(6)

In the equations above, dk is the dimension of the key, WQ
i ,WK

i ,WV
i are the query, key and value

projection matrices, τ is the number of heads and WO is the linear projection that combines the heads.
The output from Equation 5 is fed to module G consisting of two-layers of feedforward network with
relu activation in between (see Appendix C for more details). The resulting output is then linearly
projected and a sigmoid is applied to get the predicted prompt proposal (Equation 6).

2.3 PROMPT COMPOSER

The prompt composer combines the context from the selected prompt proposal (given by PPC) with
the context normally used by Codex (default Codex context) to generate the prompt. Since the total
length that can be used for a prompt is fixed, we adopted a dynamic context allocation strategy where
if the prompt proposal context is shorter than its allocated length, we assign the remaining portion
from the prompt proposal context to the default Codex context. The prompt proposal context is
always added before the default Codex context. For all prompt proposals, we assign half of the total
context length to the prompt proposal context and the remaining to the default Codex context. For
post lines, in addition, we also assign one-fourth and three-fourths of the total context length to the
prompt proposal context. If the prompt proposal context or the default Codex context is greater than
the context length allocated to it, we truncate it (see Appendix B.3 for our truncation strategies).

3 EXPERIMENTS AND RESULTS

In this section, we describe our process of dataset creation, details of experiments along with their
results and interesting ablation studies.

3.1 DATASET CREATION

To mitigate the effects caused by potential memorization of the code present in the dataset used for
training Codex, we avoided code repositories from GitHub (Chen et al., 2021). Instead, we scraped
Google Code 5 for repositories in Java (removing the ones that matched with a repository on GitHub

5https://code.google.com/archive/
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with the same name). We selected the repositories that had a permissive license giving us a total of 47
repositories. We divided the repositories into train, validation and test splits, where each repository
in its entirety is part of a split. In each file within a repository, we remove lines that are blank and
comments, and set the hole position to be the middle character in the line. All the characters from the
middle position to the end of the line constitute the target hole.

Since code duplication has been shown to have adverse effects (Allamanis, 2018), within a repository,
we look for files that are exact replica of each other, but placed in a different folder. We mark all
such copies as duplicates and omit all of them when creating target holes for our dataset. Note that
the prompt proposal context can still come from the duplicate files. We felt comfortable with this
choice since we wouldn’t want to predict a target hole in a duplicate file, but we can still use the
context from the duplicate file to predict the hole in a file that is not its duplicate (e.g. in a sibling
file). Further, we found that the repositories were quite uneven in terms of their size. To avoid large
repositories dominating the training of PPC, we capped the maximum contribution of holes from a
repository to 10,000, i.e. if the total number of holes in the repository exceeded 10,000, we selected
10,000 holes randomly from the total holes.

Please see the left part of Figure 2 for statistics of our dataset. The #Holes represents the holes after
deduplication and capping. For some of our prompt proposals, we require semantic information that
can be obtained with a parse tree. We used the tree-sitter API for Java 6 that enables us to get the AST
of a file and query it. Since our prompt proposals need information at a repository level, we stored
some extra information that allowed us to collate the information from individual files according to
the directory structure inside the repository (see Appendix A for more details).

3.2 EXPERIMENTAL DETAILS

Prompt Generation: We used the OpenAI Codex Completions API for generating the predicted hole
from the Codex model. In particular, we used the code-davinci-001 engine with temperature
set to 1.0 and stop criteria as newline. The completion length was kept to be 24 and the maximum
prompt length was 4072. Tokenization was done using the suggested tokenizer 7. To allow for fast
computation, we used simple models like CodeBERT (Feng et al., 2020) and GraphCodeBERT (Guo
et al., 2020) as our pretrained models. One of the limitations of these pretrained models is that
the maximum context length that can be taken as input by these models is much smaller than the
maximum context length allowed by Codex. Therefore, when getting the representation of the prompt
proposal context that is used by PPC, we need to truncate the prompt proposal context that might lead
to omitting important parts of the prompt proposal context in certain cases. Using pretrained models
that allow larger context length or models that augment the context (Wu et al., 2022) offer avenues
for future work. See Appendix D.4 for results when using a smaller context length from Codex.

Computational Complexity and Scalability of RLPG: To collect the ground-truth data for training
our prompt proposal classifier, we queried the Codex API for each applicable prompt proposal per
hole (maximum rate limit of 400 holes per minute). The computational complexity of training our
larger RLPG-R variant (3.6M parameters, 141269 holes and 9.19 minutes per epoch on a single
Tesla V100 GPU) is much smaller than finetuning all or some part of Codex (12B parameters).
During inference, we need to calculate the repo-level statistics just once and all the subsequent hole
completions in the repo can utilize this cached information, incurring no additional computational
complexity. Besides training the PPC, all our experiments were performed on a CPU with 8GB RAM.
Our prompt proposals are based on concepts such as post lines, imports, similar name files, method
names and identifiers that are quite general and are applicable to other programming languages. In
addition to the existing prompt proposals, our framework provides the flexibility to incorporate new
prompt proposals. Since the cost of retraining RLPG with the extended prompt proposals is extremely
low (much lower than finetuning Codex with the new prompt proposals), our framework can be used
to make interventions on the LLM to address observed weaknesses as long as the intervention can be
expressed as a prompt proposal that adds the missing context to the LLM. As opposed to techniques
that perform prompt engineering in the latent space and require access to the weights of the LLM
such as Li & Liang (2021), RLPG facilitates expressing intent in the form of prompt proposals that
are intuitive for humans, easy to understand and do not require access to the weights of the LLM.

6https://github.com/tree-sitter/tree-sitter-java
7https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2TokenizerFast
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Feature Train Val Test Total
# Repositories 19 14 14 47
# Files 2655 1060 1308 4757
# Holes 92721 48548 48288 189557

Data
Split

SR
Codex(%)

SR
Oracle(%)

Rel. ↑
over Codex(%)

Train 59.78 80.29 34.31
Val 62.10 79.05 27.28
Test 58.73 79.63 35.58

Figure 2: (Left) Statistics of our dataset; (Right) Performance of the oracle relative to Codex.

Methods: We experimented with the following methods for generating the prompt:

1. Codex: Using the default context from Codex as the entire prompt.
2. Oracle: Using the ground-truth vector Y h (mentioned in Section 2.2). The prompt generated

corresponds to using any of the successful prompt proposals (i.e., yhp = 1). Since this
information is not available at inference, the oracle performance represents an upper bound.

3. Fixed Prompt Proposal: Using the most successful prompt proposal for all target holes.
This was chosen based on the performance on the validation set and corresponded to taking
75% of the total context length from post lines in the current file.

4. RLPG-H and RLPG-R: Using the prompt proposal predicted by the RLPG-H and RLPG-H
varients of PPC. The selected prompt proposal corresponds to taking the argmax of the
predicted probabilities over different prompt proposals.

5. RLPG-BM25: Instead of using PPC to rank prompt proposals, using the scores obtained by
BM25 (Jones et al., 2000) to select the best prompt proposal. The scores are calculated with
the hole window being the query and prompt proposal contexts being the search documents.
This serves as a non-learned retrieval method that makes use of our prompt proposals.

6. File-level BM25: Same as above, except that instead of using our prompt proposal contexts,
search documents consist of full context from other files in the repository.

7. Random: For each target hole, select a context randomly from anywhere in the repository.
8. Random NN: Same as Random, except that amongst the randomly chosen contexts, we

take the nearest neighbours of the hole window in the representation space of a pretrained
model. This is analogous to the technique used in Liu et al. (2022).

9. Identifier Usage: For each target hole, we take the closest identifier and take usage windows
of that identifier from everywhere in the repository. We take two lines above, two lines
below and the usage line as the usage window. We can rank the usage windows either
randomly (random) or based on the nearest neighbour distance to the hole window in the
representation space (NN).

The last four methods help us understand the performance when a context other than the prompt
proposal context is used. To generate a prompt using these methods, we take 50% of the context from
these followed by the default Codex context that takes up the remaining context length. For the NN
baselines, we use CodeBERT (Feng et al., 2020) as the pretrained model. The contexts are taken
in the increasing order of the nearest neighbour distances, until we exhaust the allocated context
length. RLPG-BM25 helps us understand the role of PPC. See Appendix C.3 for more details on the
implementation of these methods.

Evaluation Metric: As mentioned in Section 2.2, to measure success, we used exact match between
the predicted hole string generated by Codex and the target hole string. In our experiments, we report
the percentage of successful holes divided by the total number of holes for each split. We will call
this success rate (SR) going forward.

3.3 RESULTS

In this section, we present the results of the following two research questions explored in this paper:

[RQ1] Is it useful to generate a prompt that is composed of code context that is different from the
default Codex context? If yes, what context can be useful?

[RQ2] For each target hole, is there a way of automatically selecting the prompt? If yes, how does
this system perform relative to Codex?

RQ1 - Performance of Prompt Proposals: We found that combining the prompt proposal context
(context from other files in the repository) with the default Codex context led to substantial improve-
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Table 1: Success Rate (SR) of different methods on the test data when averaged across all holes
(hole-wise) and across individual repositories (repo-wise)

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 58.73 - 60.64 -

Oracle 79.63 35.58 80.24 32.31

Random 58.13 -1.02 58.95 -2.79
Random NN 58.98 0.43 60.04 -0.99

File-level BM25 63.14 7.51 64.28 6.00
Identifier Usage (Random) 64.93 10.55 67.83 11.85

Identifier Usage (NN) 64.91 10.52 67.94 12.03

Fixed Prompt Proposal 65.78 12.00 68.01 12.15
RLPG-BM25 66.41 13.07 68.15 12.39

RLPG-H 68.51 16.65 69.26 14.21
RLPG-R 67.80 15.44 69.28 14.26

ment in performance. The right part of Figure 2 shows the performance of an oracle constructed
from our prompt proposals. We see that across all data splits, the prompt proposals contribute to
significantly large improvements over Codex (upto 36% for test split). These results might seem
surprising as Codex has not been trained on prompts that consist of context other than the default
Codex context. What makes this result more surprising is that in most of the cases, the prompt
consists of mashed up context without logical ordering that may not even look like a semantically
meaningful chunk of code (e.g. list of string literals from a sibling file followed by the default Codex
context or post lines placed before the default Codex context as opposed to after). These results might
suggest that as long as the relevant context (in our case repo-level knowledge in the form of prompt
proposals) is present in any form in the prompt, it can be quite effective.

RQ2 - Performance of PPC: Having seen promise in our prompt proposals, next we present the
results of RLPG, which for each target hole predicts a single best prompt proposal. Table 1 presents
the success rates along with the percentage of relative improvements for the test data. The second
and third columns correspond to the averages across all holes in the test data. The last two columns
correspond to the average success rate of individual repositories. The latter metric doesn’t account
for the size of the repository. As can be seen from the table, all the RLPG variants as well as the fixed
prompt proposal improve the performance significantly over Codex. The random baselines are either
worse or on par with Codex. Identifier usage is a good baseline but still performs worse than either the
fixed prompt proposal or RLPG. The improved performance of RLPG-BM25 as compared to fixed
prompt proposal shows the value of generating example-specific prompts using RLPG. However, both
the learned variants of RLPG, i.e., RLPG-H and RLPG-R outperform the RLPG-BM25, highlighting
the importance of learning PPC. See Appendix D.5 for performance of all methods on individual
repositories. Note that even though we consider identifier usage as a separate baseline, one could
consider it as one of the prompt proposal leading to further improved performance of RLPG.

Despite our efforts of avoiding overlap, since the training data for Codex is not exactly known,
there might be a slight possibility that part of our Google Code data is part of the training data for
Codex. Even if there were an overlap, we want to point out that since Codex has seen the default
Codex context during training, it would be more beneficial to use the default Codex context in the
prompt rather than the context from the prompt proposals or any other context from other baselines.
Therefore, under this scenario, our evaluation would be more generous to the Codex baseline with
results biased more in favour of the Codex baseline than other methods we have used.

Variation with #attempts: Imagine a scenario where we have a human-in-the-loop who has been
given k attempts to prompt the LLM and then can choose one of the k hole predictions. We wanted
to see how does the performance of our framework varies with #attempts under this setting. This
corresponds to using k prompts generated with top-k prompt proposals (one prompt per proposal) and
marking success if any of the k prompts lead to success. The left part of Figure 3 shows the variation
of SR over the validation data with the value of k. For RLPG, the top-k prompt proposals were
chosen based on the decreasing order of probabilities given by PPC. For the fixed prompt proposal,
the top-k prompt proposals were decided based on decreasing order of success rate of the individual
prompt proposals on the validation dataset. From the figure, we notice that as we increase the value
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Figure 3: (Left) Variation of RLPG and Fixed Prompt Proposal with #attempts (k); (Right) Mean
success rates of different prompt sources when they are applicable.

of k, the performance increases gradually at first and then saturates towards the oracle performance
(79.05% for val data). This behaviour is observed for both fixed prompt proposal as well as RLPG.
However, we see that for the same value of k, the success rate for RLPG is higher indicating that
PPC learns a useful ranking of the prompt proposal contexts that can scale well with the #attempts.

Performance based on Prompt Proposals: The right part of Figure 3 shows mean success rate of
prompt sources when we count success only when the corresponding prompt source is applicable.
From the figure, we see that the current file is the most important prompt source. Closely following are
sibling files and similar name files. We see that all prompt sources have non-zero chances of success,
highlighting the usefulness of each prompt source. See Appendix D.1 for a similar breakdown based
on prompt context type and Appendix E for analysis of successful and failed sample cases.

4 RELATED WORK

LLMs for Code: Recently, there has been a lot of work around large language models of code. One
class of models are the decoder-only models that correspond to generating code from left-to-right.
Codex (Chen et al., 2021), Google’s model (Austin et al., 2021), GPT-J-6B (Wang & Komatsuzaki,
2021), GPT-Neo (Black et al., 2021b), GPT-Neo-X (Black et al., 2021a), CodeParrot (Tunstall et al.,
2022), PolyCoder (Xu et al., 2022a) and InCoder (Fried et al., 2022) are some examples. We also
have some encoder-only models that use a masked language modelling objective. CodeBERT (Feng
et al., 2020), GraphcodeBERT (Guo et al., 2020) and CuBERT (Kanade et al., 2020) are examples of
such models. Lastly, we have the class of encoder-decoder models that generally use a bidirectional
encoding of a context to decode a series of masked tokens. Code-T5 (Wang et al., 2021) and
AlphaCode (Li et al., 2022) are examples of such models.

Repo-Level Info: Fewer works use information from outside the current file. Hellendoorn & Devanbu
(2017) propose a nested n-gram model that utilizes a locality-based cache where the locality consists
of all directories from the root of the project (inclusive of the current file). Zhang et al. (2021) uses
the parent class to generate the comments for the child class. Pashakhanloo et al. (2022b;a) capture
the structure and semantics of the repository by converting it into a relational database and propose
a graph-walk based mechanism for pruning the unrelated context. Lyu et al. (2021) incorporates
the API-dependency graph in a LSTM-based Seq2Seq model to assist in code generation. Xu et al.
(2022b) incorporate three types of structural locality features while training the kNN-LM (Khandelwal
et al., 2020). These features are binary variables that correspond to the presence or absence of similar
hierarchy. The three levels of hierarchy are (a) sibling file, (b) file in the same repo (c) no hierarchy.
In contrast we have a much richer set of prompt proposals incorporating the semantics and structure
of the repository. Also, we assume black-box access to the actual LM and restrict ourselves to
generating a prompt for the LLM without performing any finetuning of the LLM.

Prompt Generation: There have been promising works around prompt generation techniques in
NLP. Broadly, there are two categories of automatic prompt generation techniques. The first category
corresponds to producing continuous/soft prompts where the prompt is described in the latent space
of a language model (Li & Liang, 2021; Qin & Eisner, 2021; Bragg et al., 2021; Lester et al., 2021;
Liu et al., 2021b). For example, Prefix-Tuning (Li & Liang, 2021) adds a prefix to the LM that can be
learned by finetuning on examples from the downstream task. The second category produces discrete
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prompts where the prompt is a text string that can be interpreted by a human (Shin et al., 2020; Gao
et al., 2021; Schick & Schütze, 2021). For example, Autoprompt (Shin et al., 2020) generates prompt
using a fixed template consisting of trigger tokens. The trigger tokens are shared across all inputs and
determined by a gradient-guided search involving the LM. Our work falls in the category of discrete
prompt generation techniques as we produce a prompt consisting of code tokens that can be easily
interpreted by a human. However, in contrast to prior works that use a set of fixed templates for all
examples, we learn to produce prompts conditioned on each example. Another important distinction
is that we do not require access to the weights of the LM. A concurrent work as ours (Wang et al.,
2022) studies the role of prompt-tuning when compared to fine-tuning for code translation, defect
localization and code summarization. However, their technique requires access to the weights of the
LLM and they perform experiments over models that are much smaller in scale than Codex. To the
best of our knowledge, our work is the first to explore automatic prompt generation in a black-box
access setting in the domain of source code.

5 CONCLUSIONS AND FUTURE DIRECTIONS

We present RLPG, a framework that learns to automatically generate prompts conditioned on the
example, without requiring access to the weights of the LLM. RLPG utilizes the structure of the
repository as well as the context from other files in the repository using a set of easy to understand
prompt proposals. Note that even though we have scoped and worded our prompt proposals to be
repository-level, the idea of RLPG and prompt proposals in itself is quite universal and need not be
scoped to a repository. Taking context from other repositories as well as external knowledge such
as API dependencies offers an interesting direction to explore in the future. In this work, we are
taking context from only one prompt proposal. For future work, we want to learn a model that can
automatically compose a prompt from multiple prompt proposals (see Appendix D.3 for promising
initial results). Other interesting directions include incorporating the user’s feedback in RLPG and
extending RLPG to multi-line code autocompletion.
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A DATASET CREATION DETAILS

A.1 CREATION OF HOLE COMPLETION DATA

To collect the hole completion data, we scraped Google Code 8 for repositories tagged with the
language “Java”. Then we deduplicated repositories by searching for a matching repository with the
same name on GitHub. For those repositories with zero matching names on GitHub, we downloaded
the archive and extracted the source code (preserving the directory structure). Next, we tried to
determine the licenses of all repositories by either looking for a LICENSE file or matching with
keywords "license", "copyright", "mit", etc. For repos for which our process was able to come up
with a known license, we selected the ones having a permissive license, i.e., MIT, ApacheV2 and
BSD. This was followed by removing files that are exact duplicates of each other within a repo. One
of the reasons we found this inter-repository duplication may be because sometimes developers adopt
lousy practises where instead of declaring a package and importing functions, they simply copy-paste
the desired file in the current folder. The target holes coming from any of the duplicate files do not
form part of the hole completion dataset. However, these files might be used to contribute to prompt
proposal context for completing a target hole in a non-duplicate file. For the remaining files, we took
each line that is not a blanked line or a comment, and chose the middle character as the hole position,
i.e., all the characters from the middle of the line to the end of the line form target hole. To avoid
large repos having strong bias on our prompt proposal classifier, we capped the contribution from
each repo to be a maximum of 10000 holes. If the number of holes in the repo exceeds 10000, we
randomly select 10000 holes.

A.2 CREATION OF DATA FOR REPO-LEVEL PROMPT PROPOSALS

We used the tree-sitter API for Java 9 to get the parse-tree of an individual file in a repo. To get
information at a repo-level, for each file in the repo, we stored the following information:

1. list of all class names in the file. This helped us to get the parent or child class file
corresponding to a given parent or child class.

2. the file corresponding to each import statement.
3. for each import statement in the file, the position in the file where the import is used. This is

used for ranking the files based on the heuristics mentioned in Table 2.
4. list of sibling files
5. list of similar name files. This was done by splitting the filenames based on either camel-case

or underscore. If the sub-parts of two files match, then they are said to have similar name.

The above meta-data was calculated only once for each repo. The subsequent hole completions
can use the same cached information. In practise, we can use a hash to store and retrieve this info
efficiently. For a prompt proposal, given the prompt source, we first obtain a single file or ranked
list of files (see Table 2) using the info in the parse tree in conjugation with the above repo-level
meta-data. All the prompt proposal context type information (MN, MNB, SL, I, TI, FD) can then be
obtained by querying the parse tree of the selected file.

B PROMPT PROPOSAL DETAILS

B.1 RANKING OF FILES BASED ON PROMPT SOURCE

In Table 2, we provide details of how we select files for a given prompt source. Depending on the
prompt proposal, we get either a single file or a list of files ranked based on some criteria. For
example, if the prompt source is Import, we take all the import statements used in the current file and
identify the location in the current file where the corresponding imports have been used. According
to our heuristic, the closer is the import usage to the hole position, the more likely it is for the prompt
proposal context coming from the corresponding import file to be more relevant (to predict the target
hole). We get a ranked list of import files sorted based on increasing order of distance (i.e., number of
lines ) between the import usage and the hole position. We start by taking all of the prompt proposal

8https://code.google.com/archive/
9https://github.com/tree-sitter/tree-sitter-java
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context from the first file in the ranked list and then keep iterating the ranked list until either the total
context length allocated to the prompt proposal gets exhausted or we reach the end of the ranked list.

Table 2: Selecting files for a prompt source

Prompt Source File Ranking
Current file with the target hole. Returns a single file.

Parent Class file that contains the parent class that occurs closest to the target hole.
Returns a single file.

Import files with the corresponding import usage ranked based on the proximity
to the hole. Returns a ranked list of files.

Sibling files with import usage common to the current file and the sibling file,
ranked based on the proximity to the hole. The total number of common
imports between the current and the sibling file is used as a tie-breaker.
Returns a ranked list of files.

Similar Name files with import usage common to the current file and the similar name
file, ranked based on the proximity to the hole. The total number of
common imports between the current and the similar name file is used as
a tie-breaker. Returns a ranked list of files.

Child Class files with import usage common to the current file and the child file,
ranked based on the proximity to the hole. The total number of common
imports between the current and the child class file is used as a tie-breaker.
Returns a ranked list of files.

Import of Sibling import files ranked based on the frequency of usage in all the sibling files.
Returns a ranked list of files.

Import of Similar Name import file ranked on the basis of frequency of usage in all the similar
name files. Returns a ranked list of files.

Import of Parent Class import file ranked on the basis of frequency of usage in all the parent
class files. Returns a ranked list of files.

Import of Child Class import file ranked on the basis of frequency of usage in all the child class
files. Returns a ranked list of files.

B.2 EXAMPLES OF PROMPT CONTEXT TYPE

We provide examples of each of our prompt context type below:

1. Post Lines (PL) : For the example shown in Figure 1 of the
main paper, post lines will take all the lines after the line
mg.InitializeToAssignment(CurrentAssignments()) till we reach
the end of the file (AffinityPropagation.java).

2. Identifiers (I): Identifiers are the names of variables used in the code. For example,
for the prompt proposal context taken from the imported file shown in Figure 1 in the
main paper (highlighted in violet), identifiers are InitializeToAssignment (line
1), a (line 1), currentAssignment_ (line 2), a ( line 2), clone (line 2),
alreadyInitialized_ (line 3), justOneRound_ (line 4).

3. Type Identifiers (TI): Type Identifiers define the type of an identifier. For example, in the code
snippet class DPAffinityPropagation extends AffinityPropagation
, [ AffinityPropagation is labeled as a type identifier. Similarly in the snippet
DPAPParameters parameters_;, DPAPParameters is a type identifier.

4. Field Declarations (FD): The variables of a class type are introduced
by field declarations. For example, double[][] mHijMujT_; and
MessageValuePair[][] sortedMHijMujTs_; are examples of field

declarations.
5. String Literals (SL): A string literal is the sequence of characters enclosed in double-

quotes. For example, in the code snippet, System.err.println("DPAP
load Warning: unknown parameter " + entries[0] + ",
value = " + entries[1]);, we have two string literals: (a)
"DPAP load Warning: unknown parameter " ; (b) ", value = " .

16



Under review as a conference paper at ICLR 2023

6. Method Names (MN): For the example shown in Figure 1 of the main paper,
public void InitializeToAssignment(int[] a) is the method name

prompt context type.
7. Method Names and Bodies (MNB): For the example shown in Figure 1 of the main paper,

the part highlighted in violet represents the method names and bodies.

B.3 TRUNCATION STRATEGIES FOR PROMPT PROPOSAL CONTEXT

If the prompt proposal context is greater than the context length allocated to it, then we need to
truncate the prompt proposal context. We followed the below two schemes for truncating context:

• front: We truncate the context from the front. This is used for all prompt sources except Parent
Class and when we take PL from Current.

• back: We truncate the context from the back. This is used when the prompt source is Parent Class
and when we take prompt context types other than PL from Current.

The truncation strategies for each case were selected based on results on a small validation set. For
the prompt source Current, except when the prompt context type is PL, we always start by taking
code of prompt context type from after the hole position. This makes sense as the default Codex
context will anyways contain code before the hole. Only if this turns out to be blank, we will use the
code of context type from before the hole.

B.4 LIST OF PROMPT PROPOSALS

Table 3: List of our proposed repo-level prompt proposals

Prompt Proposal ID Prompt Source Prompt Context Type
0, 1, 2, 3, 4 Current MN, I, TI, SL, FD
5, 6, 7 Current PL (taking 25%, 50% and 75% contribution to the total context length)

8, 9, 10, 11, 12, 13 Parent Class MNB, MN, I, TI, SL, FD
14, 15, 16, 17, 18, 19 Import MNB, MN, I, TI, SL, FD
20, 21, 22, 23, 24, 25 Sibling MNB, MN, I, TI, SL, FD
26, 27, 28, 29, 30, 31 Similar Name MNB, MN, I, TI, SL, FD
32, 33, 34, 35, 36, 37 Child Class MNB, MN, I, TI, SL, FD
38, 39, 40, 41, 42, 43 Import of Sibling MNB, MN, I, TI, SL, FD
44, 45, 46, 47, 48, 49 Import of Similar Name MNB, MN, I, TI, SL, FD
50, 51, 52, 53, 54, 55 Import of Parent Class MNB, MN, I, TI, SL, FD
56, 57, 58, 59, 60, 61 Import of Child Class MNB, MN, I, TI, SL, FD

62 Codex -

B.5 OTHER PROMPT PROPOSAL VARIATIONS

We experimented with other variations that include: (a) appending class names at the beginning of
the prompt proposal context, (b) using newline or space to join the prompt proposal context and the
default Codex context, (c) taking all or the top-k of the prompt context types, (d) ordering of top-k.

• Context Separator: This defines how we join the prompt proposal context string to the default
Codex context string. We experimented with space and newline as context separators.

• Prompt Proposal Context Formatting: We can format the prompt proposal context before giving
it to the Prompt Composer. We experimented with the following options:

1. class_name: append [class name of the file] at the beginning of the prompt proposal context
taken from each file that is part of the prompt source. For example, if we are taking prompt
proposal context from two import files f1 and f2, the prompt proposal context will be
formatted as: [class name of f1] prompt proposal context from f1 + space + [class name of
f2] prompt proposal context from f2. We use this when the prompt proposal context types
are MN, I, TI, FD and SL.

2. class_method_name: we apply this only when the prompt proposal context type is MNB. We
append method names at the beginning of each of the corresponding method bodies. We also
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append the prompt proposal context from a file with the name of the class as described in the
previous item.

3. comment: Adding in the prompt proposal context as a comment, i.e., formatting it as: /**
prompt proposal context */. This wasn’t found to be much useful.

4. none: passing the prompt proposal context as it is. We use this when the prompt proposal
context type is PL.

• Top-k Type: For each of the prompt proposal context types, except PL, we experimented with
taking the (a) first (b) last and (c) all of the prompt proposal context types, i.e., we can take first-10
identifiers. We found ’all’ to be the best among all.

• Top-k: We experiment with k values of (a) 10 (b) 20 and (c) all. We found ’all’ to work best for all
prompt context types.

C IMPLEMENTATION DETAILS

C.1 RLPG-H

We used Adam (Kingma & Ba, 2015) optimizer with a learning rate of 3e-4 and batch size of 64. We
used CodeBERT (Feng et al., 2020) as our pretrained model Fϕ to obtain the representation of hole
window. The size of the representation (corresponding to the hidden dimension of the [CLS] token)
is 768. W 1 ∈ R512×768, b1 = 512,W 2 ∈ R63×512, b2 = 63.

C.2 RLPG-R

We used Adam (Kingma & Ba, 2015) optimizer with a learning rate of 3e-4 and batch size of 64.
We used CodeBERT (Feng et al., 2020) as our pretrained model Fϕ to obtain the representation of
hole window and prompt proposal context. The size of the representation (corresponding to the
hidden dimension of the [CLS] token) is 768. In equations 1, 2 and 3 in Section 3.2, the projection
matrices WQ

i ∈ Rdq×dmodel , WK
i ∈ Rdk×dmodel , WV

i ∈ Rdv×dmodel , WO ∈ Rdmodel×τdv . For the
multihead attention, we used dk = dq = dv = 32, τ = 4 and dmodel = 768, Wr ∈ R63×768 and
bp = 63. For each head, we perform a scaled dot-product attention (Equation 4). G module consists
of a dropout (Srivastava et al., 2014) layer, a residual connection (He et al., 2016), a layernorm (Ba
et al., 2016), followed by a sequence of (a) dense layer of weights=2048 × 768, bias=768, (b)
relu activation, (c) dense layer of weights=768 × 2048, bias=2048, (d) dropout layer, (e) residual
connection, (f) layernorm. A dropout value of 0.25 was used while training. Our model resembles
one layer of the transformer encoder block (Vaswani et al., 2017).

C.3 BASELINES

Random baseline first selects a file randomly from the current repository followed by selecting a
random line within that file. We choose all the lines starting from that line to the end line of the
chosen file as context (excluding the hole window if the chosen file is the current file). The nearest
neighbour similarity is based on the dot product between the representation of the hole window
and the representation of the context, where we use a pretrained CodeBERT (Feng et al., 2020)
model to obtain the representations. For the Identifier Usage baseline, if the nearest identifier to
the hole doesn’t return any usage window, we proceed to the next nearest identifier. For faster
computation and to avoid memory issues when running on our hardware, for NN baselines, we collect
64 random neighbours and then rank based on the nearest neighbour distance. The BM25-based
baselines use the Okapi BM25 implementation with default parameters given by the pip package
rank-bm25 0.2.2 10. For file-level BM25, if the file context exceeds the allocated context

length, we truncate from the back.

10https://pypi.org/project/rank-bm25/
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D ADDITIONAL RESULTS

D.1 ABLATION ON PERFORMANCE BASED ON PROMPT PROPOSAL

Figure 4 shows the mean success rate of prompt context types when success is counted only for the
cases when these prompt contexts are applicable. As can be seen from the figure, post lines is the
most useful prompt context type on an average. The contribution from other prompt context types
though smaller than post lines is still significant highlighting the importance of each prompt context
type.
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Figure 4: Mean success rate on validation data based on prompt context type when they are applicable.
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Figure 5: (Left) Normalized success rate of prompt sources when applicable, (Right) Normalized
success rate of prompt context types when applicable

Figure 5 shows the normalized success rates where the normalization is performed across the prompt
proposals. This helps us understand the relative performance of prompt proposal sources and context
types. The left part of the figure breaks down the performance based on prompt sources and the right
part breaks down based on prompt context types. One thing to note from the plot of prompt context
types is that when we consider relative performance, post lines is no longer the most dominant context
type. This is because post lines is tied to only when the prompt source corresponds to the current file,
thereby contributing to lower numbers when compared to most of the other context types that are tied
to all prompt sources.
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D.2 PERFORMANCE ON NON-IMMEDIATE POST LINES

Table 4 shows the performance of post lines when starting the fourth line after the target hole line (i.e.,
skipping three lines after the target hole) as opposed to starting from the line that immediately follows
the target hole line. This experiment helps us understand the performance when we are interested in
doing a much harder task of multi-line code autocompletion, wherein the objective is to predict not
just the blanked out portion in the current line but also say the next three lines. This can correspond
to completing a block of code like a function body. As can be seen from the table, when starting from
the fourth line, we see a very slight deterioration in performance. This is expected because the farther
away we move from the target hole, the less relevant the post lines context would be. However, the
performance drop is not significant suggesting that post lines is still a very useful prompt context type
that can be used under the setting of multi-line code-autocompletion. Equivalently, we can include
this as one of the prompt proposals in our framework along with the current version of post lines.

Table 4: Success Rate (SR) when taking different versions of post lines.

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 58.73 - 60.64 -
Post Lines (immediate line after the hole) 65.78 12.00 68.01 12.15

Post Lines (skipping three lines after the hole) 65.11 10.86 66.42 9.53

D.3 COMPOSITION OF PROMPT PROPOSALS

Table 5 shows the performance of the two versions of RLPG when we compose the prompt proposal
context from l prompt proposals. We take the top-l prompt proposals given by RLPG based on
decreasing order of probability. To decide how much context should be used for each prompt proposal,
we divide the total context length in proportion to the normalized probabilities of the top-l prompt
proposals. As can be seen from the table, even though PPC is not explicitly trained to perform
composition (both the ground-truth vector and the representation of prompt proposal context involve a
single prompt proposal), all the compositions lead to significant improvements over Codex. However,
as expected the best results correspond to taking context from a single prompt proposal (i.e., the
training setting). The drop in success rate with l = 2 and l = 5 is not that significant, which suggests
that explicitly training RLPG to learn to compose contexts from different prompt proposals can lead
to promising results and hence offers an interesting future direction.

Table 5: Success Rate (SR) of different compositions of the prompt proposals on the test set.

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 58.73 - 60.64 -
RLPG-H (l = 1) 68.51 16.65 69.26 14.21
RLPG-R (l = 1) 67.80 15.44 69.28 14.26
RLPG-H (l = 2) 67.07 14.20 67.87 11.91
RLPG-R (l = 2) 66.57 13.35 67.88 11.94
RLPG-H (l = 5) 66.60 13.40 67.91 11.98
RLPG-R (l = 5) 65.78 12.01 67.69 11.62

RLPG-H (l = 10) 65.53 11.58 67.24 10.88
RLPG-R (l = 10) 63.59 8.27 65.98 8.79

D.4 EFFECT OF CONTEXT LENGTH

To understand the effect of context length on the performance of our prompt proposals, we took half
of the context length available for a prompt in Codex and observed the performance of the oracle
and fixed prompt proposal. As before, we saw that an oracle constructed from our prompt proposals
shows remarkable improvement over Codex highlighting the value of our prompt proposals. However,
when compared to a larger context length, the relative gains are smaller. This is expected as a smaller
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context length means that the relevant context coming from a prompt proposal needs to be truncated
to make it fit inside the prompt, thereby leading to loss of information.

Table 6: Success Rate (SR) of Codex and oracle over the test set when the total context length = 2048.

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 57.77 - 58.90 -
Oracle 61.90 7.15 67.18 14.07

D.5 PERFORMANCE ON INDIVIDUAL REPOSITORIES

Table 7: Success Rate of different methods on training data

Repo name #Total Holes Oracle Codex Fixed prompt proposal RLPG-H RLPG-R
largemail 1653 75.38 55.11 62.73 63.94 63.28

ftpserverremoteadmin 7323 86.44 66.11 76.09 76.21 76.76
myt5lib 838 91.65 53.58 61.34 73.51 74.46
seamlets 4890 92.74 62.25 62.72 71.55 74.27
gloodb 10000 91.07 57.50 57.50 70.32 72.31
jjskit 9043 80.36 65.61 72.18 72.00 72.44

mobileexpensetracker 2298 75.94 57.88 67.28 66.84 66.97
gfsfa 10000 80.55 57.33 57.33 59.28 65.24

swe574-group3 2029 76.79 54.46 66.19 65.16 64.91
strudem-sicsa 6131 77.83 64.96 72.55 73.25 73.32

soap-dtc 1370 81.24 64.82 70.73 71.61 72.70
openprocesslogger 7191 81.06 62.19 71.77 72.22 72.62

tapestry-sesame 397 72.54 45.84 61.21 60.71 63.98
exogdx 735 84.76 63.81 75.51 75.92 76.60

designpatternjavapedro 1069 78.30 54.82 64.36 63.99 68.57
quidsee 3020 81.66 60.79 69.50 70.36 70.26

healpix-rangeset 4734 63.54 48.71 54.67 54.94 55.07
sol-agent-platform 10000 73.76 58.22 65.72 65.65 65.94
rsbotownversion 10000 75.23 57.89 65.58 66.22 66.31

Table 8: Success Rate of different methods on validation data

Repo name #Total Holes Oracle Codex Fixed prompt proposal RLPG-H RLPG-R
tyrond 721 83.91 60.33 71.15 71.57 72.68

math-mech-eshop 2225 83.46 62.20 72.76 73.53 73.17
infinispan-storage-service 373 82.31 71.85 78.55 76.94 77.75

teammates-shakthi 7665 82.02 63.74 72.38 72.47 72.46
javasummerframework 10000 79.27 55.92 65.30 65.74 65.55

tinwiki 10000 73.67 69.27 69.27 69.12 69.58
jloogle 3145 84.55 73.16 77.87 77.17 77.36

jcontenedor 5464 81.26 58.99 67.77 67.95 68.32
sohocms 772 76.68 57.90 67.10 67.49 67.62

affinity_propagation_java 1466 79.54 59.14 70.33 70.26 70.26
jata4test 1921 71.06 44.09 54.92 55.91 57.47

swinagile 2595 79.69 63.01 72.29 72.49 72.68
navigablep2p 1322 75.72 59.76 65.43 65.13 65.28

springlime 879 83.50 62.34 74.18 74.86 74.40
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Table 9: Success Rate of different methods on test data

Repo
Name

#Total
Holes Oracle Codex Fixed

PP RLPG-H RLPG-R Random Random
NN

Iden Usage
(Random)

Iden Usage
(NN)

File-Level
BM25

RLPG-
BM25

dovetaildb 10000 76.89 57.12 66.45 66.06 66.25 57.45 57.58 61.39 60.77 59.39 66.09
project-pt-diaoc 10000 82.01 52.67 52.81 65.08 61.25 51.58 52.93 55.54 56.21 57.04 58.29

realtimegc 2513 77.64 57.58 67.01 67.85 68.48 57.78 58.89 63.51 63.99 61.84 66.69
fswuniceubtemplates 2070 77.44 55.7 58.89 66.81 65.8 55.22 55.89 65.7 66.43 59.28 66.71

qwikioffice-java 1138 76.45 70.21 70.21 69.86 70.56 46.13 48.15 60.37 62.92 64.41 58.17
glperaudsimon 1766 78.65 53.57 62.51 62.4 61.66 55.66 57.76 69.42 68.4 69.14 61.55

xiaonei-java-api 839 73.42 57.57 62.1 62.69 63.29 57.09 57.21 71.28 72.35 63.77 63.29
ircrpgbot 6591 83.67 69.67 77.24 76.71 76.65 69.55 70.54 74.68 74.43 69.32 75.75

robotsimulator2009w 7514 75.63 56.28 67.55 67.53 67.55 56.4 56.18 64.61 64.71 62.96 66.12
gwt-plugindetect 73 84.93 60.27 68.49 65.75 68.49 58.9 57.53 63.01 63.01 50.68 75.34

apiitfriends 1385 85.05 65.05 74.8 75.67 75.31 65.7 68.59 70.25 70.11 66.93 73.57
wicketbits 754 83.02 59.81 72.94 72.81 73.08 60.21 61.94 81.96 79.31 84.48 73.47
hucourses 590 84.41 70.68 77.46 77.63 77.97 70 72.2 70.68 72.54 53.39 75.08

xfuze 3055 84.09 62.82 73.62 72.73 73.62 63.67 65.17 77.25 75.97 77.32 74.01

Table 7, Table 8 and Table 9 present the success rates of different methods over individual repositories
in the training, validation and test splits, respectively. The repo-wise averages in Table 2 in the main
paper were calculated by taking the average of numbers corresponding to each column. The hole-wise
averages correspond to multiplying the repo-wise numbers of each method by the total holes in the
repo to get the total number of successful holes by that method for that repo. We then add the total
number of successful holes across repos and divide it by the total number of holes in the entire data
split to get the hole-wise averages.

E ANALYSIS OF SAMPLE CASES

In Figure 1, RLPG selects the prompt proposal that corresponds to taking method names and
bodies from the imported file (i.e. MaximizingGibbsSampler.java ). Note that mg.
before the hole position indicates that a method used in the imported file is likely to be in-
voked. In this case, the prompt proposal context (highlighted in violet) contains the method name
InitializeToAssignment (part of target hole). This in conjunction with the default Codex

context which contains the method CurrentAssignments() (part of target hole) leads to gen-
eration of a successful prompt. On the other hand, the prompt created from the default Codex context
fails to predict the target hole in this case. In general, we observed that in the absence of a strong
signal, Codex has a tendency to give preference to natural language comments occurring before the
hole position, e.g. naming the method based on the comment. This in certain cases might hurt. We
provide insatnces of positive and negative samples cases for RLPG below:

E.1 POSITIVE CASES

We provide some examples of cases where RLPG led to the correct prediction and Codex failed.

1. Cases where part of the target hole is found exactly in the prompt proposal context.

• RLPG = Propagation(int numVars) vs Codex = Propagation()

• RLPG = tersFromFile(String filename) { vs Codex =
ters(String filename) {

• RLPG = als("dampingFactor")) { vs Codex = als("numVars")) {

• RLPG = ] + ", value = " + entries[1]); vs Codex = ]);

• RLPG = stem.exit(1); vs Codex = stem.err.println("DPAP load error: " + ex.get

2. Cases where Codex takes strong hint from the preceding natural language comment, thereby
producing incorrect predictions.

• RLPG = d PassMessages() vs Codex = d DoOneRoundOfMessagePassing()

• RLPG = teger> CurrentExemplars() { vs Codex =
teger> ChooseExemplars() {
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• RLPG = ring FileName() { vs Codex =
ring GetAlgorithmFilename() {

E.2 NEGATIVE CASES

In certain cases, extra information from prompt proposal-context might lead to confusion and produce
incorrect predictions.

• RLPG = an hasConverged_; vs Codex = an converged_;

• RLPG = _[i][j] = -Double.MAX_VALUE; vs Codex = _[i][j] = 0;
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