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Abstract

We present LRM-Zero, a Large Reconstruction Model (LRM) trained entirely on
synthesized 3D data, achieving high-quality sparse-view 3D reconstruction. The
core of LRM-Zero is our procedural 3D dataset, Zeroverse, which is automatically
synthesized from simple primitive shapes with random texturing and augmenta-
tions (e.g., height fields, boolean differences, and wireframes). Unlike previous 3D
datasets (e.g., Objaverse) which are often captured or crafted by humans to approx-
imate real 3D data, Zeroverse completely ignores realistic global semantics but is
rich in complex geometric and texture details that are locally similar to or even
more intricate than real objects. We demonstrate that our LRM-Zero, trained with
our fully synthesized Zeroverse, can achieve high visual quality in the reconstruc-
tion of real-world objects, competitive with models trained on Objaverse. We also
analyze several critical design choices of Zeroverse that contribute to LRM-Zero’s
capability and training stability. Our work demonstrates that 3D reconstruction, one
of the core tasks in 3D vision, can potentially be addressed without the semantics
of real-world objects. The Zeroverse’s procedural synthesis code and interactive
visualization are available at: https://desaixie.github.io/lrm-zero/.

1 Introduction

The current wave of rapid development in foundation models [10] has been empowered by two key
components: scalable model architectures [86, 40, 67] and massive datasets [19, 68, 79]. Foundation
models in text [65, 3, 85], image [70, 29] and video [48, 5, 35] domains have capitalized on both
factors. As there is a unified trend of adopting transformers [86] as the model architecture, many
recent works have identified the training data as the most crucial factor [8, 20, 37, 2, 11].

Following the progress in other modalities, transformer-based [86] 3D Large Reconstruction Mod-
els [41, 49, 90, 98, 84] (LRM) has emerged as a potential foundation model for the 3D domain, which
uses a scalable model architecture. However, 3D data is still difficult to acquire, considering that both
manually capturing and hand-crafting 3D objects are expensive, time-consuming and require special
expertise. Also, 3D data is more sensitive for its license safety, different types of bias, and identity
leakage.

†This work is done while Desai is an intern at Adobe Research.
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Figure 1: We present our LRM-Zero framework trained with synthesized procedural data Zeroverse.
Zeroverse (top left) is created from random primitives with textures and augmentations, thus it
does not contain semantical information as in Objaverse (bottom left). Nevertheless, when training
with the same large reconstruction model architecture [107] on both datasets, LRM-Zero can match
objaverse-trained LRM’s (denoted as ‘LRM’) visual quality (right part) of reconstructions. A possible
explanation is that 3D reconstruction, although serves as a core task in 3D vision, rely mostly on local
information instead of global semantics. Reconstruction is visualized with RGB and position-based
renderings, and interactive viewers can be found on our website.

Thus, in this paper, we propose LRM-Zero, trained on purely synthesized data, to explore another
route which can potentially resolve the 3D data scarcity, licensing, and bias issues. The name ‘Zero’
highlights our synthesized and non-semantic training data, which we named as Zeroverse. Zeroverse
is a procedural, amorphic alternative to Objaverse [23] in training reconstruction models. The
comparison between Zeroverse and Objaverse is illustrated in Fig. 1, and more visual comparisons
can be found in Appendix. The data in Zeroverse is procedurally created by randomly composing
primitive shapes with textures and applying shape augmentations. The process resembles the previous
work Xu et al. [100]. We select five primitive shapes: cube, sphere, cylinder, cone, and torus to cover
different types of surfaces and topological characteristics. The textures are randomly applied, which
is realistic at low-level but do not contain high-level semantics. The three different augmentation
methods, i.e., height-field, boolean difference, and, wireframes, help increase the data diversity and
add more curvatures, concavity, and thin structures, respectively. The primitive shapes, textures, and
an illustration of the augmentations are shown in Fig. 2. In this work, we experiment with 400K
Zeroverse data, which roughly matches the number of meaningful data in Objaverse (i.e., excluding
rendering failures, flatten 3D data, point clouds, unsafe data from the overall 800K data). The initial
experiments indicate that further increasing the amount of data is not effective, and we refer the
reader to Appendix for our early results on scaling the data size.

We validate our Zeroverse by training GS-LRM [107] over it, and we denote this model as LRM-Zero.
Surprisingly, we found that LRM-Zero can achieve a reconstruction quality similar to that of GS-LRM
trained on Objaverse, seeing Fig. 1. More comparisons are provided in the Appendix. We also
quantitatively evaluate the model on two standard 3D reconstruction benchmark ABO [18] and
GSO [28]. For sparse-view reconstruction (i.e., 4 views and 8 views), LRM-Zero reaches competitive
results against GS-LRM, and the best results gap is as low as 1.12 PSNR, 0.09 SSIM, and 0.006
LPIPS. A plausible reason for such "zero"-shot data generalization is that 3D reconstruction (with
poses) relies more on the local visual clues instead of the global semantics. This is more obvious for
dense-view reconstruction (e.g. 100 input views) where single-shape optimization without any data
prior can reach good results [6, 46]. For the sparse-view reconstruction that we focused, LRM-Zero
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can possibly rely on the local details (such as cross-view patch correspondence) to infer the shape,
where Zeroverse supports LRM-Zero to learn such knowledge.

We analyze the effectiveness of Zeroverse’s design, especially for shape augmentations. We find
that each type of augmentation provides visible structural improvements for the reconstructions, and
most of the improvements are reflected in the metrics of our benchmarks. We also study the impact
of different dataset designs on another critical property of LRM-Zero: training stability. Training
stability is crucial for large-scale training as large models are more prone to diverge after training
for a significantly long time [72, 17, 22]. We empirically found that careless design of Zeroverse
can introduce significant instability during the training of LRM-Zero. As both data complexity and
model hyperparameters can affect the training stability, a model-data co-design is helpful in our
experiments, i.e., the model’s hyperparameters and data properties are tuned jointly. Lastly, we
show the generalizability of both Zeroverse and LRM-Zero. For Zeroverse, we show that the dataset
can also enable training a NeRF-based reconstruction model and reaches competitive results to
Objaverse-trained models. For LRM-Zero, we demonstrate that the model can generalize across
different datasets including realistic 3D data, such as OmniObject3D [95] and OpenIllumination [55].
We also show that LRM-Zero can be combined with off-the-shelf multi-view diffusion models to
support both text-to-3D generation and image-to-3D generation.

The key contribution of this paper is to demonstrate that purely synthesized data can be utilized to
learn generic 3D priors for sparse-view 3D reconstruction, a core task of 3D vision. While our work
may appear straightforward, it provides a minimal, yet generalizable proof-of-concept which can
inspire the community to exploit procedural 3D data for 3D tasks in the future. We also provide
carefully crafted studies on the co-design of data and model, as well as their effect on training stability
and generalization.

Lastly, we provide the interactive Zeroverse data visualization and LRM-Zero reconstruction results
in our website https://desaixie.github.io/lrm-zero/. We recommend the readers to have
a check. The Zeroverse data synthesis script is released at https://github.com/desaixie/
zeroverse, and we hope that it can facilitate future research.

2 Background: feed-forward reconstruction model

Feed-forward 3D reconstruction targets to learn a model that can regress the 3D shapes from multi-
view images. The sparse-view version of this task is illustrated in the right part of Fig. 1, where
multiple input views are presented, and the output is a 3D representation. To solve this task, LRM [41]
introduces a pure-transformer based method which allows scalable training. Original LRM uses
NeRF [61, 12] as 3D representation, and a bunch of later works [13, 84, 16, 99, 107] extend it
to Gaussian Splatting [46], which is another 3D representation proposed recently. This paper is
mostly experimented with the GS-LRM [107] architecture given its simplicity in model design (i.e., a
pure-transformer architecture) and the SotA reconstruction quality.

GS-LRM predict the 3D Gaussians from the n multi-view images I1, . . . , In. The images are first
patchified to features f1, . . . , fn with shared non-overlapping (i.e., stride equals to kernel size)
convolutions. Then features are flattened and concatenated as the input to a self-attention transformer.

f1, . . . , fn = Conv(I1), . . . ,Conv(In) (1)
x = [Flatten(f1); . . . ; Flatten(fn)] (2)
y = Transformer(x) (3)

The output y of the transformer will be directly interpreted as the Gaussian Splatting parameters, and
serves as the representation of the output 3D object. These parameters can be rendered for training
losses or viewed interactively. The GS-LRM model is purely trained with RGB rendering loss by
minimizing the difference between ground truth image and the rendering images. For more details of
the GS-LRM model [107] architecture and Gaussian Splatting representation [46], please refer to the
original papers. After briefly introducing the backbone model architecture of LRM-Zero, we next
introduce our procedural data Zeroverse to train such a model.
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Figure 2: Illustration of the Zeroverse data creation process. A random textured shape is first
composited from primitive shapes and textures (Sec.3.1). Then different augmentations (i.e., height
field, boolean difference, wireframes in Sec . 3.2) are applied to enhance the dataset characteristics
(e.g., curved surfaces, concavity, and thin structures). More visualizations in Appendix and website.

3 The Zeroverse dataset

In this section, we introduce the creation of Zeroverse that supports training a sparse-view large
reconstruction model (LRM). Zeroverse consists of procedurally synthesized shapes with randomized
parameters by revisiting the pipeline in the previous work [100], which was initially proposed for
relighting and later extended for view synthesis [101] and material estimation [7, 52]. As illustrated in
Fig. 2, the process first composites primitive shapes with random texturing (Sec. 3.1). Then, different
augmentations are applied to enhance the diversity of the data (Sec. 3.2). As the LRM-based model
only relies on multi-view rendering to train the model (i.e., do not require geometry supervision), the
Zeroverse objects are always saved in the compact mesh format.

3.1 Composing primitives into textured shapes

Primitive shapes. Our synthetic object creation process starts with a pool of primitive shapes. The
pool only consists of basic shapes for the 3D world. Specifically, in our implementation, we have 5
primitives: cube, sphere, cylinder, cone, and torus. Intuitively, cubes and spheres provides knowledge
on the sharp straight lines and the purely curved shapes. Cylinders and cones contain different curved
surfaces besides sphere. The specialty of torus is its hole, which is topologically different to the
above shapes (i.e., a torus has genus 1). Although it is possible to create holes through combinations
and augmentations (e.g., the boolean difference and wireframe in Sec. 3.2), we decide to explicitly
add this capacity to our dataset. Also, the combination of multiple torus is easy to create shapes with
higher genus (i.e., roughly the number of disjoint holes in a connected shape).

Compositions. With a reasonable pool of primitive shapes, we then compose them together to
construct complex shapes, offering more diverse visual cues for the reconstruction task. We randomly
sample 1 to 9 primitives (with replacement) from the primitive pool. The sampling probability of
the numbers of primitives is configurable. Each sampled primitive will independently be scaled,
translated, and rotated randomly. We simply combine these affine-transformed shapes together
without special handling of the shape intersections or disconnections. Thus it is possible to have
multiple disjoint shapes in one scene, which we will still refer to as one object. This satisfies
the requirement for real-world reconstruction applications, where simple disjoint shapes would be
considered as a single object.

Texturing. For each surface of the shape, we apply a texture randomly sampled from an internal
dataset. To support the research community, in our public release version, we provide an alternative
public texture dataset.
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Table 1: Quantitative results comparing LRM-Zero with GS-LRM [107] (trained on Objaverse) under
the 8-input-view setting. We use GSO [28] and ABO [18] evaluation datasets and PSNR, SSIM, and
LPIPS [108] metrics. LRM-Zero demonstrates competitive performance against GS-LRM.

GSO ABO

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

8 input views
Res-512 GS-LRM 33.23 0.971 0.031 30.92 0.944 0.067

LRM-Zero 31.62 0.960 0.039 28.71 0.929 0.078

Res-256 GS-LRM 31.90 0.966 0.030 30.66 0.949 0.055
LRM-Zero 30.78 0.957 0.036 28.82 0.934 0.065

3.2 Shape augmentations

We apply augmentation to the textured shapes to add diversity and complexity that resembles real-
world objects and is not covered by the initial shape in Sec. 3.1. We implement three augmentation
operators: height field, boolean difference, and wireframe conversion for better data coverage of
curved shapes, concave shapes, and thin structured respectively. These diversities of the data will
be reflected by the capacity of large reconstruction models with observable structural improvements
(studied in Sec. 5.1). We illustrated the process and example results in the right part of Fig. 2. We
do not apply the augmentation ‘boolean difference’ and ‘wireframe’ at the same time. This is for
training stability (studied in Sec. 5.2) as we empirically found that an ultra-complex shape can lead
the reconstruction model training to non-convergence.

Height fields. Most of the surfaces (except the torus) of our primitives have constant curvatures, and
we apply height fields augmentation in Xu et al. [100] to break this constraint. An illustration of the
height map can be found in Fig. 2 (top right). In detail, for each face of the primitives, we apply a
height field with varying heights and curvatures to displace the surface vertices, making the surface
curved and bumpy. Specifically, the magnitude of height is randomly sampled at each position in the
map and we use bicubic interpolation to obtain smooth surfaces.

Boolean difference. Concave structures are common in real-world objects, for example, bowls,
hats, spoons. However, the concavity is not well captured by the previous pipeline. To resolve this,
we ‘subtract’ primitives from the shapes, which can be considering as a reversion of the ‘additive’
operators in the combination process. This is implemented by computing the boolean difference
between the composite object in Sec. 3.1 and a basic primitive from our pool. In details, we use
Blender’s boolean modifier and solidify modifier to augment the initial shape. The inside faces of the
resulting cut shape will have the same texture as the outside faces. Besides introducing concavity
to the dataset, the boolean difference operation also expose the ‘interior’ of the shape (as shown in
Fig. 2), which helps the reconstruction model to handle complex structures. The actual effect of the
boolean operator is quite diverse, and we refer the reader to check the visualization in the Appendix.

Wireframe. Besides concavity, thin structures (especially the striped or repeated one) is another
challenge in real-world reconstruction, for example, hairs, baskets, railings. To train a reconstruction
model capable with thin structures, we want to explicitly add this characteristic to our Zeroverse
dataset. And for simplicity, we use the wireframe. Wireframe is a basic augmentation from the
primitive shapes, which generally converts their meshes to the skeletons. It is pre-implemented in
multiple libraries, and we take the shape modifier in Blender. The results are illustrated in Fig. 2
(i.e., a wireframe of torus) and more in Appendix. The texture of the wireframe is inherited from the
primitive shape but usually not distinguishable due to its thin surfaces.

4 Experiments

4.1 LRM-Zero experiment details

For rendering the multi-view images of Zeroverse, we follow [41]. For each object in Zeroverse, we
render 32 views with randomly sampled camera rotations and random distances in the range of [2.0,
3.0]. Each image is rendered at the 512 × 512 resolution with uniform lighting. We use the same
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network architecture and follow the hyperparameters/implementation (e.g., 80K training steps, details
as GS-LRM [107]. We only decrease perceptual loss weight from 0.5 to 0.2 to improve training
stability. For the results comparison, we pre-train the model with 256-resolution and fine-tuned on
512-resolution following GS-LRM. The overall training uses 64 A100 GPUs and takes 3 days. For
analysis and ablation studies, we only run the 256-resolution experiments. Please refer to the original
GS-LRM paper [107] for more experimental details.

Metric evaluations for results and analysis are mostly conducted on two relatively large benchmarks:
Google Scanned Objects (GSO) [28] and Amazon Berkeley Objects (ABO) [18]. In our paper, we
use 8 structural input-view as the standard evaluation protocol to increase view coverage. The 4
structural input-view results are provided in Appendix. In details, for 8 structural views, we render
from 0 elevation with 0, 90, 180, 270 azimuth plus 40 elevation with 45, 135, 225, and 315 azimuth,
while 4 structural views render from 20 elevation with 0, 90, 180, 270 azimuth. The testing views for
metric calculation are randomly sampled. The generalization experiments in Sec. 5.3 use either 8
random input views for generalization test, or the fixed cameras provided by the generated models.
We always assume that the camera poses are provided with input views.

4.2 Results

We evaluate LRM-Zero on the benchmarks and show the results in Tab. 1. The absolute PSNR values
of GSO and ABO are over 30 and 28.7 respectively, which indicates that the reconstruction has
high visual quality. Compared to GS-LRM [107] trained on Objaverse, the metric still shows a gap,
but within a reasonable range of 1.1 PSNR on GSO and 1.9 PSNR on ABO. The gap is larger for
higher resolution (i.e., Res-512) and it is possibly due to the training configuration of our 512-res
fine-tuning is sub-optimal. Qualitatively, we do not observe significant visual difference between the
reconstructed 3D models from LRM-Zero and GS-LRM. An example comparison is shown in Fig. 1
and some more comparisons in the Appendix. The interactive viewer of LRM-Zero reconstruction
results can be found in our website.

After viewing the LRM-Zero visual results and the sparse-view reconstruction setup, we found that
both 4-view and 8-view can not fully cover the object surfaces thus the model needs to hallucinate
the invisible parts. This hallucination ability requires semantic understanding of the 3D objects while
Zeroverse lacks by design. It might be the major reason of result gap between Zeroverse-trained
and Objaverse-trained models in Tab. 1. The invisible regions can be mitigated by reconstructing
from more views (either capturing or generating). However, more views involves more tokens and
challenges the computation cost of the current fully-connected self-attention design in GS-LRM, thus
beyond the scope of current paper and we leave it as future works.

5 Analysis

In this section, we analyze the properties of our LRM-Zero trained with the synthesized Zeroverse.
We first conduct ablation studies in Sec. 5.1 to show the effectiveness of Zeroverse augmentations.
Next, Sec. 5.2 explores stabilized training of LRM-Zero from both data and model perspective,
as training stability is one of the key challenges in large-scale training [22, 17]. Last, we show
the generalization of our methods by applying LRM-Zero over diverse data, and trained different
reconstruction models on Zeroverse.

5.1 Ablation studies on different augmentations

We conduct ablation studies to verify the effectiveness of our height field, boolean difference, and
wireframe augmentations. We show both quantative and qualitative comparisons.

Boolean difference and wireframe augmentation. As our sampling strategy does not apply boolean
difference and wireframe augmentations jointly to avoid over-complex shapes. Therefore, we conduct
the ablation study of these augmentations together. As shown in Tab. 2, we apply different sampling
ratios to both augmentations (e.g., experiments id 1, 2, 3) and also exclude them in experiment 4.
Boolean difference augmentation largely improves the metric (comparing experiment pair 2, 4 or
1, 3). Note that we use 60%/40% instead of 50%/50% because the later one has more instability
(Sec. 5.2). The possible reason is visualized in Fig. 3: the lack of boolean augmentation in training
data causes experiment 2 to show structural failure on concave shapes.
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Table 2: Ablation studies over boolean difference and wireframe augmentations. The height-field (hf)
is applied independently to each surface with prob. 0.5.

dataset GSO ABO

id hf-only boolean wireframe PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓def. 40% def. 40% def. 20%

1 default default default 30.78 0.957 0.036 28.82 0.934 0.065
2 60.0% 40.0% 0% 30.75 0.957 0.036 28.76 0.931 0.066

3 66.6% 0% 33.3% 29.82 0.948 0.042 27.79 0.923 0.075

4 100.0% 0% 0% 29.88 0.949 0.042 27.39 0.919 0.077

Figure 3: Qualitative results generated by LRM-Zero trained on Zeroverse with (left two) and without
boolean difference augmentation (right two). Right two LRM-Zero’s reconstruction results have
structural failures on objects with concave shapes and complex structures.

The wireframe augmentation does not show significant improvements of the metric, but it increases
the visual fidelity. As shown in Fig. 4, without wireframe augmentation in its training data, LRM-Zero
fails to reconstruct objects with thin structures, e.g. chair and table legs, or rails.

Height-field augmentation Tab. 3 shows two experiments with and without height field augmentation.
Both are trained on 120K objects consisting of 80K original compositional objects and 40K boolean
augmentation objects. This setting is different from other ablation experiments in Tab. 2, because we
had to synthesize and render objects with 0 height field probability, which do not exist in Zeroverse.
We also uses the boolean-difference only augmentation to mitigate the effect of instability. These
results reveal that height field augmentation can improve the results.

5.2 Training stability

As discussed in Sec. 5.1, adding augmentation substantially boosts LRM-Zero’s performance. How-
ever, it also makes Zeroverse more complex and thus introduces training instability in LRM-Zero. We
explore various techniques to help stabilize the training from either the training side (i.e., decreasing
perceptual loss weight, decreasing Guassian splatting scale clipping, decreasing view-angle threshold)
or the data mixing ratio of augmentations (we found that height-filed augmentation does not introduce
instability a lot thus kept it). The observations are summarized in Tab. 4. In general, we observe
that shifting training hyperparameters from optimal would improve the stability. However, this
would decrease the performance. Thus our final plan (as shown in experiment 6) is a more balanced
augmentation mixing ratio, and only minimal change on the training side. More comprehensive
experiments are in Appendix.

5.3 Generalization

We first validate the generalization of our Zeroverse by training a NeRF-based LRM model [49, 92]
on it. NeRF-based model’s architecture is different from GS-LRM. Also the 3D modeling is
philosophically different: NeRF has a canonical space for Triplane (i.e., Eulerian representation)
while Gaussian Splatting is pixel-aligned per-point prediction (i.e., Lagrangian representation).
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Figure 4: Qualitative results generated by LRM-Zero trained on default Zeroverse with (left two)
and without wireframe augmentation (right two). Right two LRM-Zero’s reconstruction results have
structural failures on objects with thin structures.

Table 3: Ablations studies on height-field augmentation.

dataset Height Field GSO ABO

id hf-only boolean wireframe HF probability PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓def. 40% def. 40% def. 20% def. 0.5

1 60.0% 40.0% 0% default 30.24 0.952 0.039 28.31 0.926 0.072
2 0 29.22 0.941 0.045 27.70 0.916 0.076

Despite of these differences, the results in Tab. 5 are similar to what we observed in GS-LRM that
Zeroverse-trained model is competitive to Objaverse-trained models.

Besides the standard benchmark GSO and ABO, we also evaluate our LRM-Zero on diverse datasets to
show its generalization, such as realistic 3D objects in OpenIllumination [55] and OmniObject3D [95],
cross-evaluation on Zeroverse and Objaverse, and the generative outputs by Instant3D [49] and
One2345++ [57]. As these experiments are for generalization test, we use 8 randomly-sampled input
for OpenIllumination, OmniObject3D, Objaverse, and Zeroverse. For Instant3D and One2345++,
we use the default camera setup of the generative model’s outputs, where Instant3D and One2345++
have 4 and 6 structural cameras, respectively. As shown in Tab. 6, our LRM-Zero is competitive. We
visualize the Instant3D and One2345++ results in Fig. 5, where LRM-Zero still work for these truly
novel generated images, showcasing that LRM-Zero can be used in the 3D generation pipeline.

6 Related works

3D reconstruction is an important task in 3D vision. As 3D data is usually hard to capture, 3D
reconstruction gives the ability to get 3D model from other modalities (e.g., images). Traditional
methods [66, 61, 56, 14] on 3D reconstruction focuses on the per-sample optimization, where the 3D

Figure 5: LRM-Zero’s qualitative results on Instant3D text-to-3D (left two) and One2345++ image-
to-3D (right two) generated multi-view images.
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Table 4: Illustrating the training stability issues when constructing the procedural Zeroverse dataset.
The instability can be resolved either with training stabilizing techniques (e.g., reducing perceptual
loss weight, Gaussian scale clipping, and view angle threshold), or with reducing the complexity of
Zeroverse. ‘failed’ experiments are usually due to model divergence.

dataset training result

id hf-only boolean wireframe
perceptual Gaussian scale view angle GSO PSNR,
loss weight clipping threshold if finished
(default 0.5) (default -1.2) (default 60)

1 100% 0% 0% default default default 29.54

2 20% 80% 0% default default default failed

3 0.2 default default failed

4 40% 60% 0% 0.2 default default failed

5 0.2 -1.6 40 30.32

6 40% 40% 20% 0.2 default default 30.78

Table 5: NeRF-LRM-Zero performs competitively against NeRF-LRM-Objv.

GSO ABO

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF-LRM-Zero 29.33 0.936 0.065 28.96 0.921 0.084

NeRF-LRM-Objv 29.72 0.936 0.064 30.79 0.932 0.071

shapes are parameterized and optimized by the rendering loss [61] or geometry loss [66, 25]. These
optimization-based methods are usually slow and require adequate number of views (e.g., 100 views).
Although methods are proposed [82, 30, 104, 62] to resolve these constraints for efficiency and view
requirements [43, 64, 81], the speed is not largely improved.

Recent progresses advances this task with learning-based feed-forward methods [105, 94, 80, 63, 45,
50, 44]. Instead of optimization, these methods train a model from large-scale object [73, 106, 97, 23,
24] or scene [109, 71, 54] data to predict the shape directly. Besides the benefits of efficiency, these
feed-forward methods can naturally support sparse-views as input (e.g., 4 to 12 input view images)
because they learn data patterns from massive dataset. Some models can even go with extreme case
of single-view reconstruction [105, 80, 41, 83], which needs to have data prior from realistic 3D
data. Multi-view stereo methods [78, 103, 36, 87, 26, 88] are another family of feed-forward 3D
reconstruction methods, but they cannot deal with sparse-view or single-view settings since they are
based on local feature matching.

Synthetic data has been popular used in computer vision [38, 58, 32, 76], such as in segmentation [15,
21], object detection [42], image classification [39], deblurry [75], face analysis [93], etc. In
3D vision, synthetic data is widely used because of 3D data is harder to harvest, e.g., in depth
estimation [4, 69], in optical flow [27, 60, 59], in finding multi-view correspondence [91], and for
improving the 3D consistency of multi-view diffusion models [96]. Specifically to reconstruction, the

Table 6: Generalization of LRM-Zero to various evaluation datasets.

OpenIllumination OmniObject3D Objaverse-test Zeroverse-test

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
GS-LRM 14.02 0.598 0.460 29.32 0.940 0.055 28.37 0.920 0.079 26.48 0.880 0.089
LRM-Zero 14.44 0.591 0.455 25.81 0.909 0.080 25.88 0.884 0.112 28.23 0.912 0.068
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exploration of synthetic is mainly on specific categories, for example, for face [74], for human [33],
constructions [47], or for evaluation [1, 31]. Some synthetic data are template-based [9, 34, 51, 102]
and injecting human’s knowledge about the semantic. Xu et al. [100, 101] and their subsequent
works [52, 7, 53, 77, 110] have leveraged procedurally synthesized data for relighting, view synthesis,
and various appearance acquisition and rendering tasks. However, these methods are designed for
captures under controlled lighting conditions or objects with specific materials; additionally, their data
is created on a relatively small scale. We revisit their procedural data generation workflow, extending
it with additional data augmentation techniques and scaling it up to train large reconstruction models.

7 Limitations

In this paper, we mainly focus on providing a proof of concept on using synthetic to tackle one of the
key problems in 3D vision: 3D reconstructions, and here are part of the limitations.

Scalability. The scalability of such synthetic-based method is still under investigation. We have done
some initial exploration and the results can be found in Appendix. From these early experiments, it
seems that the convergence property and optimal training hyperpameters might be different from the
standard experimental setup with real data. The scaling-up exploration would naturally involve more
resources (mainly computing resources, i.e., GPU hours) which is beyond our affordability.

Also, the community also lacks a study over the scalability of reconstruction models over ‘real’ data.
Objaverse-XL [24] brings 10 more data over Objaverse but the data is much nosier, has different
formats, contains a large portion without textures, and the legal concerns are not fully resolved. All
these issues exposes challenges in understanding the scalability of the feed-forward reconstruction
method.

Semantics. The synthetic data created in the way of Sec. 3 lacks of semantics (e.g., the data
distribution is not supposed to match the real 3D world distribution). Thus this data might not be
suitable to learn semantical-rich tasks. For the simplest example, Zeroverse is hard to train single-view
reconstructions as shown in MCC [94], Shap-E [45], LRM [41], etc, which learn semantic from
Objaverse [23], MvImgNet [106], and Co3D [73]. At the same time, we can complete single-view
reconstruction by chaining with multi-view generator [57, 89] as shown in [49], relying on the
semantical understanding of multi-view generation. The exact boundary of semantic tasks and
intrinsic tasks in 3D vision is still under debate.

8 Broader Impacts

The broader impacts of this work are overall positive. First, the proof of concept in using synthesized
data would largely reduce the bias inside the real dataset. As the model has weak inductive bias (i.e.,
through the use of the pure-transformer architecture), the potential semantical bias is mostly from
the data. Second, the 3D data are usually having license concerns, where the synthesized data can
help resolve. Third, as the 3D reconstruction can be potentially learned from synthetic data without
real-world semantic information, we can possibly separate the 3D generation into two problems:
generation and reconstruction. The reconstruction is mostly a semantics-free task.

On the other hands, this work can potentially largely lowers the bar of 3D reconstructions, for which
data is the main blocker previously. The accessible 3D generation (when chaining with generative
models as shown in [49]) and 3D reconstruction ability may introduce legal concerns on 3D licensing
and moral concerns on 3D identities.

9 Conclusion

We introduced the LRM-Zero and its training data Zeroverse. Zeroverse is constructed with procedural
synthesizing, where primitive shapes are composited, textured, and then augmented. We found the
LRM model trained with Zeroverse can be competitive with Objaverse-trained LRMs, thus illustrating
a promising direction of using synthetic data in 3D reconstruction research. We released our data
creation code, and hope that it can help future research.
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A Appendix summary

Figure 6: Uniformly sampled objects from Zeroverse to visualize its data distribution.

In Appendix, we provide more visualization results, more analysis, and more implementation details
of our paper. Also note that both LRM-Zero and GS-LRM (when involving the results) refer to the
final model (i.e., with respect to their training data and training parameters) instead of just the model
architecture. We also use GS-LRM to refer to the model architecture as well for simplicity.

Table 7: Quantitative results comparing LRM-Zero with GS-LRM [107] under the 4-input-view
setting. We use GSO [28] and ABO [18] evaluation datasets and PSNR, SSIM, and LPIPS [108]
metrics. LRM-Zero demonstrates competitive performance against GS-LRM.

GSO ABO

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

4 input views
Res-512 GS-LRM 30.52 0.952 0.050 29.09 0.925 0.085

LRM-Zero 28.49 0.937 0.063 25.40 0.893 0.115

Res-256 GS-LRM 29.59 0.944 0.050 28.92 0.926 0.074
LRM-Zero 27.78 0.927 0.062 25.41 0.886 0.106
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Figure 7: Uniformly sampled objects from Objavserse [23] to visualize its data distribution.

B Uniformly-sampled data visualization

In Fig 1, we visualize a curated set of the two dataset Zeroverse and Objaverse [23]. We here
present uniformly random samples of the two dataset for better understandings of the data distribution
Zeroverse is in Fig. 6 and Objaverse is in Fig. 7. Our Zeroverse is a random procedural data thus
the datasest is quite diverse but do not have any semantic. The Objaverse dataset is sourced from
Sketchfab 1. The Objaverse dataset contains more semantic meaning (e.g., the transformers in
the bottom left, some humanoids, furniture, and structure of house). There are also some shapes
without explicit semantic meaning (e.g., the objects at position row-1-column-1, row-1-column3,
row-3-column-1). Comparing the two datasets visually, usually the Zeroverse data is more complex
and has higher-frequency textures than the Objaverse dataset in average. However, there are some
data in Objaverse have more fine-grained small structures (e.g., the lamp at row-3-column-2) and
more overall details (e.g., the transformer at bottom left), which currently the Zeroverse can not
achieve. We think that these data difference contributed to the gap of the metric-wise results, but
might be mitigated with improved procedural process. The visual difference is not significant as
shown in Fig. 1. More visualization of LRM-Zero can be found at our website https://desaixie.
github.io/lrm-zero/.

1https://sketchfab.com/
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Figure 8: Qualitative comparison of LRM-Zero (left two columns) and GS-LRM (right two columns).
When there is invisible region in the input views (first row), LRM-Zero produces poor reconstruction
results. When the input views have good coverage (second row to fifth row), LRM-Zero performs
similarly well as GS-LRM.

As shown in Tab. 1, LRM-Zero performs worse than GS-LRM on average. In Fig. 8, we show some
qualitative comparisons of the two model’s reconstruction results. Although we provide 8 input views,
for the first row in Fig. 8, there are still invisible region in the input view. This leads to LRM-Zero’s
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poor reconstruction results on them, as LRM-Zero does not learn sufficient semantics of real-world
objects like GS-LRM. When there is sufficient coverage in the input views, as in the second row
in Fig. 8, we can see that LRM-Zero and GS-LRM produces similar reconstruction results. In the third
row to the fifth row, both LRM-Zero and GS-LRM performs similarly well on objects with complex
shape.

On the other side, there is an extension of Objaverse named ObjaverseXL [24], which contains 10M
3D data from the Internet. We did not show it here and did not use it in our exploration for now. The
quality of ObjavereXL is worse than Objaverse, and the data format (untextured shapes, point clouds)
does not meet our data requirements. ObjaverseXL contains four subsets, 1. Sketchfab, which is
the same to Objaverse, 2. Smithsonian 2, only about 2K data in this subset. 3. Thingiverse 3, with
untextured mesh data. 4. Github, which we have not got license clearance on downloading all of the
data. For these reasons, we did not use ObjaverseXL in our initial exploration.

C Early Exploration on Scalability of LRM-Zero

We get mixed results from our scalability experiments on training steps, model size, and data size. We
hypothesize that training convergence is the key to LRM-Zero’s performance. For many experiments
in Tab. 8, the model underperforms its counterpart due to undertraining and lack of convergence. We
suspect that the complexity of Zeroverse and our modified, lowered perceptual loss scale (discussed
in Sec. 5.2), and the lowered learning rate for 2x and 3x model sizes contribute to the limited training
convergence of LRM-Zero.

Table 8: LRM-Zero’s scaling experiment results.

scaling GSO ABO

id Training Steps Model Size Data Size PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
def. 1x, 80K def. 1x, 300M def. 1x, 400K

1 1x 1x 1x 30.78 0.957 0.036 28.82 0.934 0.065

2 2x 1x 1x 31.47 0.962 0.032 29.33 0.938 0.061

3 3x 1x 1x 31.11 0.960 0.035 29.18 0.937 0.063

4 1x 2x 1x 30.19 0.952 0.041 28.43 0.927 0.071

5 1x 3x 1x 30.34 0.954 0.040 28.58 0.929 0.069

6 2x 2x 1x 30.00 0.949 0.042 28.25 0.925 0.073

7 2x 2x 2x 30.56 0.955 0.038 28.84 0.931 0.068

8 2x 3x 10x 30.10 0.951 0.042 28.28 0.926 0.073

9 2x 1x 4x 31.15 0.960 0.034 29.02 0.935 0.064

10 2x 1x 20x 31.08 0.960 0.034 28.95 0.936 0.063

11 3x 1x 20x 31.51 0.963 0.031 29.41 0.940 0.060

Training steps We discover that both GS-LRM [107] (experiment 2 in Tab. 9) and LRM-Zero
(experiment 2 in Tab. 8) benefit from training on 2x (160K) steps, which was not explored in [107].
The gap between LRM-Zero and GS-LRM at 2x training steps is larger than the gap at 1x training
steps. This shows that GS-LRM models, especially LRM-Zero, are undertrained at 1x (80K) training
steps and aligns with our hypothesis that training convergence is the key.

At 1x (400K) training data size, Experiment 3 in Tab. 8, with 3x training steps, performs worse
than experiment 2 in Tab. 8, indicating that the optimal training step for 1x model size and 1x
Zeroverse data is somewhere between 2x and 3x. At 20x (8M) data size, 3x training steps (experiment
11) outperforms 2x training steps (experiment 10), indicating that more training steps is needed to

2https://3d.si.edu/
3https://www.thingiverse.com/
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Table 9: GS-LRM’s scaling experiment results.

scaling GSO ABO

id Training Steps Model Size Data Size PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
def. 1x, 80K def. 1x, 300M def. 2x, 800K

1 1x 1x 2x 31.90 0.966 0.030 30.66 0.949 0.055

2 2x 1x 2x 33.12 0.973 0.024 31.75 0.957 0.047

converge well on more training data. This again aligns with our hypothesis about the importance of
training convergence.

Model size We experiment with 2x (700M parameters) and 3x (1B parameters) model sizes with a
lowered learning rate of 3-e4 instead of the default 4e-4. At both 1x (experiment 4, 5) and 2x training
steps (experiment 6, 7, 8), the larger models underperform compared their 1x model size counterparts
(experiment 2, 3). We suspect that this is due to the fact that they are trained with a reduced learning
rate of 3e-4 instead of the default 4e-4 for training stability purpose, which limits the models’ training
convergence. Also, we might need to tune more hyperparameters for the 2x and 3x model sizes to
see their benefit. Due to the limited computation resources, we leave the exploration of larger model
sizes as future work.

Data size At 2x training steps with 1x model size, increasing data size in experiments 9 and 10
does not help model’s performance compared to experiment 2. At 3x training steps with 1x model
size, experiment 11 with 20x training data outperforms experiment 3, which overfits on 1x training
data. By training on 8M Zeroverse objects with sufficient training steps, Experiment 11 is also our
overall best model. We also observe that experiment 11 performs similarly as experiment 2, which
uses only 400K training data. We hypothesize this is because the benefit of 20x data is limited by the
capacity of the 1x model and that training a larger model on 20x data is promising. Due to the limited
computing resources, we leave this as future work.

D Zeroverse creation details

D.1 Sampling and Compositions of Primitives

We randomly sampled the number of the primitives from 1-to-9, with an unnormalized probability
density of [5, 5, 5, 5, 5, 4, 3, 2, 1] accordingly. This sampling strategy samples more shapes with
lower number of primitives that can smooth the dataset and increase the LRM training stability. Also,
the later augmentations (especially the wireframe conversion and the boolean difference) can possibly
introduce more fractions and parts.

For sampled primitives, we will scales their size randomly through each axis of the shape. We first
put the shape in a normalized frames (e.g., align each edge of the cube with one of the axis) and
randomly sample the scaling factors of each axis independently.

For compositing the scaled primitives, we randomly sample the centers of each primitive in the
bounding box [−1, 1]3, then we randomly sample a rotation of the shape (with three degrees of
freedom). The compsition is done by simply putting all primitives together to a single shape. We do
not consider the connectivity of the synthesized objects. See Fig. 6 for an example of disjoint shape
(e.g., the top right one).

D.2 Augmentations

For the height-field augmentations, we constrain the maximal value of the height map to be propor-
tional to the size of the face to avoid over-displacement. For more details, please refer to Xu et al.
[100] and their released codebase.
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For the boolean difference augmentation and wireframe conversion augmentation, we use the function
from Blender 4. In details, we use Blender’s boolean modifier and solidify modifier to augment the
initial shape. We first add a random primitive shape with random size and at a random vertex on the
initial shape. Then, we apply the boolean modifier, where the new primitive shape, treated as a cutter,
is subtracted from the initial shape. We do not use the torus for the subtraction as it might reduce
training stability. Finally, we apply the solidify modifier to the cut shape to add thickness to it. The
inside faces of the resulting cut shape will have the same texture as the outside faces.

We use Blender’s wireframe modifier and subdivision modifier to create the wireframe of a primitive
shape. We also add randomness to the thickness of the wireframe. The wireframes make up the thin
structures that are missing in the initial shapes (Sec. 3.1) and add diversity to Zeroverse.

The augmentation is applied randomly with a given probability. We do not apply ‘boolean difference’
and ‘wireframe’ augmentations at the same time. This will breaks the independence assumption of
different augmentations, but would avoid ultra-complex shapes, which improve training stability of
the reconstruction model. In our implementation, we by default take 0.4 probability of the ‘boolean
difference’ augmentation, 0.2 of the ‘wireframe’, and 0.4 of not applying both (as we want disjoint
distribution for ‘boolean difference’ and ‘wireframe’ augmentations). The ‘height-map’ augmentation
is applied independently to the above two shape augmentations, and always set at 0.5 independently
for each surface. The results of other configuration can be found in the stability section (Sec. 5.2).

E Data synthesis distributed implementation details

In order to synthesize the massive amount of data, we tackle the synthesis and rendering of 8M
shapes in Zeroverse with job parallelization. We run the independent shape synthesis and rendering
jobs in parallel on 400 CPU nodes with a total of 38,400 CPU cores. The whole process takes 88
hours, where 5% of the time is spent on shape synthesis and 95% of the time is spent on rendering.
Despite the relatively large number of CPU cores, the cost is negligible comparing with the training
experiments cost on GPU. The training experiments in the main paper are mostly carried on a subset
of 400K of the data. The early exploration of scalability uses the full dataset.

To avoid duplication in job parallelism, we first assign unique uuids and corresponding seeds for each
shape to synthesize. Then, given the uuid, the seed, and the seed-induced fixed set of parameters,
the synthesis and rendering jobs of each shape is independent from each other. In order to avoid
exceeding local disk storage, we regularly upload the synthesized shapes and the rendered images
to remote storage (e.g., AWS s3 in our experiment) and free the memory of their local copies. On
each CPU node, we run multiple shape synthesis and rendering jobs in parallel to maximize the CPU
utilization.

F More training stability results

As discussed in Sec. 5.1, adding augmentation substantially boosts LRM-Zero’s performance. How-
ever, it also makes Zeroverse much more complex and thus LRM-Zero’s training unstable, as shown
in experiment 2 and 5 in Tab. 10. We explore various techniques to help stabilize the training. First,
we adjust the perceptual loss weight. Compared to GS-LRM [107] trained on Objaverse [23] and
LRM-Zero trained on no-augmentation Zeroverse, boolean augmented Zeroverse objects have high
perceptual loss magnitudes that causes the excessive gradient norm. In experiment 2, we observe
unusual, excessive gradient norm values in the range of 2-5. By reducing perceptual loss weight from
0.5 to 0.2 in experiment 3, the gradient norm values drop to the reasonable range of 0-1. However,
experiment 3 still failed due to gradient norm explosion later.

Suspecting that boolean-augmented objects added too much dataset complexity, we reduced their
ratio while increased the ratio no-augmentation objects in experiment 5 but still ended up with
gradient norm explosion. Then, while keeping the same training dataset, we experimented with two
techniques to further stabilize the training, i.e. reducing the Gaussian’s scale clipping and the view
angle threshold between the sampled views, in experiment 6, 7, and 8. Both techniques turn out to
allow model to train stably for the full training steps. However, we notice that they also reduce the
model’s training set convergence and testing set performance.

4https://docs.blender.org/manual/en/latest/copyright.html
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Table 10: Illustrating the training stability issues when constructing the procedural Zeroverse dataset.
The instability can be resolved either with training stabilizing techniques (e.g., reducing perceptual
loss weight, Gaussian scale clipping, and view angle threshold), or with reducing the complexity of
Zeroverse. ‘failed’ experiments are usually due to model divergence.

dataset training result

id hf-only boolean wireframe
perceptual Gaussian scale view angle GSO PSNR,
loss weight clipping threshold if finished
(default 0.5) (default -1.2) (default 60)

1 100% 0% 0% default default default 29.54

2
20% 80% 0%

default default default failed

3 0.2 default default failed

4 0 default default failed

5

40% 60% 0%

0.2 default default failed

6 0.2 -1.6 40 30.32

7 0.2 -1.6 default 30.42

8 0.2 default 40 30.85

9
92% 8% 0%

0.2 -1.6 40 30.14

10 0.2 -1.6 default 30.46

11 0.2 default default 30.86

12 40% 40% 20% 0.2 default default 30.78

13 85% 10% 5% default default default 30.62

We shift the data distribution of Zeroverse to include more easy data and less complex boolean-
augmented shapes. In experiment 9, 10, and 11, we find that training stabilizing techniques constraints
the model’s training set convergence and testing set performance. Experiment 11 further shows that
by reducing the ratio of boolean-augmented complex shapes, we can stably train LRM-Zero. In our
final version of Zeroverse, we aim to reduce the dataset complexity in order to achieve stable training
from the data distribution side to avoid the convergence constraints that Gaussian’s scale clipping
or view angle threshold entails. In our empirical observation of the training data, we notice that
adding boolean augmentation to objects with many basic shapes can be over complex. In experiment
12, which has the same data distribution as our final version of Zeroverse, we adopt a more even,
smooth distribution between no-aug, boolean, and wireframe augmented objects and an easier basic-
shape-number distribution to favor less basic shapes per object. It performs similarly as experiment
8 and 11. Additionally, in experiment 13, when reducing the ratio of data with boolean difference
augmentation, we do not have training instability issues with the default training hyperparameters
from GS-LRM, including the 0.5 perceptual loss weight.

G Additional Experiments

We conduct additional experiments to seek more explanations on the performance gap between LRM-
Zero and GS-LRM. We perform an experiment on GS-LRM, training it on a randomly sampled subset
of 200K Objaverse objects. As shown in Tab. 11, GS-LRM’s performance only drops by 0.1 PSNR
on GSO. We conduct joint training on both Objaverse and Zeroverse and compare it to training only
on one of the two datasets in Tab. 12. Our result shows that training on both Objaverse and Zeroverse
performs better than Zeroverse only, but worse than Objaverse only. Both of these experiments likely
indicate that for the single-object reconstruction task, the results start to saturate with about 200K
realistic data. Since the size of Objaverse is adequate for the single object reconstruction task, and
the advantages of Zeroverse are not exploited in this task. However, we believe that the advantages
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Table 11: Scaling down GS-LRM’s training data size. When training on only 200K instead of 800K
Objaverse data, GS-LRM’s performance drops by only 0.1 PSNR on GSO.

scaling GSO ABO

id Training Steps Model Size Data Size PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
def. 1x, 80K def. 1x, 300M def. 2x, 800K

1 1x 1x 2x 29.59 0.944 0.050 28.92 0.926 0.074
2 1x 1x 0.5x 29.42 0.942 0.052 28.75 0.924 0.075

Table 12: LRM-Zero vs. LRM-Zero-Obja vs. GS-LRM at the 8-input-view, 256 resolution setting.
Z means Zeroverse and O means Objaverse. The LRM-Zero (first row) and GS-LRM (second row)
results are from experiment 9 in Tab. 8 and experiment 2 in Tab. 9. The LRM-Zero-Obja result (third
row) is obtained by training on 800K Zeroverse data and 800K Objaverse data. While LRM-Zero-Obja
outperforms LRM-Zero, it underperforms GS-LRM.

scaling GSO ABO

data Training Steps Model Size Data Size PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
def. 1x, 80K def. 1x, 300M def. 1x, 400K

Z 2x 1x 4x 31.15 0.960 0.034 29.02 0.935 0.064

O 2x 1x 2x 33.12 0.973 0.024 31.75 0.957 0.047
Z&O 2x 1x 4x 32.11 0.968 0.027 30.70 0.950 0.052

of Zeroverse, i.e. the data size, texture quality, controllability are more valuable when extended to
other tasks, such as scene reconstruction and relighting, where data is scarse.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main focus of this paper is to explore the possibility to train feed-forward
reconstruction model synthetic data. This goal aligns with the title, abstract, and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see the Limitation Section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper proposes a feed-forward reconstruction model trained on syn-
thetic data. For the model training, the paper follows the experimental setup (e.g., hyper-
parameters) in Zhang et al. [107]. We illustrate some key implementations but would refer
the readers to the original paper for clarity. For the synthetic data, the paper tries the best to
cover all the implementation details. Also, to fully support reproducing, the authors will
release the data generation script for a concrete specification of the method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper will release the synthetic data generation script, which is the main
blocker for reproducing.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training and test follows Zhang et al. [107]. We describe most of the details in
this paper and would refer readers to Zhang et al. [107] for clarity.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: As each experiment takes significant amount of compute resource, we don’t
have enough computing resources to complete the significance test.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, provide both data creation and model training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper is written on our own and follows the honest codes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to the main paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all previous papers that lead to our current paper’s presentation.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release assets in the traditional meaning (e.g., labeled data). For the
synthetic data creation, we have documented them well and will release the code to specify
the process.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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