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ABSTRACT

Text-to-video generation models have made impressive progress, but they still
struggle with generating videos with complex features. This limitation often arises
from the inability of the text encoder to produce accurate embeddings, which hin-
ders the video generation model. In this work, we propose a novel approach to
overcome this challenge by selecting the optimal text embedding through inter-
polation in the embedding space. We demonstrate that this method enables the
video generation model to produce the desired videos. Additionally, we introduce
a simple algorithm using perpendicular foot embeddings and cosine similarity to
identify the optimal interpolation embedding. Our findings highlight the impor-
tance of accurate text embeddings and offer a pathway for improving text-to-video
generation performance.

1 INTRODUCTION

Text-to-video models have developed rapidly in recent years, driven by the advancement of Trans-
former architectures (Vaswani, 2017) and diffusion models (Ho et al., 2020). Early attempts at
text-to-video generation focused on scaling up Transformers, with notable works such as CogVideo
(Hong et al., 2022) and Phenaki (Villegas et al., 2022), which demonstrated promising results. More
recently, the appearance of DiT (Peebles & Xie, 2023), which incorporates Transformers as the
backbone of Diffusion Models, has pushed the capabilities of text-to-video generation models to
new heights. Models like Sora (OpenAI, 2024), MovieGen (Meta, 2024), CogVideoX (Yang et al.,
2024), and Veo 2 (Google, 2024) have further showcased the potential of these approaches. Despite
the impressive progress made in recent years, current state-of-the-art text-to-video generation mod-
els still face challenges in effectively following complex instructions in user-provided text prompts.
For example, when users describe unusual real-world scenarios, such as “a tiger with zebra-like
stripes walking on grassland,” the text encoder may struggle to fully capture the intended meaning.
This results in text embeddings that fail to guide the video generation model toward producing the
desired output. This issue is also observed in the text-to-image generation domain, where a notable
work, Stable Diffusion V3 (Esser et al., 2024), addresses this challenge by incorporating multiple
text encoders to improve understanding. Although their approach, which combines embeddings
from different encoders, yields effective results, it comes at a significant computational cost due to
the need to compute embeddings from multiple sources.

In this work, we first study the problem that prompt space is not enough to cover all video space from
a theoretical perspective. We provide an informal theorem of our theoretical findings as follows:
Theorem 1.1 (Word Embeddings being Insufficient to Represent for All Videos, informal version of
Theorem 4.9). Let n, d denote two integers, where n denotes the maximum length of the sentence,
and all videos are in Rd space. Let V ∈ N denote the vocabulary size. Let U = {u1, u2, · · · , uV }
denote the word embedding space, where for i ∈ [V ], the word embedding ui ∈ Rk. Let δmin =
mini,j∈[V ],i̸=j ∥ui − uj∥2 denote the minimum ℓ2 distance of two word embedding. Let f : Rnk →
Rd denote the text-to-video generation model, which is also a mapping from sentence space (discrete
space {u1, . . . , uV }n) to video space Rd. Let M := maxx ∥f(x)∥2,m := minx ∥f(x)∥2. Let ϵ =
((Md −md)/V n)1/d. Then, we can show that there is a video y ∈ Rd, satisfying m ≤ ∥y∥2 ≤M ,
such that for any sentence x ∈ {u1, u2, · · · , uV }n, ∥f(x)− y∥2 ≥ ϵ.

Additionally, we take a different approach by exploring whether we can obtain a powerful text
embedding capable of guiding the video generation model through interpolation within the text em-
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bedding space. Through empirical experiments, we demonstrate that by selecting the optimal text
embedding, the video generation model can successfully generate the desired video. Additionally,
we propose an algorithm that takes advantage of perpendicular foot embeddings and cosine sim-
ilarity to capture both global and local information in order to identify the optimal embedding of
interpolation text (Fig. 1 and Algorithm 1).

Prompt A

Prompt B

Text Embedding A

Text Embedding CPrompt C

Interpolation

T2V model

T2V model

Text Embedding B
Prompt C

Prompt A

Prompt B

Prompt D

Interpolation

T2V model

T2V model

Interpolation

Text Embedding A

Text Embedding C

Text Embedding B

Text Embedding D

Figure 1: Two kinds of Text Prompts Mixture. Left: Mixture of Two Prompts. We set two prompts,
A and B, and apply linear interpolation to two corresponding text embeddings. After that, we use
one of the interpolation results to generate a video. To evaluate the effect of video interpolation, we
set another prompt C, which describes the generated video to generate a video to compare with the
interpolated video. Right: Mixture of Three Prompts. We set two prompts A and B and apply
linear interpolation to two corresponding text embeddings. We manually choose one text embedding
interpolated from A and B, then apply linear interpolation to this text embedding and text embedding
C. After that, we use one of the interpolation results to generate a video. To evaluate the effect of
video interpolation, we set another prompt D which describes the generated video to generate a
video to compare with the interpolated video.

In summary, our main contributions are as follows:

• We demonstrate that selecting the correct text embedding can effectively guide a video
generation model to produce the desired video.

• We propose a simple yet effective algorithm to find the optimal text embedding through the
use of perpendicular foot embeddings and cosine similarity.

Roadmap. Our paper is organized as follows: Section 2 introduces our main algorithm for finding
the optimal interpolation embedding. Section 3 presents the experiment result of this work. Section 4
presents the theoretical analysis, including the preliminary of our notation, key concepts of our video
algorithm, model formulation, and our definition of an optimal interpolation embedding finder. In
Section 5, we conclude our paper.

2 OUR METHODS

Section 2.1 introduces the problem formulation. In Section 2.2, we present our algorithm for finding
the optimal interpolation embedding.

2.1 PROBLEM FORMULATION

In this section, we introduce the formal definition for finding the optimal interpolation embedding
as follows:

Definition 2.1 (Finding Optimal Interpolation Embedding Problem). Let Pa, Pb, Pc denote three
text prompts. Our goal is to generate a video that contains features mentioned in Pa and Pb, and
Pc is a text description of the feature combination of Pa and Pb. Let Eta , Etb , Etc ∈ Rn×d denote
the text embedding of Pa, Pb, Pc. Let fθ(Et, z) be defined in Definition 4.8. We define the “Finding
optimal interpolation embedding” problem as: According to Eta , Etb , Etc , find the optimal interpo-
lation embedding Eopt that can make the text-to-video generation model fθ(Eopt, z) generate video
contains features mentioned in Pa and Pb.
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Algorithm 1 Find Optimal Interpolation

1: datastructure OPTIMALINTERPFINDER
2: members
3: n ∈ N: the length of input sequence.
4: nids ∈ N: the ids length of input sequence.
5: d ∈ R: the hidden dimension.
6: Eta , Etb , Etc ∈ Rn×d: the text embedding.
7: ϕcos(X,Y ): the cosine similarity calculator. ▷ Definition 4.2
8: end members
9:

10: procedure OPTIMALFINDER(Eta , Etb , Etc ∈ Rn×d,naids
, nbids , ncids ∈ N)

11: /* Calculate the max ids length. */
12: nids ← max{naids

, nbids
, ncids}

13: /* Truncated text embeddings. */
14: Eatruc ∈ Rnids×d ← Eta [: nids, :]
15: Ebtruc ∈ Rnids×d ← Etb [: nids, :]
16: Ectruc

∈ Rnids×d ← Etc [: nids, :]
17: /* Calculate cosine similarity, Algorithm 2. */
18: LCosTruc ← COSINESIM(Eatruc , Ebtruc , Ectruc)
19: LCosFull ← COSINESIM(Eta , Etb , Etc)
20: /* Add ConsineTruc and CosineFull. */
21: LCosAdd ← [ ]
22: for i = 1→ k do
23: LCosAdd[i]← LCosTruc[i] + LCosFull[i]
24: end for
25: /* Find the optimal interpolation index. */
26: iopt ← maxindex(LCosAdd)
27: /* Calculate optimal interpolation embedding. */
28: Eopt ← iopt

k · Eta +
k−iopt

k · Etb
29: Return Eopt

30: end procedure

We would like to refer the readers to Figure 2 (a) as an example of Definition 2.1. In Figure 2 (a), we
set prompt Pa to “The tiger, moves gracefully through the forest, its fur flowing in the breeze.” and
prompt Pb to:“The zebra, moves gracefully through the forest, its fur flowing in the breeze.”. Our
goal is to generate a video that contains both features of “tiger” and “zebra”, where we set prompt
Pc to “The tiger, with black and white stripes like zebra, moves gracefully through the forest, its
fur flowing in the breeze.”, to describe the mixture features of tiger and zebra. However, the text-
to-video model fails to generate the expected video. Therefore, it is essential to find the optimal
interpolation embedding Eopt to make the model generate the expected video. In Figure 2 (a), the
Eopt is the 14-th interpolation embedding of Eta and Etb .

2.2 OPTIMAL INTERPOLATION EMBEDDING FINDER

In this section, we introduce our main algorithm (Algorithm 3 and Algorithm 1), which is also
depicted in Fig. 1. The algorithm is designed to identify the optimal interpolation embedding (as
defined in Definition 2.1) and generate the corresponding video. The algorithm consists of three key
steps:

1. Compute the perpendicular foot embedding (Line 9 in Algorithm 2).
2. Calculate the cosine similarity between the interpolation embeddings and the perpendicular

foot embedding (Line 22 in Algorithm 2).
3. Select the optimal interpolation embedding based on the cosine similarity results (Algo-

rithm 1).

We will now provide a detailed explanation of each part of the algorithm and the underlying intu-
itions.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 2 Calculate Cosine Similarity

1: datastructure COSINESIMILARITYCALCULATOR
2: members
3: n ∈ N: the length of input sequence.
4: d ∈ N: the hidden dimension.
5: Eta , Etb , Etc ∈ Rn×d: the text embedding.
6: ϕcos(X,Y ): the cosine similarity calculator. ▷ Definition 4.2
7: end members
8:
9: procedure PERPENDICULARFOOT(Eta , Etb , Etc ∈ Rn×d)

10: /* Find perpendicular foot of Etc on Etb − Etb . */
11: Eac ← Etc − Eta
12: Eab ← Etb − Eta
13: /* Calculate the projection length. */
14: lproj ← ⟨Eab, Eac⟩/⟨Eab, Eab⟩
15: /* Calculate the projection vector. */
16: Eproj ← lproj · Eab

17: /* Calculate the perpendicular foot. */
18: Efoot ← Eta + Eproj

19: Return Efoot

20: end procedure
21:
22: procedure COSINESIM(Eta , Etb , Etc ∈ Rn×d)
23: /* Calculate perpendicular foot. */
24: Efoot ← PERPENDICULARFOOT(Eta , Etb , Etc)
25: /* Init cosine similarity list. */
26: LCosSim ← [ ]
27: for i = 1→ k do
28: /* Compute interpolation embedding. */
29: Einterp ← i

k · Et1 +
k−i
k · Et2

30: /* Calculate and store cosine similarity. */
31: LCosSim[i]← ϕcos(Einterp, Efoot)
32: end for
33: Return LCosSim

34: end procedure

Perpendicular Foot Embedding. As outlined in the problem definition (Definition 2.1), our ob-
jective is to identify the optimal interpolation embedding that allows the text-to-video generation
model to generate a video containing the features described in Pa and Pb. The combination of these
features is represented by Pc, which typically does not lead to the desired video output. Conse-
quently, we seek an interpolation embedding of Eta and Etb guided by Etc . The first step involves
finding the perpendicular foot of Etc onto the vector Etb−Eta , also known as the projection of Etc .
This perpendicular foot embedding, denoted as Efoot, is not the optimal embedding in itself, as the
information within Etc alone does not enable the generation of the expected video. However, Efoot

serves as a useful anchor, guiding us toward the optimal interpolation embedding. Further details of
this approach will be discussed in the subsequent paragraph.

Cosine Similarity and Optimal Interpolation Embedding. To assess the similarity of each in-
terpolation embedding to the anchor perpendicular foot embedding Efoot, we employ the straight-
forward yet effective metric of cosine similarity (Definition 4.2). It is important to note that the
input text prompts are padded to a fixed maximum length, n = 266, before being encoded by the T5
model. However, in real-world scenarios, the actual length of text prompts is typically much shorter
than n = 266, which results in a substantial number of padding embeddings being appended to the
original text prompt. The inclusion or exclusion of these padding embeddings can lead to significant
differences in the perpendicular foot embedding, as their presence introduces a shift in the distribu-
tion of the text embeddings. To account for this, we treat text embeddings with and without padding
separately. Specifically, we define “full text embeddings” Eat , Ebt , Ect ∈ Rn×d to represent the
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embeddings that include padding, and “truncated text embeddings” Eatruc
, Ebtruc , Ectruc ∈ Rnids×d

to represent the embeddings without padding (Line 13 in Algorithm 1). The full-text embeddings
capture global information, whereas the truncated text embeddings focus on local information. We
compute the perpendicular foot and cosine similarity separately for both types of text embeddings
(Line 17) and then combine the results by summing the cosine similarities from the full and trun-
cated embeddings. Finally, we select the optimal interpolation embedding based on the aggregated
cosine similarity scores (Line 25).

3 EXPERIMENTS

i = 1

i = 13

i = 14

i = 15

i = 30 

Step:

Prompt A: “The tiger, moves gracefully through the forest, its 

fur flowing in the breeze.”

Prompt B: “The zebra, moves gracefully through the forest, its 

fur flowing in the breeze.”

Prompt C: “The tiger, with black and white stripes like zebra, 

moves gracefully through the forest, its fur flowing 

in the breeze.”

(a)

i = 1

i = 20

i = 21

i = 22

i = 30 

Step:

Prompt A: “The cat nestled into the cozy blanket, its tiny nose 

twitching as it drifted off to sleep.”

Prompt B: “The rabbit nestled into the cozy blanket, its tiny 

nose twitching as it drifted off to sleep.”

Prompt C: “The rabbit, with a feature of cat ear, nestled into 

the cozy blanket, its tiny nose twitching as it drifted off to sleep.”

(b)

i = 1

i = 18

i = 19

i = 20

i = 30 

Step:

Prompt A: “A sunflower stood tall in the garden.”

Prompt B: “A snail crawled slowly across the ground.”

Prompt C: “A snail with the shape and color of sunflower, 

crawled slowly across the ground.”

(c)

Figure 2: Qualitative results of mixture of two features. Figure (a): Mixture of [“Tiger”] and
[“Zebra”]; Figure (b): Mixture of [“Cat”] and [“Rabbit”]; Figure (c): Mixture of [“Sunflower”]
and [“Snail”]. Our objective is to mix the features described in Prompt A and Prompt B with the
guidance of Prompt C. We set the total number of interpolation steps to 30. Using Algorithm 1, we
identify the optimal embedding and generate the corresponding video. The video generated directly
from Prompt C does not exhibit the desired mixed features from Prompts A and B.

i = 1

i = 16

i = 17

i = 18

i = 30 

Step:

Prompt A: “A sweet and delightful strawberry, served in a 

crystal dish, is placed on the wooden table.”

Prompt B: “A sweet and delightful blueberry, served in a 

crystal dish, is placed on the wooden table.”

Prompt C: “A sweet and delightful strawberry, with a color of 

dark purple, served in a crystal dish, is placed 

on the wooden table.”

(a)

i = 1

i = 9

i = 10

i = 11

i = 30 

Step: “Strawberry” + “Blueberry” interpolation result

Prompt C: “A sweet and delightful orange, served in a crystal 

dish, is placed on the wooden table.”

Prompt D: “A sweet and delightful fruit, with the size of 

blueberry and the color of red, covered with tiny pores on the 

surface like orange, served in a crystal dish, is placed on the 

wooden table.”

(b)

i = 1

i = 16

i = 17

i = 18

i = 30 

Step: “Tiger” + “Zebra” interpolation result

Prompt C: “The giraffe, moves gracefully through the forest, 

its fur flowing in the breeze.”

Prompt D: “The tiger, with black and white strips and a long 

neck like giraffe, moves gracefully through the forest, its fur 

flowing in the breeze.”

(c)

Figure 3: Extending from two prompts mixture to three prompts mixture. Figure (a): Mixture
of [“Strawberry”] and [“Blueberry”]. Figure (b): Mixture of [“Strawberry” + “Blueberry”] and
[“Orange”]. We further apply Algorithm 1 to that optimal embedding and Prompt C embedding,
with the guidance of Prompt D. We identify 10-th interpolation embedding as the optimal embedding
of [“Strawberry” + “Blueberry”] and [“Orange”] and generate the corresponding video. The video
generated directly from Prompt D does not exhibit the desired mixed features. Figure (c): Mixture
of [“Tiger” + “Zebra”] and [“Giraffe”]. We present another example of a mixture of three prompts
to demonstrate the effectiveness of our algorithm.

In this section, we will first present our qualitative evaluation results of the proposed method in
Section 3.1. Then, in Section 3.2, we present our quantitative evaluation.

3.1 QUALITATIVE EVALUATION

Our experiments are conducted on the CogVideoX-2B (Yang et al., 2024). We investigate the per-
formance of our optimal embedding finder algorithm in the following two scenarios:
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Mixture of Features from Two Initial Prompts. As outlined in Definition 2.1, we conduct exper-
iments where the goal is to generate a mixture of features described in two text prompts, Pa and Pb.
We construct a third prompt, Pc, to specify the desired features. Following Algorithm 1, we identify
the optimal text embedding and use it for the text-to-video generation with our base model. We con-
ducted experiments using a variety of text prompts. In Figure 2 (a) and Figure 2 (b), we investigate
the mixture of features from different animals, demonstrating that a video containing the mixture of
tiger and zebra features, as well as the mixture of rabbit and cat features can only be generated using
the optimal embedding, not directly from the text prompts. Similarly, in Figure 3 (a), we show that a
video combining features from strawberry and blueberry can only be generated through the optimal
embedding, highlighting a similar phenomenon in the context of fruits. Furthermore, in Figure 2
(c), we observe the same behavior in the domain of plants, specifically with the combination of rose
and cactus features.

Mixture of Features from Three Initial Prompts. We will investigate further to see if we can
add one additional feature to the video. The high-level approach involves applying our optimal
interpolation embedding algorithm (Algorithm 1) twice. Given three text embeddings, Eta , Etb ,
and Etc , where we aim to blend their features in the generated video, we first apply Algorithm 1
to Eta and Etb to obtain the optimal interpolation embedding Eoptab

. Next, we apply Algorithm 1
again, this time on Eoptab

and Etc , resulting in the final optimal interpolation embedding Eopt. We
then use this embedding in our base model to generate the desired video. Following the method
described above, we mix the giraffe feature with the tiger and zebra features, as shown in Figure 3
(c). Only by using the optimal embedding identified by our algorithm can we enable the video
generation model to produce the desired video. Directly generating the video from the text prompt
results in the loss of at least one of the intended features. A similar phenomenon is observed in
the case of mixing strawberry, blueberry, and orange features, as shown in Figure 3 (b). The video
generated directly from the text prompt always renders each object separately, failing to combine
the features into a single coherent entity.

3.2 QUANTITATIVE EVALUATION

In the previous sections, we presented the qualitative results of our method. In this section, we
provide a quantitative evaluation. Following the settings used by VBench (Huang et al., 2024), we
evaluate the “subject consistency” and “aesthetic quality” of the generated videos. The results for
mixtures of two prompts are presented in Table 1. The average Subject Consistency (SC) of the
videos generated using optimal embeddings is 0.9787, higher than the SC of the videos generated
directly from the prompt description, which is 0.9748. As for Aesthetic Quality (AQ), the videos
generated by optimal embeddings achieve a score of 0.5163, which is lower than the 0.5519 obtained
by the videos generated from prompts.

Our method generates videos with higher “subject consistency” than those produced directly from
the prompt description (i.e., Prompt C). This suggests that the optimal embedding enables the video
generation model to better combine the desired features while maintaining coherence in the gener-
ated videos.

Another observation is that the “aesthetic quality” of videos generated using the optimal embeddings
is lower than that of videos generated directly from text prompts. This indicates that our method
better blends the desired features. The aesthetic model is trained on real-world videos, which leads
to a bias toward scoring videos that resemble those found in real-world datasets. However, in our
setting, we aim to expand the prompt space of the video generation model, enabling it to generate
videos that are rarely observed in real-world datasets. Therefore, a lower aesthetic score reflects that
our method aligns better with this goal.

4 THEORETICAL ANALYSIS

We first introduce some basic notations in Section 4.1. In Section 4.2, we introduce formal defini-
tions of key concepts. Then, we introduce the formal definition of each module in the CogvideoX
model in Section 4.3. In Section 4.4, we provide our rigorous theoretical analysis showing that word
embedding space is not sufficient to represent all videos.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Quantitative Evaluations. We evaluate the videos generated using our optimal embed-
dings and those generated directly from the text prompt with two metrics: “Subject Consistency”
(SC) and “Aesthetic Quality” (AQ). Let f represent the optimal embedding finding algorithm, and
g denote the video generation model. A higher SC score indicates better coherence in the video,
which corresponds to higher quality. Conversely, a lower AQ score suggests that the video is rarely
observed in the real world, implying that it aligns more closely with the mixture of desired features.
We use A to denote PromptA, B to denote PromptB and C to denote PromptC.

Prompts SC (↑) AQ (↓)
;g(f(Tiger, Zebra)) 0.9751 0.5472
g(Tiger, Zebra ) 0.9739 0.5424
g(f(Cat, Rabbit)) 0.9688 0.4649
g(Cat, Rabbit) 0.9608 0.4821
g(f(Strawberry, Blueberry)) 0.9920 0.5957
g(Strawberry, Blueberry) 0.9910 0.7256
g(f(Sunflower, Snail)) 0.9790 0.4573
g(Sunflower, Snail) 0.9734 0.4575

avg. g(f(A,B)) 0.9787 0.5163
avg. g(C) 0.9748 0.5519

4.1 NOTATIONS

For any k ∈ N, let [k] denote the set {1, 2, · · · , k}. For any n ∈ N, let n denote the length of the
input sequence of a model. For any d ∈ N, let d denote the hidden dimension. For any c ∈ N, let c
denote the channel of a video. For any nf ∈ N, we use nf to denote the video frames. For any h ∈ N
and w ∈ N, we use h and w to denote the height and width of a video. For two vectors x ∈ Rn and
y ∈ Rn, we use ⟨x, y⟩ to denote the inner product between x, y. Namely, ⟨x, y⟩ =

∑n
i=1 xiyi. For

a vector x ∈ Rn, we use ∥x∥2 to denote the ℓ2 norm of the vector x, i.e., ∥x∥2 :=
√∑n

i=1 x
2
i .

LetD represent a given distribution. The notation x ∼ D indicates that x is a random variable drawn
from the distribution D.

4.2 KEY CONCEPTS

We will introduce some essential concepts in this section. We begin with introducing the formal
definition of linear interpolation.
Definition 4.1 (Linear Interpolation). Let x, y ∈ Rd denote two vectors. Let k ∈ N denote the
interpolation step. For i ∈ [k], we define the i-th interpolation result zi ∈ R as follows:

zi :=
i

k
· x+

k − i

k
· y

Next, we introduce another key concept used in our paper, the simple yet effective cosine similarity
calculator.
Definition 4.2 (Cosine Similarity Calculator). Let X,Y ∈ Rn×d denote two matrices. Let
Xi, Yi ∈ Rd denote i-th row of X,Y , respectively. Then, we defined the cosine similarity calcu-
lator ϕcos(X,Y ) : Rn×d × Rn×d → R as follows ϕcos(X,Y ) := 1

n

∑n
i=1

⟨Xi,Yi⟩
∥Xi∥2∥Yi∥2

.

Then, we introduce one crucial fact that we used later in this paper.
Fact 4.3 (Volume of a Ball in d-dimension Space). The volume of a ℓ2-ball with radius R in dimen-
sion Rd space is πd/2

(d/2)!R
d.

4.3 MODEL FORMULATION

In this section, we will introduce the formal definition for the text-to-video generation video we use.
We begin with introducing the formal definition of the attention layer as follows:

7
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Algorithm 3 Video Interpolation

1: datastructure INTERPOLATION
2: members
3: n ∈ N: the length of input sequence
4: nf ∈ N: the number of frames
5: h ∈ N: the height of video
6: w ∈ N: the width of video
7: d ∈ N: the hidden dimension
8: c ∈ N: the channel of video
9: k ∈ N: the interpolation steps

10: T ∈ N: the number of inference step
11: Eopt ∈ Rn×d: the optimal interpolation embedding
12: Et ∈ Rn×d: the text embedding
13: fθ(z, Et, t) : Rnf×h×w×c×Rn×d×N→ Rnf×h×w×c: the text-to-video generation model
14: end members
15:
16: procedure INTERPOLATION(Eta , Etb , Etc ∈ Rn×d, k ∈ N, T ∈ N)
17: /* Find optimal interpolation embedding, Algorithm 1. */
18: Eopt ← OPTIMALFINDER(Eta , Etb , Etc)
19: /* Prepare initial latents.*/
20: z ∼ N(0, I) ∈ Rnf×h×w×c

21: for t = T → 0 do
22: /* One denoise step. */.
23: z ← fθ(z, Eopt, t)
24: end for
25: Return z
26: end procedure

Definition 4.4 (Attention Layer). Let X ∈ Rn×d denote the input matrix. Let WK ,WQ,WV ∈
Rd×d denote the weighted matrices. Let Q = XWQ ∈ Rn×d and K = XWK ∈ Rn×d. Let
attention matrix A = QK⊤. Let D := diag(A1n) ∈ Rn×n. We define attention layer Attn as
follows: Attn(X) := D−1AXWV .

Then, we define the convolution layer as follows:
Definition 4.5 (Convolution Layer). Let h ∈ N denote the height of the input and output feature
map. Let w ∈ N denote the width of the input and output feature map. Let cin ∈ N denote the
number of channels of the input feature map. Let cout ∈ N denote the number of channels of the
output feature map. Let X ∈ Rh×w×cin represent the input feature map. For l ∈ [cout], we use Kl ∈
R3×3×cin to denote the l-th convolution kernel. Let p denote the padding of the convolution layer.
Let s denote the stride of the convolution kernel. Let Y ∈ Rh×w×cout represent the output feature
map. We define the convolution layer as follows: We use ϕconv(X, cin, cout, p, s) : Rh×w×cin →
Rh×w×cout to represent the convolution operation. Let Y = ϕconv(X, cin, cout, p, s). Then, for
i ∈ [h], j ∈ [w], l ∈ [cout], we have Yi,j,l :=

∑3
m=1

∑3
n=1

∑cin
c=1 Xi+m−1,j+n−1,c ·Kl

m,n,c

We introduce the formal definition of linear projection layer as follows:
Definition 4.6 (Linear Projection). Let X ∈ Rn×d1 denote the input data matrix. Let W ∈ Rd1×d2

denote the weight matrix. We define the linear projection ϕlinear : Rn×d1 → Rn×d2 as follows:
ϕlinear(X) := XW

And we define the 3D full attention layer as follows:
Definition 4.7 (3D Attention). Let Attn(X) be defined as in Definition 4.4. Let ϕconv(X, cin,out,p,s)
be defined in Definition 4.5. Let ϕlinear(X) be defined as in Definition 4.6. We define the 3D attention
ϕ3DAttn(Et, Ev) containing three components: ϕlinear(X), Attn(X), ϕconv(X, cin, cout, p, s). Its
details are provided in Algorithm 4.

Finally, we provide the definition of the text-to-video generation model, which consists of a stack of
multiple 3D attention layers, as introduced earlier.

8
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Definition 4.8 (Text-to-Video Generation Model). Let ϕ3DAttn be defined as Definition 4.7. Let
k3D ∈ N denote the number of 3D attention layers in the text-to-video generation model. Let
θ denote the parameter in the text-to-video generation model. Let Et ∈ Rn×d denote the text
embedding. Let z ∼ N(0, I) ∈ Rnf×h×w×c denote the initial random Gaussian noise. Then we
defined the text-to-video generation model fθ(Et, z) as follows:

fθ(Et, z) := ϕ3DAttn ◦ · · · ◦ ϕ3DAttn︸ ︷︷ ︸
k3D layers

(Et, z).

4.4 WORD EMBEDDING SPACE BEING INSUFFICIENT TO REPRESENT FOR ALL VIDEOS

o

ϵ
f (x)

Mapping

x

y

M

Figure 4: Mapping from Prompt
Space to Video Space. This figure il-
lustrates the mapping from a prompt
space (with discrete prompts) to a video
space (with continuous video embed-
dings) by a video generation model
f(x). Regardless of the specific form
of the video generation model f(x),
there always exists a point in the video
embedding space whose distance to all
f(x) is at least ϵ.

Since the text-to-video generation model only has a fi-
nite vocabulary size, it only has finite wording embed-
ding space. However, the space for all videos is infinite.
Thus, word embedding space is insufficient to represent
all videos in video space. We formalize this phenomenon
to a rigorous math problem and provide our findings in
the following theorem.

Theorem 4.9 (Word Embeddings being Insufficient to
Represent for All Videos, formal version of Theo-
rem 1.1). Let n, d denote two integers, where n de-
notes the maximum length of the sentence, and all videos
are in Rd space. Let V ∈ N denote the vocabulary
size. Let U = {u1, u2, · · · , uV } denote the word em-
bedding space, where for i ∈ [V ], the word embed-
ding ui ∈ Rk. Let δmin = mini,j∈[V ],i̸=j ∥ui − uj∥2
denote the minimum ℓ2 distance of two word embed-
ding. Let f : Rnk → Rd denote the text-to-video gen-
eration model, which is also a mapping from sentence
space (discrete space {u1, . . . , uV }n) to video space Rd.
Let M := maxx ∥f(x)∥2,m := minx ∥f(x)∥2. Let
ϵ = ((Md −md)/V n)1/d. Then, we can show that there
exits a video y ∈ Rd, satisfying m ≤ ∥y∥2 ≤ M , such
that for any sentence x ∈ {u1, u2, · · · , uV }n, we have
∥f(x)− y∥2 ≥ ϵ.

Theorem 4.9 indicates that there always exists a video y, where its ℓ2 distance to all videos can be
represented by the prompt embeddings is larger than ϵ (Fig. 4). This means that there always exists
a video that cannot be accurately generated by using only the prompt embeddings from the word
embedding space. We defer the proof to Theorem C.6 which is the restatement of Theorem 4.9 in
the Appendix.

5 CONCLUSION

In this work, we propose a novel algorithm to identify the optimal text embedding, enabling a
video generation model to produce videos that accurately reflect the features specified in the initial
prompts. Our findings reveal that the main bottleneck in text-to-video generation is the text en-
coder’s inability to generate precise text embeddings. By carefully selecting and interpolating text
embeddings, we improve the model’s ability to generate more accurate and diverse videos. From
the theoretical side, we show that text embeddings generated by the text encoder are insufficient
to represent all possible video features, which explains why the text encoder becomes a bottleneck
in generating videos with mixed desired features. Our proposed algorithm, based on perpendicular
foot embeddings and cosine similarity, provides an effective solution to these challenges. These
results highlight the importance of refining text embeddings to improve model performance and lay
the foundation for future advancements in text-to-video generation by emphasizing the critical role
of embedding optimization in bridging the gap between textual descriptions and video synthesis.
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Appendix
Roadmap. In Section A, we provide a detailed discussion of our work. In Section B, we review
related literature. In Section C, we provide detailed proofs for the theorem showing that word
embeddings are insufficient to represent all videos. In Section D, we provide more results of our
experiments. In Section E, we provide the algorithm for 3D attention.

A DISCUSSION

Identifying the Actual Bottleneck of Generative Models. Our work identifies that the primary
bottleneck hindering text-to-video generation models from producing the desired videos is the text
encoder’s inability to generate accurate text embeddings. Through our proposed algorithm, we can
guide the video generation model to produce the desired output. This insight helps the community
identify the true bottleneck within cutting-edge generative models, allowing for improvements in
model performance and capabilities.

B RELATED WORK

Text-to-Video Generation. Text-to-video generation (Singer et al., 2022; Voleti et al., 2022;
Blattmann et al., 2023), as a form of conditional video generation, focuses on the synthesis of high-
quality videos using text descriptions as conditioning inputs. Most recent works on video generation
jointly synthesize multiple frames based on diffusion models (Song et al., 2020; Ho et al., 2020; Liu
et al., 2024; Shen et al., 2024; Hu et al., 2024b;a). Diffusion models implement an iterative refine-
ment process by learning to gradually denoise a sample from a normal distribution, which has been
successfully applied to high-quality text-to-video generation. In terms of training strategies, one
of the existing approaches uses pre-trained text-to-image models and inserts temporal modules (Ge
et al., 2023; An et al., 2023), such as temporal convolutions and temporal attention mechanisms into
the pre-trained models to build up correlations between frames in the video (Singer et al., 2022; Gu
et al., 2023; Guo et al., 2023). PYoCo (Ge et al., 2023) proposed a noise prior approach and leveraged
a pre-trained eDiff-I (Balaji et al., 2022) as initialization. Conversely, other works (Blattmann et al.,
2023; Zhou et al., 2022a) build upon Stable Diffusion (Rombach et al., 2022) owing to the accessi-
bility of pre-trained models. This approach aims to leverage the benefits of large-scale pre-trained
text-to-image models to accelerate convergence. However, it may lead to unsatisfactory results due
to the potential distribution gap between images and videos. Other approaches are training the entire
model from scratch on both image and video datasets (Ho et al., 2022). Although this method can
yield high-quality results, it demands tremendous computational resources.

Enrich Prompt Space. In the context of conditional tasks, such as text-to-image and text-to-video
models, prompts worked as conditions can have a significant influence on the performance of the
models. For text-conditioned tasks, refining the user-provided natural provided natural language
prompts into keyword-enriched prompts has gained increasing attention. Several recent works have
explored the prompt space by the use of prompt learning, such as CoCoOp (Zhou et al., 2022b),
which uses conditional prompts to improve the model’s generalization capabilities. AutoPrompt
(Shin et al., 2020) explores tokens with the most significant gradient changes in the label likelihood
to automate the prompt generation process. Fusedream (Liu et al., 2021) manipulates the CLIP (Rad-
ford et al., 2021) latent space by using GAN (Goodfellow et al., 2014) optimization to enrich the
prompt space. Specialist Diffusion (Lu et al., 2023) augments the prompts to define the same image
with multiple captions that convey the same meaning to improve the generalization of the image
generation network. Another work (Lin et al., 2023) proposes to generate random sentences, includ-
ing source and target domain, in order to calculate a mean difference that will serve as a direction
while editing. The iEdit (Bodur et al., 2024) generates target prompts by changing words in the input
caption in order to retrieve pseudo-target images and guide the model. The TokenCompose (Wang
et al., 2024b) and OmniControlNet (Wang et al., 2024a) control the image generation in the token-
level space. Compared to the prior works, our work takes a different approach by exploring whether
we can obtain a powerful text embedding capable of guiding the video generation model through
interpolation within the text embedding space.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C WORD EMBEDDING SPACE BEING INSUFFICIENT TO REPRESENT FOR ALL
VIDEOS

In this section, we provide detailed proofs for Theorem C.8, showing that word embeddings are
insufficient for representing all videos. We begin with a 1 dimensional case, where we assume all
weights in function f(x) are integers.

Lemma C.1 (Integer function bound in 1 dimension). If the following conditions hold:

• Let V ∈ N denote a positive integer.

• Let f : [V ]n → R denote a linear function where weights are all integers.

• Let x ∈ [V ]n denote the input of function f .

• Let M := maxx f(x),m := minx f(x).

• Let ϵ = 0.5.

Then we can show there exits a scalar y ∈ [m,M ] such that for any x ∈ [V ]n, |f(x)− y| ≥ ϵ.

Proof. Since x ∈ [V ]n, all entries of x are integers. Since function f is a linear function where all
weights are integers, the output f(x) ∈ Z can only be integer.

Therefore, m,M ∈ Z . We choose y = m + 0.5. Since for all f(x) are integers, then we have
|f(x)− y| ≥ 0.5.

Then, we extend the above Lemma to d dimensional case.

Lemma C.2 (Integer function bound in d dimension). If the following conditions hold:

• Let V ∈ N denote a positive integer.

• Let f : [V ]n → Rd denote a linear function where weights are all integers.

• Let x ∈ [V ]n denote the input of function f .

• Let M := maxx ∥f(x)∥2,m := minx ∥f(x)∥2.

• Let ϵ = 0.5
√
d.

Then we can show there exits a vector y ∈ Rd, satisfying m ≤ ∥y∥2 ≤ M , such that for any
x ∈ [V ]n, ∥f(x)− y∥2 ≥ ϵ.

Proof. Let xmin ∈ [V ]n denote the vector which satisfies f(xmin) = m. Since all entries in x and
f are integers, all entries in f(xmin) are all integers.

For i ∈ [d], let zi ∈ Z denote the i-th entry of f(xmin).

Then, we choose the vector y ∈ Rd as

y =


z1 + 0.5
z2 + 0.5

...
zd + 0.5


Then, since all entries of f(x) are integers, we have ∥f(x)− y∥2 ≥ 0.5

√
d.

Then, we move on to a more complicated case, in which we do not make any assumptions about the
function f(x). We still begin by considering the 1 dimensional case.

Definition C.3 (Set Complement). If the following conditions hold:
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• Let A,U denote two sets.

Then, we use U\A to denote the complement of A in U :

U\A := {x ∈ U : x /∈ A}

Definition C.4 (Cover). If the following conditions hold:

• Let X denote a set.

• Let A denote an index set.

• For α ∈ A, let Uα ⊂ X denote the subset of X , indexed by A.

• Let Let C = {Uα : α ∈ A}.

Then we call C is a cover of X if the following holds:

X ⊆ ∪α∈AUα

Lemma C.5 (Any function bound in 1 dimension). If the following conditions hold:

• Let V ∈ N denote a positive integer.

• Let f : [V ]n → R denote a function.

• Let x ∈ [V ]n denote the input of function f .

• Let M := maxx f(x),m := minx f(x).

• Let ϵ = (M −m)/(2V n).

Then we can show there exits a scalar y ∈ [m,M ] such that for any x ∈ [V ]n, |f(x)− y| ≥ ϵ.

Proof. Assuming for all y ∈ [m,M ], there exists one f(x), such that |f(x)−y| < (M−m)/(2V n).

The overall maximum cover of all V n points should satisfy

2 · V n · |f(x)− y| < (M −m) (1)

where the first step follows from there are total V n possible choices for f(x), and each choice has a
region with length less than 2|f(x)− y|. This is because the y can be either left side of f(x), or can
be on the right side of f(x), for both case, we need to have |f(x)− y| < (M −m)/(2V n). So the
length for each region of f(x) should at least be 2|f(x)− y|.
Eq (1) indicates the overall regions of V n points can not cover all [m,M ] range, i.e. cannot become
a cover (Definition C.4) of [m,M ]. This is because each points can cover at most 2|f(x) − y| <
(M − m)/V n length, and there are total V n points. So the maximum region length is less than
V n · (M −m)/V n = (M −m). Note that the length of the range [m,M ] is (M −m). Therefore,
V n points cannot cover all [m,M ] range.

We use S to denote the union of covers of all possible f(x). Since the length of S is less than
M −m, there exists at least one y lies in [m,M ]\S such that |f(x)− y| ≥ (M −m)/(2V n). Here
\ denotes the set complement operation as defined in Definition C.3.

Then, we complete our proof.

Here, we introduce an essential fact that states the volume of a ℓ2-ball in d dimensional space.

Then, we extend our 1 dimensional result on any function f(x) to d dimensional cases.

Theorem C.6 (Word embeddings are insufficient to represent for all videos, restatement of Theo-
rem 4.9). If the following conditions hold:

• Let n, d denote two integers, where n denotes the maximum length of the sentence, and all
videos are in Rd space.
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• Let V ∈ N denote the vocabulary size.

• Let U = {u1, u2, · · · , uV } denote the word embedding space, where for i ∈ [V ], the word
embedding ui ∈ Rk.

• Let δmin = mini,j∈[V ],i̸=j ∥ui−uj∥2 denote the minimum ℓ2 distance of two word embed-
ding.

• Let f : Rnk → Rd denote the mapping from sentence space (discrete space {u1, . . . , uV }n)
to video space Rd.

• Let M := maxx ∥f(x)∥2,m := minx ∥f(x)∥2.

• Let ϵ = ((Md −md)/V n)1/d.

Then, we can show that there exits a video y ∈ Rd, satisfying m ≤ ∥y∥2 ≤ M , such that for any
sentence x ∈ {u1, u2, · · · , uV }n, ∥f(x)− y∥2 ≥ ϵ.

Proof. Assuming for all y satisfying m ≤ ∥y∥2 ≤M , there exists one f(x), such that |f(x)− y| <
((Md −md)/V n)1/d.

Then, according to Fact 4.3, for each f(x), the volume of its cover is πd/2

(d/2)! ((M
d −md)/V n).

There are maximum total V n f(x), so the maximum volume of all covers is

V n · πd/2

(d/2)!
((Md −md)/V n) <

πd/2

(d/2)!
(Md −md) (2)

The entire space of a d-dimensional ℓ2 ball is πd/2

(d/2)! (M
d −md). However, according to Eq. (2) the

maximum volume of the regions generated by all f(x) is less than πd/2

(d/2)! (M
d − md). Therefore

Eq. (2) indicates the cover of all V n possible points does not cover the entire space for y.

Therefore, there exists a y satisfying m ≤ ∥y∥2 ≤ M , such that ∥f(x) − y∥2 ≥ ((Md −
md)/V n)1/d.

Then, we complete our proof.

Definition C.7 (Bi-Lipschitzness). We say a function f : Rn → Rd is L-bi-Lipschitz if for all
x, y ∈ Rn, we have

L−1∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ L∥x− y∥2.

Then, we state our main result as follows
Theorem C.8 (Word embeddings are insufficient to represent for all videos, with Bi-Lipschitz con-
dition). If the following conditions hold:

• Let n, d denote two integers, where n denotes the maximum length of the sentence, and all
videos are in Rd space.

• Let V ∈ N denote the vocabulary size.

• Let U = {u1, u2, · · · , uV } denote the word embedding space, where for i ∈ [V ], the word
embedding ui ∈ Rk.

• Let δmin = mini,j∈[V ],i̸=j ∥ui−uj∥2 denote the minimum ℓ2 distance of two word embed-
ding.

• Let f : Rnk → Rd denote the text-to-video generation model, which is also a mapping
from sentence space (discrete space {u1, . . . , uV }n) to video space Rd.

• Assuming f : Rnk → Rd satisfies the L-bi-Lipschitz condition (Definition C.7).
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• Let M := maxx ∥f(x)∥2,m := minx ∥f(x)∥2.

• Let ϵ = max{0.5 · δmin/L, ((M
d −md)/V n)1/d}.

Then, we can show that there exits a video y ∈ Rd, satisfying m ≤ ∥y∥2 ≤ M , such that for any
sentence x ∈ {u1, u2, · · · , uV }n, ∥f(x)− y∥2 ≥ ϵ.

Proof. Our goal is to prove that when the bi-Lipschitz condition (Definition C.7) holds for f(x), the
statement can be held with ϵ = max{0.5 · δmin/L, ((M

d −md)/V n)1/d}.

According to Lemma 4.9, we have that ϵ ≥ ((Md−md)/V n)1/d. Then, we only need to prove that
when 0.5 ·δmin/L > ((Md−md)/V n)1/d, holds, ϵ = max{0.5 ·δmin/L, ((M

d−md)/V n)1/d} =
0.5 · δmin, our statement still holds.

Since we have assume that the function f(x) satisfies that for all x, y ∈ Rnk, such that

∥f(x)− f(y)∥2 ≥ ∥x− y∥2/L. (3)

According to the definition of δmin, we have for all i, j ∈ [V ], i ̸= j, such that

∥ui − uj∥2 ≥ δmin (4)

Combining Eq. (3) and (4), we have for all i, j ∈ [V ], i ̸= j

∥f(ui)− f(uj)∥2 ≥ δmin/L (5)

We choose y = f( 12 (ui + uj)) for any i, j ∈ [V ], i ̸= j

Then, for all k ∈ [V ], we have

∥y − f(ui)∥2 ≥ ∥
1

2
(ui + uj)− uk∥2/L

≥ 0.5 · δmin/L

where the first step follows from f(x) satisfies the bi-Lipschitz condition, the second step follows
from Eq. (5).

Therefore, when we have 0.5 · δmin/L > ((Md − md)/V n)1/d holds, then we must have ϵ =
0.5 · δmin/L.

Considering all conditions we discussed above, we are safe to conclude that ϵ = max{0.5 ·
δmin/L, ((M

d −md)/V n)1/d}

Table 2: Statement Reference Table. This table shows the relationship between definitions and
algorithms used in the paper, helping readers easily track where each term is defined and referenced.

Statements Comment Call Called by
Def. 4.1 Define linear interpolation None Alg. 2, Alg. 1
Def. 4.2 Define cosine similarity calculator None Alg. 2, Alg. 1
Def. 4.4 Define attention layer None Alg. 4, Def. 4.7
Def. 4.5 Define convolution layer None Alg. 4, Def. 4.7
Def. 4.6 Define linear projection None Alg. 4, Def. 4.7
Def. 4.7 Define 3D attention Def. 4.4, Def. 4.5, Def. 4.6 Alg. 4, Def. 4.8
Def. 4.8 Define text to video generation model Def. 4.7 Def. 2.1
Def. 2.1 Define optimal interpolation embedding Def. 4.8 Alg. 3
Alg. 4 3D Attention algorithm Def. 4.4, Def. 4.5, Def. 4.6, Def. 4.7 None
Alg. 2 Cosine similarity calculator algorithm Def. 4.1, Def. 4.2 Alg. 1
Alg. 1 Find optimal interpolation algorithm Def. 4.1, Def. 4.2, Alg. 2 Alg. 3
Alg. 3 Video interpolation algorithm Alg. 1 None
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i = 1

i = 16

i = 17

i = 18

i = 30 

Step:

Prompt A: “The tiger, moves gracefully through the forest, its 

fur flowing in the breeze.”

Prompt B: “The horse, moves gracefully through the forest, its 

fur flowing in the breeze.”

Prompt C: “The tiger, which has horse legs and no black 

strips on its fur, moves gracefully through the forest, its fur 

flowing in the breeze.”

Figure 5: Mixture of [“Tiger”] and [“Horse”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 17-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.

D MORE EXAMPLES

In this section, we will show more experimental results that the video generated directly from the
guidance prompt does not exhibit the desired mixed features from the prompts.

E FULL ALGORITHM

In this section, we provide the algorithm for 3D attention in Algorithm 4.
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i = 1

i = 8

i = 9

i = 10

i = 30 

Step:

Prompt A: “The eggplant, freshly washed, served in a dish, is 

placed on the wooden table.”

Prompt B: “The orange, freshly washed, served in a dish, is 

placed on the wooden table.”

Prompt C: “The eggplant, with the color of yellow, freshly 

washed, served in a dish, is placed on the wooden table.”

Figure 6: Mixture of [“Eggplant”] and [“Orange”]. Our objective is to mix the features described
in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 9-th interpolation embedding as the optimal embed-
ding and generate the corresponding video. The video generated directly from Prompt C does not
exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 15

i = 16

i = 17

i = 30 

Step:

Prompt A: “The airplane landed gently on the runway, its 

wheels touching the ground with precision.”

Prompt B: “The horse stopped gracefully at the water's edge, 

its reflection shimmering in the pond.”

Prompt C: “The robot horse stopped gracefully at the water's 

edge, its reflection shimmering in the pond.”

Figure 7: Mixture of [“Airplane”] and [“Horse”]. Our objective is to mix the features described
in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 16-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

i = 1

i = 14

i = 15

i = 16

i = 30 

Step:

Prompt A: “An airplane soared above the clouds, its engines 

humming as it crossed the horizon.”

Prompt B: “An automobile drove along the winding mountain 

road, its engine purring smoothly.”

Prompt C: “An automobile with airplane wings soared above 

the clouds, its engines humming as it crossed the horizon.”

Figure 8: Mixture of [“Airplane”] and [“Automobile”]. Our objective is to mix the features
described in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of
interpolation steps to 30. Using Algorithm 1, we identify the 15-th interpolation embedding as
the optimal embedding and generate the corresponding video. The video generated directly from
Prompt C does not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 13

i = 14

i = 15

i = 30 

Step:

Prompt A: “The airplane took off with a roar, lifting off the 

ground as it climbed into the sky..”

Prompt B: “The dog barked excitedly at the door, wagging its 

tail in anticipation of a walk.”

Prompt C: “The airplane with a dog head took off with a roar, 

lifting off the ground as it climbed into the sky.”

Figure 9: Mixture of [“Airplane”] and [“Dog”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 14-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 14

i = 15

i = 16

i = 30 

Step:

Prompt A: “An airplane glided smoothly in the sky.”

Prompt B: “A deer moved quietly in the woods.”

Prompt C: “An airplane with antlers, glided smoothly 

in the sky.”

Figure 10: Mixture of [“Airplane”] and [“Deer”]. Our objective is to mix the features described
in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 15-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 16

i = 17

i = 18

i = 30 

Step:

Prompt A: “The airplane rested on the runway.”

Prompt B: “The ship anchored at the harbor.”

Prompt C: “The ship with the shape of airplane, anchored 

at the harbor.”

Figure 11: Mixture of [“Airplane”] and [“Ship”]. Our objective is to mix the features described
in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 17-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

i = 1

i = 16

i = 17

i = 18

i = 30 

Step:

Prompt A: “The airplane rested on the runway.”

Prompt B: “The truck parked at the station.”

Prompt C: “The airplane with the shape of truck, rested 

on the runway.”

Figure 12: Mixture of [“Airplane”] and [“Truck”]. Our objective is to mix the features described
in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 17-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 14

i = 15

i = 16

i = 30 

Step:

Prompt A: “The automobile parked by the forest edge.”

Prompt B: “The deer stood quietly at the forest edge.”

Prompt C: “The deer with the body of a car, stood quietly 

at the forest edge.”

Figure 13: Mixture of [“Automobile”] and [“Deer”]. Our objective is to mix the features described
in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 15-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 15

i = 16

i = 17

i = 30 

Step:

Prompt A: “The automobile parked by the barn.”

Prompt B: “The horse stood quietly in the stable.”

Prompt C: “The automobile with four horse legs,  parked 

by the barn.”

Figure 14: Mixture of [“Automobile”] and [“Horse”]. Our objective is to mix the features de-
scribed in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of
interpolation steps to 30. Using Algorithm 1, we identify the 16-th interpolation embedding as
the optimal embedding and generate the corresponding video. The video generated directly from
Prompt C does not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 14

i = 15

i = 16

i = 30 

Step:

Prompt A: “The automobile parked by the beach.”

Prompt B: “The ship anchored at the harbor.”

Prompt C: “The ship with the shape of the automobile, 

anchored at the harbor.”

Figure 15: Mixture of [“Automobile”] and [“Ship”]. Our objective is to mix the features described
in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 15-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 16

i = 17

i = 18

i = 30 

Step:

Prompt A: “A bird perched on a tree branch.”

Prompt B: “A cat sat on the fence nearby.”

Prompt C: “A bird with a cat head, perched on a tree branch.”

Figure 16: Mixture of [“Bird”] and [“Cat”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 17-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 11

i = 12

i = 13

i = 30 

Step:

Prompt A: “The bird perched on a branch.”

Prompt B: “The dog lay under the tree.”

Prompt C: “A bird with four legs, perched on a tree branch.”

Figure 17: Mixture of [“Bird”] and [“Dog”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 12-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 15

i = 16

i = 17

i = 30 

Step:

Prompt A: “The bird perched on a branch.”

Prompt B: “The deer stood under the tree.”

Prompt C: “A bird with a deer head, perched 

on a tree branch.”

Figure 18: Mixture of [“Bird”] and [“Deer”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 16-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 15

i = 16

i = 17

i = 30 

Step:

Prompt A: “An elephant walked gracefully through the 

savanna.”

Prompt B: “A lion prowled silently through the savanna.”

Prompt C: “An elephant with a face of lion, walked 

gracefully through the savanna.”

Figure 19: Mixture of [“Elephant”] and [“Lion”]. Our objective is to mix the features described
in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 16-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 14

i = 15

i = 16

i = 30 

Step:

Prompt A: “An orchid bloomed gracefully in the greenhouse.”

Prompt B: “A starfish rested quietly on the ocean floor.”

Prompt C: “A starfish with the shape of orchid, rested quietly 

on the ocean floor.”

Figure 20: Mixture of [“Orchid”] and [“Starfish”]. Our objective is to mix the features described
in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 15-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 19

i = 20

i = 21

i = 30 

Step:

Prompt A: “A sunflower bloomed brightly in the summer 

field.”

Prompt B: “A starfish rested quietly on the ocean floor.”

Prompt C: “A starfish with the shape and color of sunflower, 

rested quietly on the ocean floor.”

Figure 21: Mixture of [“Sunflower”] and [“Starfish”]. Our objective is to mix the features de-
scribed in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of
interpolation steps to 30. Using Algorithm 1, we identify the 20-th interpolation embedding as
the optimal embedding and generate the corresponding video. The video generated directly from
Prompt C does not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 18

i = 19

i = 20

i = 30 

Step:

Prompt A: “A sunflower stood tall in the garden.”

Prompt B: “A snail crawled slowly across the ground.”

Prompt C: “A snail with the shape and color of sunflower, 

crawled slowly across the ground.”

Figure 22: Mixture of [“Sunflower”] and [“Snail”]. Our objective is to mix the features described
in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 19-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 16

i = 17

i = 18

i = 30 

Step:

Prompt A: “A sunflower stood tall in the bright field.”

Prompt B: “A crab laid on the sandy beach.”

Prompt C: “A crab with the shape of sunflower, 

laid on the sandy beach.”

Figure 23: Mixture of [“Sunflower”] and [“Crab”]. Our objective is to mix the features described
in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 17-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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Prompt A: “A bird perched on a tree branch

Step:

i = 1

i = 15 

i = 16 

i = 17 

i = 30 

.”

Prompt B: “A horse stood under the tree.”

Prompt C: “A bird with a horse head, perched 

on a tree branch.”

Figure 24: Mixture of [“Bird”] and [“Horse”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 16-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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Prompt A: “A butterfly landed delicately on a vibrant petal

Step:

i = 1

i = 15 

i = 16 

i = 17 

i = 30 

.”

Prompt B: “A starfish clung to a coral reef beneath the waves.”

Prompt C: “A starfish with the shape of butterfly, clung to a 

coral reef beneath the waves.”

Figure 25: Mixture of [“Butterfly”] and [“Starfish”]. Our objective is to mix the features de-
scribed in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of
interpolation steps to 30. Using Algorithm 1, we identify the 16-th interpolation embedding as
the optimal embedding and generate the corresponding video. The video generated directly from
Prompt C does not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 14

i = 15

i = 16

i = 30 

Step:

Prompt A: “A cat stretched lazily under the sun.”

Prompt B: “A deer rested peacefully under the tree.”

Prompt C: “A deer with a cat face, rested peacefully 

under the tree.”

Figure 26: Mixture of [“Cat”] and [“Deer”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 15-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 15

i = 16

i = 17

i = 30 

Step:

Prompt A: “A cat sat quietly on the windowsill.”

Prompt B: “A dog lay quietly on the porch.”

Prompt C: “A cat with a dog face, sat quietly 

on the windowsill.”

Figure 27: Mixture of [“Cat”] and [“Dog”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 16-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 12

i = 13

i = 14

i = 30 

Step:

Prompt A: “The cat stretched lazily under the sun.”

Prompt B: “The frog basked quietly under the sun.”

Prompt C: “The frog with a cat face, basked quietly 

under the sun.”

Figure 28: Mixture of [“Cat”] and [“Frog”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 13-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 10

i = 11

i = 12

i = 30 

Step:

Prompt A: “The cat stretched lazily in the sun.”

Prompt B: “The horse grazed peacefully in the meadow.”

Prompt C: “The horse with a cat face, grazed peacefully 

in the meadow.”

Figure 29: Mixture of [“Cat”] and [“Horse”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 11-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

i = 1

i = 13

i = 14

i = 15

i = 30 

Step:

Prompt A: “The otter rested on a smooth stone by the water.”

Prompt B: “The lizard basked on the tree bark under the sun.”

Prompt C: “The otter with lizard skin, rested on a smooth 

stone by the water.”

Figure 30: Mixture of [“Otter”] and [“Lizard”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 14-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 15

i = 16

i = 17

i = 30 

Step:

Prompt A: “A kangaroo rested in the shade of a tall tree.”

Prompt B: “A lizard basked in the sunlight on a flat rock.”

Prompt C: “A lizard with kangaroo legs, basked in the 

sunlight on a flat rock.”

Figure 31: Mixture of [“Kangaroo”] and [“Lizard”]. Our objective is to mix the features de-
scribed in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of
interpolation steps to 30. Using Algorithm 1, we identify the 16-th interpolation embedding as
the optimal embedding and generate the corresponding video. The video generated directly from
Prompt C does not exhibit the desired mixed features from Prompts A and B.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

i = 1

i = 16

i = 17

i = 18

i = 30 

Step:

Prompt A: “A deer stood quietly in the meadow.”

Prompt B: “A dog sat quietly on the porch.”

Prompt C: “A deer with a dog face, stood quietly 

in the meadow.”

Figure 32: Mixture of [“Deer”] and [“Dog”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 17-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 15

i = 16

i = 17

i = 30 

Step:

Prompt A: “A dog lay lazily in the sun.”

Prompt B: “A frog sat still on a rock in the sun.”

Prompt C: “A frog with a dog head, sat still on a rock 

in the sun.”

Figure 33: Mixture of [“Dog”] and [“Frog”]. Our objective is to mix the features described in
Prompt A and Prompt B with the guidance of Prompt C. We set the total number of interpolation
steps to 30. Using Algorithm 1, we identify the 16-th interpolation embedding as the optimal em-
bedding and generate the corresponding video. The video generated directly from Prompt C does
not exhibit the desired mixed features from Prompts A and B.
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i = 1

i = 14

i = 15

i = 16

i = 30 

Step:

Prompt A: “The red panda rested on a sturdy branch.”

Prompt B: “The rabbit sat still under a tree.”

Prompt C: “The red panda with a rabbit face, rested on 

a sturdy branch.”

Figure 34: Mixture of [“Red Panda”] and [“Rabbit”]. Our objective is to mix the features de-
scribed in Prompt A and Prompt B with the guidance of Prompt C. We set the total number of
interpolation steps to 30. Using Algorithm 1, we identify the 15-th interpolation embedding as
the optimal embedding and generate the corresponding video. The video generated directly from
Prompt C does not exhibit the desired mixed features from Prompts A and B.
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Algorithm 4 3D Attention

1: datastructure 3D ATTENTION ▷ Definition 4.7
2: members
3: n ∈ N : the length of input sequence
4: nf ∈ N : the number of frames
5: h ∈ N : the hight of video
6: w ∈ N : the width of video
7: d ∈ N : the hidden dimension
8: c ∈ N : the channel of video
9: cpatch ∈ Rn×d: the channel of patch embedding.

10: Et ∈ Rn×d: the text embedding.
11: Evideo ∈ Rnf×h×w×c: the video embedding.
12: Epatch ∈ Rnf×h′×w′×cpatch : the patch embedding.
13: ϕconv(X, cin, cout, p, s): the convolution layer. ▷ Definition 4.5
14: Attn(X): the attention block. ▷ Definition 4.4
15: ϕlinear(X): the linear projection. ▷ Definition 4.6
16: end members
17:
18: procedure 3D ATTENTION(Et ∈ Rn×d, Ev ∈ Rnf×h×w×c)
19: /* Epatch dimension: [nf , h, w, cv]→ [nf , h

′, w′, cpatch] */
20: Epatch ← ϕconv(Ev, cv, cpatch, p = 2, s = 2)
21: /* Epatch dimension: [nf , h

′, w′, cpatch]→ [nf × h′ × w′, cpatch] */
22: Epatch ← reshape(Epatch)
23: /* Ehidden dimension: [n+ nf × h′ × w′, cpatch] */
24: Ehidden ← concat(Et, Epatch)
25: /* Ehidden dimension: [n+ nf × h′ × w′, cpatch] */
26: Ehidden ← Attn(Ehidden)
27: /* Et dimension: [n, d] */
28: /* Epatch dimension: [nf × h′ × w′, cpatch] */
29: Et, Epatch ← split(Ehidden)
30: /* Ev dimension: [nf × h′ × w′, cpatch]→ [nf × h× w, cv] */
31: Ev ← ϕlinear(Epatch)
32: /* Ev dimension: [nf × h× w, cv]→ [nf , h, w, cv] */
33: Ev ← reshape(Ev)
34: Return Ev

35: end procedure
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LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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