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ABSTRACT

Invariance describes transformations that do not alter data’s underlying semantics.
Neural networks that preserve natural invariance capture good inductive biases and
achieve superior performance. Hence, modern networks are handcrafted around
well-known invariances (ex. translations). We propose a framework to learn novel
network architectures that capture data-dependent invariances via pruning. Our
learned architectures consistently outperform dense neural networks on both vi-
sion and tabular datasets in both efficiency and effectiveness. We demonstrate our
framework on several neural networks across 3 vision and 40 tabular datasets.

1 INTRODUCTION

Preserving invariance is a key property in successful neural network architectures. Invariance oc-
curs when the semantics of data remains unchanged under a set of transformations (Bronstein et al.,
2017). For example, an image of a cat can be translated, rotated, and scaled, without altering
its underlying contents. Neural network architectures that represent data passed through invariant
transformations with the same representation inherit a good inductive bias (Neyshabur, 2020; 2017;
Neyshabur et al., 2014) and achieve superior performance (Zhang et al., 2021; Arpit et al., 2017).

Convolutional Neural Networks (CNNs) are one such example. CNNs achieve translation invariance
by operating on local patches of data and weight sharing. Hence, early CNNs outperform large
multilayer perceptrons (MLP) in computer vision (LeCun et al., 2015; 1998). Recent computer
vision works explore more general spatial invariances, such as rotation and scaling (Satorras et al.,
2021; Deng et al., 2021; Delchevalerie et al., 2021; Sabour et al., 2017; Cohen & Welling, 2016;
Jaderberg et al., 2015; Qi et al., 2017; Jaderberg et al., 2015; Xu et al., 2014). Other geometric deep
learning works extend CNNs to non-Euclidean data by considering more data-specific invariances,
such as permutation invariance (Wu et al., 2020; Kipf & Welling, 2016; Defferrard et al., 2016).

Designing invariant neural networks requires substantial human effort: both to determine the set
of invariant transformations and to handcraft architectures that preserve said transformations. In
addition to being labor-intensive, this approach has not yet succeeded for all data-types (Schäfl et al.,
2022; Gorishniy et al., 2022; 2021; Huang et al., 2020). For example, designing neural architectures
for tabular data is especially hard because the set of invariant tabular transformations is not clearly-
defined. Thus, the state-of-the-art deep learning architecture on tabular data remains highly tuned
MLPs (Kadra et al., 2021; Grinsztajn et al., 2022; Gorishniy et al., 2022).

Existing invariance learning methods operate at the data augmentation level (Immer et al., 2022;
Quiroga et al., 2020; Benton et al., 2020; Cubuk et al., 2018), where a model is trained on sets of
transformed samples rather than individual samples. This makes the network resiliant to invariant
transformations at test time. Contrastive learning (CL) is a possible means of incorporating invari-
ance (Dangovski et al., 2021), and has seen success across various tasks (Chen et al., 2021; Zhu
et al., 2021; You et al., 2020b; Jaiswal et al., 2020; Baevski et al., 2020; Chen et al., 2020), including
tabular learning (Bahri et al., 2021). While these approaches train model parameters to capture new
data-dependent invariances, the model architecture itself still suffers from a weak inductive bias.

In contrast, existing network pruning works found shallow MLPs can automatically be compressed
into sparse subnetworks with good inductive bias by pruning the MLP itself (Neyshabur, 2020).
Combining pruning and invariance learning has largely been unsuccessful (Corti et al., 2022). Fur-
thermore, pruning for invariance does not scale to deep MLPs, possibly due to issues in the lazy
training regime (Tzen & Raginsky, 2020; Chizat et al., 2019) where performance improves yet
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Figure 1: Overview for the IUNET Framework. The supernetwork, fP (·; θM ), is initialized using
PIS and trained on the ILO objective to obtain θ(T )

M . Magnitude-based pruning is used to get a
new architecture fP = P(θ

(T )
M ). The new architecture, fP (·; θP ), is initialized via lottery ticket

reinitialization and finetuned with supervised maximum likelihood loss.

weights magnitudes stay near static over training. Combining invariance learning with network
pruning remains an open question.

We propose Invariance Unveiling Neural Networks, IUNET, a pruning framework that discovers
invariance-preserving subnetworks from deep and dense supernetworks. We hypothesize pruning for
invariance fails on deep networks due to the lazy training issue (Liu et al., 2023), where performance
decouples from weight magnitudes. We address this with a proactive initialization scheme (PIS),
which prevents important weights from being pruned through encouraging almost all weights to be
near zero. To capture useful invariances, we propose a novel invariance learning objective (ILO),
that successfully combines CL with network pruning by regularizing it with maximum likelihood.

To the best of our knowledge, we are the first to automatically design deep architectures that incor-
porate invariance using pruning. We summarize our contributions below:

• Designing architectures from scratch is difficult when desired invariances are hard to incor-
porate. We automatically discover an invariance-preserving subnetwork that outperforms
an invariance-agnostic supernetwork on both vision and tabular data.

• Network pruning is used to compress models for mobile devices. Our approach consistently
improves compression performance for existing vision and tabular models.

• Contrastive learning traditionally fails when combined with network pruning. We are the
first to successfully combine contrastive learning with network pruning by regularizing it
with our simple yet effective invariance learning objective.

• In the lazy training regime, performance improves drastically while weight magnitudes stay
relatively constant, hence a weight’s importance to downstream performance is decoupled
from its magnitude. We provide an effective approach that encourages only important
weights to have large magnitudes before the lazy training regime begins.

2 RELATED WORK

2.1 LEARNING INVARIANCES

Most invariant networks are handcrafted to capture specific spatial invariances (Dehmamy et al.,
2021; Satorras et al., 2021; Deng et al., 2021; Qi et al., 2017; Vaswani et al., 2017; Cohen & Welling,
2016; Kipf & Welling, 2016; Jaderberg et al., 2015; LeCun et al., 1998). Learning invariance usu-
ally involves data augmentation followed by ensembling. (Immer et al., 2022; Quiroga et al., 2020;
Lorraine et al., 2020; Benton et al., 2020; Cubuk et al., 2018). Some works use meta-learning to in-
corporate parameter sharing into a given architecture (Zhou et al., 2020; Kirsch et al., 2022). None
of the aforementioned works generates architectures from scratch to improve the network’s induc-
tive bias. The closest work is β-LASSO (Neyshabur, 2020) which discovers shallow subnetworks
with local connectivity through pruning for computer vision. Our work extends this idea to deeper
networks and explores the tabular data setting.
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Dataset MLPVIS OMP (MLPVIS) β-LASSO (MLPVIS) IUNET (MLPVIS)

CIFAR10 59.266 ± 0.050 59.668 ± 0.171 59.349 ± 0.174 64.847 ± 0.121
CIFAR100 31.052 ± 0.371 31.962 ± 0.113 31.234 ± 0.354 32.760 ± 0.288

SVHN 84.463 ± 0.393 85.626 ± 0.026 84.597 ± 0.399 89.357 ± 0.156

Dataset RESNET OMP (RESNET) β-LASSO (RESNET) IUNET (RESNET)

CIFAR10 73.939 ± 0.152 75.419 ± 0.290 74.166 ± 0.033 83.729 ± 0.153
CIFAR100 42.794 ± 0.133 44.014 ± 0.163 42.830 ± 0.412 53.099 ± 0.243

SVHN 90.235 ± 0.127 90.474 ± 0.192 90.025 ± 0.201 94.020 ± 0.291

Table 1: Comparing different pruning approaches to improve the inductive bias of MLPVIS and
RESNET on computer vision datasets. Notice, IUNET performs substantially better than existing
pruning-based methods by discovering novel architectures that better capture the inductive bias.
IUNET flexibly boosts performance of off-the-shelf models.

Metric MLPTAB OMP β-LASSO IUNET XGB TABN MLPTAB+C
Num Top1 ↑ 1 4 1 13 12 0 16

Average Acc ↑ 82.644 82.401 82.516 83.046 80.534 74.383 82.922
Average Rank ↓ 3.988 3.975 4.087 3.225 3.813 6.325 2.588

Table 2: We report the number of datasets out of 40 where each method was best, the average
accuracy achieved by each method, and the average ranking of each method. OMP, β-LASSO, and
IUNET all modify MLPTAB. MLPTAB+C performed substantially more hyperparameter tuning than
than IUNET. For full results, please refer to the Appendix.

2.2 NEURAL NETWORK PRUNING

Neural network pruning compresses large supernetworks without hurting performance (Frankle &
Carbin, 2018; Louizos et al., 2017). A pinnacle work is the Lottery Ticket Hypothesis (LTH) (Fran-
kle & Carbin, 2018; Liu et al., 2018b; Blalock et al., 2020), where pruned networks can retain
unpruned peformance when reinitialized to the start of training and iteratively retrained. One-Shot
Magnitude Pruning (OMP) studies how to prune the network only once (Blalock et al., 2020). The
lazy training regime (Chizat et al., 2019) is a possible bottleneck for network pruning (Liu et al.,
2023). Contrastive learning does not work with network pruning (Corti et al., 2022). Recent prun-
ing policies improve efficiency by starting with a sparse network (Evci et al., 2020). or performing
data-agnostic Zero-Shot Pruning (Hoang et al., 2023; Wang et al., 2020; Lee et al., 2019). Interest-
ingly, subnetworks rarely outperform the original supernetwork, which has been dubbed the “Jack-
pot” problem (Ma et al., 2021). In contrast to existing works, we successfully combine OMP with
contrastive learning, alleviate the lazy learning issue, and outperform the original supernetwork.

3 PROPOSED METHOD: IUNET

3.1 PROBLEM SETTING

We study the classification task with inputs, x ∈ X , class labels, y ∈ Y , and hidden representations,
h ∈ H. Our neural network architecture, f(x; θ) : X → Y is composed of an encoder, fE(·; θ) :
X → H and decoder, fD(·; θ) : H → Y , where θ ∈ Θ are the weights and f = fE ◦ fD. During
training, we denote the weights after 0 < t < T iterations of stochastic gradient descent as θ(t).

First, we define our notion of invariance. Given a set of invariant transformations, S, we wish to
discover a neural network architecture f∗(x; θ), such that all invariant input transformations map to
the same representation, shown in Equation 1. We highlight our task focuses on the discovery of
novel architectures, f∗(·; θ), not weights, θ, because improved architectures capture better inductive
bias, which ultimately improves downstream performance (Neyshabur, 2017).

f∗E (x; θ) = f∗E (g(x); θ),∀g ∈ S,∀θ ∈ Θ. (1)
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Dataset g(·) MLPVIS IUNET (MLPVIS)

CIFAR10

resize. 44.096 ± 0.434 97.349 ± 4.590
horiz. 80.485 ± 0.504 99.413 ± 1.016
color. 56.075 ± 0.433 98.233 ± 3.060

graysc. 81.932 ± 0.233 99.077 ± 1.598

Dataset g(·) MLPTAB IUNET (MLPTAB)

mfeat. feat. 46.093 ± 1.353 51.649 ± 4.282

Table 3: Comparing the consistency metric (%) of the untrained supernetwork, MLPVIS and
MLPTAB, against IUNET’s pruned subnetwork under different invariant transforms, g(·). IUNET
preserves invariances better.

3.2 FRAMEWORK

We accomplish this by first training a dense supernetwork, fM (·; θM ), with enough representational
capacity to capture the desired invariance properties, as shown in Equation 2. A natural choice for
fM (·; θM ) is a deep MLP, which is a universal approximator (Cybenko, 1989).

∃θ∗M ∈ ΘM : fME (x; θ∗M ) = fME (g(x); θ∗M ),∀g ∈ S. (2)

Next, we initialize the supernetwork’s weights, θ(0)M , using our Proactive Initialization Scheme, PIS,
and train the supernetwork with our Invariance Learning Objective, ILO, to obtain θ(T )

M . We discuss
both PIS’s and ILO’s details in following sections.

We construct our new untrained subnetwork, fP (·; θ(0)P ), from the trained supernetwork,
fM (·; θ(T )

M ), where the subnetwork contains a subset of the supernetwork’s weights, θ(0)P ⊂ θ
(T )
M

and |θ(0)P | ≪ |θ(T )
M |, and is architecturally different from the supernetwork, fP (·; ·) ̸= fM (·; ·). For

this step, we adopt standard One-shot Magnitude-based Pruning (OMP), where the smallest magni-
tude weights and their connections in the supernetwork architecture are dropped. We adopt OMP
because of its success in neural network pruning (Frankle & Carbin, 2018; Blalock et al., 2020).
We represent this step as an operator mapping supernetwork weights into subnetwork architectures
P : ΘM → FP , where FP denotes the space of subnetwork architectures.

fP∗
E (x; θP∗) = fP∗

E (g(x); θP∗),∀g ∈ S,∀θP∗ ∈ ΘP∗ (3)

Finally, we re-initialize the subnetwork’s weights, θ(0)P , using the Lottery Ticket Re-initialization
scheme (Frankle & Carbin, 2018) then finetune the subnetwork with maximum likelihood to obtain
θ
(T )
P . We hypothesize the trained subnetwork, fP (·; θ(T )

P ), can outperform the trained original super-
network, fM (·; θ(T )

M ), if it preserves desired invariances and hence improves the inductive bias. The
ideal subnetwork, fP∗(·; θP∗), preserves invariances even without training, as shown in Equation 3.

We call this framework, including the ILO loss and PIS initialization, IUNET1, as shown in Figure 1

3.2.1 INVARIANCE LEARNING OBJECTIVE: ILO

The goal of supernetwork training is to create a subnetwork, fP (·; θ(0)P ), within the supernetwork,
fM (·; θ(T )

M ), such that:

1. P(θ
(T )
M ) achieves superior performance on the classification task after finetuning.

2. P(θ
(T )
M ) captures desirable invariance properties as given by Equation 3.

3. θ(0)P has higher weight values than θ(T )
M \ θ(0)P .
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Dataset MLPVIS IUNET (MLPVIS)
NO-PRUNE IUNET (MLPVIS)

NO-ILO IUNET (MLPVIS)
NO-PIS IUNET (MLPVIS)

CIFAR10 59.266 54.622 ± 0.378 62.662 ± 0.169 60.875 ± 0.292 64.847 ± 0.121
CIFAR100 31.052 20.332 ± 0.065 32.242 ± 0.321 32.747 ± 0.346 32.760 ± 0.288

SVHN 84.463 78.427 ± 0.683 88.870 ± 0.139 85.247 ± 0.071 89.357 ± 0.156

Dataset MLPTAB IUNET (MLPTAB)
NO-PRUNE IUNET (MLPTAB)

NO-ILO IUNET (MLPTAB)
NO-PIS IUNET (MLPTAB)

arrhythmia 67.086 56.780 ± 6.406 71.385 ± 6.427 78.675 ± 7.078 74.138 ± 2.769
mfeat. 98.169 97.528 ± 0.400 98.471 ± 0.344 98.339 ± 0.203 98.176 ± 0.121
vehicle 80.427 80.427 ± 1.806 81.411 ± 0.386 80.928 ± 0.861 81.805 ± 2.065

kc1 80.762 84.597 ± 0.000 82.456 ± 1.850 84.597 ± 0.000 84.597 ± 0.000

Table 4: Ablation Study on vision and tabular datasets.

Because subnetworks pruned from randomly initialized weights, P(θ
(0)
M ), are random, they in-

clude harmful inductive biases that hinders training. Thus, we optimize the trained supernetwork,
fM (·; θ(T )

M ), on goals (1) and (2) as a surrogate training objective. Goal (3) is handled by PIS,
described in the next section.

To achieve (1), we maximize the log likelihood of training data. To achieve (2), we minimize
the distance between representations of inputs under invariant perturbations, stated in Equation 5.
Intuitively, achieving (2) entails optimizing the supernetwork in metric space, which we find is
equivalent to Supervised Contrastive Learning (SCL) as state in Theorem 1.2

Theorem 1 Minimizing the distance between representations of inputs under a set of invariant per-
turbations, Equation 4, is equivalent to minimizing the supervised contrastive learning objective,
Equation 5, where fME : R → Rd is a supernetwork, ψ(cos) : Rd × Rd → R is cosine similarity,
ϕ : Rd × Rd → R is a distance metric, and g : X → X is a desired invariance function from S.

θ∗M = argmax
θM

E
xi,xj∼X

g∼S

[
ϕ(fME (xi; θM ), fME (xj ; θM ))

ϕ(fME (xi; θM ), fME (g(xi); θM ))

]
(4)

= argmin
θM

E
x,y∼Dtr

g∼S

−log
 exp

(
ψ(cos)

(
fME (x; θM ), fME (g(x); θM )

))∑
x′,y′∼Dtr

y′ ̸=y

exp
(
ψ(cos)

(
fME (x; θM ), fME (g(x′); θM )

))

 (5)

Explicitly optimizing both (1) and (2) is necessary for IUNET. Because maximum likelihood on its
own does not consider desired invariance properties, pruning will not improve the inductive bias of
supernetworks trained solely to optimize (1). For this reason, performance degradation is commonly
observed amongst almost all existing pruning algorithms (Hooker et al., 2019; Blalock et al., 2020;
Ma et al., 2021). Because pruning already causes the supernetwork to “selectively forget” training
samples disproportionately (Hooker et al., 2019) and supernetworks trained solely with contrastive
learning amplifies this effect (Corti et al., 2022), pruning will not improve performance of super-
networks trained solely to optimize (2). One reason why contrastive learning amplifies “selective
forgetting” is because models overfit constrastive objectives (Zhang et al., 2020; Pasad et al., 2021).

By optimizing both (1) and (2), IUNET uses pruning to enhance the supernetwork by encoding
helpful inductive biases into the pruned subnetwork while avoiding overfitting of the contrastive
objective. The Invariance Learning Objective (ILO) is shown in Equation 7, where LNCE is the
contrastive loss defined in Equation 5, LSUP is maximum likelihood loss, Dtr is a labelled training
dataset of (x, y) pairs, and λ is a hyperparameter.

1IUNET prunes an ineffective supernetwork into an efficient effective subnetwork. OMP prunes an ineffi-
cient effective supernetwork into an efficient but slightly less effective subnetwork.

2Proof of Theorem 1 provided in Appendix.
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(a) CIFAR10 MLPVIS (PIS) (b) CIFAR100 MLPVIS (PIS) (c) SVHN MLPVIS (PIS)

(d) CIFAR10 MLPVIS (ILO) (e) CIFAR100 MLPVIS (ILO) (f) SVHN MLPVIS (ILO)

Figure 2: Effect of PIS and ILO on pruned models. The y-axis is the validation accuracy (%) and x-
axis is the compression ratio. PIS experiments only alter the supernetwork’s initialization. κ = 1.0
means normal initialization. ILO experiments only alter the training objective during supernetwork
training. After supernetwork training, subnetworks are pruned under different compression ratios,
then finetuned. Validation accuracy of trained pruned models are reported.

L(θM ;S) = E
x,y∼Dtr

[LSUP (x, y, θM ) + λLNCE(x, y, θM ;S)] (6)

3.2.2 PROACTIVE INITIALIZATION SCHEME: PIS

Deep neural networks often enter the lazy training regime (Chizat et al., 2019; Liu et al., 2023),
where the loss steadily decreases while weights barely change. This is particularly harmful to neural
networks pruning (Liu et al., 2023), especially when low-magnitude weights contribute to decreasing
the loss and hence should not be pruned.

We propose a simple solution by scaling the weight initialization by a small multiplier, κ. We find
this alleviates the aforementioned issue by forcing the model to assign large values only to important
weights prior to lazy training. Because lazy training is only an issue for pruning, we only apply κ-
scaling to the pre-pruning training stage, not the fine-tuning stage. This is done by scaling the initial
weights θ(0)M = κθ

(0)

M† , where θ(0)
M† follows the Kaiming (He et al., 2015) or Glorot (Glorot & Bengio,

2010) initialization.

4 EXPERIMENT SETUP

4.1 DATASETS

IUNET is evaluated on image and tabular classification 3:

• Vision: Experiments are run on CIFAR10, CIFAR100, and SVHN (Krizhevsky et al., 2009;
Netzer et al., 2011), following baseline work (Neyshabur, 2020)4.

• Tabular: Experiments are run on 40 tabular datasets from a benchmark paper (Kadra
et al., 2021), covering a diverse range of problems. The datasets were collected from
OpenML (Gijsbers et al., 2019), UCI (Asuncion & Newman, 2007), and Kaggle.

3More details are provided in the Supplementary.
4While SMC benchmark (Liu et al., 2023) is open-sourced, the code is being cleaned-up at submission time.
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(a) CIFAR10 (κ = 1.0) (b) CIFAR100(κ = 1.0) (c) SVHN (κ = 1.0) (d) arrythmia (κ = 1.0)

(e) CIFAR10 (κ = .125) (f) CIFAR100(κ = .125) (g) SVHN (κ = .125) (h) arrythmia (κ = .25)

Figure 3: Histogram of weight magnitudes, |θ(t)M |, plotted over each epoch under different κ initial-
izations settings. κ = 1.0 means normal initialization. Results shown for MLPVIS on the CIFAR10,
CIFAR100, and SVHN datasets.

4.2 MODEL SETUP

IUNET is compared against One-shot Magnitude Pruning (OMP) (Blalock et al., 2020), and β-
LASSO pruning (Neyshabur, 2020) on all datasets. We denote the supernetwork used by each
pruning method with a superscript. Unless otherwise specified, models are trained via maximum
likelihood. In addition, we compare against the following dataset-specific supernetworks (MLPVIS,
MLPTAB, RESNET) and models:

• Vision: We consider RESNET (He et al., 2016), MLPVIS, a MLP that contains a CNN
subnetwork (Neyshabur, 2020), and the aforementioned CNN subnetwork.

• Tabular: We consider MLPTAB, a 9-layer MLP with hidden dimension 512 (Kadra et al.,
2021), XGB (Chen & Guestrin, 2016), TABN (Arik & Pfister, 2021), a handcrafted tabular
deep learning architecture, and MLPTAB+C (Kadra et al., 2021), the state-of-the-art MLP,
which was heavily tuned from a cocktail of regularization techniques.

4.3 CONSIDERED INVARIANCES

The success of contrastive learning on both vision and tabular datasets indicates their corresponding
invariant transformations, S, are desirable for each task. For computer vision, SimCLR (Chen et al.,
2020) transformations are used: (1) resize crops, (2) horizontal flips, (3) color jitter, and (4) random
grayscale. For tabular learning, SCARF (Bahri et al., 2021) transformations are used: (5) randomly
corrupting features by drawing the corrupted versions from its empirical marginal distribution.

5 RESULTS

5.1 ON INDUCTIVE BIAS

In this section, we compare the effectiveness of the trained subnetwork discovered by IUNET,
fP (·; θ(T )

P ), against the trained supernetwork, fM (·; θ(T )
M ). As seen in Tables 1 and 7, the pruned

subnetwork outperforms the original supernetwork, even though the supernetwork has more rep-
resentational capacity. This supports our claim that IUNET prunes subnetwork architectures with
better inductive biases than the supernetwork. Importantly, IUNET substantially improves upon ex-
isting pruning baselines by explicitly including invariances via ILO and alleviating the lazy learning
issue (Liu et al., 2023) via PIS.
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On vision datasets: As seen in Table 1, IUNET is a general and flexible framework that improves
the inductive bias of not only models like MLPVIS but also specialized architectures like RESNET.
Specifcally, IUNET (MLPVIS) bridges the gap between MLPs and CNNs. Unlike previous work (Tol-
stikhin et al., 2021), IUNET (MLPVIS) does this in an entirely automated procedure. IUNET (RESNET)

achieves the best performance, indicating IUNET can be applied across various models.

On tabular datasets: As seen in Table 2, the subnetworks derived from MLPs outperform both the
original MLPTAB and hand-crafted architectures: TABN and XGB. Unlike vision, how to encode
invariances for tabular data is highly nontrivial, making IUNET particularly effective. The gains
made by MLPTAB is similar to those from MLPTAB+C (Kadra et al., 2021), which ran extensive
hyperparameter tuning on top of MLPTAB. Unlike MLPTAB+C, IUNET requires substantially less
time tuning hyperparameters. Note, IUNET (MLPTAB) did not use the optimal hyperparameters found
by MLPTAB+C. Furthermore, because IUNET is a flexible framework, it can be combined with new
models/ trainig techniques on tabular data as they are discovered.

5.2 ABLATION STUDY

To study the effectiveness of (1) pruning, (2) PIS, and (3) ILO, each one is removed from the
optimal model. As seen in Table 4, each is crucial to IUNET. Pruning is necessary to encode
the inductive bias into the subnetwork’s neural architecture. PIS and ILO improves the pruning
policy by ensuring weights crucial to finetuning and capturing invariance are not pruned. Notice,
without pruning, IUNET NO-PRUNE performs worse than the original supernetwork. This highlights
an important notion that PIS aims to improve the pruning policy, not the unpruned performance. By
sacrificing unpruned performance, PIS ensures important weights are not falsely pruned. PIS is less
effective on tabular datasets where the false pruning issue seems less severe. Combining pruning,
ILO, and PIS, IUNET most consistently achieves the best performance.

5.3 EFFECTS OF PRUNING

To further study the effects of pruning, we plot how performance changes over different compression
ratios. Figure 2 clearly identifies how PIS and ILO substantially improves upon existing pruning
policies. First, our results support existing findings that (1) OMP does not produce subnetworks that
substantially outperform the supernetwork (Blalock et al., 2020) and (2) while unpruned models
trained with SCL can outperform supervised ones, pruned models trained with SCL perform sub-
stantially worse (Corti et al., 2022). PIS flips the trend from (1) by slightly sacrificing unpruned
performance, due to poorer initialization, IUNET discovers pruned models with better inductive bi-
ases, which improves downstream performance. ILO fixes the poor performance of SCL in (2) by
preserving information pathways for both invariance and max likelihood over training. We high-
light both these findings are significant among the network pruning community. Finally, Figure 2
confirms IUNET achieves the best performance by combining both PIS and ILO.

In addition to being more effective that the supernetwork, fM (·; θ(T )
M ), the pruned network,

fP (·; θ(T )
P ), is also more efficient. Figure 2 shows IUNET can reach 8-16× compression while

still keeping superior performance.

5.4 EFFECT OF PROACTIVE INITIALIZATION

To further study the role of PIS, the histogram of weight magnitudes is monitored over the course of
training. As shown in Figure 3, under the standard OMP pruning setup, the histogram changes
little over the course of training, which supports the lazy training hypothesis (Liu et al., 2023)
where performance rapidly improves, while weight magnitudes change very little, decoupling each
weight’s importance from its magnitude.

With PIS, only important weights grow over the course of training, while most weights remain
near zero, barely affecting the output activations of each layer. This phenomenon alleviates the
lazy training problem by ensuring (1) pruning safety, as pruned weights are near zero prior which
have minimal affect on layer activations, and (2) importance-magnitude coupling, as structurally
important connections must grow to affect the output of the layer.
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(a) MLPVIS CIFAR10 (b) MLPVIS CIFAR100 (c) MLPVIS SVHN (d) MLPTAB arrhythmia

(e) IUNET CIFAR10 (f) IUNET CIFAR100 (g) IUNET SVHN (h) IUNET arrhythmia

Figure 4: Visualization of weight magnitudes, |θ(T )
M |, trained with different policies. The top row

was trained on CIFAR10 and shows the magnitude of each RGB pixel for 6 output logits. The
bottom row was trained on arrhythmia and shows the weight matrix of the 1st layer with 280 input
and 512 output dimensions. Lighter color means larger magnitude.

5.5 ON INVARIANCE CONSISTENCY

To further study whether particular invariances are learned, we compute the consistency met-
ric (Singla et al., 2021), which measure the percentage of samples whose predicted label would
flip when an invariant transformation is applied to the input. As seen in Table 3, the subnetwork
found by IUNET, fP (·; θ(0)P ), is able to preserve invariances specified in ILO much better than the
supernetwork, fM (·; θ(0)M ). This shows IUNET indeed captures desirable invariances.

5.6 ON WEIGHT VISUALIZATION

We visualize the supernetwork weights, θ(T )
M , when trained with IUNET compared to standard max-

imum likelihood (MLP) to determine what structures preserve invariance.

On vision datasets: As seen in Figure 4, IUNET learns more locally connected structures, which
improves translation invariance. Prior work (Neyshabur, 2020) found network structure (as opposed
to inductive bias) to be the limiting factor for encoding CNN inductive biases into MLPs, which
IUNET successfully replicates.

On tabular datasets: As seen in Figure 4, IUNET weights focus more on singular features. This
preserves invariance over random feature corruption, as the absence of some tabular features does
not greatly alter output activations of most neurons. This structure can also be likened to tree en-
sembles (Grinsztajn et al., 2022), whose leaves split individual features rather than all features.

6 CONCLUSION

In this work, we study the viability of network pruning for discovering invariant-preserving archi-
tectures. Under the computer vision setting, IUNET bridges the gap between deep MLPs and deep
CNNs, and reliably boosts RESNET performance. Under the tabular setting, IUNET reliably boosts
performance of existing MLPs, comparable to applying the state-of-the-art regularization cocktails.
Our proposed novelties, ILO and PIS, flexibly improves existing OMP pruning policies by both
successfully integrating contrastive learning and alleviating lazy training. Thus, IUNET effectively
uses pruning to tackle invariance learning.
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7 REPRODUCIBILITY STATEMENT

We provide a complete description of the data processing steps in Section 4.1 and Appendix E.1. We
cover hyperparameters used in Section 4.2, Section 4.3, Appendix E.2, and Appendix E.3. We cover
pruning implementation details in Appendix E.4. We cover hardware and approximate runtime in
Appendix E.5. The proof for Theorem 1 can be found in Appendix B.1.

8 ETHICS STATEMENT

There are no new datasets released by this work, hence it did not involve human subjects. Datasets
used in this work were adopted from existing benchmarks (Neyshabur, 2020; Blalock et al., 2020;
Kadra et al., 2021), as described in Section 4.1 and Appendix E.1. There are no harms introduced by
this work. This work aims to improve both effectiveness and efficiency of representation learning.
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A ADDITIONAL RELATED WORK

A.1 TABULAR MACHINE LEARNING

Tabular data is a difficult regime for deep learning, where deep learning models struggle against
decision tree approaches. Early methods use forests, ensembling, and boosting (Shwartz-Ziv &
Armon, 2022; Borisov et al., 2022; Chen & Guestrin, 2016). Later, researchers handcrafted new
deep architectures that mimic trees (Popov et al., 2019; Katzir et al., 2020; Huang et al., 2020;
Hazimeh et al., 2020; Somepalli et al., 2021; Arik & Pfister, 2021). Yet, when evaluated on large
datasets, these approaches are still beaten by XGB (Chen & Guestrin, 2016; Grinsztajn et al., 2022).
Recent work found MLPs with heavy regularization tuning (Kadra et al., 2021) can outperform
decision tree approaches, though this conclusion does not hold on small tabular datasets (Joseph
& Raj, 2022). To specially tackle the small data regime, Bayesian learning and Hopfield networks
are combined with MLPs (Hollmann et al., 2022; Schäfl et al., 2022). There are also work on
tabular transformers (Huang et al., 2020; Gorishniy et al., 2021), though said approaches require
much more training data. Without regularization, tree based models still outperform MLPs due to
a better inductive bias and resilience to noise (Grinsztajn et al., 2022). Different data preprocessing
level encodings are being proposed to boost MLP performance (Gorishniy et al., 2022). To the best
of our knowledge, the state-of-the-art on general tabular datasets remain heavily regularized MLPs
(MLPTAB+C) (Kadra et al., 2021; Gorishniy et al., 2022). We aim to further boost regularized MLP
performance by discovering model architectures that capture good invariances from tabular data.

A.2 CONTRASTIVE LEARNING

Contrastive learning, initially proposed for metric learning (Chopra et al., 2005; Schroff et al., 2015;
Oh Song et al., 2016), trains a model to learn shared features among images of the same type (Jaiswal
et al., 2020). It has been widely used in self-supervised pretraining (Chen et al., 2020; 2021), where
dataset augmentation is crucial. Although contrastive learning was originally proposed for images,
it has also shown promising results in graph data (Zhu et al., 2021; You et al., 2020b), speech
data (Baevski et al., 2020), and tabular data (Bahri et al., 2021). Previous study has showed that
speech transformers tend to overfit the contrastive loss in deeper layers, suggesting that removing
later layers can be beneficial during finetuning (Pasad et al., 2021). While contrastive learning
performs well pretraining unpruned models, its vanilla formulation performs poorly after network
pruning (Corti et al., 2022). In this work, we establish a connection between contrastive learning
and invariance learning and observe that pruned contrastive models fail because of overfitting.

A.3 NEURAL ARCHITECTURE SEARCH

Neural Architecture Search (NAS) explores large superarchitectures by leveraging smaller block
architectures (Wan et al., 2020; Pham et al., 2018; Zoph et al., 2018; Luo et al., 2018; Liu et al.,
2018a). These block architectures are typically small convolutional neural networks (CNNs) or
MLPs. The key idea behind NAS is to utilize these blocks (Pham et al., 2018; Zoph et al., 2018) to
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capture desired invariance properties for downstream tasks. Prior works (You et al., 2020a; Xie et al.,
2019) have analyzed randomly selected intra- and inter-block structures and observed performance
differences between said structures. However, these work did not propose a method for discovering
block architectures directly from data. Our work aims to address this gap by focusing on discovering
the architecture within NAS blocks. This approach has the potential to enable NAS in diverse
domains, expanding its applicability beyond the current scope.

B LOSS FUNCTION DETAILS

We provide a more detailed description of our loss function in this section. Following notation from
the main paper, we repeat the ILO loss function in Equation 7 below:

L(θ;S) = Ex,y∼Dtrain
[LSUP (x, y, θ) + λLNCE(x, y, θ;S)] (7)

To better explain our loss functions, we introduce some new notations. First, we denote the decoder
output probability function over classes, Y , as p̃θD : H → [0, 1]|Y|, where fD = argmax ◦ p̃θD .
We denote the model output probability function by combining p̃θD with the encoder as follows:
pθ = p̃θD ◦ fE . We introduce an integer mapping from classes Y as I : Y → {0, 1, 2, ..., |Y| − 1}.

We show the maximum likelihood loss, LSUP , in Equation 8 below.

LSUP (x, y, θ) = −log(pθ(x, θ)I(y)) (8)

We show the supervised contrastive loss, LNCE , in Equation 9 below. Following SimCLR (Chen
et al., 2020), we assume that the intermediary representations are d-dimensional embeddings, H =
Rd, and use the cosine similarity as our similarity function, ψ(cos) : Rd × Rd → R.

LNCE(x, y, θ;S) = E
g∼S

−log
 exp

(
ψ(cos) (fE(x; θ), fE(g(x); θ))

)∑
x′,y′∼Dtr

y′ ̸=y

exp
(
ψ(cos) (fE(x; θ), fE(g(x′); θ))

)

 (9)

B.1 SURROGATE OBJECTIVE

We aim to learn invariance-preserving network architectures from the data. In our framework, this
involves optimizing our invariance objective, which we repeat in Equation 10. We prove Theorem 1,
that minimizing the supervised contrastive loss is equivalent to maximizing the invariance objective,
outlined below.

θ∗ = argmax
θ

E
xi,xj∼X

g∼S

[
ϕ(fME (xi; θ), f

M
E (xj ; θ))

ϕ(fME (xi; θ), fME (g(xi); θ))

]
(10)

We convert the distance metric ϕ into similarity metric ψ.
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Dataset g(·) MLPVIS IUNET (MLPVIS)

CIFAR10

resize. 44.096 ± 0.434 97.349 ± 4.590
horiz. 80.485 ± 0.504 99.413 ± 1.016
color. 56.075 ± 0.433 98.233 ± 3.060

graysc. 81.932 ± 0.233 99.077 ± 1.598

CIFAR100

resize. 32.990 ± 1.065 39.936 ± 2.786
horiz. 70.793 ± 0.677 77.935 ± 1.464
color. 31.704 ± 0.560 51.397 ± 2.709

graysc. 71.245 ± 0.467 76.476 ± 1.245

SVHN

resize. 36.708 ± 2.033 77.440 ± 0.627
horiz. 71.400 ± 1.651 95.082 ± 0.166
color. 61.341 ± 0.946 91.097 ± 0.395

graysc. 90.344 ± 0.233 99.259 ± 0.073

Table 5: Comparing the consistency metric (%) of the untrained supernetwork, MLPVIS and
MLPTAB, against IUNET’s pruned subnetwork under different invariant transforms, g(·). IUNET
preserves invariances better.

θ∗ = argmax
θ

E
xi,xj∼X

g∼S

[
ψ(fME (xi; θ), f

M
E (g(xi); θ))

ψ(fME (xi; θ), fME (xj ; θ))

]

= argmin
θ

E
xi,xj∼X

g∼S

[
−ψ(fME (xi; θ), f

M
E (g(xi); θ))

ψ(fME (xi; θ), fME (xj ; θ))

]

= argmin
θ

E
x∼X
g∼S

 −ψ(fME (x; θ), fME (g(x); θ))∑
x′∼X
x′ ̸=x

ψ(fME (x; θ), fME (g(x′); θ))



= argmin
θ

E
x,y∼Dtr

g∼S

 −ψ
(
fME (x; θ), fME (g(x); θ)

)∑
x′,y′∼Dtr

y′ ̸=y

ψ
(
fME (x; θ), fME (g(x′); θ)

)


= argmin
θ

E
x,y∼Dtr

g∼S

−log
 ψ

(
fME (x; θ), fME (g(x); θ)

)∑
x′,y′∼Dtr

y′ ̸=y

ψ
(
fME (x; θ), fME (g(x′); θ)

)



(11)

We set the similarity metric, ψ, to be the same as our contrastive loss: ψ(·) = exp(ψ(cos)(·)).

θ∗ = argmin
θ

E
x,y∼Dtrain

[LNCE(x, y, θ;S)] (12)

Here, we showed that the vanilla contrastive loss function, Equation 9, serves as a surrogate objective
for optimizing our desired invariance objective, Equation 10. By incorporating contrastive learning
alongside the maximum likelihood objective in Equation 7, ILO effectively reveals the underlying
invariances in the pruned model.

C ADDITIONAL DISCUSSION ON LAZY TRAINING

The lazy training regime (Chizat et al., 2019; Tzen & Raginsky, 2020) is a phenomenon when loss
rapidly decreases, while weight values stay relatively constant. This phenomenon occurs on large
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Dataset MLPVIS IUNET (MLPVIS) CNN IUNET (RESNET)

CIFAR10 59.266 ± 0.050 64.847 ± 0.121 75.850 ± 0.788 83.729 ± 0.153
CIFAR100 31.052 ± 0.371 32.760 ± 0.288 41.634 ± 0.402 53.099 ± 0.243

SVHN 84.463 ± 0.393 89.357 ± 0.156 91.892 ± 0.411 94.020 ± 0.291

Table 6: Comparing the pruned IUNET (MLPVIS) model to a CNN which is architecturally equivalent
to IUNET (MLPVIS) in terms of layer count and hidden dimensions with the only differences being
network structure and weight sharing. Although IUNET (MLPVIS) cannot outperform CNN, it bridges
the gap between MLP and CNN architectures without any human design intervention.

over-parameterized neural networks (Chizat et al., 2019). Because the weight values stay relatively
constant, the magnitude ordering between weights also changes very little. Therefore, network
pruning struggles to preserve such loss decreases in the lazy training regime (Liu et al., 2023).

Because weights with very small magnitude have minimal effect on the output logits, pruning said
weights will not drastically hurt performance. Thus, if the pruning framework can separate very
small magnitude weights from normal weights prior to the lazy training regime, we can preserve loss
decreases in the lazy training regime. The PIS setting accomplishes this by initializing all weights
to be very small so that only important weights will learn large magnitudes. This guarantees that a
large percentage of weights will have small magnitudes throughout training, while important larger
magnitude weights will emerge over the course of training.

D ADDITIONAL EXPERIMENTS

D.1 ON TABULAR DATASETS: FULL RESULTS

We provide the full tabular dataset results in Table 7. As shown, the trends reported in the main text
holds on the whole dataset.

D.2 ON CONSISTENCY: FULL RESULTS

We provide consistency experiments on CIFAR100 and SVHN in Table 5. As shown, the trends
reported in the main text holds on other datasets.

D.3 COMPARING IUNET WITH CNN

We compare IUNET (MLPVIS) with a CNN in Table 6. Unlike IUNET (MLPVIS), CNNs also employ
weight sharing. While IUNET consistently improves performance of both MLPVIS and RESNET via
pruning the model architecture, exploration of weight sharing is an orthogonal direction that could
also reduce the gap between MLPs and CNNs. Note, IUNET (RESNET) still performs the best out of
all models.

E IMPLEMENTATION DETAILS

E.1 DATASET DETAILS

We considered the following computer vision datasets: CIFAR10, CIFAR100 (Krizhevsky et al.,
2009), and SVHN (Netzer et al., 2011). CIFAR10 and CIFAR100 are multi-domain image classi-
fication datasets. SVHN is a street sign digit classification dataset. Input images are 32 × 32 color
images. We split the train set by 80/20 for training and validation. We test on the test set provided
separately. We reported dataset statistics in Table 8.

We considered 40 tabular datasets from OpenML (Gijsbers et al., 2019), UCI (Asuncion & Newman,
2007), and Kaggle, following the MLPTAB+C benchmark (Kadra et al., 2021). These tabular datasets
cover a variety of domains, data types, and class imbalances. We used a 60/20/20 train validation
test split, and reported dataset statistics in Table 9. We use a random seed of 11 for the data split,
following prior work (Kadra et al., 2021).
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Dataset MLPTAB OMP β-LASSO IUNET XGB TABN MLPTAB+C
credit-g 70.000 70.000 67.205 63.166 ± 0.000 68.929 61.190 74.643
anneal 99.490 99.691 99.634 99.712 ± 0.101 85.416 84.248 89.270

kr-vs-kp 99.158 99.062 99.049 99.151 ± 0.064 99.850 93.250 99.850
arrhythmia 67.086 55.483 67.719 74.138 ± 2.769 48.779 43.562 61.461

mfeat. 98.169 97.959 97.204 98.176 ± 0.121 98.000 97.250 98.000
vehicle 80.427 81.115 80.611 81.805 ± 2.065 74.973 79.654 82.576

kc1 80.762 84.597 83.587 84.597 ± 0.000 66.846 52.517 74.381
adult 81.968 82.212 82.323 78.249 ± 3.085 79.824 77.155 82.443

walking. 58.466 60.033 58.049 59.789 ± 0.456 61.616 56.801 63.923
phoneme 84.213 86.733 84.850 87.284 ± 0.436 87.972 86.824 86.619
skin-seg. 99.869 99.866 99.851 99.876 ± 0.006 99.968 99.961 99.953

ldpa 66.590 68.458 62.362 64.816 ± 4.535 99.008 54.815 68.107
nomao 95.776 95.682 95.756 95.703 ± 0.110 96.872 95.425 96.826
cnae 94.080 92.742 94.808 96.075 ± 0.242 94.907 89.352 95.833

blood. 68.965 61.841 65.126 70.375 ± 5.255 62.281 64.327 67.617
bank. 88.300 88.300 86.923 88.300 ± 0.000 72.658 70.639 85.993

connect. 72.111 72.016 72.400 74.475 ± 0.445 72.374 72.045 80.073
shuttle 99.709 93.791 99.687 93.735 ± 2.303 98.563 88.017 99.948
higgs 72.192 72.668 72.263 73.215 ± 0.384 72.944 72.036 73.546

australian 82.153 83.942 81.667 82.562 ± 1.927 89.717 85.278 87.088
car 99.966 100.000 100.000 99.859 ± 0.200 92.376 98.701 99.587

segment 91.504 91.603 91.317 91.563 ± 0.000 93.723 91.775 93.723
fashion. 91.139 90.784 90.864 90.817 ± 0.040 91.243 89.793 91.950
jungle. 86.998 92.071 87.400 95.130 ± 0.807 87.325 73.425 97.471

numerai 51.621 51.443 51.905 51.839 ± 0.067 52.363 51.599 52.668
devnagari 97.550 97.573 97.549 97.517 ± 0.014 93.310 94.179 98.370

helena 29.342 28.459 29.834 29.884 ± 0.991 21.994 19.032 27.701
jannis 68.647 66.302 69.302 69.998 ± 1.232 55.225 56.214 65.287
volkert 70.066 68.781 69.655 70.104 ± 0.215 64.170 59.409 71.667

miniboone 86.539 87.575 87.751 81.226 ± 6.569 94.024 62.173 94.015
apsfailure 97.041 98.191 98.048 98.191 ± 0.000 88.825 51.444 92.535
christine 70.295 69.819 70.275 69.065 ± 1.225 74.815 69.649 74.262
dilbert 98.494 98.738 98.522 98.540 ± 0.023 99.106 97.608 99.049
fabert 65.540 64.709 66.681 65.695 ± 0.065 70.098 62.277 69.183

jasmine 78.691 80.139 78.415 80.864 ± 0.374 80.546 76.690 79.217
sylvine 92.660 92.650 92.593 93.369 ± 0.833 95.509 83.595 94.045
dionis 93.920 93.687 93.943 93.586 ± 0.021 91.222 83.960 94.010
aloi 96.546 96.376 96.562 95.341 ± 0.194 95.338 93.589 97.175

ccfraud 97.554 97.748 96.626 98.797 ± 1.031 90.303 85.705 92.531
clickpred. 82.175 83.206 82.307 85.270 ± 1.275 58.361 50.163 64.280

Table 7: Comparing IUNET against trees (XGB), handcrafted models (TABN), and state-of-the-
art regularized MLPs (MLPTAB+C). OMP, β-LASSO, and IUNET all modify MLPTAB. Note, our
method does not tune the optimal regularization settings for each dataset making it more efficient.
Our pruned model is also more compressed than the original network. Note, we outperform both
MLPTAB and TABN on most datasets. While IUNET performs similarly to MLPTAB+C, it does not
require costly hyperparameter tuning, and can be applied on top of the optimal settings found by
MLPTAB+C.
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E.2 HYPERPARAMETER SETTINGS

All experiments were run 3 times from scratch starting with different random seeds. We report both
the mean and standard deviation of all runs. All hyperparameters were chosen based on validation
set results.

For all experiments, we used λ = 1, which was chosen through a grid search over λ ∈
{0.25, 0.5, 1.0}. For all experiments, we used a batch size of 128. For pre-pruning training, we
used SGD with Nesterov momentum and a learning rate of 0.001, following past works (Blalock
et al., 2020). For finetuning vision datasets, we used the same optimizer setup except with 16-bit
operations except for batch normalization, following β-LASSO (Neyshabur, 2020). For finetuning
tabular datasets, we used AdamW (Loshchilov & Hutter, 2017), a learning rate of 0.001s, decoupled
weight decay, cosine annealing with restart, initial restart budget of 15 epochs, budget multiplier of
2, and snapshot ensembling (Huang et al., 2017), following prior works (Kadra et al., 2021; Zimmer
et al., 2021). It is important to note we did not tune the dataset and training hyperparameters for
each tabular dataset individually like MLPTAB+C (Kadra et al., 2021), rather taking the most effective
setting on average.

For tabular datasets, we tuned the compression ratio over the following range of values: r ∈ {2, 4, 8}
and the PIS multiplier over the following range of values: κ ∈ {0.25, 0.125, 0.0625}. on a subset
of 4 tabular datasets. We found that r = 8 and κ = 0.25 performs the most consistently and
used this setting for all runs of IUNET in the main paper. It is important to note we did not tune
hyperparameters for IUNET on each individual tabular dataset like MLPTAB+C (Kadra et al., 2021),
making IUNET a much more efficient model than MLPTAB+C. For the tabular baselines (Chen &
Guestrin, 2016; Arik & Pfister, 2021; Kadra et al., 2021), we used the same hyperparameter tuning
setup as the MLP+C benchmark (Kadra et al., 2021).

For vision datasets, we tuned the compression ratio over the following range of values: r ∈
{2, 4, 8, 16} on each individual dataset for all network pruning models except β-LASSO5. For β-
lasso (Neyshabur, 2020), we tuned the hyperparameters over the range β = {50} and L1 regulariza-
tion in l1 ∈ {10−6, 2× 10−6, 5× 10−6, 10−5, 2× 10−5} on each individual dataset as done in the
original paper. It is important to note that although we tuned both hyperparameters for both IUNET
and baselines on each individual datasets, our main and ablation table rankings stay consistent had
we chosen a single setting for all datasets, as shown in the detailed pruning experiments in the main
paper.

E.3 SUPERNETWORK ARCHITECTURE

MLPVIS is a deep MLP that contains a CNN subnetwork. Given a scaling factor, α, the CNN archi-
tecture consists of 3x3 convolutional layers with the following (out channels, stride) settings: [(α, 1),
(2α, 2), (2α, 1), (4α, 2), (4α, 1), (8α, 2), (8α, 1), (16α, 2)] followed by a hidden layer of dimension
64α. It is worth noting that our CNN does not include maxpooling layers for fair comparison with
the learned architectures, following the same setup as β-LASSO (Neyshabur, 2020). To form the
MLP Network, we ensured the CNN network structure exists as a subnetwork within the MLP su-
pernetwork by setting the hidden layer sizes to: [αs2, αs

2

2 , αs
2

2 , αs
2

4 , αs
2

4 , αs
2

8 , αs
2

8 , αs
2

16 , 64α]. This
architecture was also introduced in β-Lasso (Neyshabur, 2020). All layers are preceded by batch
normalization and ReLU activation. We chose α = 8 such that our supernetwork can fit onto an
Nvidia RTX 3070 GPU.

CNN is the corresponding CNN subnetwork with (out channels, stride) settings: [(α, 1), (2α, 2),
(2α, 1), (4α, 2), (4α, 1), (8α, 2), (8α, 1), (16α, 2)], derived from prior works (Neyshabur, 2020).
Again, we chose α = 8 to be consistent with MLPVIS.

RESNET (He et al., 2016) is the standard RESNET-18 model used in past benchmarks (Blalock et al.,
2020). Resnet differs from CNN in its inclusion of max-pooling layers and residual connections.

MLPTAB is a 9-layer MLP with hidden dimension 512, batch normalization, and ReLU activation.
We did not use dropout or skip connections as it was found to be ineffective on most tabular datasets
in MLP+C (Kadra et al., 2021).

5This is because β-LASSO does not accept a chosen compression ratio as a hyperparameter.
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Dataset # Train Instances # Valid Instances # Test Instances Number of Classes
CIFAR10 40000 10000 10000 10

CIFAR100 40000 10000 10000 100
SVHN 58606 14651 26032 10

Table 8: Statistics on computer vision datasets.

E.4 PRUNING IMPLEMENTATION DETAILS

Following Shrinkbench (Blalock et al., 2020), we use magnitude-based pruning only on the encoder,
fE , keeping all weights in the decoder, fD. This is done to prevent pruning a cutset in the decoder
architecture, so that all class logits receive input signal. To optimize the performance, we apply
magnitude-based pruning globally, instead of layer-wise.

E.5 HARDWARE

All experiments were conducted on an Nvidia V100 GPU and an AMD EPYC 7402 CPU. The
duration of the tabular experiments varied, ranging from a few minutes up to half a day, depending
on the specific dataset-model pair and the training phase (pre-pruning training or finetuning). For
the vision experiments, a single setting on a single dataset-model pair required a few hours for both
pre-pruning training and finetuning.
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Dataset # Train # Valid # Test # Feats. Majority Minority OpenML IDInst. Inst. Inst. Class % Class %
Anneal 538 179 179 39 76.17 0.89 233090

Kr-vs-kp 1917 639 639 37 52.22 47.78 233091
Arrhythmia 271 90 90 280 54.20 0.44 233092

Mfeat-factors 1200 400 400 217 10.00 10.00 233093
Credit-g 600 200 200 21 70.00 30.00 233088
Vehicle 507 169 169 19 25.77 23.52 233094

Kc1 1265 421 421 22 84.54 15.46 233096
Adult 29305 9768 9768 15 76.07 23.93 233099

Walking-activity 89599 29866 29866 5 14.73 0.61 233102
Phoneme 3242 1080 1080 6 70.65 29.35 233103

Skin-segmentation 147034 49011 49011 4 79.25 20.75 233104
Ldpa 98916 32972 32972 8 33.05 0.84 233106

Nomao 20679 6893 6893 119 71.44 28.56 233107
Cnae-9 648 216 216 857 11.11 11.11 233108

Blood-transfusion 448 149 149 5 76.20 23.80 233109
Bank-marketing 27126 9042 9042 17 88.30 11.70 233110

Connect-4 40534 13511 13511 43 65.83 9.55 233112
Shuttle 34800 11600 11600 10 78.60 0.02 233113
Higgs 58830 19610 19610 29 52.86 47.14 233114

Australian 414 138 138 15 55.51 44.49 233115
Car 1036 345 345 7 70.02 3.76 233116

Segment 1386 462 462 20 14.29 14.29 233117
Fashion-MNIST 42000 14000 14000 785 10.00 10.00 233118

Jungle-Chess-2pcs 26891 8963 8963 7 51.46 9.67 233119
Numerai28.6 57792 19264 19264 22 50.52 49.48 233120

Devnagari-Script 55200 18400 18400 1025 2.17 2.17 233121
Helena 39117 13039 13039 28 6.14 0.17 233122
Jannis 50239 16746 16746 55 46.01 2.01 233123
Volkert 34986 11662 11662 181 21.96 2.33 233124

MiniBooNE 78038 26012 26012 51 71.94 28.06 233126
APSFailure 45600 15200 15200 171 98.19 1.81 233130
Christine 3250 1083 1083 1637 50.00 50.00 233131
Dilbert 6000 2000 2000 2001 20.49 19.13 233132
Fabert 4942 1647 1647 801 23.39 6.09 233133

Jasmine 1790 596 596 145 50.00 50.00 233134
Sylvine 3074 1024 1024 21 50.00 50.00 233135
Dionis 249712 83237 83237 61 0.59 0.21 233137
Aloi 64800 21600 21600 129 0.10 0.10 233142

C.C.FraudD 170884 56961 56961 31 99.83 0.17 233143
Click Prediction 239689 79896 79896 12 83.21 16.79 233146

Table 9: Statistics on tabular datasets. Note that the OpenML ID denotes the ID used to retrieve
the dataset (Gijsbers et al., 2019). Majority and Minority Class % shows the class imbalance within
each dataset. For fair evaluation, we report balanced accuracy in all tabular experiments. # Feats.
denotes the number of features in each dataset.
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