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ABSTRACT

Causal Discovery (CD) is a powerful framework for scientific inquiry. Yet, its
practical adoption is hindered by a reliance on strong, often unverifiable assump-
tions and a lack of robust performance assessment. To address these limitations
and advance empirical CD evaluation, we present TCD-Arena a modularized and
extendable testing kit to assess the robustness of time series CD algorithms against
stepwise more severe assumption violations. For demonstration, we conduct an
extensive empirical study comprising over 50 million individual CD attempts and
reveal nuanced robustness profiles for 27 distinct assumption violations. Further,
we investigate CD ensembles and find that they can boost general robustness, which
has implications for real-world applications. With this, we strive to ultimately fa-
cilitate the development of CD methods that are reliable for a diverse range of
synthetic and potentially real-world data conditions.

1 INTRODUCTION

Causal Discovery (CD) holds great potential for addressing scientific hypotheses in fields where
randomized control trials are difficult or impossible Glymour et al. (2019). Despite this promise, the
widespread adoption of CD methods by practitioners remains limited. Recent works (Brouillard et al.,
2024; Yi et al., 2025; Faller et al., 2024) attribute this to mainly two key factors: First, existing CD
methods often rely on strong, idealized assumptions (e.g., no hidden confounders or stationarity)
that are difficult to validate or are simply unverifiable in real-world scenarios, even if they underpin
theoretical guarantees. Second, empirical evaluations of CD methods predominantly use idealized
synthetic data, which can overestimate performance and offer limited insight into robustness under
imperfect but realistic conditions. Consequently, practitioners hesitate to adopt CD methods where
their output reliability is limited (Kaiser & Sipos, 2021; Nastl & Hardt, 2024; Poinsot et al., 2025).
To overcome this issue, there has been a recent push towards more benchmarking as it is the de
facto golden standard in Machine Learning (Neal et al., 2023; Stein et al., 2024a; Wang, 2024;
Mogensen et al., 2024; Herdeanu et al., 2025). However, the scarcity of real-world datasets with
known causal ground truth continues to hinder a full reliance on empirical validation of CD methods.
As a possible alternative to real-world benchmarks, recent studies investigate CD performance
when specific assumptions are violated (Montagna et al., 2023a; Yi et al., 2025; Ferdous et al.,
2025). Furthermore, the robustness of CD methods related to hyperparameter selection has been
recently highlighted (Machlanski et al., 2024). Building upon and aiming to unify these emerging
efforts of empirical evaluation, we present TCD-Arena, a modularized testing kit to assess CD
robustness against assumption violation. Next to an unprecedented scale TCD-Arena focuses on
three so far sporadically addressed aspects: (1) temporal data, that introduces additional challenges
and opportunities; (2) stepwise violation intensities, crucial for capturing nuanced performance
degradation rather than binary pass/fail outcomes; and (3) a focus on violations often encountered
in real-world settings. In this paper, we demonstrate the benefits of TCD-Arena by conducting
an extensive empirical study on the robustness of CD algorithms. Specifically, we evaluate eight
CD algorithms that cover all four common CD archetypes Assaad et al. (2022). We evaluate these
algorithms across 27 different assumption violations, each scaled in intensity. By performing over
50 million individual CD attempts, we find that various methods differ in their ability to cope with
assumption violations. Additionally, we investigate hyperparameter sensitivities with respect to
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Figure 1: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise
assumption violations measured as average AUROC over various data regimes. Left: Lagged causal
effects, Right: Instantaneous causal effects

robustness and model misspecifications, two aspects that we believe to be critical for applications to
novel real-world data. Further, we investigate ensembles of CD methods, something that has received
little attention in the literature, and conclude that they can boost robustness. Standing with Poinsot
et al. (2025) and recognizing the pressing need for more nuanced CD evaluation, we attempt to further
establish robustness analysis as an alternative to traditional benchmarking and theoretical analysis.
With this, we hope to ultimately facilitate the development of CD methods that are reliably applicable
to real-world data. In summary, this paper makes the following contributions:

1. The introduction of TCD-Arena, an open-source and customizable toolkit for quantifying
the robustness of CD in diverse time-series data and fosters long-term comparability.

2. A large-scale empirical study that evaluates the robustness of eight time series CD methods
against 27 stepwise intensified assumption violations.

3. An investigation into ensembling CD methods with respect to violation robustness.

2 BACKGROUND AND THEORETICAL PRELIMINARIES

To ground our empirical investigation, we begin by selectively revisiting the relevant theoretical
background. Let X ∈ RD×T be a D-variate time series comprising T samples from D interacting
variables, generated by an unknown underlying causal process. The objective of time series Causal
Discovery (CD) is to infer the causal relationships among D variables from the observed data X .
These relationships are commonly represented as a Structural Causal Model (SCM) (Peters et al.,
2017). For each variable Xi,t, the SCM contains assignments of the form:

Xi,t = fi (Pa(Xi,t), ϵi,t) , (1)

where Pa(Xi,t) is the set of direct causal parents of Xi,t, fi is a causal mechanism, and ϵi,t is
independent innovation noise. The set of assignments within an SCM defines a directed graph
G = (V,E). In this work, we distinguish between contemporaneous (Xj,t for j ̸= i) and lagged
effects (Xj,t−k for k > 0) by evaluating the recovery of the following three distinct graph structures:
First, the lagged window causal graph (GLWCG) provides lag-specific causal dependencies up to a
maximum lag L. Here V includes each variable at time step t and at all past lags: V = {Xi,t−l | i ∈
{1, . . . , D}, l ∈ {1, . . . , L}}. A directed edgeXj,t−l → Xi,t exists inGLWCG ifXj,t−l is in Pa(Xi,t).
Note that in this representation, edges only connect past variables to variables at step t. Second, the
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lagged summary graph (GLSG) provides a summary of time-lagged relationships. Its vertices are
defined as V = {X1, . . . , XD}. A directed edge Xj → Xi exists in GLSG if Xj,t−l ∈ Pa(Xi,t) for at
least one l > 0. Third, the instantaneous graph (GINST) captures only contemporaneous relationships.
It is a directed graph with vertices V = {X1, . . . , XD}. A directed edge Xj → Xi exists in GINST iff
Xj,t is in Pa(Xi,t). While this framework formalizes causal interactions, the identifiability of any G
from X requires a number of assumptions about Eq. (1). For time series, the direction of time Bauer
et al. (2016) (effects cannot precede causes) aids with identifying lagged relationships (GLWCG and
GLSG), generally requiring fewer restrictive assumptions. However, the recovery of GINST is more
challenging (and not tackled by all CD methods), resembling causal discovery from i.i.d. sample data.
We refer to (Pearl, 2009; Peters et al., 2017) for a comprehensive introduction as well as to (Spirtes
et al., 2001) concerning constraint-based algorithms.

Despite the fact that many specific assumptions underpinning CD methods can be relaxed individually,
a core set of strong, partly implicit, assumptions generally remains necessary to guarantee the
identifiability of any SCM, as the causal hierarchy levels almost never collapse Bareinboim et al.
(2022). Furthermore, even if these assumptions can be perfectly met in synthetic data, real-world data
will have many assumptions violated, which can lead to performance degradation of CD algorithms
Kaiser & Sipos (2021); Nastl & Hardt (2024). On top, many assumptions are not verifiable without
having access to the full SCM, e.g., the appropriate conditional-independence test Shah & Peters
(2020). For widespread practical adoption, it is therefore essential to assess method performance
under suboptimal conditions Poinsot et al. (2025). In response to these challenges, and mirroring
trends in other machine learning domains, there is a growing emphasis on developing real-world
Stein et al. (2024a); Mogensen et al. (2024) as well as semi-synthetic Cheng et al. (2023); Herdeanu
et al. (2025) benchmarks, or kits such as Muñoz-Marı́ et al. (2020) or Zhou et al. (2024) for CD.
Notably, while real-world and semi-synthetic datasets are essential, they come with a tradeoff of
having less information about the data generation process (outside of the causal ground-truth), which
leaves room for extensive synthetic benchmarks Poinsot et al. (2025) Furthermore, as aggregating
extensive real-world causal ground truth is notoriously challenging, alternative approaches have been
introduced to enable the empirical evaluation of CD method performance. For instance, Schkoda et al.
(2024) proposes leave-one-out cross-validation to assess the predictive performance of CD algorithms.
Moreover, Machlanski et al. (2024) advocates for evaluating hyperparameter sensitivity, which has
implications for method selection in practical applications. Closely related to our work, Yi et al. (2025)
and Montagna et al. (2023a) test the performance of i.i.d. sample-based CD methods for fully violated
assumptions. Further, Ferdous et al. (2025) provides an insightful study that investigates the impact of
five different real-world complications on the performance of CD methods. Nevertheless, the impact
of such violations remains under-investigated, particularly for time series data and for differences
in violation severity. Finally, ensembling strategies, as a practical tool to improve robustness in
other machine learning domains Arpit et al. (2022); Mienye & Sun (2022), likewise remain largely
unexplored in the CD literature. While recent work has investigated ensembling over variable subsets
to recover large graphs Wu et al. (2024), the potential to improve resilience with respect to assumption
violations has not yet been studied.

3 STEPWISE INCREASING ASSUMPTION VIOLATIONS

While the CD literature explores the relaxation of certain assumptions, identifying any causal structure
from X alone typically relies on a core set of assumptions to guarantee identifiability. Although prior
work partially analyzes resilience to binary assumption violations Yi et al. (2025); Montagna et al.
(2023a); Ferdous et al. (2025), a pertinent question arises: How robust are certain CD methods
against different severities of assumption violation? This question is critical in applied settings.
For instance, the mere existence of observational noise is less informative than understanding the
corresponding robustness against its presence. Addressing this requires a framework for varying the
severity of these violations. In this study, we introduce TCD-Arena for this purpose. In total, we
implement 27 distinct assumption violations, each parameterized to allow for a stepwise increase of
its severity. We individually describe these in the sections to come. Generally, we focus on covering
commonly made assumptions Runge (2018) along with real-world complications that are practically
relevant. Further, we restrict our exploration to the following for Eq. (1):

Xi,t =

D∑
d=1

L∑
l=0

Ai,d,l · fi,d,l(Xd,t−l) + ϵt,i, (2)
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(a) In our experiments, the sources of randomness for the observational
noise variables ζi,t are standard normally distributed

(
N (0, 1)

)
ran-

dom variables ηi,t and ηt, which are consequently influenced by various
factors, e.g., the signal strength (Vobs,mul). Both α and β denote hyperpa-
rameters (details in Apx. B.1).

Violation Definition of ζi,t Depends On

Vobs,add ζi,t = ηi,t —
Vobs,mul ζi,t = Xi,t · ηi,t the signal Xi,t

Vobs,time ζi,t = ηi,t · (1 + αt) · sin(2πt/β) time step t
Vobs,auto ζi,t = α · ζi,t−1 + (1− α) · ηi,t autoregressive
Vobs,com ζi,t = ηt for all i at each t —

Vobs,shock ζi,t ∼
{
S with prob. pshock,

0 else.
fixed scalar S,
shock prob. pshock (b) Note, coefficients Ai,d,l can be

negative, resulting in negative trends.

Figure 2: Details for violation types Vobs and Vnl. Left: Observational noise violations. Right:
Functional distributions that we deploy to sample fi,d,l used in Eq. (2).

where A specifies a coefficient matrix and fi,d,l an edge-specific univariate function and ϵt,i inde-
pendent innovation noise. Crucially, any non-zero element in A denotes a corresponding edge in G.
Further, for violations not concerning the causal mechanisms, fi,d,l is the identity function, and all
interactions are linear. To help with clarity, we mark individual violations as Vtype. Finally, we keep
the following violation descriptions brief and include a summary table, graphical depictions, specific
violation step sizes, and detailed design choices for each violation in Apx. A and Apx. B.

Observational Noise (Vobs) Many theoretical guarantees in causal discovery assume noise-free
measurements, despite the fact that measurement errors are practically unavoidable and can introduce
discrepancies that distort true causal relationships Scheines & Ramsey (2016). In an additive form,
observation noise can be defined as: X̂i,t = Xi,t+ ζi,t, where ζi,t denotes observational noise. While
standard independent additive noise (Vobs,add) is prevalent, other noise types can occur depending on
the measurement process. Due to this, we investigate the impact of five other types of observational
noise structures on CD. Fig. 2a contains a concrete list. Additionally, details, hyperparameters, and
discussions can be found in Apx. B.1. In particular, we include multiplicative, signal-dependent noise
(Vobs,mul) with real-world examples such as temperature sensors with lower precision at higher values
Bentley (1984) or speckle noise in image processing Liu et al. (2014). We include time-dependent
noise (Vobs,time), which simulates cycles or linear sensor drift. Further, we model autoregressive
noise structures (Vobs,auto), i.e., disturbances of measurements which persist for multiple time steps.
Similarly, we include common observational noise (Vobs,com), where multiple variables are affected
simultaneously, e.g., by weather events. Finally, we include shock noise (Vobs,shock) to model
infrequent events such as measurement failures. To systematically vary the level of intensity for any
of these observational noise structures, we adjust the signal power of ζ to control the corresponding
Signal-to-Noise Ratio (SNR) with respect to the data X . To isolate the influence of the noise structure,
we use the same, decreasing SNR levels for all observational noise violations in Fig. 2a.

Causal Sufficiency (Vconf) Causal sufficiency posits that for any pair of observed variables Xi and
Xj , there are no unobserved common causes (hidden confounders). That is, there is no unmeasured
variable U such that U → Xi and U → Xj . Such latent confounders can induce spurious correlations
between observed variables, potentially leading to the inference of incorrect or misleading causal
relationships. While some advanced methods aim to address specific types of confounding Trifunov
et al. (2019); Chen et al. (2024); Li & Liu (2024), the presence of unmeasured confounders remains a
major practical challenge, as it is rarely feasible to measure all relevant variables in complex systems.
To simulate varying degrees of confounding and assess its impact, we employ two distinct strategies
targeting lagged and contemporaneous confounding: First, concerning instantaneous confounding
Vconf,inst, we introduce a set of N exogenous variables Z = Z1, . . . , ZN , where each Zn,t ∼ N (0, 1).
These exogenous variables are not causally influenced by any variable in X but can act as common
causes to multiple variables in step t. The severity of this type of confounding is controlled by
progressively increasing the probability that an observed variable Xi,t becomes dependent on any
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of the exogenous variables Zn. This, in turn, increases the probability for two variables in X to
have a shared parent at t. Second, for lagged confounding, we introduce an additional variable, XC ,
designated as the potential confounder (Vconf,lag). This variable XC is allowed to causally influence,
and can be influenced by, other observed variables Xi with lagged effects up to a specified maximum
lag L. The severity of confounding is controlled by stepwise increasing the probability that XC is in
the parent set of any other variable in X , as well as the related coefficients in A. After sampling, the
time series, XC is removed from the observed data X, rendering it a hidden confounder.

Faithfulness (Vfaith) Faithfulness asserts that all conditional independencies observed in the data are
precisely those implied by d-separation of the DAG G Scheines (1997). Violations of faithfulness can
lead to indistinguishable causal structures as they generate no dependencies in X . Some works that
examine this assumption and provide alternatives are (Zhang & Spirtes, 2008; Andersen, 2013; Lin &
Zhang, 2020; Ng et al., 2021). Typically, unfaithfulness is implemented through causal structures
like Xj,t → Xi,t ← Xk,t ← Xj,t, where effects from Xj,t to Xi,t cancel out through appropriate
parameter configurations in A. We implement this case for instantaneous effects (Vfaith,inst) as well
as a lagged structure of the form Xj,t−2 → Xi,t ← Xk,t−1 ← Xj,t−2 (Vfaith,lag). To stepwise scale
the intensity of both violations, parameter configurations in A are updated to reach path cancellation.
Further, as this is only one case of violating faithfulness Montagna et al. (2023b), we include a
discussion concerning this design choice along with visual examples in Apx. B.3.

Functional Assumptions (Vnl) While the general SCM in Eq. (2) is agnostic to the functional forms
fi,d,l between variables Xd,t−l → Xi,t, many discovery algorithms assume specific interactions, e.g.,
linear-additive relationshipsXt =

∑L
l=1Al ·Xt−l+ϵt Hyvärinen et al. (2010); Pamfil et al. (2020). In

real-world systems, such assumptions are often violated or are only approximations. Thus, it is crucial
to study the consequences of corresponding violations, besides attempting to relax them Runge et al.
(2019); Monti et al. (2020); Wu et al. (2022). To better emulate the variety found in practical scenarios
and simulate data diversity, we employ a range of function generation techniques with different
characteristics. In particular, we sample individual univariate functions fi,d,l from four distinct
distributions: (1) Monotonic nonlinear functions (Vnl, mono), (2) Non-monotonic functions with a
linear trend (Vnl,trend) (3) Gaussian processes with RBF kernels (Vnl,rbf) following related robustness
studies Montagna et al. (2023a); Yi et al. (2025), and (4) Random combinations of a set of base
functions, e.g., sin(·) or e(·) (Vnl,comp). Example functions are depicted in Fig. 2b, and we describe
the exact distributions from which we sample in Apx. B.4. To stepwise increase the violations, we
rely on two distinct procedures. First, for Vnl,mono and Vnl,trend, we stepwise adapt the functional
distributions such that sampled functions become on average increasingly nonlinear Emancipator
& Kroll (1993) (see Apx. B.4). We sample all interactions fi,d,l in Eq. (2) from the corresponding
distributions. Second, for Vnl,rbf and Vnl,comp, we stepwise increase the probability of any fi,d,l to be
drawn from the nonlinear distribution instead of being equal to the identity fi,d,l(·) = id(·).

Independent Innovation Noise (Vinno) Independent additive innovation noise (ϵi,t in Eq. (2)) is cru-
cial for CD, as it ensures dependencies are attributed to causal links, not shared noise. However, this as-
sumption is often violated in practice, as noise can incorporate unmeasured, dependent effects, and its
true distribution is typically unknown or is fully deterministic Li et al. (2024). To evaluate how alterna-
tive innovation noise distributions might affect the performance of CD algorithms, we deploy the same
five noise structures that we use for observational noise, i.e., Vinno,mul,Vinno,auto,Vinno,com,Vinno,time,
and Vinno,shock. However, for innovation noise scaling, the SNR (compare to the observation noise) is
nontrivial as it is part of the signal itself. Therefore, we control the violations by blending standard
normal noise with each of the five noise terms to stepwise move away from independent additive
conditions (details in Apx. B.5). Notably, autoregressive Vinno,auto and common innovation noise
Vinno,com fundamentally violate the Markov condition Peters et al. (2017). Additionally, since some
identifiability guarantees assume non-Gaussian noise (Shimizu et al., 2006), we test the effect of
stepwise moving towards a non-Gaussian distribution. Specifically, we simulate this by starting from
a Gaussian distribution (see Apx. B.5) and progressively shifting towards either a uniform (Vinno,uni)
or a Weibull distribution (Vinno,weib). Finally, as some works rely on the assumption of equal noise
variances, e.g., Peters & Bühlmann (2014), we implement a strategy to move away from this condition
(Vinno,var). For this, we draw ϵi,t from N (0, σ2

i ), where the variance σ2
i is individually sampled for

each Xi. We then stepwise increase the corresponding ranges.
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Stationarity (Vstat) CD methods typically aim to uncover a single G from observations X . Hence,
a common assumption is that the SCM remains unchanged, i.e, stationary, over time or across regions.
However, in many real-world scenarios, causal relationships can be heterogeneous across different
populations or evolve over time Nastl & Hardt (2024). Here, works such as Huang et al. (2020);
Günther et al. (2024); Ahmad et al. (2024) attempt to identify causal relationships in systems where
parts of the SCM are changing. To simulate violations of stationarity, we keep the causal skeleton
(nonzero elements in A) fixed but redraw the coefficients multiple times , violating the idea of causal
consistency. Further, to stepwise scale the violation, we increase the number of times we resample A

Sufficient Sample Sizes (Vlength) Causal discovery algorithms necessitate a sufficient sample size
to reliably detect patterns and estimate relationships Shen et al. (2020); Castelletti & Consonni (2024).
For example, statistical tests used to identify conditional independencies may lack power with limited
data Spirtes & Zhang (2016). To the best of our knowledge, no work has yet conducted an extensive
study on the relationship between CD performance and sample size. To remedy this, we allow for a
stepwise reduction of the length of the sampled time series X to model Vlength.

Data Quality (Vq) To simulate measurement disturbances beyond observational noise, we introduce
two types of quality degradations for X . First, we model sensor failures (Vq,empty) by setting all
parent sets to ∅ for short periods, simulating false, zero-information measurements. We then stepwise
increase the length of these periods to scale the effect. Second, for missing data (Vq,missing), we
remove an increasing number of samples completely at random Heitjan & Basu (1996) and fill the
resulting NaNs via linear interpolation, a common approach for practitioners.

Data Scaling (Vscale) Recent works show that synthetically generated data can introduce artifacts
along the causal order that can be abused by CD methods Reisach et al. (2021); Kaiser & Sipos
(2021); Ormaniec et al. (2025). By rescaling X , these artifacts can be partly removed. To investigate
how robust methods are against scaling, we allow for a stepwise scaling of the generated time series.
In particular, we blend the original time series with its standardized version, a transformation that is
reported to affect CD performance in Reisach et al. (2021); Kaiser & Sipos (2021).

Acyclicity and Sampling Rate Finally, we comment on the assumption of acyclicity, which we
deliberately do not address in this work. While central to many algorithms, this assumption can be
violated in two primary ways: by genuine feedback loops inherent to the system (e.g., in differential
equations) or by apparent cycles that emerge as artifacts of temporal aggregation. The latter occurs
when a coarse measurement resolution makes a lagged effect appear as a contemporaneous, bidirec-
tional relationship Runge (2018). This creates a fundamental ambiguity: A system may be acyclic at
one temporal scale but cyclic at another, making a single ground truth non-trivial to define.

4 EXPERIMENTS

To evaluate the robustness of CD methods, we conducted a large empirical study using synthetic
data across all previously described violations. For each violation, we systematically increase its
intensity over five discrete levels. Our experiments covered a range of data conditions to ensure the
generalizability of our findings. We vary the number of time steps (T ∈ {250, 1000}) and the number
of variables D, together with the maximum causal lag L in the true SCM

(
(D,L) ∈ {(5, 3), (7, 4)}

)
.

For each setting, we generated datasets with both sparse and dense causal graphs, and both with
and without instantaneous effects. This resulted in 8 distinct data-generating conditions, which we
call “data regimes. Generally, we use standard normal innovation noise (ϵi,t ∼ N (0, 1), eq. (2))
For each violation type, severity level, and data regime, we generated 100 independent structural
causal models (SCMs) and a corresponding time series. In total, the evaluation for each violation
type comprises 8,000 unique time series instances. Further details on the data-generating process are
available in Apx. C.1. Regarding CD methods, we conduct experiments on eight different strategies,
including the direct Cross Correlation matrix, which serves as a baseline strategy for predicting causal
relationships. Further, we include the following seven approaches: We leverage Granger-causal
ideas and deploy a vector autoregressive model Granger (1969) where we either rely on p-values
or absolute model coefficients to predict causal relationships (GVAR), Varlingam Hyvärinen et al.
(2010), PCMCI and PCMCI+ Runge et al. (2019), Dynotears (Pamfil et al., 2020), NTS-NOTears
(Sun et al., 2023), and CausalPretraining (Stein et al., 2024b). With this, we cover all common CD
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(a) By ensembling different CD methods, general robustness can be
improved. * marks required knowledge about the underlying SCM.
† marks methods that do not discover GINST. We highlight superior
performance with green .

Method GLWCG GINST GLSG

Cross Correlation .852±.07 † .835±.08

CausalPretraining .866±.08 † .860±.09

GVAR .917±.07 † .904±.08

Varlingam .919±.07 .674±.08 .906±.08
PCMCI .912±.08 † .897±.09

PCMCI+ .911±.08 .846±.1 .899±.09

Dynotears .901±.08 .847±.1 .894±.08

NTS-NOTears .906±.07 .68±.07 .889±.09

EnsembleAvg. .923±.07 † .910±.08

EnsembleLinear .928±.07 † .928±.07

EnsembleMLP .943±.06 † .943±.06
EnsembleConvMixer .930±.07 † .930±.07

EnsemblePareto .955*±.05 † .955*±.05

(b) Each curve depicts AUROC changes of
a particular hyperparameter configuration
and a particular data regime.

Figure 3: Left: AUROC scoring of the best hyperparameter configuration per CD method and per
ensemble for GLWCG, GINST, and GLSG. Right: Hyperparameter variations with respect to Vscale.

paradigms Assaad et al. (2022). Under ideal linear conditions with no assumption violations, all
included methods are capable of recovering GLWCG from Eq. (2). Additional details and a list of
assumptions for each method are provided in Apx. C.2. To ensure a fair performance comparison,
we adopt an evaluation protocol with three key components. First, to mitigate bias from suboptimal
parameter choices, we perform an extensive hyperparameter search for each method. The full search
spaces are detailed in Apx. C.3. This process also enables a secondary analysis of hyperparameter
sensitivity. Second, we selected the Area Under the Receiver Operating Characteristic (AUROC) as
our primary, threshold-independent performance metric. For completeness, we also report and discuss
alternative metrics in Apx. D.1. Third, to measure the robustness for a specific hyperparameter
configuration of a method with respect to a violation Vtype, we average the AUROC scores for all
data regimes and violation levels. Notably, in comparison to Ferdous et al. (2025), this protocol,
although computationally heavier, enables a more reliable estimation of robustness, as the considered
data distributions incorporate greater variability. This aggregation accounts for potential variations
in the optimal decision boundary across different experimental conditions, providing a comparable
score of robustness. For our main comparison, we identify a single hyperparameter configuration
for each CD method that maximizes average robustness across all violations. We include a visual
overview of this experimental protocol in Apx. A.4. We believe this better reflects a practical scenario
than optimizing for each violation individually, a protocol used by Montagna et al. (2023a); Yi et al.
(2025). For complementary reasons, we also report individually optimized results in apx. D.1. Further,
referencing Machlanski et al. (2024) and emphasizing the problem that optimal hyperparameters are
unknown in real-world applications, we also report the average robustness over all hyperparameters
in Table 1. Further, the severity levels for each violation were individually calibrated to span a range
from negligible impact to a level where the baseline method’s performance degrades to chance (if the
violation type allows for it). Our analysis, therefore, focuses on the relative performance differences
between methods for a specific violation, rather than comparing performance across different types
of violations. A complete list of the configurations and further discussion of this methodology are
provided in Apx. A.2. Finally, because all methods were evaluated on the exact same datasets, any
potential issues of theoretical non-identifiability affect all algorithms equally. This ensures a fair
comparison of their relative robustness. Details on reproducibility can be found in Apx. C.5

In this section, we concentrate on three key findings extracted from our empirical study. (1) General
robustness, (2) model misclassifications, and (3) hyperparameter sensitivity. To further contextualize
these results, we provide additional discussions on specific violations in Apx. D.3.
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First, we illustrate the robustness of each method against individual violation types for lagged effects
and for instantaneous effects in Fig. 1. Furthermore, Fig. 3a summarizes the average robustness scores
across all assessed violations. Considering the discovery of lagged effects (GLWCG), we find that
Granger-based approaches (GVAR and Varlingam) have slightly increased robustness. Interestingly,
this is consistent with results reported in Stein et al. (2024a), a large-scale real-world benchmark.
Furthermore, we observe that deep learning approaches (CausalPretraining and NTS-NOTears) lag
behind those with fewer parameters. Concerning uncovering GINST (Fig. 1), we find that Dynotears
and PCMCI+ show comparable robustness (Fig. 3a) while Varlingam lags behind. Furthermore,
we observe larger differences in robustness. We attribute this to the fact that it is generally harder
to uncover GINST. Next, as we do not explicitly generate data with non-Gaussian independent
additive noise, these results are consistent with theoretical constraints. Further, the large performance
gap between GLWCG and GINST can be explained by the fact that the non-gaussian assumption is
specifically made to uncover the instantanous links and is not necessary for uncovering lagged effects.
Interestingly, even for innovation noise violations where we stepwise increase a non-Gaussian additive
noise component, i.e., (Vweib and Vuni), Varlingam shows no superior robustness.

Second, as we previously assumed a known maximum lagL, we further investigate the performance of
all tested algorithms under two additional scenarios: (i) The model is allowed to search for causes up
to a lag greater than the true maximum lag (L ∈ {3, 4} while Lmodel ∈ {5, 6}. (ii) The model’s search
space is restricted to lags shorter than the true maximum lag (L ∈ {3, 4} while Lmodel ∈ {1, 2}).
We denote these cases with ↑ L and ↓ L, and report the effect of these misspecifications in Table 1
(additional details in Apx. D.4). For the ↓ L condition, we observe strongly reduced performance
across the board. However, we also find that methods able to discover instantaneous effects (with
the exception of PCMCI+) have a noticeably lower performance deterioration. While we have no
direct explanation for this phenomenon, we hypothesize that the estimation of instantaneous links
might help with catching additional lagged effects that should be attributed to GLWCG. Importantly, a
formal theoretical analysis is needed to further understand this phenomenon and its implications. For
the ↑ L regime, we find that performance is rather robust. While such results on synthetic data should
be treated with caution, this observation suggests that in practice, choosing a larger-than-necessary
max lag Lmodel can be beneficial. Finally, we note that CausalPretraining has the distinct advantage
that Lmodel does not have to be specified, which explains the robustness in the ↓ L regimes.

Third, to emphasize the complexity of finding optimal hyperparameters in real-world applications,
we report the average robustness over all hyperparameters in Table 1 and examine a particular
interesting example of hyperparameter influence with Fig. 3b. While the robustness of all CD
methods reduces when reporting the average over all hyperparameters, we find that the methods
with more hyperparameters (Dynotears and NTS-NOTears) have a noticeably higher reduction and
standard deviation between configurations, but also show no superior robustness under optimal
hyperparameters (Table 1). While these results are partly influenced by our search space, we believe
they still have implications for applications involving real-world data. Additionally, Fig. 3b shows
that various CD methods can have drastically differing hyperparameter sensitivities with respect to a
violation. While we find that the optimal hyperparameters have a high robustness against Vscale in all
cases (Fig. 1), other configurations that show similar performance at the beginning, degrade much
faster with violation strength (Dynotears) or show high robustness but also high variance between
hyperparameter performances (NTS-NOTears). For completeness, we include the visualizations of
the remaining methods and violations in Apx. D.5. To conclude, we find various empirical differences
between CD methods that raise the question of whether a combination of multiple CD methods can
improve general robustness. We investigate this question in the next section.

4.1 ENSEMBLING CD TO IMPROVE ROBUSTNESS

Given the variability in robustness across different CD methods, we investigate the potential of
ensembling techniques to achieve improved general robustness. While ensembling is a cornerstone of
modern machine learning Arpit et al. (2022); Mienye & Sun (2022), its potential to enhance the ro-
bustness of time series CD methods remains underexplored in the literature. To remedy this, we learn
a meta model that predicts the GLWCG based on the collection of predicted graphs {Ĝ1, . . . , ĜM}
fromM individual base CD methods. Specifically, we investigate a linear combination EnsembleLinear,
a MLP EnsembleMLP, and a ConvMixer Trockman & Zico Kolter (2022) EnsembleConvMixer. To train
these meta-learners, we generate an additional, independent training dataset containing time series
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Table 1: Average robustness under wrongly specified L (↓ L denotes too low, ↑ L denotes too high)
for GLWCG and GLSG. In parentheses, we include the change from a correctly specified L. Further,
we report the average hyperparameter performance. As CausalPretraining (∗) does not require the
specification of a max lag, its performance for the ↓ L regime is superior. As Cross Corr. has no
hyperparameters, it has no standard deviation (†). We mark superior performance with green .

Method GLWCG GLSG HP
↓ L ↑ L ↓ L ↑ L Avg.

Cross Corr. .571(-.28) .855(+.00) .686(-.15) .827(-.01) .852± †

CausalPretr. .866∗(+.00) .866(+.00) .860∗(+.00) .860(+.00) .863±.00

GVAR .582(-.33) .914(-.00) .727(-.18) .892(-.01) .913±.01
Varlingam .649(-.27) .917(-.00) .727(-.18) .895(-.01) .907±.02

PCMCI .583(-.33) .913(+.00) .708(-.19) .890(-.01) .911±.00

PCMCI+ .583(-.33) .912(+.00) .708(-.19) .892(-.01) .898±.01

Dynotears .637(-.26) .902(+.00) .711(-.18) .889(-.01) .855±.05

NTS-NOTears .620(-.29) .907(+.00) .710(-.18) .878(-.01) .827±.09

samples for all violations and data regimes. The exact training procedure is contained in Apx. C.4.
Additionally, we report the performance of a simple unweighted averaging of all Ĝm (EnsembleAvg.)
and an oracle strategy that comprises the Pareto front, which we call EnsemblePareto. For any given
assumption violation, EnsemblePareto selects the output from the CD method that achieves the highest
measured robustness on that specific violation. While not practically attainable, it serves as a baseline,
indicating the maximum potential performance gain that can be achieved by perfectly selecting
among the outputs of the base methods. All ensembling strategies are evaluated on the original test
datasets used for all other experiments in this paper. We report the average performance of these
ensembling approaches in Fig. 3a and provide additional analysis of performance gains in Apx. D.6.
We find that all ensembling approaches are able to improve the robustness over any individual method.
Specifically, EnsembleMLP leads to notable increases while also reducing the standard deviation
between different violations. Further, our oracle EnsemblePareto achieves the highest performance,
highlighting the fact that various CD methods do have distinct advantages concerning robustness
against particular assumption violations. Note, as transitioning this approach to real-world scenarios
will require addressing challenges such as domain adaptation and disttributional shifts, we present
these results as a theoretical proof-of-concept. They however suggest that ensembling is a promising
strategy for enhancing the robustness and reliability of CD methods in complicated data settings.
Especially, when considering that the here presented ensembles have no direct access to X .

5 CONCLUSION

This study presents the first extensive empirical investigation into the robustness of Causal Discovery
(CD) methods with respect to assumption violations for time series data. We implement 27 distinct
assumption violation scenarios, inspired by real-world data complexities, to evaluate eight distinct
CD algorithms. Our large-scale study revealed notable variability in how different methods respond
to these violations. In particular, we first quantify general robustness over all violations, then analyze
how model misspecification affects performance, and finally investigate general hyperparameter
sensitivities. Motivated by these differences, we investigate the ensembling of CD methods and
conclude that they can improve general robustness. Our study is supported by TCD-Arena, an
empirical framework and testing kit for time series CD that we developed to conduct all of our
experiments. As the landscape of potential data-generating processes is vast, we are releasing
TCD-Arena as an open-source, modular package to facilitate future extensions and foster long-
term comparability. Further, to encourage community engagement, we maintain a live list of all
implemented violations on our project page1 and provide a reproducibility statement in Apx. C.5.
With this, we aim to foster a deeper understanding of causal discovery methods, including their
strengths and weaknesses, under various synthetic yet diverse conditions, thereby paving the way for
more robust real-world applications.

1TCD-Arena(anonymized Git)
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A APPENDIX — HIGH LEVEL OVERVIEW

A.1 VIOLATION LIST

Table 2 contains a brief overview of all 27 violations contained in TCD-Arena and investigated
empirically in our main paper. Further details on the implementation and evaluated severity levels
can be found in the following chapters.
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Violation Short Description
Vobs,add Additive measurement noise.

Vobs,mul Signal dependent measurement noise.

Vobs,time Time-varying measurement noise.

Vobs,auto Autoregressive measurement noise.

Vobs,com Common source measurement noise.

Vobs,shock Spike measurement noise.

Vconf,inst Unseen internal common cause.

Vconf,lag Unseen external common causes.

Vfaith,inst Instantaneous effects cancel out.

Vfaith,lag Lagged effects cancel out.

Vnl,mono Monotonic functions.

Vnl,trend B-spline functions with a linear trend.

Vnl,rbf GP-RBF functions.

Vnl,comp Composite functions.

Vinno,mul Signal dependent innovation noise.

Vinno,time Time-dependent innovation noise.

Vinno,auto Autoregressive innovation noise.

Vinno,com Common source innovation noise.

Vinno,shock Spike innovation noise.

Vinno,uni Uniform additive innovation noise.

Vinno,weib Weibull additive innovation noise.

Vinno,var Unequal variances in innovation noise.

Vstat Causal link strengths change over time.

Vlength Reduced time series length.

Vq,empty Temporary complete loss of causal signal.

Vq,missing Missing data points (interpolated).

Vscale Data standardization.

Table 2: List of all 27 violations contained in TCD-Arena with corresponding short descriptions.

A.2 VIOLATION STEPS

Table 3 contains a list of parameter values used to intensify all 27 violations contained in TCD-Arena
and included in our study. Additionally, we note a short description of how each violation is scaled.
We refer to Apx. B for more in-depth descriptions. The experimental violations were individually
configured to establish a relevant performance range for evaluating Causal Discovery (CD) methods.
Recognizing that the disruptive impact of each violation type varies considerably, a standardized
approach was not employed. Instead, for each violation, the parameters were calibrated according to
a three-step procedure. First, a parameter range was identified that induced a significant performance
degradation for a baseline Cross-Correlation (CC) method. Second, where the violation type allowed,
the maximum intensity was set to reduce the CC’s performance to an Area Under the Receiver
Operating Characteristic (AUROC) of approximately 0.5. Third, discrete levels of the violation were
established by equally spacing them between a minimal-effect level and the determined maximum.
This methodology ensures that various CD methods can be effectively compared against each other
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within a challenging and relevant operational range for each specific violation, although it precludes
direct performance comparisons between different violation types. We document this process in
TCD-Arena for maximum clarity. Finally, as we only evaluate five violation levels in this study it is
worth discussing when this estimation, and general our robusteness metric, might fail. We discuss
this in Apx. D.2.

A.3 VIOLATION DEPICTIONS

We include a graphic depiction of each described violation along with the concrete steps that we
evaluated throughout our experiments in Fig. 4 - Fig. 8.

Violation Increasing Intensity via Parameter Values

Vobs,add Reducing the SNR {10, 5, 1, 1/2, 1/10}
Vobs,mul Reducing the SNR {10, 5, 1, 1/2, 1/10}
Vobs,time Reducing the SNR {10, 5, 1, 1/2, 1/10}
Vobs,auto Reducing the SNR {10, 5, 1, 1/2, 1/10}
Vobs,com Reducing the SNR {10, 5, 1, 1/2, 1/10}
Vobs,shock Reducing the SNR {10, 5, 1, 1/2, 1/10}
Vconf,inst Increased link probability from hidden confounders Z . {0.2, 0.4, 0.6, 0.8, 1.0}
Vconf,lag Increased link probability to/from hidden confounder Xc. {0.1, 0.2, 0.5, 0.7, 0.9}
Vfaith,lag Lagged effects increasingly cancel out. {0.2, 0.15, 0.1, 0.05, 0.0}
Vfaith,inst Instantaneous effects increasingly cancel out. {0.2, 0.15, 0.1, 0.05, 0.0}
Vnl,mono Increasing the nonlinearity of sampled monotonic functions. See Eq. (21) in Apx. B.4

Vnl,trend Reducing number of interpolation points for B-spline functions. {25, 15, 10, 6, 4}
Vnl,rbf Higher probability of nonlinear links in the SCM (GP-RBF functions). {0.2, 0.4, 0.6, 0.8, 1.0}
Vnl,comp Higher probability of nonlinear links in the SCM (composite functions). {0.2, 0.4, 0.6, 0.8, 1.0}
Vinno,mul Signal dependent innovation noise portion. {0.1, 0.25, 0.5, 0.75, 0.85}
Vinno,time Time-dependent innovation noise portion. {0.1, 0.25, 0.5, 0.75, 0.85}
Vinno,auto Autoregressive innovation noise portion. {0.1, 0.25, 0.5, 0.75, 0.85}
Vinno,com Common source innovation noise portion. {0.1, 0.25, 0.5, 0.75, 0.85}
Vinno,shock Spike innovation noise portion. {0.1, 0.25, 0.5, 0.75, 0.85}
Vinno,uni Uniform additive innovation noise scale. {0.05, 0.25, 0.5, 0.75, 1.0}
Vinno,weib Weibull additive innovation noise scale. {0.05, 0.25, 0.5, 0.75, 1.0}
Vinno,var Changing interval from which the σ2

i are uniformly sampled. [0.5, 1], [0.1, 1], [0.1, 2], [0.1, 4], [0.1, 8]

Vstat Increasing number of SCM change points during generation of X . {1, 3, 5, 7, 9}
Vlength Reducing number of observed steps T {200, 100, 50, 25, 12}
Vq,empty Lengthening periods (ratios) of temporary loss of causal signal. 2× ratio ∈ {0.25, 0.345, 0.4, 0.425, 0.455}
Vq,missing Increasing probability of missing data points (interpolated). {0.2, 0.35, 0.5, 0.65, 0.8}
Vscale Mixing factor of the standardization. {0.0, 0.5, 0.7, 0.9, 1.0}

Table 3: A short description of how we scale all 27 violations contained in TCD-Arena. We include
also a list of the specific parameter values to reproduce our empirical study.

A.4 EXPERIMENTAL PROTOCOL DEPICTION

To clarify the protocol we used to asses the robustness of various CD methods against assumption
violations, we depict the process in Fig. 9. The process can be divided into three aspects. Data
generation, CD method evaluation and the extraction of robustness profiles.
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Figure 4: Various depictions of different violations of observational noise. We depict the severity of
the violation from left to right and denote the SNR above the figure.
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Figure 5: Graphical depictions of different violations and their intensities.
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(b) Distributions from which we draw the nonlinear functions of the composite family.
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(e) Relationship between different innovation noise terms in Xt.
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Figure 6: Graphical depictions of different violations and their intensities.
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Figure 7: Graphical depictions of different violations and their intensities.
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Figure 8: Graphical depictions of different violations and their intensities.

Figure 9: Experimental protocol that was used to create robustness profiles for various Causal
Discovery methods. The process can be divided into three steps: 1. Data generation, 2. CD method
evaluation and 3. Extraction of results.
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B APPENDIX — VIOLATION DETAILS

Fundamentally, the base SCM that we use for each violation is a linear causal process with additive
Gaussian noise:

Xi,t =

D∑
d=1

L∑
l=0

Ai,d,l · fi,d,l(Xd,t−l) + ϵt,i, (3)

where f is the identify function, A a coefficient tensor, X the time series and ϵ additive gaussian
noise. To bring this into a more compact form, omitting f :

Xi,t =

D∑
d=1

L∑
l=0

Ai,d,l ·Xd,t−l + ϵt,i, (4)

Further, we can bring this into matrix notation:

Xt = AXt...t−L + E (5)

where E is a vector of independent innovation noise variables. Crucially, the non-zero entries in A
correspond to links in the causal graph G. While sampling A in the base linear process, we control
the density of links using a corresponding probability that determines whether entries Ai,d,l are equal
to zero.

Finally, we can separate instantaneous effects as they are not always present and are implemented in
a different manner:

Xt = BXt +AXt−1...t−L + E (6)

where A is a coefficient matrix and B is a coefficient vector.

To implement all our violations, we alter this basic linear additive process.

B.1 ADDITIONAL DETAILS VOBS

To briefly recap, when we violate the no observational noise assumption, then we do not directly
observe the measurements Xi,t. Instead, we measure noisy versions X̂i,t = Xi,t + ζi,t. We define a
concrete list of observational noise variables and structures in Fig. 2a. In this section, we provide
additional details for the specific design choices of the various implemented ζi,t. Afterward, we
include the concrete formula that we use to control the signal-to-noise ratios when increasing the
respective observational noise violations.

First, we consider independent additive noise (Vobs,add), where we model the noise as standard normal
ζi,t ∼ N (0, 1).

Second, we consider multiplicative noise (Vobs,mul), which in the signal-dependent noise model is an
additive noise scaled by a function of the signal strength Torricelli et al. (2002); Liu et al. (2014).
Here, we use ζi,t ∼ N

(
0, (Xi,t)

2
)
, i.e., a multiplication with the identity of the signal Xi,t (see

Fig. 2a). Real-world examples include temperature sensors whose precision degrades at high signal
values Bentley (1984) and speckle noise in image processing Liu et al. (2014).

Third, Vobs,time, specifies noise with distribution characteristics changing over time. Real-world
examples of such a noise source would be sensor drifts or interference with periodic environmental
factors. We model this by scaling the variance by a periodic signal, i.e., ζi,t ∼ N

(
0, ((1 + αt) ·

sin(2πt/β))2
)
, where α and β are hyperparameters. In our experiments, we fix them to simulate an

annual cycle and a small linear trend to simulate sensor degradation. Specifically, we use α = 0.01
and β = 2 · 365 = 730.

Fourth, Vobs,auto indicates an autoregressive noise structure (ζi,t ⊥̸⊥ ζi,t−1) that can be found when
disturbances of the measurement process persist over multiple timesteps. Here, one could imagine
a sensor that is overshadowed by a cloud for multiple consecutive time steps. We model this term
as ζi,t ∼ N

(
αζi,t−1, (1− α)2

)
where α is the weighting coefficient which is a hyperparameter.
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Intuitively, the mean of the distribution depends on the last sampled noise, similarly to a random
walk. In our implementation, we equally mix the previous step with the random source, i.e., α = 1/2.
This design choice ensures that the overall process, while dependent on previous noise, is still
nondeterministic.

Fifth, noise sources across different variables can be dependent (Vobs,com), i.e., ζi,t ⊥̸⊥ ζj,t for i ̸= j.
Such a scenario can occur if multiple sensors are affected by a shared, unmeasured environmental
factor (e.g., temperature, power fluctuations). We model this by sampling from a single noise source
ζt ∼ N (0, 1) that is shared for all variables in X , i.e., ∀i ∈ {1, . . . , D} : ζi,t = ζt for a timestep t.

Finally, observed data might be subject to infrequent, large disturbances or measurement failures

(Vobs,shock). Using a shock probability pshock, we model ζi,t =
{
S with probability pshock

0 else
, where S

is a fixed scalar. In our experiments, we set = 5 and pshock = 0.05.

As specified in our main paper, we isolate the influence of the noise structure by using five discrete,
decreasing SNR levels. Inparticular, we are using {10, 5, 1, 1/2, 1/10} for all observational noise
violations in Fig. 2a.

To rescale the noise vector, to achieve a desired Signal-to-Noise Ratio (SNRtarget) with respect to X ,
we first compute the average power of the signal and the unscaled base noise ζbase.

The signal power, PX , is defined as:

PX =
1

T ∗D
D∑

d=1

T∑
t=1

X2
d,t

The power of ζbase, is:

Pζ,base =
1

T ∗D
D∑

d=1

T∑
t=1

ζ2base,d,t

Given a target SNRtarget, the desired power for the final noise, PN,target, is calculated as:

PN,target =
PX

SNRtarget

We find a scaling factor, α, that transforms the base noise power to the target noise power.

α =

√
PX/SNRtarget

Pζ,base

The final noise vector ζ is then obtained by scaling the base noise:

ζ = α · ζbase.

B.2 ADDITIONAL DETAILS VCONF

In our main paper, we specify two possible techniques to introduce confounding in a sampled
time series. Specifically, we separate instantaneous effects (Vconf,inst) and and lagged confounding
(Vconf,lag). We model the former by generating a set of N independent potential parent variables
Z1, ..., ZN . In all time steps t, the Zn are standard normally distributed and can act as common
causes for any variable in X . Hence, the causal assignment (Eq. (1)) for an observed variable Xi,t

becomes: Xi,t = fi (PaX(Xi,t) ∪ PaZ(Xi,t), ϵi,t). We scale Vconf,inst by increasing the probability
of links from Z to variables in X . In particular, we use the probabilities {0.2, 0.4, 0.6, 0.8, 1.0}.
To model Vconf,lag, generate the time series with an additional confounding variable XC . This variable
is part of the normal process, while iteratively generating the time series, and can influence any
variable Xi. Further, it can also be influenced by all other variables. After generating the complete
time series, we create the observed data X by removing XC , rendering it a hidden confounder. To
scale Vconf,lag, we again increase the probability of links from and to XC . Specifically, we use the
probabilities {0.1, 0.2, 0.5, 0.7, 0.9}.
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B.3 ADDITIONAL DETAILS VFAITH

To violate faithfulness, we have to ensure that there are variables with a connection in the causal
graph G, which have no measurable dependency, i.e., cancel each other out. Again, we separate
instantaneous effects (Xfaith,inst) and lagged effects (Xfaith,lag) and visualize the structures we implement
in Fig. 10.

Xi,t

Xj,t

Xk,t

(a) Structure for Vfaith,inst

Xj,t−2

Xi,t

Xk,t−1

(b) Structure for Vfaith,lag

Figure 10: The two structures, we enforce to violate faithfulness. Note that in Fig. 10b, some of
the variables are lagged. In both cases, the connection from Xj to Xi cancels out in part by the
connection over Xk, meaning Xi and Xj become more and more independent during the violations.

Now, to scale the violations of the faithfulness assumption, we adapt the parameters of the causal
graph to cancel out information of Xj from Xi, using the path over Xk (see Fig. 10). Specifically,
we implement the following assignments for Vfaith,inst and Vfaith,lag respectively:

v ∼ Uniform(0.3, 0.5)

Xk,t := 2vXj,t + ϵi,t

Xi,t := (−v + d)Xj,t + 0.5Xk,t + ϵi,t

v ∼ Uniform(0.3, 0.5)

Xk,t−1 := 2vXj,t−2 + ϵi,t

Xi,t := (−v + d)Xj,t−2 + 0.5Xk,t−1 + ϵi,t

Here d denotes the distortion parameter, which we decrease along the violation severity. We choose
the levels {0.2, 0.15, 0.1, 0.05, 0.0} for the violation severity in both cases. Further, we note that
this implementation is only one way, arguably the most straightforward, to generate Unfaithfulness.
However, as other ways of generating Unfaithfulness, such as deterministic relationships, conditional
links (XOR), or specific mixtures of causal models, are possible, we plan on extending TCD-Arena
in these directions in the future to gain additional insights.

B.4 ADDITIONAL DETAILS VNL

To introduce nonlinearities, studies on CD robustness sample functions from Gaussian Processes
(GPs) with Radial Basis Function (RBF) kernels Yi et al. (2025); Montagna et al. (2023a). The
smooth and oscillatory nature of these functions provides a difficult test case for algorithms that
assume linear relationships, motivating the development of more robust nonlinear methods.

However, they may not fully represent the diverse spectrum of nonlinearities encountered in real-world
applications. In many domains, such as those governed by physical constraints, nonlinearities often
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adhere to specific characteristics like monotonicity or saturation, rather than arbitrary nonlinearity
(e.g., SIR-models Kermack et al. (1997) or the Michaelis-Menten Kinetics Ainsworth (1977)).

In this section, we detail our four specific choices in nonlinear function distributions and the respective
design paradigms. Further, a critical consideration in generating synthetic time series from such
structural equations is ensuring the stability of the process (i.e., preventing divergence) because the
functions are applied iteratively. This often requires constraining the output range or characteristics
of the sampled functions fi,d,l. As the specific constraints depend on the functional class, we first
detail the normalization or bounding procedures possible during the generation process. Then we
note the respective choices for the four families of functions we investigate. We also formalize what
we mean by increasing the nonlinearity of the structural causal model (Eq. (2)).

B.4.1 DETAILS ON BOUNDARY CONDITIONS

For sampling nonlinear functions used to iteratively generate observations X using Eq. (6), it is
important to consider the boundary behavior when inputs are either very large x >> 0 or very small
x << 0. This is because if we leave the interval [−1, 1] coupled with possibly high coefficients in
A, it is possible for any of the D time series to diverge towards positive or negative infinity. This
behavior could lead to numerically unstable values even in our finite simulated time steps T . While
we will discuss specific checks to test for such conditions in Apx. C.1, we consider it here explicitly
for the set of violations Vnl concerning the functional relationships fi,d,l.

In our implementation, we focus on the input interval x ∈ [−1, 1]. Again, this specific setup is
motivated by the time series sampling process, where we apply these functions iteratively as described
in our main paper. To enforce saturation for x→ ±∞, we wrap sampled univariate functions f using
hyperbolic tangents to roughly enforce value ranges of [−1, 1]. Consequently, values contained in the
generated time series X stay close to [−1, 1].
Specifically, we either wrap a function f based on the input x or the output f(x) to ensure saturation.
In particular, we employ

sx(f(x)) =

{
f(x) if x ∈ [−α, α]
tanh(x) else

, (7)

and

sy(f(x)) =

{
f(x) if |f(x)| <= α

tanh(f(x)) else
, (8)

respectively. In Eq. (7) and Eq. (8), α defines the symmetric intervals around zero, which in our
experiments is set to one. When detailing the specific functional families used for the violations
Vnl,mono, Vnl,trend, Vnl,rbf, and Vnl,comp, we will specify which concrete wrapper sx or sy, we use to
ensure saturation of the sampled fi,d,l.

B.4.2 QUANTIFYING AND INCREASING NONLINEARITY

To formalize the concept of nonlinearity of a univariate function f , multiple scores were proposed in
the literature. For instance, roughness penalties for spline smoothing, e.g., (Ramsay & Silverman,
2005, Sec. 5.2.2), quantify it using the squared curvature of a function over a specified interval. In
particular, they calculate the deviation from a linear function as

Dcurv(f) =

∫ α

−α

(f ′′(x))2dx, (9)

where f ′′ denotes the second derivative. If and only if the second derivative is zero over the complete
interval [−α, α], then f is linear in said interval. Further, given the squared integrand, Dcurv is strictly
nonnegative with minima exactly when f is a linear function. Intuitively, this score quantifies changes
in the derivative of f , which is constant only for linear functions.

In contrast, in Emancipator & Kroll (1993), the authors measure the minimum possible mean squared
error of f to any linear function in the interval of interest. Specifically, for a given f , we follow their
approach and define the nonlinearity DMSE in an interval [−α, α] as

DMSE(f) = min
a,b∈R

(
1

2α

∫ α

−α

(
f(x)− (ax+ b)

)2
dx

)
. (10)
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Intuitively, DMSE measures the minimum possible mean squared error to any linear function in
[−α, α] and is greater than or equal to zero for any f . Further, if f can be expressed as a linear
function, then DMSE is exactly zero. To compute DMSE, we have to consider the optimal a∗, b∗ ∈ R,
which are necessary to minimize the mean squared error. In Emancipator & Kroll (1993), the authors
give general solutions for arbitrary interval boundaries. In our case of a boundary symmetric around
x = 0 of [−α, α], the optimal solutions that minimize the error for a function f are given by

a∗ =
3

2α3

∫ α

−α

xf(x)dx, and

b∗ =
1

2α

∫ α

−α

f(x)dx.

(11)

Hence, the measure for nonlinearity becomes

DMSE(f) =
1

2

∫ 1

−1

(
f(x)− (a∗x+ b∗)

)2
dx. (12)

Both Dcurv and DMSE behave differently and are not always aligned. Specifically, DMSE considers the
absolute distance to a line, meaning it can change if we multiply f with a constant factor, while Dcurv
would not change. However, Dcurv necessitates that the function is twice differentiable, i.e., in C2, in
the interval of interest [−α, α]. Hence, it cannot distinguish nonlinearity between step functions or
absolute values, even if they closely follow a linear function in absolute deviation. In contrast, DMSE
is finite in such cases but includes an optimization process. However, using linear regression, we can
empirically estimate DMSE for any given function.

In our work, we randomly generate time series. Hence, we are interested in the approximate behavior
of the resulting processes. We formalize this by describing families of distributions F of a function
f with stepwise varying nonlinearity. Specifically, we ensure that sampled functions f ∼ F have
controllable expected nonlinearity

Ef∼F [D(f))], (13)
where D is a measure of nonlinearity. Thus, to increase the nonlinearity of sampled processes, we
stepwise change F from which we sample the functions fi,d,l in Eq. (2).

Lastly, consider that in our formulation of the general structural causal model (Eq. (2)), the functions
in the causal graph G are univariate and connect two, possibly lagged variables. Hence, another
approach to increase the nonlinearity in a stepwise manner is to only sample a subset of the fi,d,l
from a distribution of nonlinear functions while keeping the rest linear. This leaves us with a third
possibility to increase the nonlinearity of the overall SCM.

In the following, we specify four families of distributions of nonlinear functions and establish how
specifically we change the nonlinearity of the resulting sampled time series processes.

B.4.3 1. MONOTONIC FAMILY:

For the first family, we sample uniformly one of three univariate functions, where a parameter β > 0
determines the nonlinearity. Before we formally analyze the influence of this parameter, we detail
our specific functions and motivate our design choices. We use

f1(x;β) = sgn(x) · |x|β ,

f2(x;β) = c

∣∣∣∣ (x+ 1)

c

∣∣∣∣β − 1, and

f3(x;β) = −c
∣∣∣∣ (x− 1)

c

∣∣∣∣β + 1,

(14)

where c is a hyperparameter which we set to 2 in our experiments. The specific choice of the added
and subtracted 1 in f2 and f3 depends on our interval of interest [−α, α], where we want to change
the non-linearity using β.

Note that for the following analysis and in our implementation, we focus on the interval [−1, 1].
This specific setup is motivated by the timeseries sampling process, where we apply these functions
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iteratively as described in our main paper. Hence, functions that scale values outside of this interval
likely lead to divergent processes. Furthermore, we wrap each function using a hyperbolic tangent of
the input (Eq. (7)) to ensure that our functions are saturated. Additionally, this ensures that values
stay roughly in the interval of interest [-1,1].

Our intention in designing this family of functions is to ensure monotonicity in the specified interval,
hypothesizing that this property is important for CD methods. We investigate this hypothesis
empirically in our main paper. As a first step, we now show that all three of our functions are
monotonically increasing in [−1, 1] and for β > 0.

To prove this statement, it is enough to show that the first derivative is greater than or equal to zero
for all x ∈ [−1, 1]. Note that given Eq. (2) in our main paper, monotonically decreasing functions are
possible because the coefficient matrix A can have negative entries. Hence, without loss of generality,
we focus in the following on the monotonically increasing nature. Specifically, consider our three
functions (Eq. (14)) only in the interval of interest [−1, 1]

f1(x;β) = sgn(x) · |x|β

f2(x;β) = c

(
(x+ 1)

c

)β

− 1,

f3(x;β) = −c
(
− (x− 1)

c

)β

+ 1,

(15)

where the absolute value can be removed from f2 and f3 because x± 1 is always positive or negative,
respectively.

We start our analysis with the derivative of f1, which has three cases, i.e., x < 0, x > 0, and x = 0.
We start with the first two:

Case 1, −1 ≤ x < 0: In this case, sgn(x) = −1 and |x| = −x apply, leading to f1(x;β) =
(−1)(−x)β . Using the chain rule, we find

f ′1(x;β) = (−1)β(−x)β−1 · (−1) = β(−x)β−1 (16)

= β|x|β−1. (17)

Case 2, 0 < x ≤ 1: Here, the absolute value becomes the identity and sgn(x) = 1. Thus, we have
f1(x;β) =, and

f ′1(x;β) = β · xβ−1 = β|x|β−1. (18)

In both cases, we can see that the derivative is equal to f ′1(x;β) = β|x|β−1. For all x ∈ [−1, 1] \ {0}
and β > 0 this is strictly nonnegative. Lastly, to prove that f1 is monotonically increasing in the
interval of interest, it is left to show that the derivative is also larger than or equal to zero for x = 0.
Here, the value depends on the specific setting of β. For β > 0, we have three cases and we study the
limits of f ′1 from both directions

Case 3.1, β = 1: In the linear case, we find

lim
x→0+

f ′1(x; 1) = lim
x→0+

1 · |x|0 = lim
x→0+

1 = 1, and

lim
x→0−

f ′1(x; 1) = lim
x→0−

1 · |x|0 = lim
x→0−

1 = 1.

In other words, the derivative is constant and larger than zero.

Case 3.2, β > 1: Here we find the exponent β − 1 > 0 leading to the following two limits

lim
x→0+

f ′1(x; 1) = lim
x→0+

β · |x|β−1 = β · |0|β−1 = 0, and

lim
x→0−

f ′1(x; 1) = lim
x→0−

β · |x|β−1 = β · |0|β−1 = 0.

Hence, we find a saddle point, where the rate of change is exactly zero when x = 0.
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Case 3.3, 0 < β < 1: In this case, the exponent β − 1 becomes negative meaning |x|β−1 = 1/|x|1−β .
Consequently, limits from both sides diverge towards

lim
x→0+

f ′1(x; 1) = lim
x→0+

β · 1

|x|1−β
= +∞, and

lim
x→0−

f ′1(x; 1) = lim
x→0−

β · 1

|x|1−β
= +∞.

Crucially, in all three cases, the limits of the derivative from both sides are equal and strictly
nonnegative. Hence, f1 is monotonically increasing in [−1, 1] for all β > 0.

Next, we investigate the derivatives of f2 and f3. Following the observation that for x ∈ [−1, 1] the
absolute values can be rewritten as in Eq. (15), we calculate f ′2 and f ′3 using the chain rule as

f ′2(x;β) = β

(
x+ 1

c

)β−1

, and

f ′3(x;β) = β

(
1− x
c

)β−1

.

(19)

For both functions, we have a strictly positive number (β > 0) which is multiplied by a base raised to
a real power. Remember that in our experiments, we set c = 2, meaning both (x−1)/2 and (1−x)/2 vary
in [0, 1], i.e., are strictly nonnegative. Therefore, raising it by a real power (β − 1) leads for both f ′2
and f ′3 to a positive factor times a nonnegative factor. Hence, for all x ∈ [−1, 1] and β > 0, we find
f ′2(x;β) ≥ 0 and f ′3(x;β) ≥ 0. Note that in both cases, when 0 < β < 1, we again find limits for
both derivatives, where they become infinite. Specifically, for f2, we observe a vertical tangent when
x = −1, and for f3, we similarly observe one for x = 1 (compare to case 3.3 of f1). Nevertheless,
the derivatives of all three functions f1, f2, and f3 are strictly nonnegative in the specified interval.
Hence, the functions themselves are monotonically increasing in [−1, 1] for all β > 0. Next, we
discuss how we can increase the nonlinearity of all three functions.

Monotonic Family Increasing Nonlinearity As specified above, for a given distribution of func-
tions, we can quantify the linearity by considering the corresponding expectation. For the monotonic
family of functions, the distribution we consider is a uniform choice of {fi, f2, f3}. Hence, for a
fixed β, we are interested in

Efj∼Uniform{f1,f2,f3}[DMSE(fj( · ;β))]. (20)
In the case of this uniform distribution, all three cases are equally likely. Thus, the expectation for a
fixed β is equal to the average of DMSE for the three functions. We specifically choose DMSE because
the integral over the squared second derivative (Dcurv) of f1 diverges for 1 < β < 1.5. Further, we
are interested in measuring the squared deviation from any possible line in [−1, 1].
Consider that the parameter β directly controls the nonlinearity of f1, f2, and f3. In particular, all
three functions are equal and linear in [−1, 1] if β = 1

f1(x; 1) = sgn(x) · |x| = x,

f2(x; 1) = c

(
x+ 1

c

)
− 1 = x,

f3(x; 1) = −c
(
−x− 1

c

)
+ 1 = x.

Hence, the expectation in Eq. (20) becomes zero for β = 1.

Now, by changing β away from 1, all three functions become nonlinear in the sense of DMSE.
Specifically, we construct five discrete levels ℓ ∈ {1, 2, 3, 4, 5} to scale Vnl,mono and sample β with
an equal chance from either of the following intervals

ℓ = 1→ β ∈ [1/2, 1] or β ∈ [1, 2],

ℓ = 2→ β ∈ [1/4, 1/2] or β ∈ [2, 4],

ℓ = 3→ β ∈ [1/8, 1/4] or β ∈ [4, 8],

ℓ = 4→ β ∈ [1/12, 1/8] or β ∈ [8, 12],

ℓ = 5→ β ∈ [1/20, 1/12] or β ∈ [12, 20].

(21)
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For a concrete level ℓ, we denote the lower and upper boundaries of the two intervals with [β
(ℓ↓)
L , β

(ℓ↓)
U ]

and [β
(ℓ↑)
L , β

(ℓ↑)
U ], respectively. Fig. 11 visualizes examples of functions drawn from the five levels of

the resulting distributions. Crucially, the intervals of the distinct levels only overlap at a maximum of
two concrete boundary points with any of the other intervals.

To analyze the non-linearity of our functions fj(·;β) in the interval x ∈ [−1, 1], we consider a second
expectation over β distributed uniformly from either of the two intervals given by a level ℓ, i.e.,

Eβ [Efj [DMSE(fj( · ;β))]], (22)

where we omit the specific distributions for brevity.

Here, both the function fj and β are sampled independently. Hence, Eq. (22) is equal to∫ β
(ℓ↓)
U

β
(ℓ↓)
L

1

2(β
(ℓ↓)
U − β(ℓ↓)

L )

3∑
j=1

1

3
DMSE(fj( · ;β))dβ

+

∫ β
(ℓ↑)
U

β
(ℓ↑)
L

1

2(β
(ℓ↑)
U − β(ℓ↑)

L )

3∑
j=1

1

3
DMSE(fj( · ;β))dβ,

(23)

where both of the integrals describe one of the two equally likely and symmetrical intervals from
which β is sampled, respectively. Further, for a fixed level ℓ, the factors contained in the intervals are
a fixed normalization given by the probability density of the corresponding uniform distributions over
the intervals [β(ℓ↓)

L , β
(ℓ↓)
U ] and [β

(ℓ↑)
L , β

(ℓ↑)
U ].

By linearity of expectation, we can reorder Eq. (23) into

1

3

3∑
j=1

(∫ β
(ℓ↓)
U

β
(ℓ↓)
L

DMSE(fj( · ;β))
2(β

(ℓ↓)
U − β(ℓ↓)

L )
dβ

+

∫ β
(ℓ↑)
U

β
(ℓ↑)
L

DMSE(fj( · ;β))
2(β

(ℓ↑)
U − β(ℓ↑)

L )
dβ

)
.

(24)

As stated above, the only point in all intervals we consider where the fj are linear is for β = 1. In
any other case, DMSE(fj( · ;β)) > 0 applies.

To now show that the expectation increases with the level ℓ, consider that the integrals in Eq. (24)
calculate averages over all values of DMSE for β in the corresponding intervals. Hence, it is enough
to show that for β > 0, DMSE is smooth and increases when moving away from the global minimum
at β = 1 in our specified intervals. In all cases, we focus our analysis on the set of functions
{f1, f2, f3} we defined above. Consider that for the interval [−1, 1], the optimal parameter for the
MSE minimizing line (Eq. (11)), become

a∗ =
3

2

∫ 1

−1

xf(x)dx, and

b∗ =
1

2

∫ 1

−1

f(x)dx.

(25)

We visualize examples for f1, f2, and f3 and the corresponding optimal lines in Fig. 11.

Now to determine whether DMSE is smooth with respect to changes in β, we have to consider the
three terms in Eq. (12) that are functions of β: fj , a∗, and b∗, where the last two also depend on the
specific function fj (Eq. (11), Eq. (25)).

For all three of our functions fj , the critical part is of the form |g(x)|β , where g(·) is defined in
Eq. (14). Hence, the following equality holds

|g(x)|β = eβ ln |g(x)|. (26)

In particular, the function has an exponential form, which is infinitely differentiable (C∞) with
respect to β for any fixed x (where g(x) ̸= 0). In other words, f1, f2, and f3 are smooth with respect
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Figure 11: Examples of f1, f2, and f3 with randomly sampled β from the respective level ℓ. We also
visualize the optimal line and denote the corresponding parameters.

to β in [−1, 1]. Further, as a direct consequence of the Leipnitz integral rule, e.g., (Protter & Morrey,
1985, Chap. 8), integrals of the form

∫ 1

−1
fj(x;β)dx and

∫ 1

−1
xfj(x;β)dx are also smooth functions

with respect to β. Finally, consider that DMSE is again an integral with respect to x of a square of the
sum of three functions that are smooth with respect to β. Hence, using the Leipnitz integral rule and
the chain rule for differentiation, we can conclude that DMSE is also smooth in β for the functions f1,
f2, and f3.

To show that the nonlinearity increases if we shift β away from the linear case of β = 1, we now
study ∂

∂βDMSE. In particular, using the Leibniz rule and the chain rule, we have

∂DMSE(fj)

∂β
=

∫ 1

−1

(
fj(x;β)− (a∗x+ b∗)

)
·
(
∂fj(x;β)

∂β
− x∂a

∗

∂β
− ∂b∗

∂β

)
dx.

(27)
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Expanding the product in the integral leaves us with three separate terms

∂DMSE(fj)

∂β
=

∫ 1

−1

(
fj(x;β)− (a∗x+ b∗)

)∂fj(x;β)
∂β

dx

−∂a
∗

∂β

∫ 1

−1

x(fj(x;β)− a∗x− b∗)dx

−∂b
∗

∂β

∫ 1

−1

(fj(x;β)− a∗x− b∗)dx.

(28)

Crucially, note that it is possible to move the partial derivatives ∂a∗

∂β and ∂b∗

∂β outside of the integral
because they are independent of x. This is important because the integrals in the second and third
terms are exactly the first-order optimality conditions of a∗ and b∗, respectively Emancipator & Kroll
(1993). Hence, both of these integrals vanish, and we are left with

∂DMSE(fj)

∂β
=

∫ 1

−1

(
fj(x;β)− (a∗x+ b∗)

)∂fj(x;β)
∂β

dx. (29)

In Eq. (29), we have two factors: the residual error to the MSE optimal line and the sensitivity of fj
with respect to changes in β. Given that the residual is a constant zero at β = 1 when our fj become
linear, we again confirm that this is a minimum of DMSE. Hence, ∂DMSE(fj)

∂β = 0 if β = 1. Consider
now that for all values β > 0 which are not β = 1, all our functions f1, f2, and f3 are nonlinear,
we know that DMSE has to be strictly larger than zero. This implies that β = 1 is a unique global
minimum. Given this observation and the previous insight that DMSE is smooth with respect to β,
we conclude that the averages over DMSE have to increase locally in the neighborhood of the global
minimum at β = 1. However, this does not necessarily imply that the only critical point is at β = 1.
To test whether our claim that the expected nonlinearity increases for an increase in level ℓ, we use
Eq. (11) and Eq. (12) to simulate the nonlinearity.
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Figure 12: Nonlinearity measured with DMSE for the three functions f1, f2, and f3 for increasing
values of β > 0.

We visualize DMSE in Fig. 12 and confirm that the nonlinearity increases when we move away from
the global minimum β = 1. However, we observe local maxima in the interval (0, 20]. Hence, it is
unclear how the expected nonlinearity for randomly sampled fj and β according to the defined levels
ℓ behaves.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

ℓ f1 f2 f3 E[DMSE(fj)]

1 0.005178 0.006049 0.005783 0.005670
2 0.032103 0.030878 0.029993 0.030991
3 0.066364 0.046946 0.048134 0.053815
4 0.087101 0.046346 0.044872 0.059440
5 0.103752 0.039548 0.037819 0.060373

Table 4: Approximated nonlinearity scores for the three functions f1, f2, and f3 and different levels ℓ.
The last column contains the accumulated DMSE over all fj for all β sampled in the respective level.

Thus, we estimate the expected nonlinearity (Eq. (24)) per level ℓ. Specifically, we sample 1000
β values for each level and use the theoretically optimal line parameters a∗ and b∗. We list the
approximated expected nonlinearity in Table 4. We find that the expected DMSE does stepwise
increase for f1 while it decreases slightly for f2 and f3 again after ℓ = 3. However, the accumulated
expectation over all functions (Eq. (22)) does grow for ℓ = 1, ..., 5. Therefore, we conclude that the
empirical nonlinearity does increase stepwise for our defined violation levels.

B.4.4 2. B-SPLINES FOLLOWING A TREND:

Next, we investigate univariate functions f that have an overall increasing trend but are not necessarily
monotonic in nature. To do this, we rely on B-spline interpolations, e.g, de Boor (2001). Specifically,
we sample sample NP scalar values (interpolation points) {v1, v2, ..., vNP

} from a uniform distri-
bution Uniform(−1, 1). Next, we sort the values vj and set them as targets for f(x) at equidistant
abscissae in the range x ∈ [−1, 1]. Consequently, a B-spline f(x) =

∑NP

j=1 ckBj,k(x) of degree
k = 3 is constructed to smoothly interpolate these points. The corresponding B-spline basis elements
are given by

Bj,0(x) =

{
1 if τj ≤ x < τj+1,

0 else

Bj,k(x) =
x− τj

τj+k − τj
Bj,k−1(x)

+
τj+k+1 − x
τj+k+1 − τj+1

Bj+1,k−1(x),

where we determine the entries of the knot vector τ as described in de Boor (2001) using the
implementation provided in Virtanen et al. (2020). Given that the basis functions are piecewise cubic,
the fitted curve is not monotonic, as visualized in Fig. 5f. To ensure saturation, we use the procedure
described in Eq. (7). For Vnl,trend, we sample different fi,d,l for all non-zero interactions in Eq. (2)
by sampling different vj . Next, we discuss how we stepwise increase in nonlinearity of the sampled
functions.

Number of Inter- Efspline [DMSE(fspline)]polation Points

25 0.003792
15 0.006517
10 0.010198
6 0.017728
4 0.019475

Table 5: Estimated expected DMSE for the spline functions sampled for the five decreasing number of
interpolation points.

B-Splines Increasing Nonlinearity To stepwise scale the nonlinearity of the sampled functions
fi,d,l, we decrease the number NP of interpolation points. Specifically, we use the following values:
{25, 15, 10, 6, 4}. Intuitively, a higher number of interpolation points indicates more values vj that
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Figure 13: Nonlinearity measured with DMSE for the spline functions for an increasing number of
interpolation points. We report the average and the standard deviations.

have to be interpolated and which are strictly increasing. To empirically show that a larger NP leads
to more linear functions in the sense of DMSE (Eq. (12)), we use Eq. (11) to approximate the average
nonlinearity in Fig. 13. Further, following the uniform distribution of independently sampled vj , we
approximate the expected DMSE of our concrete Vnl,trend in Table 5. Similar to the monotonic family
of functions, we observe that the nonlinearity of sampled fi,d,l increases on average.

B.4.5 3. GAUSSIAN PROCESSES WITH RBF KERNELS:

Related studies focusing on robustness of CD methods for i.i.d. sample data Montagna et al.
(2023a); Yi et al. (2025) primarily change the standard linear relationships to interactions modeled
by Gaussian processes using Radial Basis Function (RBF) kernels. In our third family of functions
for the violation Vnl,rbf, we follow the same approach. Specifically, we use a Gaussian process prior
f(x) ∼ GP(0, κRBF(x, x

′)) with the RBF kernel κRBF(x, x
′) = exp

(
− (x−x′)2

2λ2

)
, where λ is the

length scale which we set to one. In particular, we use the implementation of Pedregosa et al. (2011).

Further, we do not employ wrapping in this case as the mean zero of the Gaussian process ensures that
the sampled functions do not diverge. Next, we describe how we stepwise increase the nonlinearity
of the resulting SCM.

Stepwise Increasing Nonlinearity To stepwise increase the nonlinearity, we use a different ap-
proach for Vnl,rbf. Specifically, we sample nonlinear links fi,d,l with an increasing probability from the
Gaussian process. Here, we use the following probabilities: {0.2, 0.4, 0.6, 0.8, 1.0}. All remaining
links in the causal graph G are linear and use the identity function in Eq. (2). Hence, we increase
the nonlinearity of the overall SCM by increasing the likelihood of sampling nonlinear links. To be
specific, for our two empirical scenarios (D,L) = (5, 3) and (D,L) = (7, 4), we have a maximum
of 5 × 5 × (3 + 1) and 7 × 7 × (4 + 1) links, respectively, where D is the number of variables
and L the number of lags (+1 for instantaneous). For lagged links, we employ the link probabilities
plag = 0.075 or plag = 0.15, while for instantaneous links, we use pinst = 0.0 and pinst = 0.1 (see
Eq. (6)).

We list the number of expected links for the eight combinations in Table 6. For each of these eight
combinations, we can calculate the number of expected nonlinear links for the increasing intensities
{0.2, 0.4, 0.6, 0.8, 1.0} via a standard multiplication because they are sampled independently. This
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(D,L)
(5,3) (7,4)

(plag, pinst) = (0.075, 0.0) 5.625 14.7
(plag, pinst) = (0.075, 0.1) 8.125 19.6
(plag, pinst) = (0.15, 0.0) 11.25 29.4
(plag, pinst) = (0.15, 0.1) 13.75 34.3

Table 6: Expected number of links in sampled SCMs. Here, D denotes the number of variables in
X and L denotes the number of lags. The probabilities (plag, pinst), correspond to the likelihood of
lagged and instantaneous connections in the causal graphs G (i.e., nonzero elements in A and B,
Eq. (6)).

leads to the following increasing numbers of expected nonlinear links for the smallest and sparsest
scenario (D = 5, L = 3, plag = 0.075, pinst = 0.0): {1.125, 2.25, 3.375, 4.5, 5.625}. Conversely, we
get the following expected nonlinear links in the largest scenario (D = 7, L = 4, plag = 0.15, pinst =
0.1): {6.86, 13.72, 20.58, 27.44, 34.3}. Hence, we conclude that sampling the SCM in this stepwise
manner progressively increases the amount of nonlinear interactions.

4. Composite Functions Lastly, and inspired by symbolic regression, we sample the fi,d,l through
a random hierarchical composition. First, we define a set of base functions B. Specifically, we
implement {x1/3, tanh(x), sinh−1(x), max(x, 0), x, x2, |x|, cosh(x), sin(x), cos(x)}. Then, m inde-
pendent chains h(j)(x) are formed, each by randomly selecting and sequentially composing Nβ

functions from B, i.e., h(j)(x) = bNβ
(. . . b2(b1(x)) . . .). Finally, the results of the independent

chains get multiplied by −1 with a probability of 1/2, i.e., c(j)flip ∼ Uniform{−1, 1}, before all chains
get summed up to

f(x) =

m∑
j=1

c
(j)
flip · h(j)(x).

This construction allows for a wide range of possible, potentially highly nonlinear functions. Hence,
we apply Eq. (8) to enforce stable behavior. In our empirical evaluation, we use two chains, each
composed of two base functions uniformly sampled from B to model Vnl,comp. Next, we describe
how we stepwise increase the nonlinearity of the resulting SCM.

Stepwise Increasing Nonlinearity For Vnl,comp, we strictly follow the procedure also employed for
Vnl,rbf. Specifically, we increase the probability of sampling nonlinear interactions when generating
the SCM. Again, we use the following probabilities: {0.2, 0.4, 0.6, 0.8, 1.0} to scale the violation
intensity. Table 6 summarizes the number of links for the various scenarios in our experiments, and
the same calculations as for Vnl,rbf apply to estimate the expected number of nonlinear links. Hence,
we conclude that sampling the SCM in this stepwise manner progressively increases the amount of
nonlinear interactions.

B.5 ADDITIONAL DETAILS VINNO

Since the standard assumption of independent additive innovation noise is often violated in practice.
Here, we detail our setup for evaluating the impact of such violations. Specifically, we consider
three different paradigms: First, we discuss direct changes to the noise structures by introducing
dependencies. Second, we shift the distribution from Gaussian to non-Gaussian variations. Lastly,
we consider widely different variances leading to stronger variations between the variables Xi, which
can be problematic Peters & Bühlmann (2014).

In the first set of violations, we test robustness against five alternative noise structures following our
discussion of observational noise in Apx. B.1. To be specific, implement Vinno,mul, Vinno,auto, Vinno,com,
Vinno,time, and Vinno,shock.
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Violation Definition of ϵi,t Depends On

Vobs,mul ϵi,t = Xi,t · ηi,t the signal Xi,t

Vobs,time ϵi,t = ηi,t · (1 + αt) · sin(2πt/β) time step t
Vobs,auto ϵi,t = α · ϵi,t−1 + (1− α) · ηi,t autoregressive
Vobs,com ∀i : ϵi,t = ηt —

Vobs,shock ϵi,t ∼
{
S with prob. pshock,

0 else.
fixed scalar S,
shock prob. pshock

Table 7: First set of innovation noise violations. In our experiments, the sources of randomness for
the variables Xi are routed in the innovation noise ϵi,t, which are typically additive and standard
normal. Here, we include various dependencies by using random variables ηi,t and ηt

(
standard

normal N (0, 1)
)
, which are subsequently influenced by various factors, e.g., the signal strength

(Vobs,mul). Both α and β denote hyperparameters.

All of these structures change the distributions of the independent additive noise ϵi,t in Eq. (2). We
list the specific distributions in Table 7. Regarding the corresponding hyperparameters, i.e., α, β, S,
and pshock, we use the same setting as for the observational variants (see Apx. B.1)

In contrast to scaling the SNR, we blend the different ϵi,t distributions with a decreasing amount of
standard normal noise to intensify the five violations. This is important because the innovation noise
is part of the signal (Eq. (2)). In particular, we use alpha blending, i.e.,

αϵi,t + (1− α)εi,t, (30)

where εi,t ∼ N (0, 1). We use the following increasing α values in our experiments:
{0.1, 0.25, 0.5, 0.75, 0.85}
For the second set of innovation noise violations, i.e., Vinno,uni and Vinno,weib, we progressively blend
non-Gaussian distributed noise with standard normal noise. Let ω ∼ Ωng be a non-Gaussian random
variable and let ψ ∼ N (0, 1) be standard normal noise. Then, we define ϵi,t as

ϵi,t =
(1− α)(ω − E[ω]) + αψ√

var(ω)(1− 2α) + α2(var(ω) + 1)
, (31)

where α is a blending parameter. To stepwise scale the intensity, we use the following blending
values for α: {0.95, 0.75, 0.5, 0.25, 0.0}.
The denominator in Eq. (31) and substracting E[ω] in the numerator ensure that E[ϵi,t] = 0 and
var(ϵi,t) = 1. To verify this, note that the expectation is linear and the denominator is a constant factor
for a fixed ω. Hence, it is enough to analyze the numerator. Here, E[ω]−E[E[ω]] = E[ω]−E[ω] = 0
and E[ψ], which directly implies E[ϵi,t] = 0. Further, to show that the denominator scales the mixture
to unit variance, we have to show that it is equivalent to the standard deviation of the numerator. Given
that the standard deviation is the square root of the variance, it is enough to show that the variance of
the numerator is equal to the squared denominator. Crucially, both ω and ψ are independent random
variables, which means their covariance is zero. Hence, var((1− α)(ω − E[ω]) + αψ)

= (1− α)2var(ω) + α2var(ψ)

= (1− 2α+ α2)var(ω) + α21

= var(ω)(1− 2α) + α2(var(ω) + 1),

i.e., the squared denominator in Eq. (31). A direct consequence of this is that var(ϵi,t) = 1.

In our experiments, we use two different non-Gaussian distributions to model the violations Vinno,uni
and Vinno,weib. In the first case, for Vinno,uni, we use a uniform distribution over the interval [−2, 2]
with the corresponding density

pUniform(x) = 1[−2,2](x) ·
1

4
, (32)

where 1[−2,2] is a unit function that is equal to one iff x ∈ [−2, 2].
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Figure 14: The densities of the two non-Gaussian distributions, we employ to violate standard normal
Gaussian innovation noise. Specifically, we employ a Weibull distribution Weibull (1939) with scale
λ = 1 and shape a = 1.5 and a uniform distribution over the interval [−2, 2].

In the second case, for Vinno,weib, we employ a Weibull distribution Weibull (1939). Such a distribution
is described by two parameters: a scale λ, which we set to one, and shape a, where we use 1.5. The
corresponding density is defined as

pWeibull(x) =
a

λ

(x
λ

)a−1

e−(x/λ)a . (33)

We visualize the densities of both non-Gaussian distributions in Fig. 14

Lastly, as the final, separate violation concerning innovation noise, we model a high variance for the
different variables Vinno,var, which can be problematic Peters & Bühlmann (2014). We implement this
violation by sampling one variance σ2

i for each variable Xi at the beginning of the sampling process,
which is then used in each timestep to draw ϵi,t ∼ N (0, σ2

i ). In particular, we sample the σ2
i uniformly

from an interval. Now, to stepwise intensify Vinno,var, we increase the length of these intervals.
Specifically, we use the following order of intervals: [0.5, 1], [0.1, 1], [0.1, 2], [0.1, 4], and [0.1, 8] to
model the widening uniform distributions.

B.6 ADDITIONAL DETAILS VSTAT

Stationarity assumes that the structural assignments in Eq. (6) do not change during the genera-
tion/measurement process. To violate this assumption, we keep the nonzero entries in A, but resample
the coefficients during the generation of the time series. This approach models changes in the SCM,
and we scale Vstat by increasing the number of change points Nchange. Specifically, we introduce one,
three, five, seven, or nine changes to the structural assignments. To change the nonzero coefficients
Ai,d,l, i.e., the causal skeleton, we uniformly sample an additive change from Uniform(−0.6, 0.6).
In our experiment, we set the number of time steps T either to 250 or 1000. Hence, to introduce
Nchange ∈ {1, 3, 5, 7, 9} change points, we use the time steps denoted in Table 8, respectively.

B.7 ADDITIONAL DETAILS VLENGTH

To reliably estimate relationships and identify patterns, CD algorithms need a sufficient number of
samples. To violate this necessity (Vlength), we reduce the number of time steps T we sample from
Eq. (6). Specifically, we employ the following five discrete levels T ∈ {200, 100, 50, 25, 12}.
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Selected Time Steps
Nchange T = 250 T = 1000

1 125 500
3 100, 125, 150 400, 500, 600
5 75, 100, 125, 150, 175 300, 400, 500, 600, 700, 800
7 50, 75, 100, 125, 150, 175, 200 200, 300, 400, 500, 600, 700, 800
9 25, 50, 75, 100, 125, 150, 175, 200, 225 100, 200, 300, 400, 500, 600, 700, 800, 900

Table 8: The specific time steps we use for the respective number of change points to violate
stationarity (Vstat). We separate the time steps for the two settings T = 250 and T = 1000 in our
experiments.

B.8 ADDITIONAL DETAILS VQ

In practical applications, data quality cannot always be controlled, leading to various degradations
beyond observational noise. We investigate two quality violations that are common in various
domains, i.e., sensor failures Vq,empty and missing values Vq,missing. They differ because in the former
scenario, we change the parent set of variables to ∅ during the generation of X , while in the latter,
we remove and linearly interpolate periods of measurements after generation.

To scale Vq,missing, we increase the probability to delete observations Xi,t completely at random
Heitjan & Basu (1996). Specifically, we use premove ∈ {0.2, 0.35, 0.5, 0.65, 0.8} before we use linear
interpolation to fill X again.

T = 250 T = 1000

Length Ratio Empty Periods Length Ratio Empty Periods Avg. Ratio

50 2× 0.2 (50, 100) and (150, 200) 300 2× 0.3 (100, 400) and (600, 900) 0.25
75 2× 0.3 (25, 100) and (150, 225) 390 2× 0.39 (50, 440) and (560, 950) 0.345
90 2× 0.36 (20, 110) and (140, 230) 440 2× 0.44 (40, 480) and (520, 960) 0.4

100 2× 0.4 (20, 120) and (130, 230) 450 2× 0.45 (40, 490) and (510, 960) 0.425
110 2× 0.44 (10, 120) and (130, 240) 470 2× 0.47 (20, 490) and (510, 980) 0.455

Table 9: The specific time periods, denoted by (start, end), where we set the parent sets to ∅ during
generation of X , i.e., Vq,empty. We separate the time steps for the two settings T = 250 and T = 1000
in our experiments. In all cases, we introduce two periods with no causal signal and scale the length
to increase intensity. We denote the average ratio of empty periods for sampled time series in the last
column. Note that this ratio, i.e., the violation intensity, increases with each row.

To control the intensity of Vq,empty, we increase the length of periods, where we remove the causal
signal during the generation of X . Specifically, we introduce two such periods per sampled time series
and list the concrete intervals in Table 9. Crucially, the average ratio of each of the empty periods
during the T = 250 or T = 1000 time steps increases as follows: {0.25, 0.345, 0.4, 0.425, 0.455}.

B.9 ADDITIONAL DETAILS VSCALE

Related works suggest that synthetically generating data introduces artifacts beneficial for identifying
causal order, e.g., Ormaniec et al. (2025). This phenomenon is problematic because it can lead to an
overestimation of a CD method’s efficacy. Because it can be remedied using standardization to mean
zero and variance one Reisach et al. (2021); Kaiser & Sipos (2021), we violate this condition by
mixing the original observations X with its standardized version X after generating the time series.

In particular, in X all variables Xi are standardized over the time steps t. Then, the observations
X̂ = αX + (1− α)X , where α determines the intensity of Vscale. Specifically, in our investigation,
we use α ∈ {0.0, 0.5, 0.7, 0.9, 1.0}.
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Cross Correlation CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
Temporal Dynamics

Lagged Effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Instantaneous Effects ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

Observational noise ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Hidden confounding ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Unfaithfulness ✓ † ✓ ✓ ✗ ✗ ✓ ✓

Nonlinearity ✗ ✓ ✗ ✗ ✓∗ ✓∗ ✗ ✓

Innovation noise
Non-Additive noise ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Gaussian additive noise ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

NonStationarity ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 10: Comparison of core assumptions and capabilities of selected causal discovery algorithms.
Note, PCMCI and PCMCI+ can handle both linearity and nonlinearity. We, however, only test these
methods with a linear conditional independence test in this study (partial correlation and robust
partial correlation). Therefore, we mark their ability to handle nonlinearity with a ∗. We found no
information on the faithfulness assumption for CausalPretraining and therefore mark it with †. Finally,
we omit data quality issues such as Vlength, Vq, or Vscale from this table as they are typically not
mentioned as explicit assumptions.

C APPENDIX — EXPERIMENTAL SETUP

C.1 SAMPLING DETAILS

In this section, we describe the data generation process that we use throughout our experiments and
for all violations. Generally, we base all of our experiments on Eq. (6) and alter it according to the
violations described in Apx. B. We employ two combinations of the number of variables D and
the maximum lags L, resulting in a small and a big scenario. Specifically, we set (D,L) = (5, 3)
or (D,L) = (7, 4), respectively. Then, with a probability plag ∈ {0.075, 0.15} and probability
pinst ∈ {0.0, 0.1} links in A and B are being selected to be nonzero. This leads to eight “data regime”
combinations, and we list the expected number of links in Table 6. Next, each nonzero element in
A and B receives a value that is uniformly sampled from the joint interval [−0.5,−0.3] ∪ [0.3, 0.5].
Notably, we explicitly exclude coefficients close to 0 to render causal relationships detectable. If
f is not the identity function (i.e., for Vnl), a univariate function is drawn from the corresponding
distribution. We then generate X iteratively using Eq. (6). To initialize, we sample every variable
from

(
N (0, 1)

)
.

Before we start to generate X , we need to evaluate the following two conditions: First, concerning
instantaneous coefficients B, we guarantee the sample graph to be acyclic by checking the following
necessary and sufficient condition for acyclicity:

tr(eB)
!
= D, (34)

where tr is the trace operator. If this condition is not met, we resample B until it passes. To account
for potential divergence of the SCM, we test the VAR stability of A. In particular, we investigate
whether it is stationary by evaluating the eigenvalues of its companion matrix F :

F =


At−1 At−2 . . . At−3 At−4

ID 0 . . . 0 0
0 ID . . . 0 0
...

...
. . .

...
...

0 0 . . . ID 0

 (35)

where ID is a D ×D identity matrix. To guarantee the stationarity of the corresponding process, all
eigenvalues of F have to lie in the complex unit circle. This condition applies if

max
i
|λi(F )| < 1. (36)

If it does not hold for the sampled A, we resample the coefficients.

However, if the fi,d,l are nonlinear, then the VAR stability test does not apply. Hence, we additionally
check for divergence with the following two tests: First, while generating X we continuously check
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whether any variable in X is monotonically increasing over the last T time steps by testing:

∃i ∈ {1, . . . , d},∃t s.t. ∀k ∈ {0, . . . , T },
|Xi,t−k−1| < |Xi,t−k|

(37)

If this condition is met, we halt the generation process and resample a new SCM. In our experiments,
we set T = 10.

Second, we test whether any time series in X holds values higher than a maximum value (likely
indicating divergent processes). In our experiments, this value is set to ±25. Again, if this condition
is met, we halt the generation process and resample a new SCM.

For each violation intensity and data regime, we sample 100 random SCMs along with a corresponding
X to calculate a single AUROC score. As discussed in our main paper, a “data regime” is a
combination of D,L, plag, and pinst (compare Table 6). Further, we vary the length of the time series
T ∈ {250, 1000}. In summary, this results in 2 × 2 × 2 × 2 × 100 = 1600 SCMs per individual
violation intensity. Considering that we evaluate 5 stepwise violation intensities, we sample 8000
SCMs to evaluate the robustness of the eight CD methods for each of the 27 violations contained in
Table 2, 4000 each for the small ((D,L) = (5, 3)) and big scenarios ((D,L) = (7, 4)).

C.2 CAUSAL DISCOVERY METHODS DETAILS

We include details on the method assumptions of all causal discovery methods involved in Table 10.
Note, many of the data quality assumptions that we test, such as Vlength, Vq, or Vscale, are not explicitly
assumed by most methods, however they are nonetheless often implicitly modeled in the synthetic
data that is used for testing algorithm performance.

C.3 HYPERPARAMETER SEARCH SPACES

In Table 11, we include a list of the full hyperparameter space that we evaluated for each causal
discovery method used throughout this paper.

C.4 ENSEMBLE TRAINING

To train our examples, we generate a separate training dataset that holds SCMs and corresponding X
from all violations, respective intensities, and data regimes. These samples are combined into a single
joint training dataset that we use to train Ensembles with trainable parameters. In the most general
sense, all our ensembles take a tensor of the shape B ×D ×D × Lmodel ×M , where M denotes
the number of individual CD methods, D the number of variables, Lmodel the model order and B
the batch size. This tensor is then, if necessary, reshaped to match the first layer of the respective
network architectures (EnsembleLinear, EnsembleMLP, and EnsembleMLP). All network architectures
return a B ×D×D×Lmodel tensor that is directly used as the final predicted graph G. Notably, for
the EnsembleMean and EnsemblePareto we directly recombine elements in the input tensor by either
taking the average over the model dimension M or selecting the optimal element. EnsembleLinear
is implemented as a single fully-connected layer without an activation function. For EnsembleMLP,
we use a 3-layer MLP with RELU activation functions. For EnsembleConvMixer we use a standard
ConvMixer architecture Trockman & Zico Kolter (2022) where we set the input channels to D and
the hidden dimension to D ×D × Lmodel. Further, we evaluate the hyperparameters specified in
Table 12 to select the best model that we report in Fig. 3a:

C.5 REPRODUCABILITY AND COMPUTATIONAL RESOURCES

To facilitate the reproduction of our results, we have made all code and necessary resources available
in the TCD-Arena repository. This repository includes seeded functionality to generate the datasets
used in this paper, along with hashing functions to verify their integrity. The code for all evaluated
Causal Discovery methods, ensembling approaches, and the scripts to generate the figures presented
are also included. Experiments were conducted on a 7-node Slurm cluster using 14-24 CPU cores per
node, with the exception of ensemble training, which was performed on a single Nvidia RTX 3090
GPU. While most individual experiments are not resource-intensive, reproducing the complete set of
approximately 50 million causal discovery attempts will require a multi-day runtime on a comparable
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Method (Combos) Parameters Values
Cross Correlation (3) Lmodel L− 2, L, L+ 2

CausalPretraining (2) Architecture TRF, GRU

Varlingam (6) Lmodel L− 2, L, L+ 2

Prune True, False

GVAR Lmodel L− 2, L, L+ 2

Use coeff, p-val

PCMCI (6) Lmodel L− 2, L, L+ 2

CI test ParC, RParC

PCMCI+ (12)
Lmodel L− 2, L, L+ 2

CI test ParC, RParC

RLL True, False

NTS-NOTears (48)

Lmodel L− 2, L, L+ 2

h-tol 1e-60, 1e-10

Rho-max 1e+16, 1e+18

Lambda1 0.005, 0.001

Lambda2 0.01, 0.001

Dynotears (48)

Lmodel L− 2, L, L+ 2

Lambda-w 0.1, 0.3

Lambda-a 0.1, 0.3

Max iter 100, 40

H-tol 1e-8, 1e-5

Table 11: Hyperparameter space and number of combinations in the hyperparameter grid. For
NTS-NOTears and Dynotears, we use default parameters (first value) and an alternative value per HP.
ParC and RParC denote the Partial Correlation conditional independence test and the Robust Partial
Correlation conditional independence test, respectively. RLL denotes the resetting of the lagged
links before calculating instantaneous effects. We refer to the implementations of all methods in
TCD-Arena for further details.

setup. However, as many scripts can be executed in parallel on a Slurm cluster, the total runtime may
vary depending on the specific hardware and configuration. As the execution of various CD methods
requires vastly different computational resources, we provide statistics on the average runtimes per
tested hyperparameter configuration and per method in table 13.
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Category Hyperparameter Evaluated Values
Common to all architectures

General Batch Size {16, 128}
Loss Function {BCE, MSE}

Optimizer Learning Rate {1e-4, 1e-2}
Base Model: Linear
Base Model: MLP

Architecture Hidden Layer 1 {264, 512, 686, 1360}
Hidden Layer 2 {128, 264, 392, 792}

Base Model: ConvM
Regularization Dropout Rate {0.0, 0.1}
Architecture Depth {3, 6}

Kernel Size {4, 8}
Patch Size {1, 3}

Table 12: Summary of hyperparameters that were evaluated for CD ensembling.

Seconds per 100 samples
Method

CausalPretr 38±2

PCMCI 259±85

NTS-NOTears 595±203

PCMCI+ 402±160

Varlingam 25±9

Dynotears 45±12

GVAR 11±0

Cross Corr 15±†

Table 13: Average computational efforts (in seconds) per 100 samples and for a single hyperparameter
configuration for each of the 8 CD strategies. The standard deviations denote differences between
Hyperparameter configurations. As Cross Corr has no Method hyperparameters, no standard deviation
is provided. Note that we run 8,000 samples per HP combination and violation (See Section 4).

D APPENDIX — ADDITIONAL RESULTS

D.1 ADDITIONAL METRICS

To extend our empirical evaluation, we include additional metrics of robustness quantification in
Fig. 15 - Fig. 18. As potential metrics are vast, we additionally include the raw AUROC scores in
our repository. Generally, we find that most metrics show a similar picture (e.g., the ordering of
methods for when looking at performance metrics of GINST or the generally low performance of
Cross Correlation and CausalPretraining. However, some small differences are notable, e.g., the
robustness evaluation of PCMCI and PCMCI+ against Vobs,shock. Here, the average F1-max score
suggests a superior performance of PCMCI, which is not perceptible under average AUROC scores.
We view this observation as evidence that there are more fine-grained differences in robustness that
still need to be uncovered.

D.2 DISCUSSION ON METRIC FAILURE CASES

In this study, we fundamentally quantify the robustness of a method against an assumption violation
based on a limited number of samples (five violation intensities). As the underlying robustness
is often continuous, we deem it reasonable to discuss under which conditions our methodological
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Figure 15: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise
assumption violations measured as average maximum F1 over various data regimes. Left: results
for GLWCG. Right: results for GINST. Colors specify: Observational noise: , Nonlinearity: ,
Innovation noise: , Graph structures: , Data representation: .
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Figure 16: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise
assumption violations measured as average maximum Accuracy over various data regimes. Left:
results for GLWCG. Right: results for GINST. Colors specify: Observational noise: , Nonlinearity:

, Innovation noise: , Graph structures: , Data representation: .

approach provides potentially misleading results. For this, we depict three simplified scenarios in
Fig. 19.

In the first scenario (green box), we find a consistent separation between the robustness of different
methods. In this ideal scenario, the green curve consistently maintains a higher performance than the
blue curve throughout the violation range. The discrete measurements (marked by stars) accurately
capture this relationship, leading to a faithful robustness score. In the second scenario (blue box), the
curves cross. The discrete sampling points suggest that the performance of both curves is roughly
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Figure 17: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise
assumption violations measured as average AUROC over various data regimes. For each method,
we here report the optimal hyperparameters individually selected for each violation. Left:
results for GLWCG. Right: results for GINST. Colors specify: Observational noise: , Nonlinearity:

, Innovation noise: , Graph structures: , Data representation: .
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Figure 18: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise
assumption violations measured as the lowest AUROC over all data regimes and violation levels..
Left: results for GLWCG. Right: results for GINST. Colors specify: Observational noise: ,
Nonlinearity: , Innovation noise: , Graph structures: , Data representation: .

equal across the measured violation levels, resulting in a very similar robustness score. However,
this discrete evaluation fails to account for the precise dynamics of the robustness curves. Notably,
depending on the application, either the blue or the green curve could be preferable. In the third
scenario, a non-monotonic and highly volatile curve highlights the most critical risk. At the discrete
evaluation points, the blue curve is preferred even though its robustness is disputable.
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Figure 19: Depiction of problematic relationships between violation property and robustness measured
as average AUROC for a single data regime and a single method configuration. Left: Optimal case in
which all performance curves are monotonically decreasing and one curve is Pareto superior. Middle:
While both curves are monotonically decreasing, our metric does not directly distinguish between
them. Right: If any performance curve is highly non-monotonic, the comparison can be misleading.

D.3 ANALYSIS OF INDIVIDUAL VIOLATIONS

To contextualize the results in our main paper, we highlight a couple of individual results that we
find worth mentioning. Generally, we find that a few violations favor distinct method archetypes
when uncovering GLWCG (Fig. 1). Concerning Vobs,com, score-based approaches (PCMCI,PCMCI+)
seem to be less robust. On the other hand, for Vq,missing they seem to be favored. Further, Dynotears
seems to struggle heavily with Vinno,auto and drops even below baseline performance Finally, while
CausalPretraining and Cross Correlation are generally not as robust to various violations, their
difference towards all other methods is especially pronounced for Vconf,lag. Concerning the uncovering
of GINST (Fig. 2b), we find that Dynotears and PCMCI+ are quite robust, while the other methods are
not able to reach similar violation robustness. With this, we want to conclude again that the most
important insight of our empirical investigation is that different causal discovery methods are to be
preferred under specific assumption violation scenarios. This has direct implications concerning
real-world applications as it suggests that a clever selection of CD methods, be it by hand or through
ensembling, can improve the confidence in uncovering a latent SCM.

D.4 VISUALIZATIONS OF MISSPECIFIED MODELS

In Fig. 20 we visualize robustness profiles for misspecified modelling parameters, i.e., Lmodel ̸= L.
While under ↓ L, the robustness of all methods decreases visibly, under ↑ L, changes are negligible.

D.5 HYPERPARAMETER SENSITIVITY

To provide a comprehensive view of the hyperparameter sensitivity of all CD methods, we include
graphics that illustrate the relationship between violation severity and performance for all combina-
tions of hyperparameters and data regimes per method. Fig. 21-Fig. 23 contain the sensitivities for
lagged effects, while Fig. 24 and Fig. 25 depict methods estimating instantaneous links. Notably,
the performance of NTS-Notears is often highly hyperparameter-dependent, and a poor selection
of parameters can result in almost arbitrary performance. Furthermore, we observe that Dynotears
occasionally exhibits unintuitive performance curves, where an increase in violation does not nec-
essarily correspond to a decrease in performance (e.g., Vvar or Vinno, time). Notably, this is consistent
with Kaiser & Sipos (2021), where scale invariance of the NOTEARS algorithm Zheng et al. (2018)
is reported.

D.6 ROBUSTNESS GAINS OF ENSEMBLES

To gain deeper insights into the improvements of our ensemble strategies, we plot the gains in
robustness in comparison to the Cross Correlation baseline for each violation in Fig. 26 and split by
smaller and bigger data regimes in Fig. 27. We find that the largest improvements can be found for
the violations Vq,missing and Vconf,lag as well as for the bigger SCMs (D = 7, L = 4).
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Figure 20: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise
assumption violations measured as average AUROC over various data regimes and under model
misspecification (Lmodel ̸= L). Left: ↓ L regime, Right: ↑ L regime. Colors specify: Observational
noise: , Nonlinearity: , Innovation noise: , Graph structures: , Data representation:

.

E APPENDIX — LLM USAGE

During the preparation of this manuscript, we used Gemini 2.5 Pro to refine sentence structure
and correct grammatical errors. We reviewed and edited all AI-generated suggestions and take full
responsibility for the final content of the publication.
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Figure 21: Hyperparameter sensitivities for Vobs,add, Vobs,mul, Vobs,auto, Vobs,com, Vobs,time, Vobs,shock,
Vconf,inst, Vconf,lag, and Vfaith,inst.
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Figure 22: Hyperparameter sensitivities for Vfaith,lag, Vnl,mono, Vnl,trend, Vnl,rbf, Vnl,comp, Vinno,mul,
Vinno,auto, Vinno,com, and Vinno,time.
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Figure 23: Hyperparameter sensitivities for Vinno,shock, Vinno,uni, Vinno,weib, Vinno,var, Vstat, Vlength,
Vq,missing, Vq,empty, and Vscale.
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Figure 24: Hyperparameter sensitivities for all methods estimating instantaneous effects. The
order from left to right, top to bottom is Vobs,add, Vobs,mul, Vobs,auto, Vobs,com, Vobs,time, Vobs,shock,
Vconf,inst, Vconf,lag, Vfaith,inst, Vfaith,lag, Vnl,mono, Vnl,trend, Vnl,rbf, Vnl,comp, Vinno,mul, Vinno,auto, Vinno,com,
and Vinno,time, Vinno,shock, Vinno,uni, and Vinno,weib.
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Figure 25: Hyperparameter sensitivities for all methods estimating instantaneous effects. The order
from left to right, top to bottom is Vinno,var, Vstat, Vlength, Vq,missing, Vq,empty, and Vscale.
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Figure 26: Robustness improvements in comparison to the performance of Cross Correlation per
violation. Interestingly, the highest improvements by the best ensembling strategy are achieved on
Vq,missing and Vconf,lag.
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Figure 27: Robustness improvements in comparison to the performance of Cross Correlation for the
smaller data regimes (D = 5, L = 3) and the bigger data regimes (D = 7, L = 4). We find that
the highest performance gains can be achieved on the bigger data regimes, independent of the CD
method or ensemble strategy. However, the best ensemble strategy (SimpleMLP) is achieving the
highest improvements.
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