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ABSTRACT

Causal Discovery (CD) is a powerful framework for scientific inquiry. Yet, its
practical adoption is hindered by a reliance on strong, often unverifiable assump-
tions and a lack of robust performance assessment. To address these limitations
and advance empirical CD evaluation, we present TCD-Arena a modularized and
extendable testing kit to assess the robustness of time series CD algorithms against
stepwise more severe assumption violations. For demonstration, we conduct an
extensive empirical study comprising over 50 million individual CD attempts and
reveal nuanced robustness profiles for 27 distinct assumption violations. Further,
we investigate CD ensembles and find that they can boost general robustness, which
has implications for real-world applications. With this, we strive to ultimately fa-
cilitate the development of CD methods that are reliable for a diverse range of
synthetic and potentially real-world data conditions.

1 INTRODUCTION

Causal Discovery (CD) holds great potential for addressing scientific hypotheses in fields where
randomized control trials are difficult or impossible |Glymour et al.|(2019). Despite this promise, the
widespread adoption of CD methods by practitioners remains limited. Recent works (Brouillard et al.}
2024; Y1 et al.| [2025; [Faller et al.| 2024) attribute this to mainly two key factors: First, existing CD
methods often rely on strong, idealized assumptions (e.g., no hidden confounders or stationarity)
that are difficult to validate or are simply unverifiable in real-world scenarios, even if they underpin
theoretical guarantees. Second, empirical evaluations of CD methods predominantly use idealized
synthetic data, which can overestimate performance and offer limited insight into robustness under
imperfect but realistic conditions. Consequently, practitioners hesitate to adopt CD methods where
their output reliability is limited (Kaiser & Sipos}, 2021 |Nastl & Hardt, |2024; Poinsot et al., |2025).
To overcome this issue, there has been a recent push towards more benchmarking as it is the de
facto golden standard in Machine Learning (Neal et al.| 2023} [Stein et al., [2024a; |Wang| [2024;
Mogensen et al.| [2024; [Herdeanu et al.| [2025). However, the scarcity of real-world datasets with
known causal ground truth continues to hinder a full reliance on empirical validation of CD methods.
As a possible alternative to real-world benchmarks, recent studies investigate CD performance
when specific assumptions are violated (Montagna et al.| |2023a} [Yi et al.| 2025} [Ferdous et al.,
2025)). Furthermore, the robustness of CD methods related to hyperparameter selection has been
recently highlighted (Machlanski et al.||2024). Building upon and aiming to unify these emerging
efforts of empirical evaluation, we present TCD-Arena, a modularized testing kit to assess CD
robustness against assumption violation. Next to an unprecedented scale TCD-Arena focuses on
three so far sporadically addressed aspects: (1) temporal data, that introduces additional challenges
and opportunities; (2) stepwise violation intensities, crucial for capturing nuanced performance
degradation rather than binary pass/fail outcomes; and (3) a focus on violations often encountered
in real-world settings. In this paper, we demonstrate the benefits of TCD-Arena by conducting
an extensive empirical study on the robustness of CD algorithms. Specifically, we evaluate eight
CD algorithms that cover all four common CD archetypes |Assaad et al.| (2022). We evaluate these
algorithms across 27 different assumption violations, each scaled in intensity. By performing over
50 million individual CD attempts, we find that various methods differ in their ability to cope with
assumption violations. Additionally, we investigate hyperparameter sensitivities with respect to
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Figure 1: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise
assumption violations measured as average AUROC over various data regimes. Left: Lagged causal
effects, Right: Instantaneous causal effects

robustness and model misspecifications, two aspects that we believe to be critical for applications to
novel real-world data. Further, we investigate ensembles of CD methods, something that has received
little attention in the literature, and conclude that they can boost robustness. Standing with [Poinsot;
et al.|(2025) and recognizing the pressing need for more nuanced CD evaluation, we attempt to further
establish robustness analysis as an alternative to traditional benchmarking and theoretical analysis.
With this, we hope to ultimately facilitate the development of CD methods that are reliably applicable
to real-world data. In summary, this paper makes the following contributions:

1. The introduction of TCD-Arena, an open-source and customizable toolkit for quantifying
the robustness of CD in diverse time-series data and fosters long-term comparability.

2. A large-scale empirical study that evaluates the robustness of eight time series CD methods
against 27 stepwise intensified assumption violations.

3. An investigation into ensembling CD methods with respect to violation robustness.

2 BACKGROUND AND THEORETICAL PRELIMINARIES

To ground our empirical investigation, we begin by selectively revisiting the relevant theoretical
background. Let X € RP*T be a D-variate time series comprising 7" samples from D interacting
variables, generated by an unknown underlying causal process. The objective of time series Causal
Discovery (CD) is to infer the causal relationships among D variables from the observed data X.
These relationships are commonly represented as a Structural Causal Model (SCM) (Peters et al.}
2017). For each variable X ;, the SCM contains assignments of the form:

Xie = fi(Pa(Xi ), €it) (D

where Pa(X; ;) is the set of direct causal parents of X, ;, f; is a causal mechanism, and ¢; ; is
independent innovation noise. The set of assignments within an SCM defines a directed graph
G = (V, E). In this work, we distinguish between contemporaneous (X ; for j # ) and lagged
effects (X ¢+ for k > 0) by evaluating the recovery of the following three distinct graph structures:
First, the lagged window causal graph (G*VCO) provides lag-specific causal dependencies up to a
maximum lag L. Here V' includes each variable at time step ¢ and at all past lags: V = {X,;,_; | i €
{1,...,D},1 € {1,...,L}}. Adirectededge X;+—; — X, existsin G*WVCOif X, isinPa(X; ;).
Note that in this representation, edges only connect past variables to variables at step ¢. Second, the
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lagged summary graph (G5°) provides a summary of time-lagged relationships. Its vertices are
definedas V = {Xj,..., Xp}. A directed edge X; — X exists in GXC if X; ;_; € Pa(X, ;) forat
least one [ > 0. Third, the instantaneous graph (G'™ST) captures only contemporaneous relationships.
Itis a directed graph with vertices V = {Xj,..., Xp}. A directed edge X; — X exists in G™T iff
X+ isin Pa(X i.t). While this framework formalizes causal interactions, the identifiability of any G
from X requires a number of assumptions about Eq. (I)). For time series, the direction of time Bauer]
et al.[(2016) (effects cannot precede causes) aids with identifying lagged relationships (G*WC and
G™0), generally requiring fewer restrictive assumptions. However, the recovery of G™T is more
challenging (and not tackled by all CD methods), resembling causal discovery from i.i.d. sample data.
We refer to (Pearl, [2009; Peters et al.,|2017) for a comprehensive introduction as well as to (Spirtes
et al.| 2001) concerning constraint-based algorithms.

Despite the fact that many specific assumptions underpinning CD methods can be relaxed individually,
a core set of strong, partly implicit, assumptions generally remains necessary to guarantee the
identifiability of any SCM, as the causal hierarchy levels almost never collapse |Bareinboim et al.
(2022)). Furthermore, even if these assumptions can be perfectly met in synthetic data, real-world data
will have many assumptions violated, which can lead to performance degradation of CD algorithms
Kaiser & Sipos|(2021)); Nastl & Hardt (2024). On top, many assumptions are not verifiable without
having access to the full SCM, e.g., the appropriate conditional-independence test Shah & Peters
(2020). For widespread practical adoption, it is therefore essential to assess method performance
under suboptimal conditions [Poinsot et al.|(2025). In response to these challenges, and mirroring
trends in other machine learning domains, there is a growing emphasis on developing real-world
Stein et al.| (2024a); [Mogensen et al.| (2024) as well as semi-synthetic Cheng et al.|(2023); Herdeanu
et al.| (2025) benchmarks, or kits such as |Munoz-Mari et al. (2020) or |Zhou et al.| (2024) for CD.
Notably, while real-world and semi-synthetic datasets are essential, they come with a tradeoff of
having less information about the data generation process (outside of the causal ground-truth), which
leaves room for extensive synthetic benchmarks Poinsot et al.|(2025]) Furthermore, as aggregating
extensive real-world causal ground truth is notoriously challenging, alternative approaches have been
introduced to enable the empirical evaluation of CD method performance. For instance, Schkoda et al.
(2024) proposes leave-one-out cross-validation to assess the predictive performance of CD algorithms.
Moreover, Machlanski et al.| (2024) advocates for evaluating hyperparameter sensitivity, which has
implications for method selection in practical applications. Closely related to our work, |Yi et al.|(2025)
and Montagna et al.[(2023a) test the performance of i.i.d. sample-based CD methods for fully violated
assumptions. Further, |[Ferdous et al.|(2025) provides an insightful study that investigates the impact of
five different real-world complications on the performance of CD methods. Nevertheless, the impact
of such violations remains under-investigated, particularly for time series data and for differences
in violation severity. Finally, ensembling strategies, as a practical tool to improve robustness in
other machine learning domains |Arpit et al.|(2022)); Mienye & Sun|(2022), likewise remain largely
unexplored in the CD literature. While recent work has investigated ensembling over variable subsets
to recover large graphs/Wu et al.|(2024)), the potential to improve resilience with respect to assumption
violations has not yet been studied.

3 STEPWISE INCREASING ASSUMPTION VIOLATIONS

While the CD literature explores the relaxation of certain assumptions, identifying any causal structure
from X alone typically relies on a core set of assumptions to guarantee identifiability. Although prior
work partially analyzes resilience to binary assumption violations Y1 et al.| (2025)); Montagna et al.
(2023a)); [Ferdous et al.| (2025)), a pertinent question arises: How robust are certain CD methods
against different severities of assumption violation? This question is critical in applied settings.
For instance, the mere existence of observational noise is less informative than understanding the
corresponding robustness against its presence. Addressing this requires a framework for varying the
severity of these violations. In this study, we introduce TCD-Arena for this purpose. In total, we
implement 27 distinct assumption violations, each parameterized to allow for a stepwise increase of
its severity. We individually describe these in the sections to come. Generally, we focus on covering
commonly made assumptions Runge|(2018)) along with real-world complications that are practically
relevant. Further, we restrict our exploration to the following for Eq. (I)):

D L
Xit = Z Z Aiar - fiar(Xa—1) + € 2)

d=11=0
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(a) In our experiments, the sources of randomness for the observational V il.mono V iltrend
noise variables (;; are standard normally distributed (N (0, 1)) ran- >
dom variables 7; ¢ and n;, which are consequently influenced by various
factors, e.g., the signal strength (Vopsmu). Both « and 8 denote hyperpa- 7/
rameters (details in Apx.[B.1).
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an.comp
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0 else. shock prob. pgoa  (b) Note, coefficients A;,q, can be
negative, resulting in negative trends.

Figure 2: Details for violation types Vs and Vy;. Left: Observational noise violations. Right:
Functional distributions that we deploy to sample f; 4; used in Eq. (]Z[)

where A specifies a coefficient matrix and f; 4; an edge-specific univariate function and €, ; inde-
pendent innovation noise. Crucially, any non-zero element in A denotes a corresponding edge in G.
Further, for violations not concerning the causal mechanisms, f; 4; is the identity function, and all
interactions are linear. To help with clarity, we mark individual violations as Vyp.. Finally, we keep
the following violation descriptions brief and include a summary table, graphical depictions, specific
violation step sizes, and detailed design choices for each violation in Apx.[A]and Apx.

Observational Noise (Vops) Many theoretical guarantees in causal discovery assume noise-free
measurements, despite the fact that measurement errors are practically unavoidable and can introduce
discrepancies that distort true causal relationships Scheines & Ramsey|(2016)). In an additive form,

observation noise can be defined as: X it = Xi+~+ G ¢, where (; » denotes observational noise. While
standard independent additive noise (Vobsaga) is prevalent, other noise types can occur depending on
the measurement process. Due to this, we investigate the impact of five other types of observational
noise structures on CD. Fig. [2a] contains a concrete list. Additionally, details, hyperparameters, and
discussions can be found in Apx.[B.1] In particular, we include multiplicative, signal-dependent noise
(Vobs.mu1) With real-world examples such as temperature sensors with lower precision at higher values
Bentley| (1984) or speckle noise in image processing [Liu et al.|(2014)). We include time-dependent
noise (Vs ime), Which simulates cycles or linear sensor drift. Further, we model autoregressive
noise structures (Vobs auto)» 1-€., disturbances of measurements which persist for multiple time steps.
Similarly, we include common observational noise (Vs com), Where multiple variables are affected
simultaneously, e.g., by weather events. Finally, we include shock noise (Vopsshock) t0 model
infrequent events such as measurement failures. To systematically vary the level of intensity for any
of these observational noise structures, we adjust the signal power of ( to control the corresponding
Signal-to-Noise Ratio (SNR) with respect to the data X. To isolate the influence of the noise structure,
we use the same, decreasing SNR levels for all observational noise violations in Fig.2a]

Causal Sufficiency (Veone) Causal sufficiency posits that for any pair of observed variables X; and
X, there are no unobserved common causes (hidden confounders). That is, there is no unmeasured
variable U such that U — X; and U — X ;. Such latent confounders can induce spurious correlations
between observed variables, potentially leading to the inference of incorrect or misleading causal
relationships. While some advanced methods aim to address specific types of confounding |Trifunov
et al.| (2019); |Chen et al.|(2024)); L1 & Liu|(2024), the presence of unmeasured confounders remains a
major practical challenge, as it is rarely feasible to measure all relevant variables in complex systems.
To simulate varying degrees of confounding and assess its impact, we employ two distinct strategies
targeting lagged and contemporaneous confounding: First, concerning instantaneous confounding
Veontinst, We introduce a set of IV exogenous variables Z = Z1, ..., Zy, where each Z,, ; ~ N(0,1).
These exogenous variables are not causally influenced by any variable in X but can act as common
causes to multiple variables in step ¢. The severity of this type of confounding is controlled by
progressively increasing the probability that an observed variable X; ; becomes dependent on any
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of the exogenous variables Z,,. This, in turn, increases the probability for two variables in X to
have a shared parent at ¢. Second, for lagged confounding, we introduce an additional variable, X,
designated as the potential confounder (Vo 1ag). This variable X ¢ is allowed to causally influence,
and can be influenced by, other observed variables X; with lagged effects up to a specified maximum
lag L. The severity of confounding is controlled by stepwise increasing the probability that X is in
the parent set of any other variable in X, as well as the related coefficients in A. After sampling, the
time series, X¢ is removed from the observed data X, rendering it a hidden confounder.

Faithfulness (Vi) Faithfulness asserts that all conditional independencies observed in the data are
precisely those implied by d-separation of the DAG G [Scheines|(1997). Violations of faithfulness can
lead to indistinguishable causal structures as they generate no dependencies in X . Some works that
examine this assumption and provide alternatives are (Zhang & Spirtes, [2008}; /Andersen, |2013} Lin &
Zhang| |2020; Ng et al., 2021). Typically, unfaithfulness is implemented through causal structures
like X;; — X, ¢+ Xj 1 < X+, where effects from X ; to X;; cancel out through appropriate
parameter configurations in A. We implement this case for instantaneous effects (Vi inse) as well
as a lagged structure of the form X ;_o — X ; < Xp 1 < X, :—2 (Viim1ag)- To stepwise scale
the intensity of both violations, parameter configurations in A are updated to reach path cancellation.
Further, as this is only one case of violating faithfulness Montagna et al.| (2023b), we include a
discussion concerning this design choice along with visual examples in Apx.[B.3|

Functional Assumptions (V) While the general SCM in Eq. (2) is agnostic to the functional forms
fi,a,1 between variables X4 ;_; — X, ;, many discovery algorithms assume specific interactions, e.g.,

linear-additive relationships X; = ZZL: 1 Ai- Xy +¢, Hyvirinen et al.| (2010); Pamfil et al.{(2020). In
real-world systems, such assumptions are often violated or are only approximations. Thus, it is crucial
to study the consequences of corresponding violations, besides attempting to relax them |[Runge et al.
(2019); Monti et al.| (2020); Wu et al.|(2022)). To better emulate the variety found in practical scenarios
and simulate data diversity, we employ a range of function generation techniques with different
characteristics. In particular, we sample individual univariate functions f; 4; from four distinct
distributions: (1) Monotonic nonlinear functions (Vyu1, mono), (2) Non-monotonic functions with a
linear trend (V1 yena) (3) Gaussian processes with RBF kernels (Vyvr) following related robustness
studies Montagna et al.| (2023a); Yi et al.| (2025), and (4) Random combinations of a set of base
functions, e.g., sin(+) or e (Vaicomp). Example functions are depicted in Fig. @ and we describe
the exact distributions from which we sample in Apx. To stepwise increase the violations, we
rely on two distinct procedures. First, for Vi mono and Vyend, We stepwise adapt the functional
distributions such that sampled functions become on average increasingly nonlinear Emancipator
& Kroll| (1993) (see Apx.. We sample all interactions f; 4; in Eq. (2)) from the corresponding
distributions. Second, for Vypr and Vyjcomp, We stepwise increase the probability of any f; 4 to be
drawn from the nonlinear distribution instead of being equal to the identity f; 4;(-) = id().

Independent Innovation Noise (Vinn,) Independent additive innovation noise (e; ¢ in Eq. @)) is cru-
cial for CD, as it ensures dependencies are attributed to causal links, not shared noise. However, this as-
sumption is often violated in practice, as noise can incorporate unmeasured, dependent effects, and its
true distribution is typically unknown or is fully deterministic Li et al.|(2024). To evaluate how alterna-
tive innovation noise distributions might affect the performance of CD algorithms, we deploy the same
five noise structures that we use for observational noise, i.e., Vinomul, Vinno,autos ¥inno.coms Yinno time»
and Vipno shock- However, for innovation noise scaling, the SNR (compare to the observation noise) is
nontrivial as it is part of the signal itself. Therefore, we control the violations by blending standard
normal noise with each of the five noise terms to stepwise move away from independent additive
conditions (details in Apx. @ Notably, autoregressive Vipno auto and common innovation noise
Vinno.com fundamentally violate the Markov condition [Peters et al.[(2017)). Additionally, since some
identifiability guarantees assume non-Gaussian noise (Shimizu et al., [2006), we test the effect of
stepwise moving towards a non-Gaussian distribution. Specifically, we simulate this by starting from
a Gaussian distribution (see Apx. and progressively shifting towards either a uniform (Vipno,uni)
or a Weibull distribution (Vinno weib). Finally, as some works rely on the assumption of equal noise
variances, e.g., Peters & Bithlmann|(2014), we implement a strategy to move away from this condition
(Vinno,var). For this, we draw ¢; ; from N(0, o,?), where the variance 07? is individually sampled for
each X;. We then stepwise increase the corresponding ranges.
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Stationarity (Vs,¢) CD methods typically aim to uncover a single G from observations X . Hence,
a common assumption is that the SCM remains unchanged, i.e, stationary, over time or across regions.
However, in many real-world scenarios, causal relationships can be heterogeneous across different
populations or evolve over time Nastl & Hardt| (2024). Here, works such as|Huang et al.| (2020);
Giinther et al.|(2024); Ahmad et al.|(2024) attempt to identify causal relationships in systems where
parts of the SCM are changing. To simulate violations of stationarity, we keep the causal skeleton
(nonzero elements in A) fixed but redraw the coefficients multiple times , violating the idea of causal
consistency. Further, to stepwise scale the violation, we increase the number of times we resample A

Sufficient Sample Sizes (Viengm) Causal discovery algorithms necessitate a sufficient sample size
to reliably detect patterns and estimate relationships|Shen et al.|(2020); Castelletti & Consonni|(2024).
For example, statistical tests used to identify conditional independencies may lack power with limited
data|Spirtes & Zhang|(2016). To the best of our knowledge, no work has yet conducted an extensive
study on the relationship between CD performance and sample size. To remedy this, we allow for a
stepwise reduction of the length of the sampled time series X to model Viengtn.

Data Quality (Vy) To simulate measurement disturbances beyond observational noise, we introduce
two types of quality degradations for X. First, we model sensor failures (Vqempy) by setting all
parent sets to & for short periods, simulating false, zero-information measurements. We then stepwise
increase the length of these periods to scale the effect. Second, for missing data (Vg missing), We
remove an increasing number of samples completely at random Heitjan & Basu|(1996)) and fill the
resulting NaNs via linear interpolation, a common approach for practitioners.

Data Scaling (Vi) Recent works show that synthetically generated data can introduce artifacts
along the causal order that can be abused by CD methods [Reisach et al.| (2021)); [Kaiser & Sipos
(2021)); |Ormaniec et al.[(2025). By rescaling X, these artifacts can be partly removed. To investigate
how robust methods are against scaling, we allow for a stepwise scaling of the generated time series.
In particular, we blend the original time series with its standardized version, a transformation that is
reported to affect CD performance in[Reisach et al.| (202 1)); Kaiser & Sipos|(2021).

Acyclicity and Sampling Rate Finally, we comment on the assumption of acyclicity, which we
deliberately do not address in this work. While central to many algorithms, this assumption can be
violated in two primary ways: by genuine feedback loops inherent to the system (e.g., in differential
equations) or by apparent cycles that emerge as artifacts of temporal aggregation. The latter occurs
when a coarse measurement resolution makes a lagged effect appear as a contemporaneous, bidirec-
tional relationship |[Runge| (2018). This creates a fundamental ambiguity: A system may be acyclic at
one temporal scale but cyclic at another, making a single ground truth non-trivial to define.

4 EXPERIMENTS

To evaluate the robustness of CD methods, we conducted a large empirical study using synthetic
data across all previously described violations. For each violation, we systematically increase its
intensity over five discrete levels. Our experiments covered a range of data conditions to ensure the
generalizability of our findings. We vary the number of time steps (7" € {250, 1000}) and the number
of variables D, together with the maximum causal lag L in the true SCM ((D, L) € {(5,3), (7,4)}).
For each setting, we generated datasets with both sparse and dense causal graphs, and both with
and without instantaneous effects. This resulted in 8 distinct data-generating conditions, which we
call “data regimes. Generally, we use standard normal innovation noise (¢; ; ~ N(0, 1), eq. )
For each violation type, severity level, and data regime, we generated 100 independent structural
causal models (SCMs) and a corresponding time series. In total, the evaluation for each violation
type comprises 8,000 unique time series instances. Further details on the data-generating process are
available in Apx.[C.1] Regarding CD methods, we conduct experiments on eight different strategies,
including the direct Cross Correlation matrix, which serves as a baseline strategy for predicting causal
relationships. Further, we include the following seven approaches: We leverage Granger-causal
ideas and deploy a vector autoregressive model |Granger (1969) where we either rely on p-values
or absolute model coefficients to predict causal relationships (GVAR), Varlingam Hyvairinen et al.
(2010), PCMCI and PCMCI+ Runge et al.|(2019), Dynotears (Pamfil et al.| 2020)), NTS-NOTears
(Sun et al.}2023)), and CausalPretraining (Stein et al., [2024b)). With this, we cover all common CD
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Figure 3: Left: AUROC scoring of the best hyperparameter configuration per CD method and per
ensemble for GFWCE, GINST "and GSC. Right: Hyperparameter variations with respect to Vige.

paradigms |Assaad et al|(2022)). Under ideal linear conditions with no assumption violations, all
included methods are capable of recovering G*WCC from Eq. (2). Additional details and a list of
assumptions for each method are provided in Apx.[C.2] To ensure a fair performance comparison,
we adopt an evaluation protocol with three key components. First, to mitigate bias from suboptimal
parameter choices, we perform an extensive hyperparameter search for each method. The full search
spaces are detailed in Apx.[C.3] This process also enables a secondary analysis of hyperparameter
sensitivity. Second, we selected the Area Under the Receiver Operating Characteristic (AUROC) as
our primary, threshold-independent performance metric. For completeness, we also report and discuss
alternative metrics in Apx. [D.I] Third, to measure the robustness for a specific hyperparameter
configuration of a method with respect to a violation V., we average the AUROC scores for all
data regimes and violation levels. Notably, in comparison to [Ferdous et al.| (2025]), this protocol,
although computationally heavier, enables a more reliable estimation of robustness, as the considered
data distributions incorporate greater variability. This aggregation accounts for potential variations
in the optimal decision boundary across different experimental conditions, providing a comparable
score of robustness. For our main comparison, we identify a single hyperparameter configuration
for each CD method that maximizes average robustness across all violations. We include a visual
overview of this experimental protocol in Apx.[A.4] We believe this better reflects a practical scenario
than optimizing for each violation individually, a protocol used by Montagna et al.| (2023a)); Y1 et al.
(2025)). For complementary reasons, we also report individually optimized results in apx.[D.1] Further,
referencing Machlanski et al.| (2024) and emphasizing the problem that optimal hyperparameters are
unknown in real-world applications, we also report the average robustness over all hyperparameters
in Table[d] Further, the severity levels for each violation were individually calibrated to span a range
from negligible impact to a level where the baseline method’s performance degrades to chance (if the
violation type allows for it). Our analysis, therefore, focuses on the relative performance differences
between methods for a specific violation, rather than comparing performance across different types
of violations. A complete list of the configurations and further discussion of this methodology are
provided in Apx.[A.2] Finally, because all methods were evaluated on the exact same datasets, any
potential issues of theoretical non-identifiability affect all algorithms equally. This ensures a fair
comparison of their relative robustness. Details on reproducibility can be found in Apx.

In this section, we concentrate on three key findings extracted from our empirical study. (1) General
robustness, (2) model misclassifications, and (3) hyperparameter sensitivity. To further contextualize
these results, we provide additional discussions on specific violations in Apx.[D.3
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First, we illustrate the robustness of each method against individual violation types for lagged effects
and for instantaneous effects in Fig. [T} Furthermore, Fig.[3asummarizes the average robustness scores
across all assessed violations. Considering the discovery of lagged effects (GFVCY), we find that
Granger-based approaches (GVAR and Varlingam) have slightly increased robustness. Interestingly,
this is consistent with results reported in Stein et al.| (2024a), a large-scale real-world benchmark.
Furthermore, we observe that deep learning approaches (CausalPretraining and NTS-NOTears) lag
behind those with fewer parameters. Concerning uncovering GI™ST (Fig. 1), we find that Dynotears
and PCMCI+ show comparable robustness (Fig. 3a) while Varlingam lags behind. Furthermore,
we observe larger differences in robustness. We attribute this to the fact that it is generally harder
to uncover G™ST, Next, as we do not explicitly generate data with non-Gaussian independent
additive noise, these results are consistent with theoretical constraints. Further, the large performance
gap between G'WCG and G™ST can be explained by the fact that the non-gaussian assumption is
specifically made to uncover the instantanous links and is not necessary for uncovering lagged effects.
Interestingly, even for innovation noise violations where we stepwise increase a non-Gaussian additive
noise component, i.e., (Vyeip and Vi), Varlingam shows no superior robustness.

Second, as we previously assumed a known maximum lag L, we further investigate the performance of
all tested algorithms under two additional scenarios: (i) The model is allowed to search for causes up
to a lag greater than the true maximum lag (L € {3, 4} while L4 € {5,6}. (ii) The model’s search
space is restricted to lags shorter than the true maximum lag (L € {3,4} while Lioge € {1,2}).
We denote these cases with 1 L and | L, and report the effect of these misspecifications in Table [T]
(additional details in Apx.[D.4). For the | L condition, we observe strongly reduced performance
across the board. However, we also find that methods able to discover instantaneous effects (with
the exception of PCMCI+) have a noticeably lower performance deterioration. While we have no
direct explanation for this phenomenon, we hypothesize that the estimation of instantaneous links
might help with catching additional lagged effects that should be attributed to G-WCC, Importantly, a
formal theoretical analysis is needed to further understand this phenomenon and its implications. For
the 1T L regime, we find that performance is rather robust. While such results on synthetic data should
be treated with caution, this observation suggests that in practice, choosing a larger-than-necessary
max lag L4 can be beneficial. Finally, we note that CausalPretraining has the distinct advantage
that Lyqel does not have to be specified, which explains the robustness in the | L regimes.

Third, to emphasize the complexity of finding optimal hyperparameters in real-world applications,
we report the average robustness over all hyperparameters in Table [ and examine a particular
interesting example of hyperparameter influence with Fig. 3b] While the robustness of all CD
methods reduces when reporting the average over all hyperparameters, we find that the methods
with more hyperparameters (Dynotears and NTS-NOTears) have a noticeably higher reduction and
standard deviation between configurations, but also show no superior robustness under optimal
hyperparameters (Table[T). While these results are partly influenced by our search space, we believe
they still have implications for applications involving real-world data. Additionally, Fig. [3b|shows
that various CD methods can have drastically differing hyperparameter sensitivities with respect to a
violation. While we find that the optimal hyperparameters have a high robustness against V¢ in all
cases (Fig.[T), other configurations that show similar performance at the beginning, degrade much
faster with violation strength (Dynotears) or show high robustness but also high variance between
hyperparameter performances (NTS-NOTears). For completeness, we include the visualizations of
the remaining methods and violations in Apx.[D.5] To conclude, we find various empirical differences
between CD methods that raise the question of whether a combination of multiple CD methods can
improve general robustness. We investigate this question in the next section.

4.1 ENSEMBLING CD TO IMPROVE ROBUSTNESS

Given the variability in robustness across different CD methods, we investigate the potential of
ensembling techniques to achieve improved general robustness. While ensembling is a cornerstone of
modern machine learning |Arpit et al.|(2022)); Mienye & Sun|(2022), its potential to enhance the ro-
bustness of time series CD methods remains underexplored in the literature. To remedy this, we learn
a meta model that predicts the GEVCE based on the collection of predicted graphs {G1, ..., G}
from M individual base CD methods. Specifically, we investigate a linear combination Ensembley jne,r,
a MLP Ensembley p, and a ConvMixer Trockman & Zico Kolter| (2022) Ensembleconymixer- TO train
these meta-learners, we generate an additional, independent training dataset containing time series
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Table 1: Average robustness under wrongly specified L (] L denotes too low, 1 L denotes too high)
for G'WCG and G156, In parentheses, we include the change from a correctly specified L. Further,
we report the average hyperparameter performance. As CausalPretraining (*) does not require the
specification of a max lag, its performance for the | L regime is superior. As Cross Corr. has no
hyperparameters, it has no standard deviation (f). We mark superior performance with green

LWCG LSG
Method G G HP
L T L I L T L Avg.
Cross Corr. ST71¢28) .855+.00) .686(-15  .827¢o01) | .852+ 7
CausalPretr. .866*(+.00) .866(+.00) = .860*(+.00) .860(+.00) | .863+.00
GVAR 58233 914¢-00) .727¢-18) .892¢-01 | .913+.01
Varlingam 649277y  917¢.00) .727¢-18 .895¢-01) | .907+.02
PCMCI 583¢33)  913+.000 708199  .890¢-.01) | .911+.00
PCMCI+ 58333  912+000 .708¢-.199  .892(-01) | .898+.01
Dynotears .637¢26)  .902+.000 .711¢-18)  .889¢-01) | .855+.05
NTS-NOTears .620¢-29) .907+.000 .710¢.18) .878¢-.01) | .827+.09

samples for all violations and data regimes. The exact training procedure is contained in Apx.[C.4]

Additionally, we report the performance of a simple unweighted averaging of all Gm (Ensembleay,. )
and an oracle strategy that comprises the Pareto front, which we call Ensemblep,.,. For any given
assumption violation, Ensemblep,to selects the output from the CD method that achieves the highest
measured robustness on that specific violation. While not practically attainable, it serves as a baseline,
indicating the maximum potential performance gain that can be achieved by perfectly selecting
among the outputs of the base methods. All ensembling strategies are evaluated on the original test
datasets used for all other experiments in this paper. We report the average performance of these
ensembling approaches in Fig.[3a]and provide additional analysis of performance gains in Apx. [D.6]
We find that all ensembling approaches are able to improve the robustness over any individual method.
Specifically, Ensembley p leads to notable increases while also reducing the standard deviation
between different violations. Further, our oracle Ensemblep,, achieves the highest performance,
highlighting the fact that various CD methods do have distinct advantages concerning robustness
against particular assumption violations. Note, as transitioning this approach to real-world scenarios
will require addressing challenges such as domain adaptation and disttributional shifts, we present
these results as a theoretical proof-of-concept. They however suggest that ensembling is a promising
strategy for enhancing the robustness and reliability of CD methods in complicated data settings.
Especially, when considering that the here presented ensembles have no direct access to X.

5 CONCLUSION

This study presents the first extensive empirical investigation into the robustness of Causal Discovery
(CD) methods with respect to assumption violations for time series data. We implement 27 distinct
assumption violation scenarios, inspired by real-world data complexities, to evaluate eight distinct
CD algorithms. Our large-scale study revealed notable variability in how different methods respond
to these violations. In particular, we first quantify general robustness over all violations, then analyze
how model misspecification affects performance, and finally investigate general hyperparameter
sensitivities. Motivated by these differences, we investigate the ensembling of CD methods and
conclude that they can improve general robustness. Our study is supported by TCD-Arena, an
empirical framework and testing kit for time series CD that we developed to conduct all of our
experiments. As the landscape of potential data-generating processes is vast, we are releasing
TCD-Arena as an open-source, modular package to facilitate future extensions and foster long-
term comparability. Further, to encourage community engagement, we maintain a live list of all
implemented violations on our project page[] and provide a reproducibility statement in Apx.
With this, we aim to foster a deeper understanding of causal discovery methods, including their
strengths and weaknesses, under various synthetic yet diverse conditions, thereby paving the way for
more robust real-world applications.

'TCD- Arena(anonymized Git)
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A APPENDIX — HIGH LEVEL OVERVIEW

A.1 VIOLATION LIST
Table [2] contains a brief overview of all 27 violations contained in TCD-Arena and investigated

empirically in our main paper. Further details on the implementation and evaluated severity levels
can be found in the following chapters.
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Violation Short Description

Vobs.add Additive measurement noise.
Vobs.mul Signal dependent measurement noise.
Vobs.time Time-varying measurement noise.
Vobs.auto Autoregressive measurement noise.
Vobs.com Common source measurement noise.
V obs.shock Spike measurement noise.
Vcont.inst Unseen internal common cause.
Veont lag Unseen external common causes.
Viaith inst Instantaneous effects cancel out.
Viaith,lag Lagged effects cancel out.
Valmono Monotonic functions.

Vil.trend B-spline functions with a linear trend.
Vlrbf GP-RBF functions.

Vil,comp Composite functions.
Vinno,mul Signal dependent innovation noise.
Vinno time Time-dependent innovation noise.
Vinno.auto Autoregressive innovation noise.
Vinno.com Common source innovation noise.
Vinno.shock Spike innovation noise.
Vinno.uni Uniform additive innovation noise.
Vinno weib Weibull additive innovation noise.
Vinno.var Unequal variances in innovation noise.
Vtat Causal link strengths change over time.
Viength Reduced time series length.
Vg,empty Temporary complete loss of causal signal.
Vg missing Missing data points (interpolated).
Vcale Data standardization.

Table 2: List of all 27 violations contained in TCD-Arena with corresponding short descriptions.

A.2 VIOLATION STEPS

Table [3| contains a list of parameter values used to intensify all 27 violations contained in TCD-Arena
and included in our study. Additionally, we note a short description of how each violation is scaled.
We refer to Apx. [B|for more in-depth descriptions. The experimental violations were individually
configured to establish a relevant performance range for evaluating Causal Discovery (CD) methods.
Recognizing that the disruptive impact of each violation type varies considerably, a standardized
approach was not employed. Instead, for each violation, the parameters were calibrated according to
a three-step procedure. First, a parameter range was identified that induced a significant performance
degradation for a baseline Cross-Correlation (CC) method. Second, where the violation type allowed,
the maximum intensity was set to reduce the CC’s performance to an Area Under the Receiver
Operating Characteristic (AUROC) of approximately 0.5. Third, discrete levels of the violation were
established by equally spacing them between a minimal-effect level and the determined maximum.
This methodology ensures that various CD methods can be effectively compared against each other
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within a challenging and relevant operational range for each specific violation, although it precludes
direct performance comparisons between different violation types. We document this process in
TCD-Arena for maximum clarity. Finally, as we only evaluate five violation levels in this study it is
worth discussing when this estimation, and general our robusteness metric, might fail. We discuss

this in Apx.

A.3 VIOLATION DEPICTIONS

We include a graphic depiction of each described violation along with the concrete steps that we

evaluated throughout our experiments in Fig. ] - Fig.[§]

Violation

Increasing Intensity via

Parameter Values

Vobs,add
Vobs,mul
Vohs,limc
Vobs.uulu
Vobs.com
Vobs‘shock
Vconf.insl
Vconf,lag
Viaithlag
Viaith,inst
an,monu
an,&rend
Vi
an,comp
Vinno,mu]
Vinno,limc
Vinnu,aulo
Vinno.com
Vinno.shock
Vinnn,uni
Vinnn,weib
Vinno.var
Vitar
V]englh
Vq,emply

Vq,missing
Vacale

Reducing the SNR
Reducing the SNR
Reducing the SNR
Reducing the SNR
Reducing the SNR
Reducing the SNR
Increased link probability from hidden confounders Z.
Increased link probability to/from hidden confounder X .
Lagged effects increasingly cancel out.
Instantaneous effects increasingly cancel out.
Increasing the nonlinearity of sampled monotonic functions.
Reducing number of interpolation points for B-spline functions.

Higher probability of nonlinear links in the SCM (GP-RBF functions).

Higher probability of nonlinear links in the SCM (composite functions).

Signal dependent innovation noise portion.
Time-dependent innovation noise portion.
Autoregressive innovation noise portion.

Common source innovation noise portion.

Spike innovation noise portion.

Uniform additive innovation noise scale.

Weibull additive innovation noise scale.

Changing interval from which the o7 are uniformly sampled.
Increasing number of SCM change points during generation of X.
Reducing number of observed steps T’
Lengthening periods (ratios) of temporary loss of causal signal.
Increasing probability of missing data points (interpolated).

Mixing factor of the standardization.

{10,5,1,1/2, Y10}
{10,5,1,1/2,1/10}
{10,5,1,1/2,1/10}
{10,5,1,1/2,1/10}
{10,5,1,1/2,/10}
{10,5,1,1/2, Y10}
{0.2,0.4,0.6,0.8, 1.0}
{0.1,0.2,0.5,0.7,0.9}
{0.2,0.15,0.1, 0.05, 0.0}
{0.2,0.15,0.1,0.05,0.0}
See Eq. in Apx.
(25,15, 10,6, 4}
{0.2,0.4,0.6,0.8, 1.0}
{0.2,0.4,0.6,0.8,1.0}
{0.1,0.25,0.5,0.75,0.85}
{0.1,0.25,0.5,0.75, 0.85}
{0.1,0.25,0.5,0.75,0.85}
{0.1,0.25,0.5,0.75, 0.85}
{0.1,0.25,0.5,0.75, 0.85}
{0.05,0.25,0.5,0.75, 1.0}
{0.05,0.25,0.5,0.75, 1.0}

[0.5,1],[0.1,1],[0.1, 2], [0.1,4], [0.1, 8]

{1,3.5,7.9}
{200,100, 50, 25, 12}

2 x ratio € {0.25,0.345, 0.4, 0.425, 0.455}

{0.2,0.35,0.5,0.65,0.8}
{0.0,0.5,0.7,0.9, 1.0}

Table 3: A short description of how we scale all 27 violations contained in TCD-Arena. We include

also a list of the specific parameter values to reproduce our empirical study.

A.4 EXPERIMENTAL PROTOCOL DEPICTION

To clarify the protocol we used to asses the robustness of various CD methods against assumption
violations, we depict the process in Fig.[0] The process can be divided into three aspects. Data

generation, CD method evaluation and the extraction of robustness profiles.
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Figure 4: Various depictions of different violations of observational noise. We depict the severity of
the violation from left to right and denote the SNR above the figure.
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Figure 5: Graphical depictions of different violations and their intensities.
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Figure 6: Graphical depictions of different violations and their intensities.
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Figure 7: Graphical depictions of different violations and their intensities.
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Figure 8: Graphical depictions of different violations and their intensities.
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Figure 9: Experimental protocol that was used to create robustness profiles for various Causal
Discovery methods. The process can be divided into three steps: 1. Data generation, 2. CD method
evaluation and 3. Extraction of results.
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B APPENDIX — VIOLATION DETAILS

Fundamentally, the base SCM that we use for each violation is a linear causal process with additive
Gaussian noise:

Xit

D L
Z Z Aiar - fiar(Xa—1) + € 3)
d=11=0

where f is the identify function, A a coefficient tensor, X the time series and ¢ additive gaussian
noise. To bring this into a more compact form, omitting f:

D L
Xit = Z ZAi,d,l - Xa -1+ €, 4
d=11=0

Further, we can bring this into matrix notation:

Xe=AXy 1 +€ (5)

where £ is a vector of independent innovation noise variables. Crucially, the non-zero entries in A
correspond to links in the causal graph G. While sampling A in the base linear process, we control
the density of links using a corresponding probability that determines whether entries A; 4; are equal
to zero.

Finally, we can separate instantaneous effects as they are not always present and are implemented in
a different manner:
Xi=BXy +AXy 1. 41+ & (6)

where A is a coefficient matrix and B is a coefficient vector.

To implement all our violations, we alter this basic linear additive process.

B.1 ADDITIONAL DETAILS Vg5

To briefly recap, when we violate the no observational noise assumption, then we do not directly
observe the measurements X; ;. Instead, we measure noisy versions )A(m = X+ + Ci,t- We define a
concrete list of observational noise variables and structures in Fig.[2a] In this section, we provide
additional details for the specific design choices of the various implemented (; ;. Afterward, we
include the concrete formula that we use to control the signal-to-noise ratios when increasing the
respective observational noise violations.

First, we consider independent additive noise (Vops add), Where we model the noise as standard normal

gi,t ~ N(Oa 1)

Second, we consider multiplicative noise (Vobs mu1), Which in the signal-dependent noise model is an
additive noise scaled by a function of the signal strength [Torricelli et al.| (2002); [Liu et al. (2014)).
Here, we use ;¢ ~ N (0, (Xi,t)Q), i.e., a multiplication with the identity of the signal X; ; (see
Fig.2a)). Real-world examples include temperature sensors whose precision degrades at high signal
values Bentley| (1984) and speckle noise in image processing [Liu et al.| (2014).

Third, Vs ime, specifies noise with distribution characteristics changing over time. Real-world
examples of such a noise source would be sensor drifts or interference with periodic environmental
factors. We model this by scaling the variance by a periodic signal, i.e., ;¢ ~ N(0,((1 + o) -
sin(27t/5))?), where o and 3 are hyperparameters. In our experiments, we fix them to simulate an

annual cycle and a small linear trend to simulate sensor degradation. Specifically, we use oo = 0.01
and 5 = 2 - 365 = 730.

Fourth, Vps auto indicates an autoregressive noise structure (¢; ) (; +—1) that can be found when
disturbances of the measurement process persist over multiple timesteps. Here, one could imagine
a sensor that is overshadowed by a cloud for multiple consecutive time steps. We model this term
as Gip ~ N (aie—1, (1 — a)?) where « is the weighting coefficient which is a hyperparameter.
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Intuitively, the mean of the distribution depends on the last sampled noise, similarly to a random
walk. In our implementation, we equally mix the previous step with the random source, i.e., o = 1/2.
This design choice ensures that the overall process, while dependent on previous noise, is still
nondeterministic.

Fifth, noise sources across different variables can be dependent (Vobs.com), i.€., Gi ¢ A ¢+ fori # j.
Such a scenario can occur if multiple sensors are affected by a shared, unmeasured environmental
factor (e.g., temperature, power fluctuations). We model this by sampling from a single noise source
¢t ~ N (0,1) that is shared for all variables in X, i.e.,Vi € {1,..., D} : (;; = (; for a timestep t.

Finally, observed data might be subject to infrequent, large disturbances or measurement failures
S with probability pshock

0 else
is a fixed scalar. In our experiments, we set = 5 and Pghock = 0.05.

(Vobs,shock)- Using a shock probability pshock, we model (; ¢ = { , Where S

As specified in our main paper, we isolate the influence of the noise structure by using five discrete,
decreasing SNR levels. Inparticular, we are using {10, 5, 1,1/2,1/10} for all observational noise
violations in Fig.[2a]

To rescale the noise vector, to achieve a desired Signal-to-Noise Ratio (SNRyet) With respect to X,
we first compute the average power of the signal and the unscaled base noise (pqse.

The signal power, Px, is defined as:

Px =

. 2
T*DZZXC%

d=1t=1

The power of (pqse, 1S:

1 D T
PC,base = m Z Z Cl?ase,d,t

d=1t=1
Given a target SNR e, the desired power for the final noise, Py target, is calculated as:

Px

P N target —
target
SNRtarget

We find a scaling factor, «, that transforms the base noise power to the target noise power.

o= PX/SNRtarget
PC,base

The final noise vector ( is then obtained by scaling the base noise:

C = Q- Cbase-

B.2 ADDITIONAL DETAILS Vonre

In our main paper, we specify two possible techniques to introduce confounding in a sampled
time series. Specifically, we separate instantaneous effects (Vcontinst) and and lagged confounding
(Veonflag)- We model the former by generating a set of IV independent potential parent variables
Z1,...,Zn. In all time steps ¢, the Z,, are standard normally distributed and can act as common
causes for any variable in X. Hence, the causal assignment (Eq. (E[)) for an observed variable X; ;
becomes: X; ; = f; (Pax (X; ;) UPaz(X;+),€;+). We scale Veoneingt Dy increasing the probability
of links from Z to variables in X . In particular, we use the probabilities {0.2,0.4, 0.6, 0.8,1.0}.

To model Vot 1ag, generate the time series with an additional confounding variable X . This variable
is part of the normal process, while iteratively generating the time series, and can influence any
variable X;. Further, it can also be influenced by all other variables. After generating the complete
time series, we create the observed data X by removing X ¢, rendering it a hidden confounder. To
scale Vonflag, We again increase the probability of links from and to X¢. Specifically, we use the
probabilities {0.1,0.2,0.5,0.7,0.9}.
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B.3 ADDITIONAL DETAILS Viarru

To violate faithfulness, we have to ensure that there are variables with a connection in the causal
graph G, which have no measurable dependency, i.e., cancel each other out. Again, we separate
instantaneous effects (Xgaim,inst) and lagged effects (Xfjmn,1ag) and visualize the structures we implement

in Fig.

(a) Structure for Vi inst (b) Structure for Vi ag

Figure 10: The two structures, we enforce to violate faithfulness. Note that in Fig.[10b] some of
the variables are lagged. In both cases, the connection from X; to X; cancels out in part by the
connection over X}, meaning X; and X; become more and more independent during the violations.

Now, to scale the violations of the faithfulness assumption, we adapt the parameters of the causal
graph to cancel out information of X; from X, using the path over X}, (see Fig.[I0). Specifically,
we implement the following assignments for Vigim inse and Vi 1ag respectively:

v ~ Uniform(0.3, 0.5)
Xk,t = 2’[)Xj)t + €t
Xi,t = (—7) + d)Xj’t + O~5Xk,t + €it

v ~ Uniform(0.3, 0.5)
Xij—1 = 20X 2+ €
Xi,t = (—’U —+ d)Xj7t72 + 0~5Xk,t71 + €i,t

Here d denotes the distortion parameter, which we decrease along the violation severity. We choose
the levels {0.2,0.15,0.1,0.05,0.0} for the violation severity in both cases. Further, we note that
this implementation is only one way, arguably the most straightforward, to generate Unfaithfulness.
However, as other ways of generating Unfaithfulness, such as deterministic relationships, conditional
links (XOR), or specific mixtures of causal models, are possible, we plan on extending TCD-Arena
in these directions in the future to gain additional insights.

B.4 ADDITIONAL DETAILS V.

To introduce nonlinearities, studies on CD robustness sample functions from Gaussian Processes
(GPs) with Radial Basis Function (RBF) kernels |Yi et al.| (2025)); Montagna et al.| (2023a)). The
smooth and oscillatory nature of these functions provides a difficult test case for algorithms that
assume linear relationships, motivating the development of more robust nonlinear methods.

However, they may not fully represent the diverse spectrum of nonlinearities encountered in real-world
applications. In many domains, such as those governed by physical constraints, nonlinearities often
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adhere to specific characteristics like monotonicity or saturation, rather than arbitrary nonlinearity
(e.g., SIR-models |Kermack et al.[(1997) or the Michaelis-Menten Kinetics /Ainsworth! (1977)).

In this section, we detail our four specific choices in nonlinear function distributions and the respective
design paradigms. Further, a critical consideration in generating synthetic time series from such
structural equations is ensuring the stability of the process (i.e., preventing divergence) because the
functions are applied iteratively. This often requires constraining the output range or characteristics
of the sampled functions f; 4;. As the specific constraints depend on the functional class, we first
detail the normalization or bounding procedures possible during the generation process. Then we
note the respective choices for the four families of functions we investigate. We also formalize what
we mean by increasing the nonlinearity of the structural causal model (Eq. (2)).

B.4.1 DETAILS ON BOUNDARY CONDITIONS

For sampling nonlinear functions used to iteratively generate observations X using Eq. (0), it is
important to consider the boundary behavior when inputs are either very large x >> 0 or very small
x << 0. This is because if we leave the interval [—1, 1] coupled with possibly high coefficients in
A, it is possible for any of the D time series to diverge towards positive or negative infinity. This
behavior could lead to numerically unstable values even in our finite simulated time steps 7". While
we will discuss specific checks to test for such conditions in Apx.[C.1I] we consider it here explicitly
for the set of violations Vy; concerning the functional relationships f; 4.

In our implementation, we focus on the input interval © € [—1,1]. Again, this specific setup is
motivated by the time series sampling process, where we apply these functions iteratively as described
in our main paper. To enforce saturation for x — 400, we wrap sampled univariate functions f using
hyperbolic tangents to roughly enforce value ranges of [—1, 1]. Consequently, values contained in the
generated time series X stay close to [—1, 1].

Specifically, we either wrap a function f based on the input z or the output f(x) to ensure saturation.
In particular, we employ

52(f(@)) = {f (@) ife&laa] @

tanh(z) else

and

f(=) if|f(z)| <=«
= 8

s(/()) {tanh( f(z)) else ! ®
respectively. In Eq. and Eq. (§), « defines the symmetric intervals around zero, which in our
experiments is set to one. When detailing the specific functional families used for the violations
Vilmonos Valtrend> Valrbf> and Vi comp, we will specify which concrete wrapper s, or s,, we use to
ensure saturation of the sampled f; 4;.

B.4.2 QUANTIFYING AND INCREASING NONLINEARITY

To formalize the concept of nonlinearity of a univariate function f, multiple scores were proposed in
the literature. For instance, roughness penalties for spline smoothing, e.g., (Ramsay & Silverman,
2005, Sec. 5.2.2), quantify it using the squared curvature of a function over a specified interval. In
particular, they calculate the deviation from a linear function as

«
Tan(f) = [ (7" (@)Pds, ©
—
where f denotes the second derivative. If and only if the second derivative is zero over the complete
interval [—«, «, then f is linear in said interval. Further, given the squared integrand, Ze,,y is strictly
nonnegative with minima exactly when f is a linear function. Intuitively, this score quantifies changes

in the derivative of f, which is constant only for linear functions.

In contrast, in Emancipator & Kroll| (1993), the authors measure the minimum possible mean squared
error of f to any linear function in the interval of interest. Specifically, for a given f, we follow their
approach and define the nonlinearity Zyisg in an interval [—a, o] as

guse() = i (55 [ (@)~ (a0 ") (10)

a,beER 2 —a
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Intuitively, Z\sg measures the minimum possible mean squared error to any linear function in
[—a, a] and is greater than or equal to zero for any f. Further, if f can be expressed as a linear
function, then Zys is exactly zero. To compute Zyvisg, we have to consider the optimal a*, b* € R,
which are necessary to minimize the mean squared error. In[Emancipator & Kroll| (1993), the authors
give general solutions for arbitrary interval boundaries. In our case of a boundary symmetric around
2 = 0 of [—a, a], the optimal solutions that minimize the error for a function f are given by

._ 3 [
a =53 » xf(x)dx, and
| e an
b* = — f(z)dz.
2a0 J_,
Hence, the measure for nonlinearity becomes
1t « )2
Puse(f) = 3 [ (F(e) = @+ 67) . (12
-1

Both Z.,v and s behave differently and are not always aligned. Specifically, Zvisg considers the
absolute distance to a line, meaning it can change if we multiply f with a constant factor, while Py
would not change. However, Z.,, necessitates that the function is twice differentiable, i.e., in C?, in
the interval of interest [—c, «]. Hence, it cannot distinguish nonlinearity between step functions or
absolute values, even if they closely follow a linear function in absolute deviation. In contrast, Zyisg
is finite in such cases but includes an optimization process. However, using linear regression, we can
empirically estimate Zysg for any given function.

In our work, we randomly generate time series. Hence, we are interested in the approximate behavior
of the resulting processes. We formalize this by describing families of distributions F of a function
f with stepwise varying nonlinearity. Specifically, we ensure that sampled functions f ~ F have
controllable expected nonlinearity

Efr[2(f))), (13)

where & is a measure of nonlinearity. Thus, to increase the nonlinearity of sampled processes, we
stepwise change F from which we sample the functions f; 4; in Eq. .

Lastly, consider that in our formulation of the general structural causal model (Eq. (2))), the functions
in the causal graph G are univariate and connect two, possibly lagged variables. Hence, another
approach to increase the nonlinearity in a stepwise manner is to only sample a subset of the f; 4,
from a distribution of nonlinear functions while keeping the rest linear. This leaves us with a third
possibility to increase the nonlinearity of the overall SCM.

In the following, we specify four families of distributions of nonlinear functions and establish how
specifically we change the nonlinearity of the resulting sampled time series processes.

B.4.3 1. MONOTONIC FAMILY:

For the first family, we sample uniformly one of three univariate functions, where a parameter 5 > 0
determines the nonlinearity. Before we formally analyze the influence of this parameter, we detail
our specific functions and motivate our design choices. We use

fi(x; B) = sgn(z) - |z)”,

B
folw; B) = (xil)‘ ~1, and "
B B
e g) = e[S

where c is a hyperparameter which we set to 2 in our experiments. The specific choice of the added
and subtracted 1 in f5 and f3 depends on our interval of interest [—a, o, where we want to change
the non-linearity using .

Note that for the following analysis and in our implementation, we focus on the interval [—1, 1].
This specific setup is motivated by the timeseries sampling process, where we apply these functions
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iteratively as described in our main paper. Hence, functions that scale values outside of this interval
likely lead to divergent processes. Furthermore, we wrap each function using a hyperbolic tangent of
the input (Eq. (7)) to ensure that our functions are saturated. Additionally, this ensures that values
stay roughly in the interval of interest [-1,1].

Our intention in designing this family of functions is to ensure monotonicity in the specified interval,
hypothesizing that this property is important for CD methods. We investigate this hypothesis
empirically in our main paper. As a first step, we now show that all three of our functions are
monotonically increasing in [—1, 1] and for § > 0.

To prove this statement, it is enough to show that the first derivative is greater than or equal to zero
for all 2 € [—1, 1]. Note that given Eq. (2) in our main paper, monotonically decreasing functions are
possible because the coefficient matrix A can have negative entries. Hence, without loss of generality,
we focus in the following on the monotonically increasing nature. Specifically, consider our three
functions (Eq. (14)) only in the interval of interest [—1, 1]

fi(w; B) = sgn(x) - |z

fz(x;/@):c<(xi1)>6—1’ (15)
T

where the absolute value can be removed from f, and f3 because = + 1 is always positive or negative,
respectively.

We start our analysis with the derivative of f7, which has three cases, i.e., x < 0,z > 0, and z = 0.
‘We start with the first two:

Case 1, —1 < z < 0: In this case, sgn(z) = —1 and |z| = —x apply, leading to f1(z;8) =
(—1)(—2)”. Using the chain rule, we find

fi(@:8) = (=1D)B(=2)"71 - (=1) = B(-2)"~ (16)

= Bl (17)

Case 2,0 < x < 1: Here, the absolute value becomes the identity and sgn(z) = 1. Thus, we have
fi(z;B) =, and

fi(w;B)=B-2"~t = Bla|’ . (18)

In both cases, we can see that the derivative is equal to f{(z; ) = S|z|#~1. Forallz € [-1,1]\ {0}

and 8 > 0 this is strictly nonnegative. Lastly, to prove that f; is monotonically increasing in the

interval of interest, it is left to show that the derivative is also larger than or equal to zero for x = 0.

Here, the value depends on the specific setting of 8. For 8 > 0, we have three cases and we study the
limits of f{ from both directions

Case 3.1, 5 = 1: In the linear case, we find
li "(2:1) = lim 1-|z[°= lim 1=1, and
A i) = g 1= g =1 an

lim f{(z;1) = lim 1-|z|°= lim 1=1.
r—0~ rz—0~ z—0~

In other words, the derivative is constant and larger than zero.
Case 3.2, 8 > 1: Here we find the exponent S — 1 > 0 leading to the following two limits
lim fl(z;1) = li Jz|P~t=p-10/°"t =0, and
i fi(@1) = Tim B jalt = 5-[0 an

lim f{(z;1) = lim 8- \x|571 =4 |O\ﬁ*1 = 0.
r—0—

r—0~

Hence, we find a saddle point, where the rate of change is exactly zero when x = 0.
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Case 3.3,0 < 8 < 1: In this case, the exponent 3 — 1 becomes negative meaning |yc|ﬂ_1 = 1/|z|*~5.
Consequently, limits from both sides diverge towards

1
. ’ A _ . . _
Zlu(rﬁ filz; 1) = zhrgl+ B B +o00, and
1

li Nx;1) = 1 — = .

Lmm filesd) = lim B g = oo

Crucially, in all three cases, the limits of the derivative from both sides are equal and strictly
nonnegative. Hence, f; is monotonically increasing in [—1, 1] for all 5 > 0.

Next, we investigate the derivatives of f5 and f3. Following the observation that for z € [—1, 1] the
absolute values can be rewritten as in Eq. (15), we calculate f3 and f4 using the chain rule as

p-1
Bwm=5(TE) L

— 2\t
Bem=5(+7)

For both functions, we have a strictly positive number (3 > 0) which is multiplied by a base raised to
areal power. Remember that in our experiments, we set ¢ = 2, meaning both (—1)/2 and (1-=)/2 vary
in [0, 1], i.e., are strictly nonnegative. Therefore, raising it by a real power (3 — 1) leads for both f
and f} to a positive factor times a nonnegative factor. Hence, for all € [—1,1] and 8 > 0, we find
f5(x; 8) > 0and f5(x; 8) > 0. Note that in both cases, when 0 < 8 < 1, we again find limits for
both derivatives, where they become infinite. Specifically, for f2, we observe a vertical tangent when
x = —1, and for f3, we similarly observe one for z = 1 (compare to case 3.3 of f;). Nevertheless,
the derivatives of all three functions fi, f2, and f3 are strictly nonnegative in the specified interval.
Hence, the functions themselves are monotonically increasing in [—1, 1] for all 8 > 0. Next, we
discuss how we can increase the nonlinearity of all three functions.

19)

Monotonic Family Increasing Nonlinearity As specified above, for a given distribution of func-
tions, we can quantify the linearity by considering the corresponding expectation. For the monotonic
family of functions, the distribution we consider is a uniform choice of {f;, f2, f3}. Hence, for a
fixed 3, we are interested in

E ¢, ~Uniform{ f1, f2, fs} [DMsE (fi (-5 B))]- (20

In the case of this uniform distribution, all three cases are equally likely. Thus, the expectation for a
fixed /3 is equal to the average of sk for the three functions. We specifically choose Zysg because
the integral over the squared second derivative (Zyy) of f1 diverges for 1 < g < 1.5. Further, we
are interested in measuring the squared deviation from any possible line in [—1, 1].

Consider that the parameter (3 directly controls the nonlinearity of f;, f2, and f5. In particular, all
three functions are equal and linear in [—1,1] if § = 1

fi(z;1) = sgn(z) - [z| = =,
fg(a:;l):c(ml_1> —1=u,

e o5 1

C

Hence, the expectation in Eq. becomes zero for 8 = 1.

Now, by changing [ away from 1, all three functions become nonlinear in the sense of Zysg.
Specifically, we construct five discrete levels £ € {1,2,3,4,5} to scale Vymono and sample 3 with
an equal chance from either of the following intervals

t=1—pel2,1]orBe1,2],

0=2— B el/a1/2]orB € [2,4],

{=3— pBells/aorpse 48], 21
0=4— pel/i2,1/s]or B € [8,12],

£=5— € [l20,1/12] or § € [12,20].
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For a concrete level £, we denote the lower and upper boundaries of the two intervals with | (Lli) ) I(f “]

and [} (1) , B ET)] respectively. Fig. visualizes examples of functions drawn from the five levels of
the resultmg distributions. Crucially, the intervals of the distinct levels only overlap at a maximum of
two concrete boundary points with any of the other intervals.

To analyze the non-linearity of our functions f;(+; 8) in the interval z € [—1, 1], we consider a second
expectation over f3 distributed uniformly from either of the two intervals given by a level /, i.e.,

EglEs, [Zmse(fi( -5 8))]ls (22)
where we omit the specific distributions for brevity.

Here, both the function f; and 3 are sampled independently. Hence, Eq. is equal to

[€20)
U

1 3 1
o 2 ) a3 B
ﬂ“’” 1 3 (23)

51
+ BN 2(B(U€T) _ 5(Lﬁ)) ; §9MSE(fj( -3 8))dB,

where both of the integrals describe one of the two equally likely and symmetrical intervals from
which 3 is sampled, respectively. Further, for a fixed level ¢, the factors contained in the intervals are
a fixed normalization given by the probability density of the corresponding uniform distributions over

the intervals | gi), ,(J“)] and | (LET), (UET)].

By linearity of expectation, we can reorder Eq. (23)) into

(i)

1 -@MSE(f( i)
( )

Dase(F5( -3 8))
+/5<L“> 20550 ]—Bémfw)'

As stated above, the only point in all intervals we consider where the f; are linear is for 8 = 1. In
any other case, Zuse(f;( - ;8)) > 0 applies.

To now show that the expectation increases with the level ¢, consider that the integrals in Eq. (24)
calculate averages over all values of Zysg for /5 in the corresponding intervals. Hence, it is enough
to show that for 5 > 0, Zysg is smooth and increases when moving away from the global minimum
at § = 1 in our specified intervals. In all cases, we focus our analysis on the set of functions
{f1, f2, f3} we defined above. Consider that for the interval [—1, 1], the optimal parameter for the
MSE minimizing line (Eq. (TT))), become

a*zg/le() and

/ fa

We visualize examples for f1, f2, and f3 and the corresponding optimal lines in Fig.

(24)

(25)

Now to determine whether Zysg is smooth with respect to changes in /3, we have to consider the
three terms in Eq. (12] . ) that are functions of 3: f;, a*, and b*, where the last two also depend on the

specific function f; (Eq. (I1), Eq. 23)).

For all three of our functions f;, the critical part is of the form |g(x)|®, where g(-) is defined in
Eq. (T4). Hence, the following equality holds

|g(x)\5 — Bnlg(@)| (26)
In particular, the function has an exponential form, which is infinitely differentiable (C°°) with

respect to 3 for any fixed = (where g(x) # 0). In other words, f1, f2, and f3 are smooth with respect
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Figure 11: Examples of f1, fa, and f3 with randomly sampled /3 from the respective level £. We also
visualize the optimal line and denote the corresponding parameters.

to 8 in [—1, 1]. Further, as a direct consequence of the Leipnitz integral rule, e.g., (Protter & Morrey,

1985} Chap. 8), integrals of the form fil fj(z; B)dx and fil x fj(x; B)dx are also smooth functions
with respect to 8. Finally, consider that Zysg is again an integral with respect to x of a square of the
sum of three functions that are smooth with respect to 5. Hence, using the Leipnitz integral rule and
the chain rule for differentiation, we can conclude that Zysg is also smooth in 3 for the functions f7,

f2,and fs.

To show that the nonlinearity increases if we shift 8 away from the linear case of 3 = 1, we now
study -2 Zysg. In particular, using the Leibniz rule and the chain rul h
Y 35 Zmse- In particular, using the Leibniz rule and the chain rule, we have

Psel) - [ (1, 03) — e 07)
opB -1 27
. (afm;ﬁ) Oa” f%*) dz

o o 0B
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Expanding the product in the integral leaves us with three separate terms

8@MSE(fj) :/ (f](x,ﬁ) . (a*x + b*)) 8]"3;;75) de

op -1
* 1
_%aﬁ xz(fj(x; 8) —a*x —b")dx (28)
—1
o (!

(fj(z;8) —a"x —b")dx.

98 ),
da™

Crucially, note that it is possible to move the partial derivatives 5 and %—b/; outside of the integral
because they are independent of x. This is important because the integrals in the second and third
terms are exactly the first-order optimality conditions of a* and b*, respectively [Emancipator & Kroll
(1993). Hence, both of these integrals vanish, and we are left with

Phuelly) _ [1 (i) = (' ) 22 P (29)

In Eq. (29), we have two factors: the residual error to the MSE optimal line and the sensitivity of f;
with respect to changes in 8. Given that the residual is a constant zero at 5 = 1 when our f; become

linear, we again confirm that this is a minimum of Zy;sg. Hence, %g(fj) = 0if 8 = 1. Consider
now that for all values 5 > 0 which are not § = 1, all our functions fi, fo, and f3 are nonlinear,
we know that Zysg has to be strictly larger than zero. This implies that 5 = 1 is a unique global
minimum. Given this observation and the previous insight that Zysg is smooth with respect to /3,
we conclude that the averages over Zysg have to increase locally in the neighborhood of the global
minimum at 8 = 1. However, this does not necessarily imply that the only critical point is at 5 = 1.
To test whether our claim that the expected nonlinearity increases for an increase in level ¢, we use
Eq. (TI) and Eq. (I2) to simulate the nonlinearity.

— [ B)
0.20 fol-, B)
i:jo 15 ______ f3<7/8)
&3
=0.10
§ . ,/"‘\\~\\
0.05 || T
0.00 /\ | | ,
0 20 10 60 S0 100

Figure 12: Nonlinearity measured with Zysg for the three functions f1, f2, and f3 for increasing
values of 5 > 0.

We visualize Zsg in Fig.[12|and confirm that the nonlinearity increases when we move away from
the global minimum = 1. However, we observe local maxima in the interval (0, 20]. Hence, it is
unclear how the expected nonlinearity for randomly sampled f; and /3 according to the defined levels

{ behaves.

33



Under review as a conference paper at ICLR 2026

fi f2 f3 E[Zwse(fi)]

0.005178  0.006049 0.005783 0.005670
0.032103  0.030878  0.029993 0.030991
0.066364 0.046946 0.048134 0.053815
0.087101 0.046346 0.044872 0.059440
0.103752 0.039548 0.037819 0.060373

N AW =S

Table 4: Approximated nonlinearity scores for the three functions f;, f2, and f3 and different levels /.
The last column contains the accumulated Zyisg over all f; for all 3 sampled in the respective level.

Thus, we estimate the expected nonlinearity (Eq. (24)) per level £. Specifically, we sample 1000
B values for each level and use the theoretically optimal line parameters a* and b*. We list the
approximated expected nonlinearity in Table 4] We find that the expected Zyisg does stepwise
increase for f; while it decreases slightly for fs and f5 again after ¢ = 3. However, the accumulated
expectation over all functions (Eq. (22)) does grow for £ = 1, ..., 5. Therefore, we conclude that the
empirical nonlinearity does increase stepwise for our defined violation levels.

B.4.4 2. B-SPLINES FOLLOWING A TREND:

Next, we investigate univariate functions f that have an overall increasing trend but are not necessarily
monotonic in nature. To do this, we rely on B-spline interpolations, e.g,|de Boor| (2001). Specifically,
we sample sample Np scalar values (interpolation points) {v1, va, ..., vn, } from a uniform distri-
bution Uniform(—1, 1). Next, we sort the values v; and set them as targets for f(x) at equidistant
abscissae in the range = € [—1, 1]. Consequently, a B-spline f(x) = Zjvzpl cxBj () of degree
k = 3 is constructed to smoothly interpolate these points. The corresponding B-spline basis elements
are given by

1 ifr <z <741,
Batoy= {1 17 =<

0 else

T —T;
B»kx :7JB‘]€,1$
o) = - Bikea(a)
Tj+k+1 — T

Bj1,k-1(),
Tj+k+1 — Tj+1

where we determine the entries of the knot vector 7 as described in |de Boor (2001) using the
implementation provided in |Virtanen et al.|(2020). Given that the basis functions are piecewise cubic,
the fitted curve is not monotonic, as visualized in Fig.[5f] To ensure saturation, we use the procedure
described in Eq. . For Vy trend, We sample different f; 4, for all non-zero interactions in Eq.
by sampling different v;. Next, we discuss how we stepwise increase in nonlinearity of the sampled
functions.

Number of Inter-

polation Points B foe [Prase (fiptine )]

25 0.003792
15 0.006517
10 0.010198
6 0.017728
4 0.019475

Table 5: Estimated expected Zysg for the spline functions sampled for the five decreasing number of
interpolation points.

B-Splines Increasing Nonlinearity To stepwise scale the nonlinearity of the sampled functions
fi.d,1, we decrease the number Np of interpolation points. Specifically, we use the following values:
{25, 15,10, 6,4}. Intuitively, a higher number of interpolation points indicates more values v; that
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Figure 13: Nonlinearity measured with ZYysg for the spline functions for an increasing number of
interpolation points. We report the average and the standard deviations.

have to be interpolated and which are strictly increasing. To empirically show that a larger Np leads
to more linear functions in the sense of Zvisg (Eq. (12)), we use Eq. to approximate the average
nonlinearity in Fig.[T3] Further, following the uniform distribution of independently sampled v;, we
approximate the expected ZPyisg of our concrete V) yeng in Table E} Similar to the monotonic family
of functions, we observe that the nonlinearity of sampled f; 4; increases on average.

B.4.5 3. GAUSSIAN PROCESSES WITH RBF KERNELS:

Related studies focusing on robustness of CD methods for i.i.d. sample data |[Montagna et al.

(2023a); [Y1 et al.| (2025) primarily change the standard linear relationships to interactions modeled

by Gaussian processes using Radial Basis Function (RBF) kernels. In our third family of functions

for the violation Vy s, we follow the same approach. Specifically, we use a Gaussian process prior
(z—a’)?

f(x) ~ GP(0, krpr(z, x")) with the RBF kernel krpp(z,z’) = exp (— 7 ), where ) is the
length scale which we set to one. In particular, we use the implementation of |Pedregosa et al.|(2011).

Further, we do not employ wrapping in this case as the mean zero of the Gaussian process ensures that
the sampled functions do not diverge. Next, we describe how we stepwise increase the nonlinearity
of the resulting SCM.

Stepwise Increasing Nonlinearity To stepwise increase the nonlinearity, we use a different ap-
proach for V. Specifically, we sample nonlinear links f; 4; with an increasing probability from the
Gaussian process. Here, we use the following probabilities: {0.2,0.4,0.6,0.8,1.0}. All remaining
links in the causal graph G are linear and use the identity function in Eq. (2). Hence, we increase
the nonlinearity of the overall SCM by increasing the likelihood of sampling nonlinear links. To be
specific, for our two empirical scenarios (D, L) = (5,3) and (D, L) = (7,4), we have a maximum
of 5x5x (34 1)and 7 x 7 x (4 4 1) links, respectively, where D is the number of variables
and L the number of lags (+1 for instantaneous). For lagged links, we employ the link probabilities
Plag = 0.075 or pipg = 0.15, while for instantaneous links, we use pip = 0.0 and pi = 0.1 (see

Eq. (§).
We list the number of expected links for the eight combinations in Table [6] For each of these eight

combinations, we can calculate the number of expected nonlinear links for the increasing intensities
{0.2,0.4,0.6,0.8,1.0} via a standard multiplication because they are sampled independently. This
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(D, L)
(53) (74

(Prag, Pinst) = (0.075,0.0)  5.625 14.7
(Plags Pinst) = (0.075,0.1)  8.125  19.6
(Prag» Pinet) = (0.15,0.0)  11.25  29.4
(Prag, Pinst) = (0.15,0.1) 1375 343

Table 6: Expected number of links in sampled SCMs. Here, D denotes the number of variables in
X and L denotes the number of lags. The probabilities (plag, Dinst), correspond to the likelihood of
lagged and instantaneous connections in the causal graphs G (i.e., nonzero elements in A and B,

Eq. (6)).

leads to the following increasing numbers of expected nonlinear links for the smallest and sparsest
scenario (D = 5, L = 3, pay = 0.075, pinse = 0.0): {1.125,2.25,3.375,4.5,5.625}. Conversely, we
get the following expected nonlinear links in the largest scenario (D = 7, L = 4, pjyg = 0.15, pjng =
0.1): {6.86,13.72,20.58,27.44, 34.3}. Hence, we conclude that sampling the SCM in this stepwise
manner progressively increases the amount of nonlinear interactions.

4. Composite Functions Lastly, and inspired by symbolic regression, we sample the f; 4; through
a random hierarchical composition. First, we define a set of base functions ‘B. Specifically, we
implement {x'/*, tanh(z), sinh~*(z), max(z, 0), z, 22, ||, cosh(x), sin(x), cos(z)}. Then, m inde-
pendent chains hU)(z) are formed, each by randomly selecting and sequentially composing N, 8
functions from B, i.e., h)(z) = by, (...ba(b1(x))...). Finally, the results of the independent
chains get multiplied by —1 with a probability of 1/2, i.e., cgg
get summed up to

~ Uniform{—1, 1}, before all chains

m

Fla) =" el h9 (),

J=1

This construction allows for a wide range of possible, potentially highly nonlinear functions. Hence,
we apply Eq. (§) to enforce stable behavior. In our empirical evaluation, we use two chains, each
composed of two base functions uniformly sampled from 5 to model Vcomp. Next, we describe
how we stepwise increase the nonlinearity of the resulting SCM.

Stepwise Increasing Nonlinearity For Vy comp, we strictly follow the procedure also employed for
Ve Specifically, we increase the probability of sampling nonlinear interactions when generating
the SCM. Again, we use the following probabilities: {0.2,0.4,0.6,0.8,1.0} to scale the violation
intensity. Table [§] summarizes the number of links for the various scenarios in our experiments, and
the same calculations as for V¢ apply to estimate the expected number of nonlinear links. Hence,
we conclude that sampling the SCM in this stepwise manner progressively increases the amount of
nonlinear interactions.

B.5 ADDITIONAL DETAILS Vyvo

Since the standard assumption of independent additive innovation noise is often violated in practice.
Here, we detail our setup for evaluating the impact of such violations. Specifically, we consider
three different paradigms: First, we discuss direct changes to the noise structures by introducing
dependencies. Second, we shift the distribution from Gaussian to non-Gaussian variations. Lastly,
we consider widely different variances leading to stronger variations between the variables X;, which
can be problematic |Peters & Biihlmann| (2014).

In the first set of violations, we test robustness against five alternative noise structures following our
discussion of observational noise in Apx.[B.T} To be specific, implement Viyno,muts Vinno,auto> Vinno,coms
Vinno,timea and Vinno,shock-
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Violation  Definition of ¢; ; Depends On
Vobs,mul €t = Xit - Mg the signal X ;
Vobstime €t = Nit - (14 at) - sin(27t/g)  time step ¢
Vobs,auto €t =0 €41+ (1 —a)-n,; autoregressive

Vobs,com Vi : €i,t = Mt -
v e S with prob. pghock, fixed scalar .S,
obs,shock €it 0 else. shock prob. Psnock

Table 7: First set of innovation noise violations. In our experiments, the sources of randomness for
the variables X; are routed in the innovation noise ¢; ¢, which are typically additive and standard

normal. Here, we include various dependencies by using random variables 7; ; and 7, (standard

normal N (0, 1)), which are subsequently influenced by various factors, e.g., the signal strength
(Vobs.mu1)- Both « and /3 denote hyperparameters.

All of these structures change the distributions of the independent additive noise €; ¢ in Eq ). we
list the specific distributions in Table[7] Regarding the corresponding hyperparameters ie., a, 8,5,
and pPghock, We use the same setting as for the observational variants (see Apx.|B

In contrast to scaling the SNR, we blend the different ¢; ; distributions with a decreasing amount of
standard normal noise to intensify the five violations. This is important because the innovation noise
is part of the signal (Eq. ([2)). In particular, we use alpha blending, i.e.,

ag; s+ (1 — o)y, (30)

where ¢;; ~ N(0,1). We use the following increasing « values in our experiments:
{0.1,0.25,0.5,0.75,0.85}

For the second set of innovation noise violations, i.e., Vinnouni and Vinno weib, W€ progressively blend
non-Gaussian distributed noise with standard normal noise. Let w ~ 2,4 be a non-Gaussian random
variable and let ¢) ~ A/(0, 1) be standard normal noise. Then, we define ¢; ; as
o (-a)w-Ek)+ay
YT ar(w) (1 — 2a) + a2(var(w) + 1)

where « is a blending parameter. To stepwise scale the intensity, we use the following blending
values for a: {0.95,0.75,0.5,0.25,0.0}.

&1V

The denominator in Eq. and substracting E[w] in the numerator ensure that Ele; ;] = 0 and
var(e; ;) = 1. To verify this, note that the expectation is linear and the denominator is a constant factor
for a fixed w. Hence, it is enough to analyze the numerator. Here, E[w] — E[E[w]] = Ejw] —E[w] =0
and E[¢)], which directly implies E[e; ;] = 0. Further, to show that the denominator scales the mixture
to unit variance, we have to show that it is equivalent to the standard deviation of the numerator. Given
that the standard deviation is the square root of the variance, it is enough to show that the variance of
the numerator is equal to the squared denominator. Crucially, both w and ) are independent random
variables, which means their covariance is zero. Hence, var((1 — o) (w — E[w]) + a2))

(1= a)?var(w) + a?var(y)
= (1 —2a + o?)var(w) + *1
= var(w)(1 - 2a) + o*(var(w) + 1),

i.e., the squared denominator in Eq. (31). A direct consequence of this is that var(e; ;) = 1.

In our experiments, we use two different non-Gaussian distributions to model the violations Vigno uni
and Vipnoweib- In the first case, for Vinnouni, We use a uniform distribution over the interval [—2, 2]
with the corresponding density

pUniform(x) = 1[72,2] (.13) . (32)

1
4 )
where 1{_5 o) is a unit function that is equal to one iff z € [-2, 2].
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Figure 14: The densities of the two non-Gaussian distributions, we employ to violate standard normal
Gaussian innovation noise. Specifically, we employ a Weibull distribution Weibull| (1939) with scale
A = 1 and shape a = 1.5 and a uniform distribution over the interval [—2, 2].

In the second case, for Vingo weib, We employ a Weibull distributionWeibull| (1939). Such a distribution
is described by two parameters: a scale A, which we set to one, and shape a, where we use 1.5. The
corresponding density is defined as

a fx\e—1 2/3 )0
DPweibull (T) = X (X) e (%, (33)

We visualize the densities of both non-Gaussian distributions in Fig.

Lastly, as the final, separate violation concerning innovation noise, we model a high variance for the
different variables Vipno.var, Which can be problematic [Peters & Biihlmann|(2014). We implement this
violation by sampling one variance o2 for each variable X; at the beginning of the sampling process,
which is then used in each timestep to draw ¢; ; ~ A(0, 02). In particular, we sample the o2 uniformly
from an interval. Now, to stepwise intensify Vinnovar, We increase the length of these intervals.
Specifically, we use the following order of intervals: [0.5,1],[0.1, 1], [0.1,2],[0.1, 4], and [0.1, 8] to
model the widening uniform distributions.

B.6 ADDITIONAL DETAILS Vgrar

Stationarity assumes that the structural assignments in Eq. (6) do not change during the genera-
tion/measurement process. To violate this assumption, we keep the nonzero entries in A, but resample
the coefficients during the generation of the time series. This approach models changes in the SCM,
and we scale Vg, by increasing the number of change points Nchange. Specifically, we introduce one,
three, five, seven, or nine changes to the structural assignments. To change the nonzero coefficients
A; 4.1, 1.e., the causal skeleton, we uniformly sample an additive change from Uniform(—0.6, 0.6).

In our experiment, we set the number of time steps 7 either to 250 or 1000. Hence, to introduce
Nehange € {1,3,5,7,9} change points, we use the time steps denoted in Table respectively.

B.7 ADDITIONAL DETAILS V gngrr

To reliably estimate relationships and identify patterns, CD algorithms need a sufficient number of
samples. To violate this necessity (Viengm), we reduce the number of time steps 7" we sample from
Eq. @) Specifically, we employ the following five discrete levels 7' € {200, 100, 50, 25, 12}.
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Selected Time Steps

Nerange T = 250 T = 1000
1 125 500
3 100, 125, 150 400, 500, 600
5 75, 100, 125, 150, 175 300, 400, 500, 600, 700, 800
7 50, 75, 100, 125, 150, 175, 200 200, 300, 400, 500, 600, 700, 800
9 25,50,75, 100, 125, 150, 175, 200, 225 100, 200, 300, 400, 500, 600, 700, 800, 900

Table 8: The specific time steps we use for the respective number of change points to violate
stationarity (Vg,). We separate the time steps for the two settings 7' = 250 and 7" = 1000 in our
experiments.

B.8 ADDITIONAL DETAILS V,

In practical applications, data quality cannot always be controlled, leading to various degradations
beyond observational noise. We investigate two quality violations that are common in various
domains, i.e., sensor failures Vg empry and missing values Vg missing. They differ because in the former
scenario, we change the parent set of variables to & during the generation of X, while in the latter,
we remove and linearly interpolate periods of measurements after generation.

To scale Vg missing, W€ increase the probability to delete observations X; ; completely at random
Heitjan & Basu|(1996). Specifically, we use premove € {0.2,0.35,0.5,0.65,0.8} before we use linear
interpolation to fill X again.

T = 250 T = 1000
Length  Ratio Empty Periods | Length  Ratio Empty Periods | Avg. Ratio
50 2x 0.2 (50, 100) and (150, 200) 300 2x 0.3 (100, 400) and (600, 900) 0.25
75 2x 0.3  (25,100) and (150, 225) 390 2x0.39 (50, 440) and (560, 950) 0.345
90 2x 0.36 (20, 110) and (140, 230) 440 2x 0.44 (40, 480) and (520, 960) 0.4
100 2x 0.4 (20, 120) and (130, 230) 450 2x 0.45 (40, 490) and (510, 960) 0.425
110 2x 0.44 (10, 120) and (130, 240) 470 2x 047 (20, 490) and (510, 980) 0.455

Table 9: The specific time periods, denoted by (start, end), where we set the parent sets to & during
generation of X, i.e., Vg empty. We separate the time steps for the two settings 7' = 250 and 7' = 1000
in our experiments. In all cases, we introduce two periods with no causal signal and scale the length
to increase intensity. We denote the average ratio of empty periods for sampled time series in the last
column. Note that this ratio, i.e., the violation intensity, increases with each row.

To control the intensity of Vg empry, we increase the length of periods, where we remove the causal
signal during the generation of X. Specifically, we introduce two such periods per sampled time series
and list the concrete intervals in Table[9] Crucially, the average ratio of each of the empty periods
during the T' = 250 or T' = 1000 time steps increases as follows: {0.25,0.345, 0.4,0.425,0.455}.

B.9 ADDITIONAL DETAILS Vgcarr

Related works suggest that synthetically generating data introduces artifacts beneficial for identifying
causal order, e.g.,|Ormaniec et al.|(2025). This phenomenon is problematic because it can lead to an
overestimation of a CD method’s efficacy. Because it can be remedied using standardization to mean
zero and variance one Reisach et al.| (2021); [Kaiser & Sipos| (2021)), we violate this condition by
mixing the original observations X with its standardized version X after generating the time series.

In particular, in X all variables X; are standardized over the time steps . Then, the observations

X =aX+ (1 — @)X, where « determines the intensity of V. Specifically, in our investigation,
we use « € {0.0,0.5,0.7,0.9,1.0}.
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Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears

Temporal Dynamics

Lagged Effects v v v v v v v v

Instantaneous Effects X X X v X v v v
Observational noise X X X X X X X X
Hidden confounding X X X X X X X X
Unfaithfulness 4 T 4 v X X v v
Nonlinearity X v X X v v X v
Innovation noise

Non-Additive noise X X X X X X X X

Gaussian additive noise 4 v 4 X v v v v
NonStationarity X X X X X X X X

Table 10: Comparison of core assumptions and capabilities of selected causal discovery algorithms.
Note, PCMCI and PCMCI+ can handle both linearity and nonlinearity. We, however, only test these
methods with a linear conditional independence test in this study (partial correlation and robust
partial correlation). Therefore, we mark their ability to handle nonlinearity with a *. We found no
information on the faithfulness assumption for CausalPretraining and therefore mark it with §. Finally,
we omit data quality issues such as Viepgin, Vg, 0r Vicqre from this table as they are typically not
mentioned as explicit assumptions.

C APPENDIX — EXPERIMENTAL SETUP

C.1 SAMPLING DETAILS

In this section, we describe the data generation process that we use throughout our experiments and
for all violations. Generally, we base all of our experiments on Eq. (6) and alter it according to the
violations described in Apx.[B] We employ two combinations of the number of variables D and
the maximum lags L, resulting in a small and a big scenario. Specifically, we set (D, L) = (5, 3)
or (D,L) = (7,4), respectively. Then, with a probability pi,, € {0.075,0.15} and probability
Pinst € {0.0,0.1} links in A and B are being selected to be nonzero. This leads to eight “data regime”
combinations, and we list the expected number of links in Table@ Next, each nonzero element in
A and B receives a value that is uniformly sampled from the joint interval [—0.5, —0.3] U [0.3, 0.5].
Notably, we explicitly exclude coefficients close to O to render causal relationships detectable. If
f is not the identity function (i.e., for Vy;), a univariate function is drawn from the corresponding
distribution. We then generate X iteratively using Eq. (6). To initialize, we sample every variable

from (N(0,1)).

Before we start to generate X, we need to evaluate the following two conditions: First, concerning
instantaneous coefficients B, we guarantee the sample graph to be acyclic by checking the following
necessary and sufficient condition for acyclicity:

tr(e?) = D, (34)

where tr is the trace operator. If this condition is not met, we resample B until it passes. To account
for potential divergence of the SCM, we test the VAR stability of A. In particular, we investigate
whether it is stationary by evaluating the eigenvalues of its companion matrix F":

Air Ao o0 Ais Ay
Ip 0 .. 0 0
0 0 .. Ip 0

where Ip is a D x D identity matrix. To guarantee the stationarity of the corresponding process, all
eigenvalues of F' have to lie in the complex unit circle. This condition applies if

max |\ (F)] < 1. (36)
K3
If it does not hold for the sampled A, we resample the coefficients.

However, if the f; 4; are nonlinear, then the VAR stability test does not apply. Hence, we additionally
check for divergence with the following two tests: First, while generating X we continuously check
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whether any variable in X is monotonically increasing over the last 7 time steps by testing:

Fe{l,...,d},3It st Vke{0,...,T},

37
| X t—k—1| < |Xi1—kl

If this condition is met, we halt the generation process and resample a new SCM. In our experiments,
we set T = 10.

Second, we test whether any time series in X holds values higher than a maximum value (likely
indicating divergent processes). In our experiments, this value is set to £25. Again, if this condition
is met, we halt the generation process and resample a new SCM.

For each violation intensity and data regime, we sample 100 random SCMs along with a corresponding
X to calculate a single AUROC score. As discussed in our main paper, a “data regime” is a
combination of D, L, pjae, and ping (compare Table [6). Further, we vary the length of the time series
T € {250,1000}. In summary, this results in 2 X 2 x 2 x 2 x 100 = 1600 SCMs per individual
violation intensity. Considering that we evaluate 5 stepwise violation intensities, we sample 8000
SCMs to evaluate the robustness of the eight CD methods for each of the 27 violations contained in
Table 2] 4000 each for the small ((D, L) = (5,3)) and big scenarios ((D, L) = (7,4)).

C.2 CAUSAL DISCOVERY METHODS DETAILS

We include details on the method assumptions of all causal discovery methods involved in Table [I0]
Note, many of the data quality assumptions that we test, such as Viengin, Vg, 0 Vicale, are not explicitly
assumed by most methods, however they are nonetheless often implicitly modeled in the synthetic
data that is used for testing algorithm performance.

C.3 HYPERPARAMETER SEARCH SPACES

In Table we include a list of the full hyperparameter space that we evaluated for each causal
discovery method used throughout this paper.

C.4 ENSEMBLE TRAINING

To train our examples, we generate a separate training dataset that holds SCMs and corresponding X
from all violations, respective intensities, and data regimes. These samples are combined into a single
joint training dataset that we use to train Ensembles with trainable parameters. In the most general
sense, all our ensembles take a tensor of the shape B x D X D X Ly,04e1 X M, where M denotes
the number of individual CD methods, D the number of variables, L,,,,4.; the model order and B
the batch size. This tensor is then, if necessary, reshaped to match the first layer of the respective
network architectures (Ensemblep jpear, Ensembleyy p, and Ensembleyy p). All network architectures
return a B X D X D X L,,04¢; tensor that is directly used as the final predicted graph G. Notably, for
the Ensemblepe,n, and Ensemblep,, We directly recombine elements in the input tensor by either
taking the average over the model dimension M or selecting the optimal element. Ensembley jyeqr
is implemented as a single fully-connected layer without an activation function. For Ensembley p,
we use a 3-layer MLP with RELU activation functions. For Ensembleconymixer We use a standard
ConvMixer architecture Trockman & Zico Kolter| (2022) where we set the input channels to D and
the hidden dimension to D X D X L;,.4.;. Further, we evaluate the hyperparameters specified in
Table[12]to select the best model that we report in Fig. [3at

C.5 REPRODUCABILITY AND COMPUTATIONAL RESOURCES

To facilitate the reproduction of our results, we have made all code and necessary resources available
in the TCD-Arena repository. This repository includes seeded functionality to generate the datasets
used in this paper, along with hashing functions to verify their integrity. The code for all evaluated
Causal Discovery methods, ensembling approaches, and the scripts to generate the figures presented
are also included. Experiments were conducted on a 7-node |Slurm cluster using 14-24 CPU cores per
node, with the exception of ensemble training, which was performed on a single Nvidia RTX 3090
GPU. While most individual experiments are not resource-intensive, reproducing the complete set of
approximately 50 million causal discovery attempts will require a multi-day runtime on a comparable
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Method (Combos) Parameters Values

Cross Correlation (3)  Lodel L—-2L L+2
CausalPretraining (2)  Architecture TRF, GRU
Varlingam (6) Limodel L-2LL+2
Prune True, False
GVAR Lmodel L— 27 La L + 2
Use coeff, p-val
PCMCI (6) Lmodel L— 27 La L + 2
CI test ParC, RParC
Lmodel L—Q,L,L—FQ
PCMCI+ (12) CI test ParC, RParC
RLL True, False
Lmodel L727L3L+2
NTS-NOTears (48) h-tol 1e-60, 1e-10
Rho-max le+16, 1e+18

Lambdal 0.005, 0.001
Lambda2 0.01, 0.001
Linodel L—-2 L L+2
Lambda-w 0.1,0.3
Lambda-a 0.1,0.3

Max iter 100, 40

H-tol le-8, le-5

Dynotears (48)

Table 11: Hyperparameter space and number of combinations in the hyperparameter grid. For
NTS-NOTears and Dynotears, we use default parameters (first value) and an alternative value per HP.
ParC and RParC denote the Partial Correlation conditional independence test and the Robust Partial
Correlation conditional independence test, respectively. RLL denotes the resetting of the lagged
links before calculating instantaneous effects. We refer to the implementations of all methods in
TCD-Arena for further details.

setup. However, as many scripts can be executed in parallel on a Slurm cluster, the total runtime may
vary depending on the specific hardware and configuration. As the execution of various CD methods
requires vastly different computational resources, we provide statistics on the average runtimes per
tested hyperparameter configuration and per method in table T3]
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Category Hyperparameter Evaluated Values
Common to all architectures
General Batch Size {16, 128}
Loss Function {BCE, MSE}
Optimizer Learning Rate {le-4, 1e-2}

Base Model: Linear

Base Model: MLP

Architecture Hidden Layer 1 {264, 512, 686, 1360}
Hidden Layer 2 {128, 264, 392, 792}
Base Model: ConvM
Regularization Dropout Rate {0.0,0.1}
Architecture Depth {3, 6}
Kernel Size {4, 8}
Patch Size {1,3}

Table 12: Summary of hyperparameters that were evaluated for CD ensembling.

Seconds per 100 samples

Method
CausalPretr 38+2
PCMCI 2594385
NTS-NOTears 5954203
PCMCI+ 402+160
Varlingam 25+9
Dynotears 45+12
GVAR 11+o0
Cross Corr 154+

Table 13: Average computational efforts (in seconds) per 100 samples and for a single hyperparameter
configuration for each of the 8 CD strategies. The standard deviations denote differences between
Hyperparameter configurations. As Cross Corr has no Method hyperparameters, no standard deviation
is provided. Note that we run 8,000 samples per HP combination and violation (See Section 4).

D APPENDIX — ADDITIONAL RESULTS

D.1 ADDITIONAL METRICS

To extend our empirical evaluation, we include additional metrics of robustness quantification in
Fig.[15]- Fig.[I8 As potential metrics are vast, we additionally include the raw AUROC scores in
our repository. Generally, we find that most metrics show a similar picture (e.g., the ordering of
methods for when looking at performance metrics of G'NST or the generally low performance of
Cross Correlation and CausalPretraining. However, some small differences are notable, e.g., the
robustness evaluation of PCMCI and PCMCI+ against Vs shock- Here, the average F1-max score
suggests a superior performance of PCMCI, which is not perceptible under average AUROC scores.
We view this observation as evidence that there are more fine-grained differences in robustness that
still need to be uncovered.

D.2 DISCUSSION ON METRIC FAILURE CASES
In this study, we fundamentally quantify the robustness of a method against an assumption violation

based on a limited number of samples (five violation intensities). As the underlying robustness
is often continuous, we deem it reasonable to discuss under which conditions our methodological
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Cross Correlation GVAR PCMCI Dynotears
= CausalPretraining e Varlingam m— PCMCI+ === NTS-NOTears

Varlingam m— PCMCI+ Dynotears = NTS-NOTears

Figure 15: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise
assumption violations measured as average maximum F1 over various data regimes. Left: results
for GLWCG, Right: results for G™NST. Colors specify: Observational noise: ~ , Nonlinearity:
Innovation noise:  , Graph structures: , Data representation:

Cross Correlation GVAR PCMCI Dynotears
CausalPretraining == Varlingam = PCMCI+ === NTS-NOTears = Varlingam m—— PCMCI+ Dynotears === NTS-NOTears

Figure 16: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise

assumption violations measured as average maximum Accuracy over various data regimes. Left:

results for GEWCG, Right: results for G™ST. Colors specify: Observational noise: ~ , Nonlinearity:
, Innovation noise: , Graph structures: , Data representation:

approach provides potentially misleading results. For this, we depict three simplified scenarios in
Fig.[19]

In the first scenario (green box), we find a consistent separation between the robustness of different
methods. In this ideal scenario, the green curve consistently maintains a higher performance than the
blue curve throughout the violation range. The discrete measurements (marked by stars) accurately
capture this relationship, leading to a faithful robustness score. In the second scenario (blue box), the
curves cross. The discrete sampling points suggest that the performance of both curves is roughly

44



Under review as a conference paper at ICLR 2026

Cross Correlation GVAR PCMCI Dynotears
= CausalPretraining e Varlingam m— PCMCI+ === NTS-NOTears

Varlingam m— PCMCI+ Dynotears = NTS-NOTears

Figure 17: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise

assumption violations measured as average AUROC over various data regimes. For each method,

we here report the optimal hyperparameters individually selected for each violation. Left:

results for GIFWCG, Right: results for G™ST, Colors specify: Observational noise: ~ , Nonlinearity:
, Innovation noise:  , Graph structures: , Data representation:

Cross Correlation GVAR PCMCI Dynotears
=== CausalPretraining = Varlingam m—— PCMCI+ === NTS-NOTears === Varlingam m— PCMCI+ Dynotears === NTS-NOTears

Figure 18: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise
assumption violations measured as the lowest AUROC over all data regimes and violation levels..
Left: results for GWCS, Right: results for G™NST, Colors specify: Observational noise: ,
Nonlinearity: , Innovation noise: , Graph structures: , Data representation:

equal across the measured violation levels, resulting in a very similar robustness score. However,
this discrete evaluation fails to account for the precise dynamics of the robustness curves. Notably,
depending on the application, either the blue or the green curve could be preferable. In the third
scenario, a non-monotonic and highly volatile curve highlights the most critical risk. At the discrete
evaluation points, the blue curve is preferred even though its robustness is disputable.
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Performance - . . Performance - . . ‘ Performance .

%

Evaluate at violation Jevelx  Violation Evaluate at violation Jevel x  Violation Evaluate at violation level x Violation

Figure 19: Depiction of problematic relationships between violation property and robustness measured
as average AUROC for a single data regime and a single method configuration. Left: Optimal case in
which all performance curves are monotonically decreasing and one curve is Pareto superior. Middle:
While both curves are monotonically decreasing, our metric does not directly distinguish between
them. Right: If any performance curve is highly non-monotonic, the comparison can be misleading.

D.3 ANALYSIS OF INDIVIDUAL VIOLATIONS

To contextualize the results in our main paper, we highlight a couple of individual results that we
find worth mentioning. Generally, we find that a few violations favor distinct method archetypes
when uncovering GIWCG (Fig. . Concerning Vs com, Score-based approaches (PCMCI,PCMCI+)
seem to be less robust. On the other hand, for Vg missing they seem to be favored. Further, Dynotears
seems to struggle heavily with Vi au0 and drops even below baseline performance Finally, while
CausalPretraining and Cross Correlation are generally not as robust to various violations, their
difference towards all other methods is especially pronounced for Vonfae. Concerning the uncovering
of G™ST (Fig. [2b), we find that Dynotears and PCMCI+ are quite robust, while the other methods are
not able to reach similar violation robustness. With this, we want to conclude again that the most
important insight of our empirical investigation is that different causal discovery methods are to be
preferred under specific assumption violation scenarios. This has direct implications concerning
real-world applications as it suggests that a clever selection of CD methods, be it by hand or through
ensembling, can improve the confidence in uncovering a latent SCM.

D.4 VISUALIZATIONS OF MISSPECIFIED MODELS

In Fig. 20| we visualize robustness profiles for misspecified modelling parameters, i.e., Lode; 7 L.
While under | L, the robustness of all methods decreases visibly, under 1 L, changes are negligible.

D.5 HYPERPARAMETER SENSITIVITY

To provide a comprehensive view of the hyperparameter sensitivity of all CD methods, we include
graphics that illustrate the relationship between violation severity and performance for all combina-
tions of hyperparameters and data regimes per method. Fig. 2T} Fig. 23| contain the sensitivities for
lagged effects, while Fig. [24]| and Fig. 25| depict methods estimating instantaneous links. Notably,
the performance of NTS-Notears is often highly hyperparameter-dependent, and a poor selection
of parameters can result in almost arbitrary performance. Furthermore, we observe that Dynotears
occasionally exhibits unintuitive performance curves, where an increase in violation does not nec-
essarily correspond to a decrease in performance (e.g., Vyar O Vinno, time)- NoOtably, this is consistent
with Kaiser & Sipos|(2021)), where scale invariance of the NOTEARS algorithm Zheng et al.| (2018)
is reported.

D.6 ROBUSTNESS GAINS OF ENSEMBLES

To gain deeper insights into the improvements of our ensemble strategies, we plot the gains in
robustness in comparison to the Cross Correlation baseline for each violation in Fig. [26|and split by
smaller and bigger data regimes in Fig. We find that the largest improvements can be found for
the violations Vg missing and Veong,1ag as well as for the bigger SCMs (D = 7, L = 4).
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Vadd
Veont1 ndd Vil

Vihock Veom
Cross Correlation GVAR PCMCIT Dynotears Cross Correlation GVAR PCMCT Dynotears
= CausalPretraining === Varlingam === PCMCI4 === NTS-NOTears = CausalPretraining === Varlingam === PCMCI+ === NTS-NOTears

Figure 20: Robustness profiles of eight Causal Discovery algorithms against a multitude of stepwise
assumption violations measured as average AUROC over various data regimes and under model
misspecification (Lyoder # L). Left: | L regime, Right: 1 L regime. Colors specify: Observational
noise:  , Nonlinearity: , Innovation noise: , Graph structures: , Data representation:

E APPENDIX — LLM USAGE

During the preparation of this manuscript, we used Gemini 2.5 Pro to refine sentence structure
and correct grammatical errors. We reviewed and edited all Al-generated suggestions and take full
responsibility for the final content of the publication.

47



Under review as a conference paper at ICLR 2026

2538
2539
2540
2541
2542
2543
2544 Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
T 1.0 q q q q q =
2545 %
=
2546 3.
R i ——— -
2547 1 2 3 4 51 2 3 4 5 1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2548
Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
2549 9 1.0 b b = T | T— | ] b =
]
=
2550 5 § S § §
2551 et =
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5
2552 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2553 . Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
2 101 T T T T T T
2554 £
=
2555 2
059 E E E E E
> — T T ——————7 b7 b
2 55 6 1 2 3 4 51 2 3 4 5 1 2 3 4 51 2 3 4 5 1 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2557 Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
2558 g1 1 “§ = 1 1 1
e - —
2 = \ —==
2559 2 \ <
H
R D T e e e
2560 1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5
2561 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2562 . Cross Correlation ~ CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
0 1.0 1 = 1 1 1
<059 — — — — —
2564 H
> ——— 7 ———————— &+ " b
2 56 5 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2566 . Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
O 1.0 q q q I k| — =
2567 e
=1 N
=1
= \
2568 3
E
Sttt & —— " ———— T
2569 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5
2570 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2571 . Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
Q104 B B B B B 1
]
=
2572 2
Z 054 J J J J J J
2573 H
R R
2574 Violation Step ~ Violation Step  Violation Step  Violation Step  Violation Step  Violation Step  Violation Step  Violation Step
2575 . Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
2 109 1 1 1 1 1
]
2576 g %
=
=
2577 -
2059 — — — — — —
2578 R R
257 g Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2580 Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
T T T IE——1h i
—_—
2581
2582 1 1 1 1 1 1
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5
2583 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2584

2585 F igure 21: Hyperparameter sensitivities for Vobs,add7 Vobs,mulv Vobs,autm Vobs,conb Vobs,timea Vobs,shock’
2586 Vconf,inst, Vconf,lag, and Vfaith,inst-

2587

2588

2589

2590

2591

48



Under review as a conference paper at ICLR 2026

2592
2593
2594
2595
2596
2597
P ross Correlation ausalPretraining arlingam V] ICI+ ynotears - ears
C Correlati C 1P ini GVAR Varli PCMCI PCMCI D NTS-NOT
g 10 q — {— — | |
S —_— —_—
2599 £ —_——
2600 0] | | | ] | |
2601 7 T3 3 151 3 3 15133 413153 1513535 551235513 3 15
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2602
. Cross Correlation ~ CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
2603 g 101 —_— | e |— |
~
=
2604 =
]
2605 ot M
- 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5
2606 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2607 . Cross Correlation  CausalPretraining GVAR Varlinga PCMCI PCMCI+ Dynotears NTS-NOTears
Q1.0 Iaah T— q [ —
2 EE——
2608 5
<
2609 H
5054 E E E E E E
2610 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2611 Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
o 109 T T T 1 1 1 =
o g — | — —
2 <
=]
2613 =
2614 =071 ! ! ! ! ! !
123151 2 3 451323 451 2 3 45123451 2 3 451323151 2 345
2615 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2 61 6 . Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
2 101 E E E E E
2 _
e
2617 g _— \ —
=
2618 1o — 1 1 1 1
2619 123 4 51 2 3 45123 451 2 3 451323 451 23451 23 15
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2620 Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
910 IE—1h T T I——— 1
2621 <] =
&~
=1
2622 < -
> 054 E E E E E E
2623 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5
2624 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2625 . Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
2 101 T T T T T T
8 T
=1
2626 g — —
< ——
2627 fos e
>t ———tr— .t -
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5
2628 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2629 Cross Correlation CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
T 10 q q = q q q q
2630 g == : a %
=1
=
2631 N
5051 1—I1 1 1 1 1
> - 4 = &+ +————————7 77 T
2 6 3 2 1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
2 6 3 3 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2634 . Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
O 1.04 f—————18 T —— e——1N T e—|
3 T —=
g 5 E———
2635 el §
f —
2636 =054 E E E E E E
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5
2637 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2638

2639 F igure 22: Hypefpafameter sensitivities for Vfaith,lagy an,mono’ an,trenda an,rbfa an,comp, Vinno,mul’
2640 Vinno,auto, Vinno,coms and Vinno,time-

2641
2642
2643
2644
2645

49



Under review as a conference paper at ICLR 2026

2646
2647
2648
2649
2650
2651
2652 . Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
9 1.04 q q q —— | — |
E——JhE — | I — —_—
2 —_—
2654 —
S0 Tt
2655 >1234512345123451234512345123451234512345
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2656
Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
2657 g 101 1 = | [ [ — 1 [
8 B == %
e —
2658 & =
2659 205l ] ] ] ] ] | —
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5
2660 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2661 . Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
T 1.0 q q [——— — T
I = —
2662 & = == ——— =
=1
=
=1 ————
2663 H
: ——
> 051 T — i a— T — T — 7 — T T T — T~ T — e T — 7 — T T
2664 1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 2 3 4 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2665 Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
o 10 q T — q T
2666 g B
=
=1
2667 =
=059 — — — — —
H
> - —————— ————————7 ———— 77— 7 b b
2668 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
2669 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2670 Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
[SRNE q q q q q q
3 \
2671 g S § _
=
2672 5051 — ] ] ] ]
>
2673 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2674 5 Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
1.0 g g g g g g =
2675 g AN
=1
=
2676 3 ﬁ
B
5054 e I 1 1 1 1
2677 > 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910 12345678910
2678 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2679 5 Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
1.0 g g g g g I
]
~
2680 2 \ \ § \
< s
& =
2681 H 0.5  — 1 1 1 1 1
> T3 3 1 51 3553 4 351 3 3 45135 3 45135 3 1 5133 45123 1513 5 15
2682 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2683 Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
[SRKE q q q q
oot ~ = =
=1
=
2685 o34 1 1 1 1 1
E
> - ——————r ————————7 —————7—— 7 b b
2686 1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
2687 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2688 . Cross Correlation  CausalPretraining GVAR Varlingam PCMCI PCMCI+ Dynotears NTS-NOTears
Q1.0 9 9 9 9 9
]
=
2689 El
K]
2690 7 0.5 1 1 1 1 1 1
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5
2691 Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
2692

o503 Figure 23: Hyperparameter sensitivities for Vipnoshock> Yinno,uni> Vinnoweibs Vinnowvars Vstat> ¥lengths
2694 Vq,missings Vq,emptya and Vscale-

2695

2696

2697

2698

2699



Under review as a conference paper at ICLR 2026

Varlingam PCMCL+ Dynotears NTS-NOTears Varlingam PCMCLF Dynotears NTS-NOTears
S 10 10
g 2
= =
: == : === =
3 05
3 0.5 £
> > S
1 2 5 14 51 2 3 1 51 2 3 451 2 3 4 5 1 2 3 4 51 2 3 1 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
_ Varlingam PCMCLF Dynotears NTS-NOTears Lo Varlingam PCMCLF Dynotears NTS-NOTears
T 10 oL
]
g s
E N % I s
F] g
205 505
> >
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
_ Varlingam PCMCL+ Dynotears NTS-NOTears Varlingam PCMCLF Dynotears NTS-NOTears
D10 210
] ]
& \ £
SoslT = < %
: Z05
T T > = +Q'54— 571
12 3 4 51 2 3 4 51 2 3 4 5 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
_ Varlingam PCMCI+ Dynotears NTS-NOTears Varlingam POMCLE Dynotears NTS-NOTears
Q — z
g Te— 2 g \
= =
S — 15 ———
=05 =05
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 2 3 4 51 2 3 4 51 2 3 4 5

Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
5 Varlingam PCMCI+ Dynotears NTS-NOTears — Varlingam PCMCI+ Dynotears NTS-NOTears
S _ gL
£ | e £ —_—
= =
= =05
>0 p ; > . T
1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 12 3 4 51 2 3 4 51 2 3 4 51 2 3 45
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
_ Varlingam PCMCI+ Dynotears NTS-NOTears _ Varlingam PCMCI+ Dynotears NTS-NOTears
Q1.0 Q1.0
8 — —
g g
= —_— = E—————
Zos5 =7 ———— %
2 El —_—
H 205
> =
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
Varlingam PCMCI+ Dynotears NTS-NOTears _ Varlingam PCMCI+ Dynotears NTS-NOTears
5 g0
S e a— &
2075 &
S _— S| —
=050 2058
> 0.25 ~
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
Varlingam PCMCI+ Dynotears NTS-NOTears Varlingam PCMCI+ Dynotears NTS-NOTears
oL 10
——— —
=
= = —_—
505 — 505
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 51 2 3 4 51 2 3 4 51 2 3 45
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
Varlingam PCMCL+ Dynotears NTS-NOTears _ Varlingam PCMCL+ Dynotears NTS-NOTears
o L0 o 10
] ]
= I _—
] : |m——
=05 1
> =05
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
_ Varlingam PCMCL+ Dynotears NTS-NOTears Varlingam PCMCL+ Dynotears NTS-NOTears
g0 p— 10 p—
= é — — ] —_——
2 5
=
Zos =
>_E > 05
12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
_ Varlingam PCMCL Dynotears NTS-NOTears Varlingam PCMCL Dynotears NTS-NOTears
T 1.0 L0
g — g [—
£ j —_— = —
= Zos
1 2 3 4 51 2 3 4 51 2 3 4 5 12 3 4 51 2 3 4 51 2 3 4 5

Violation Step Violation Step Violation Step

Figure 24: Hyperparameter sensitivities for all methods estimating instantaneous effects. The
order from left to flght, top to bottom is Vobs,add, Vobs,muh Vobs,autm Vobs,com, Vobs,timea Vobs,shock’
Vconf,insta Vconf,lags Vfaith,inst’ Vfaith,lag» an,monOa an,t.rend’ an,rbf’

Violation Step

and Vinno,timca Vinno,shockv Vinno,uni, and Vinno,weib-

51

Violation Step

Violation Step

an,comp 5 Vinno,mul 5

Violation Step

Vinno,auto )

Violation Step

inno,com»



Under review as a conference paper at ICLR 2026

. Varlingam PCMCI+ Dynotears NTS-NOTears — Varlingam PCMCI+ Dynotears NTS-NOTears
(5 1 T h 5 1.0 q
| £
2 Z
E EP N
12 3 4 51 2 3 4 51 2 3 4 5 1 2 3 4 5 12345678910 12345678910 12345678910
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
Varlingam PCMCIL+ Dynotears NTS-NOTears Varlingam PCMCI+ Dynotears
10
\ e
— I
=05
1
— b b >
12 3 4 51 2 3 4 51 2 3 4 5 12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step Violation Step
_ Varlingam PCMCIL+ Dynotears NTS-NOTears
210
g —
=
=]
& —
k!
> 0.5 T T T T T T T T T T T T T T

12 3 4 51 2 3 4 51 2 3 4 51 2 3 4 5
Violation Step Violation Step Violation Step Violation Step

Figure 25: Hyperparameter sensitivities for all methods estimating instantaneous effects. The order
from left to right, top to bottom is Vipnovar, Vstat> Viengths Vq,missing> Y qempty> aNd Vcale.
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Figure 26: Robustness improvements in comparison to the performance of Cross Correlation per

violation. Interestingly, the highest improvements by the best ensembling strategy are achieved on
Vq,missing and Vconf,lag-
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Robustness improvement as measured
by average AUROC over Cross Correlation
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Figure 27: Robustness improvements in comparison to the performance of Cross Correlation for the
smaller data regimes (D = 5, L = 3) and the bigger data regimes (D = 7, L = 4). We find that
the highest performance gains can be achieved on the bigger data regimes, independent of the CD
method or ensemble strategy. However, the best ensemble strategy (SimpleMLP) is achieving the
highest improvements.
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