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Abstract

Intent classification (IC) plays an important
role in task-oriented dialogue systems. How-
ever, IC models often generalize poorly when
training without sufficient annotated examples
for each user intent. We propose a novel pre-
training method for text encoders that uses con-
trastive learning with intent psuedo-labels to
produce embeddings that are well-suited for
IC tasks, reducing the need for manual anno-
tations. By applying this pre-training strat-
egy, we also introduce Pre-trained Intent-aware
Encoder (PIE), which is designed to align en-
codings of utterances with their intent names.
Specifically, we first train a tagger to identify
key phrases within utterances that are crucial
for interpreting intents. We then use these
extracted phrases to create examples for pre-
training a text encoder in a contrastive manner.
As a result, our PIE model achieves up to 5.4%
and 4.0% higher accuracy than the previous
state-of-the-art text encoder for the N-way zero-
and one-shot settings on four IC datasets.

1 Introduction

Identification of user intentions, a problem known
as intent classification (IC), plays an important role
in task-oriented dialogue (TOD) systems. How-
ever, it is challenging for TOD developers to col-
lect data and re-train models when designing new
intent classes. Recent studies have aimed to tackle
this challenge by applying zero- and few-shot text
classification methods and leveraging the seman-
tics of intent label names (Liu et al., 2019a; Krone
et al., 2020; Burnyshev et al., 2021; Mueller et al.,
2022; Zhang et al., 2022; Lamanov et al., 2022; Liu
et al., 2022) .

Dopierre et al. (2021a) compare various classifi-
cation methods on few-shot IC tasks and find that
Prototypical Networks (Snell et al., 2017) consis-
tently show strong performance when combined
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Figure 1: Overview of pre-training the intent-aware en-
coder (PIE). Given an utterance x1 from pre-training
corpus, we generate a pseudo intent name ypseudo

1 using
labels from the intent role labeling (IRL) tagger. Our
PIE model is then optimized by pulling the gold ut-
terance xgold

1 , gold intent y1, and pseudo intent ypseudo
1

close to the input utterance x1 in the embedding space.

with transformer-based text encoders. Prototypi-
cal Networks use text encoders to construct class
representations and retrieve correct classes given
queries based on a similarity metric. Dopierre
et al. (2021a) also stress that few-shot learning
techniques and text encoders can have an orthog-
onal impact on classification performance. Thus,
although some studies have focused on improving
learning techniques for few-shot IC tasks (Dopierre
et al., 2021b; Chen et al., 2022), better text encoder
selection should also be considered as an impor-



tant research direction. Ma et al. (2022) observe
that sentence encoders pre-trained on paraphrase or
natural language inference datasets serve as strong
text encoders for Prototypical Networks. However,
existing sentence encoders are not explicitly de-
signed to produce representations for utterances
that are similar to their intent names. Therefore,
their abilities are limited in zero- and few-shot set-
tings where predictions may heavily rely on the
semantics of intent names. Pre-training encoders
to align user utterances with intent names can miti-
gate this issue; however, it is typically expensive to
obtain annotations for a diverse intent set.

In this paper, we propose a novel pre-training
method for zero- and few-shot IC tasks (Fig-
ure 1). Specifically, we adopt intent role label-
ing (IRL) (Zeng et al., 2021), which is an approach
for identifying and assigning roles to words or
phrases that are relevant to user intents in sentences.
Once we obtain the IRL predictions, we convert
them to the pseudo intent names of query utter-
ances and use them to pre-train the encoder in a
contrastive learning fashion. This intent-aware con-
trastive learning aims to not only align utterances
with their pseudo intent names in the semantic em-
bedding space, but also to encourage the encoder
to pay attention to the intent-relevant spans that are
important for distinguishing intents. To the best of
our knowledge, this work is the first to extract key
information from utterances and use it as pseudo
labels for pre-training intent-aware text encoders.

The contributions of our work are as follows:

• First, we propose an algorithm for generating
pseudo intent names from utterances across
several dialogue datasets and publicly release
the associated datasets.

• Second, by applying intent-aware contrastive
learning on gold and pseudo intent names, we
build Pre-trained Intent-aware Encoder (PIE),
which is designed to align encodings of utter-
ances with their intent names.

• Finally, experiments on four IC datasets
demonstrate that the proposed model out-
performs the state-of-the-art work (Dopierre
et al., 2021b; Ma et al., 2022) by up to 5.4%
and 4.0% on N-way zero- and one-shot set-
tings, respectively.

2 Background: Prototypical Networks for
Intent Classification

Prototypical Networks (Snell et al., 2017) is a meta-
learning approach that enables classifiers to quickly
adapt to unseen classes when only a few labeled ex-
amples are available. Several studies have demon-
strated the effectiveness of Prototypical Networks
when building intent classifiers with a few exam-
ple utterances (Krone et al., 2020; Dopierre et al.,
2021a; Chen et al., 2022). They first define a few-
shot IC task, also known as an episode in the meta-
learning context, with K example utterances from
N intent classes (i.e., K×N utterances in a single
episode). At the training time, the intent classifiers
are optimized on a series of these episodes. Ex-
ample utterances for each intent class are called
a support set, and are encoded and averaged to
produce a class representation, called a prototype.
This can be formulated as follows:

cn =
1

K

∑
xn,i∈Sn

fϕ(xn,i) (1)

where Sn denotes the support set of the n-th intent
class, xn,i denotes the i-th labeled example of the
support set Sn, fϕ(·) denotes a trainable encoder,
and cn denotes the n-th prototype. At the inference
time, the task is to map the query utterance repre-
sentation to the closest prototype in a metric space
(e.g., Euclidean) among the N prototypes. When
there are N intent classes and each intent class has
K example utterances, this setting is called N-way
K-shot intent classification.

Ma et al. (2022) suggest that leveraging intent
names as additional support examples is beneficial
in few-shot IC tasks because the semantics of intent
names can give additional hints to example utter-
ances. When intents are used as additional support
examples, the new prototype representations can
be formulated as follows:

clabel
n =

1

K + 1
[[

∑
xn,i∈Sn

fϕ(xn,i)] + fϕ(yn)] (2)

where yn is the intent name of the utterance in the n-
th support set, and clabel

n is the n-th prototype using
intent names as support. By using intents as support
examples, it is possible to classify input utterances
without example utterances in a zero-shot fashion.
Specifically, the prototypes in Equation (2) can be
calculated as clabel

n = fϕ(yn) based solely on intent
names, which facilitates the zero-shot IC.



3 Pseudo Intent Name Generation

To pre-train an encoder fϕ that works robustly in
zero- or few-shot IC settings, a variety of prede-
fined intent names are required. Because anno-
tating them is expensive, we opt to automatically
generate pseudo intent names from utterances in
our pre-training data. To annotate pseudo intents,
we employ a tagging method, intent role label-
ing (IRL). IRL can be considered similar to se-
mantic role labeling (SRL), which is a task of as-
signing general semantic roles to words or phrases
in sentences (Palmer et al., 2010). However, IRL
focuses on providing an extractive summary of the
intent expressed in a user’s utterance, annotating
important roles with respect to the goal of the user
rather than a predicate. Specifically, it tags words
or phrases that are key to interpret intent.

IRL was first introduced by Zeng et al. (2021)
for discovering intents from utterances, but their
tagger focuses only on Chinese utterances. In this
section, we outline the process of building the IRL
tagger from scratch. We provide a description of
how we annotate IRL training data on English utter-
ances (Section 3.1), the training procedure for the
IRL tagger (Section 3.2), and the utilization of IRL
predictions for generating pseudo intent names to
pre-train our model (Section 3.3).

3.1 Annotating Intent Roles

We define six intent role labels, Action, Argument,
Request, Query, Slot, and Problem, for extracting
intent-relevant spans from utterances. Action is a
word or phrase (typically a verb or verb phrase) that
describes the main action relevant to an intent in
an utterance. Argument is an argument of an ac-
tion, or entity/event that is important to interpreting
an intent. Request indicates a request for some-
thing such as a question or information-seeking
verb. Query indicates the expected type of answer
to a question or request for information, or a re-
quested entity to be obtained or searched for. Slot is
an optional/variable value provided by the speaker
that does not impact the interpretation of an intent.
Finally, Problem describes some problematic states
or events, and typically makes an implicit request.

Based on these definitions, we manually anno-
tate IRL labels on a subset of utterances from
SGD (Rastogi et al., 2020). Table 1 shows the
statistics and examples of each IRL label from
3,879 utterances. To train and evaluate the IRL
tagger, we split annotations into training, valida-

tion, and test sets with 3,121 / 379 / 379 utterances,
respectively, which is approximately an 80:10:10
ratio.

Label Count Example

Action 2,163 I want to bookACT a flight

Argument 2,011 I want to book a flightARG

Request 3,002 Can you showREQ me my account balance

Query 3,247 Can you show me my account balanceQRY

Slot 2,030
Can you show me my account
balance for my checking accountSLT

Problem 45 I’m starting to get hungryPRB

Table 1: Statistics and examples of each IRL label from
3,879 utterances.

3.2 Training the IRL Tagger

Using manually curated IRL annotations, we for-
mulate IRL as a sequence tagging problem. Specif-
ically, we assign each token in an utterance with
one of the 13 IRL labels under the Beginning-
Inside–Outside (BIO) scheme (e.g., B-Action, I-
Action, or O). The IRL model is, then, trained to
predict the correct IRL labels of the tokens using
the cross entropy loss. We use RoBERTa-base (Liu
et al., 2019c) as the initial model for the IRL tagger.
Table 2 shows the precision, recall, and F1 scores
of each IRL label on the test set.

Label P (%) R (%) F1 (%)

Action 89.3 86.9 88.1
Argument 85.8 85.4 85.6
Request 90.9 93.5 92.1
Query 92.2 95.8 94.0
Slot 82.8 84.6 83.7
Problem 35.6 41.7 38.1

Table 2: Precision, recall, and F1 scores of each IRL
label on the test set.

3.3 Generating Pseudo Intents

After obtaining the IRL tagger, we leverage it to
predict IRL labels for tokens in utterances from
pre-training corpus described in Section 5.2. To
generate pseudo intent names, we simply concate-
nate all spans that have been predicted as IRL labels
in each utterance. Table 3 shows some examples of
IRL predictions from utterances and corresponding
pseudo intent names.



Utterances Pseudo Intents Gold Intents

I’m calling because i’d like to openACT an accountARG open account
open accountI’d like to openACT a savingsSLT accountARG please open savings account

So I need to sign upACT for a a savingsSLT accountARG sign up savings account

Can you buyACT me some movie ticketsARG buy movie tickets
buy movie ticketsI am looking to bookACT movie ticketsARG book movie tickets

I am looking to purchaseACT movie ticketsARG purchase movie tickets

DeleteACT this songARG from playlistARG delete song playlist
remove from

playlist music
EraseACT this trackARG from the playlistARG erase track playlist
Could you removeACT this songARG permanently remove song

Table 3: Some examples of IRL predictions (boldfaced) from utterances, extracted pseudo intent names, and gold
intent names annotated in the original dataset.

4 Intent-Aware Contrastive Learning

We aim to build an encoder that produces simi-
lar representations between utterances and the cor-
responding intent names. In this section, we in-
troduce the intent-aware contrastive learning ap-
proach using triples of an utterance, gold intent,
and pseudo intent from various dialogue datasets.

Our training objective is designed to align the
representations of utterances and their intent names
in the semantic embedding space. For this pur-
pose, we use the InfoNCE loss (van den Oord et al.,
2018), which pulls positive pairs close to each other
and pushes away negative pairs. The loss for the
i-th sample xi is formulated as follows:

ℓ(xi,y) =
exp

[
sim(fϕ(xi), fϕ(yi))

]∑N
k exp

[
sim(fϕ(xi), fϕ(yk))

], (3)

where y = ⟨y1, y2, . . . , yN ⟩ are pairs of the input
xi with a batch size of N , and sim(·) denotes the
cosine similarity between two embeddings. Again,
fϕ(·) denotes any text encoder that represents in-
tent names or utterances in the embedding space.
Note that pairs that are not positive in a batch are
treated as negative pairs.

We here define three types of positive pairs, two
of which are supervised and one is semi-supervised.
The first of the supervised positive pairs is between
the input utterances and their gold intent names
annotated in the pre-training datasets. The equation
used is as follows:

Lgold_intent = −
1

N

N∑
i

ℓ(xi,y
gold), (4)

where y
gold
i is the a gold intent name of xi.

The second supervised positive pair is between
the input utterances and their gold utterances. We
define gold utterances as randomly sampled utter-
ances that share the same gold intent names as the
input utterances:

Lgold_utterance = −
1

N

N∑
i

ℓ(xi,x
gold), (5)

where x
gold
i is the gold utterance of xi.

Finally, the semi-supervised positive pairs are
between the input utterances and their pseudo intent
names:

Lpseudo = −
1

N

N∑
i

ℓ(xi,y
pseudo), (6)

where ypseudo
i denotes the pseudo intent name of xi

constructed by the IRL tagger, as described in Sec-
tion 3.3

Our final loss is a combination of these three
losses as follows:

L = Lgold_intent + Lgold_utterance + λLpseudo, (7)

where λ is the weight term of the semi-supervised
loss term.

5 Experiment

5.1 Baselines
To evaluate the effectiveness of our proposed PIE
model, we compare it with the following state-
of-the-art approaches for few-shot IC tasks: Pro-
toNet (Dopierre et al., 2021a) and ProtAugment
(Dopierre et al., 2021b) as fine-tuning methods, and
SBERTParaphrase (Ma et al., 2022) as a pre-trained
text encoder.



ProtoNet is a meta-training approach that fine-
tunes encoders by using a series of episodes con-
structed on task-specific training sets. ProtAug-
ment is an advanced method derived from Pro-
toNet, which augments paraphrased utterances
within episodes to mitigate overfitting caused by
the biased distribution introduced by a limited num-
ber of training examples. The authors of ProtoNet
and ProtAugment perform additional pre-training
BERT-base-cased (110M) using training utterances
and the language model objective, and use it as their
initial model. We refer to this model as BERTTAPT,
inspired by task-adaptive pre-training (TAPT) (Gu-
rurangan et al., 2020).

SBERTParaphrase is a text encoder pre-trained
on large-scale paraphrase text pairs (Reimers and
Gurevych, 2019). Ma et al. (2022) discover that
this pre-trained text encoder can produce good ut-
terance embeddings without any fine-tuning on
task-specific datasets. Although the authors lever-
age SBERTParaphrase solely at the inference stage
of Prototypical Networks, we conduct additional
experiments by fine-tuning the encoder using Pro-
toNet and ProtAugment as baselines. Note that
we reproduce the performance of SBERTParaphrase
using paraphrase-mpnet-base-v21(110M), which
has the same number of parameters as BERT-base-
cased, for a fair comparison.

5.2 Pre-training Datasets

Dataset Utterances Gold
Intents

Pseudo
Intents

Train

TOP (+v2) 31,111 61 23,711
DSTC11-T2 4,459 148 3,304
SGD 3,561 44 2,647
Total 39,117 252 29,577

Val MultiWOZ 2.2 586 10 -

Table 4: Pre-training datasets for the PIE model.

We collect four dialogue datasets to pre-train
and one to validate our encoder: TOP (Gupta et al.,
2018)), TOPv2 (Chen et al., 2020), DSTC11-T2
(Gung et al., 2023), SGD (Rastogi et al., 2020),
and MultiWOZ 2.2 (Zang et al., 2020). Dialogues
in SGD and MultiWOZ 2.2 datasets consist of
multi-turn utterances, and these utterances are of-
ten ambiguous when context around them is not
given (e.g., ‘Can you suggest something else?’ is
labeled as ‘LookupMusic’). To minimize this am-

1https://huggingface.co/sentence-
transformers/paraphrase-mpnet-base-v2

biguity, we use the first-turn utterance of each dia-
logue from these datasets. Furthermore, the num-
ber of utterances between intents in the raw datasets
is highly imbalanced. To alleviate this imbalance,
we set the maximum number of utterances per in-
tent of the TOP and DSTC11-T2 datasets to 1000
and the SGD and MultiWOZ 2.2 datasets to 100.
We then annotate the IRL labels on the utterances
using the IRL tagger. Based on the IRL predic-
tions, we filter utterances when no Action, Argu-
ment, or Query labels are detected, because they
are likely to lack information for interpreting user
intents. Finally, we treat MultiWOZ 2.2 as the val-
idation set for tuning the hyperparameters of the
pre-training stage. Table 4 summarizes the statis-
tics of the datasets.

5.3 Downstream Datasets

Dataset Domains Utterances Intents
Train Valid Test

Banking77 1 13,083 25 25 27
HWU64 21 11,036 23 16 25
Liu54 21 25,478 18 18 18
Clinc150 10 22,500 50 50 50

Table 5: The statistics of four IC datasets.

We evaluate our PIE model and baseline models
on four IC datasets (Table 5).

Banking77 (Casanueva et al., 2020) is an IC
dataset in the banking domain. As there are
many overlapping tokens between intent names
(e.g. ‘verify top up’, ‘top up limits’, and ‘pend-
ing top up’), fine-grained understanding is required
when correctly classifying intents for this dataset.
HWU64 (Liu et al., 2019b) is a dataset in 21 dif-
ferent domains, such as alarm and calendar for a
home assistant robot. Liu54 (Liu et al., 2019b) is a
dataset collected from Amazon Mechanical Turk,
and workers designed utterances for given intents.
Clinc150 (Larson et al., 2019) is a dataset that in-
cludes a wide range of intents from ten different
domains such as ‘small talk’ and ‘travel’.

Banking77 HWU64 Liu54 Clinc150

TOP (+v2) 0 2 0 2
DSTC11-T2 3 0 0 3
SGD 0 0 0 1

All 3/77 2/64 0/54 6/150

Table 6: Number of overlapping intent names between
the pre-training data and downstream data.

https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2


Method Fine-tuning Banking77 HWU64 Liu54 Clinc150 Average
K=0 K=1 K=0 K=1 K=0 K=1 K=0 K=1 K=0 K=1

BERTTAPT - 50.8±1.5 - 52.1±1.1 - 52.7±2.6 - 50.7±4.1 - 51.6
SBERTParaphrase - - 83.6±1.8 - 82.2±1.0 - 82.3±2.2 - 94.7±0.6 - 85.7
PIE (Ours) - 86.1±1.3 - 86.0±1.7 - 85.6±1.9 - 96.2±0.5 - 88.5

L-BERTTAPT 27.7±1.8 41.0±1.5 38.5±2.4 53.6±1.5 51.7±4.6 60.0±4.1 39.5±1.4 51.8±3.2 39.3 51.6
L-SBERTParaphrase - 86.9±1.9 90.9±0.6 83.6±1.8 89.0±1.4 79.9±3.8 89.8±1.9 94.3±1.1 97.7±0.4 86.2 91.9
L-PIE (Ours) 88.3±2.2 92.4±0.7 87.7±2.6 92.2±1.5 83.8±3.7 91.7±1.4 96.5±0.8 98.3±0.4 89.1 93.7

L-BERTTAPT 85.7±2.3 91.5±1.0 81.4±1.3 86.6±1.3 80.3±3.1 88.2±1.2 93.0±1.9 96.9±0.6 85.1 90.8
L-SBERTParaphrase ProtoNet 90.9±1.9 94.5±0.5 85.8±2.8 91.1±1.6 83.7±4.3 92.1±1.6 97.1±0.7 98.6±0.2 89.4 94.0
L-PIE (Ours) 90.7±2.2 94.3±0.7 86.6±4.0 92.1±1.7 85.0±3.9 92.4±1.5 97.3±0.3 98.6±0.3 89.9 94.4

L-BERTTAPT 89.2±2.1 93.4±0.5 87.0±2.6 89.8±1.1 83.0±4.6 90.9±0.9 95.3±1.0 97.7±0.2 88.6 92.9
L-SBERTParaphrase ProtAugment 92.3±1.1 94.8±0.4 87.3±2.5 91.7±1.6 84.1±3.3 92.5±1.4 97.0±0.7 98.5±0.2 90.2 94.4
L-PIE (Ours) 92.4±1.0 94.8±0.4 88.8±3.0 92.4±1.6 86.0±3.3 92.9±1.3 97.6±0.4 98.7±0.2 91.2 94.7

Table 7: 5-way K-shot intent classification performance of pre-trained models with and without fine-tuning on four
test sets. Averaged accuracies and standard deviations across five class splits are reported. The ‘L-’ prefixes indicate
the use of intent label names when creating prototypes, enabling zero-shot evaluation. Highest scores are boldfaced.

Before proceeding, we examine the number of
intent names that overlap between the pre-training
data and downstream data (Table 6). When com-
paring the intent names, we first apply stemming
(‘restaurant reservation’ → ‘restaur reserve’) and
arrange the tokens in alphabetical order (‘restaur re-
serv’ → ‘reserv restaur’) for each intent name. This
approach aims to maximize the recall of overlap-
ping intent names. Consequently, we find that only
11 out of 345 intent names from the downstream
data overlaps (e.g, ‘reserve restaurant’ intent in the
pre-training data and ‘restaurant reservation’ intent
in the downstream data).

5.4 Implementation Details
Here, we describe detailed information when pre-
training our PIE model and employing it for zero-
and few-shot IC tasks.

We use paraphrase-mpnet-base-v2, the same
encoder used in the SBERTParaphrase baseline, as
an initial model for further pre-training in our ap-
proach. The hyperparameters are tuned based on
the validation set described in Section 5.2. As a
result, we set the training epochs to 1, the learning
rate to 1e-6, the batch size to 50, and λ to 2.

After pre-training, we apply the model to zero-
and few-shot IC tasks in the 5-way and N-way
settings. The baselines we compare with only ex-
periment with a 5-way setting where the task is
predicting the correct intent from among five candi-
date classes. We further include an N-way setting,
where N can be much larger than five because, in
practice, it is often required to assign more than
five intents in building TOD systems. When evalu-
ating models on the N-way setting, we use all the
intent classes in the test set as candidate intents,

for example, 27-way for Banking77 and 50-way
for Clinc150. We set K, which is the number of
examples per intent in an episode, to 0 and 1 to
experiment with zero- and one-shot IC. Finally, we
treat intent labels as examples when creating proto-
types for each intent. This enables experiments in
the zero-shot setting and enhances performance in
the few-shot setting. To denote the usage of labels
as examples, we append ‘L-’ prefixes to the method
names (e.g., L-PIE).

5.5 Results

5-way K-shot intent classification Table 7
shows 5-way K-shot IC performance on four
test sets. The results demonstrate that PIE
achieves an average accuracy of 88.5%, surpassing
SBERTParaphrase, which is considered the strongest
baseline model, by 2.8% in the one-shot setting.
This highlights the effectiveness of our pre-training
strategy. Additionally, where intent labels are
used as examples, our L-PIE model achieves
89.1% and 93.7% in the zero-shot and one-shot
settings, respectively, consistently outperforming L-
SBERTParaphrase by 2.9% and 1.8%. It is worth not-
ing that the L-PIE model also significantly outper-
forms L-BERTTAPT + ProtoNet, which fine-tunes
an encoder on the target datasets, by a substantial
margin of 4.0% and 2.9%. This shows that our
proposed approach builds an effective intent clas-
sifier that performs well even prior to fine-tuning
on task-specific data. Our L-PIE model shows
further improvement when fine-tuned with Pro-
tAugment, outperforming the strongest baseline
L-SBERTParaphrase + ProtAugment by 1.0% in zero-
shot IC.



Model Fine-tuning Banking77N=27 HWU64N=25 Liu54N=18 Clinc150N=50 Average
K=0 K=1 K=0 K=1 K=0 K=1 K=0 K=1 K=0 K=1

BERTTAPT - 28.4±1.8 - 28.4±1.5 - 32.1±4.1 - 26.3±0.6 - 28.8
SBERTParaphrase - - 62.3±2.3 - 58.0±1.0 - 68.8±3.1 - 76.7±1.7 - 66.5
PIE (Ours) - 65.3±2.9 - 66.0±2.9 - 73.5±2.8 - 82.5±1.7 - 71.8

L-BERTTAPT 9.0±1.4 19.3±1.7 25.4±1.8 33.4±2.5 21.4±1.7 33.1±3.7 17.4±2.2 27.4±1.4 18.3 28.3
L-SBERTParaphrase - 68.9±4.3 76.1±2.0 61.4±3.8 69.0±2.4 66.7±4.9 79.4±3.6 76.3±2.8 87.5±1.6 68.3 78.0
L-PIE (Ours) 71.4±4.6 78.2±2.2 68.7±6.1 76.8±3.3 71.4±5.4 82.6±3.2 83.1±2.4 90.4±1.3 73.7 82.0

L-BERTTAPT 65.1±4.7 73.8±2.2 53.4±4.5 64.3±1.8 63.7±4.8 75.6±2.2 73.5±3.7 82.9±1.7 63.9 74.2
L-SBERTParaphrase ProtoNet 74.9±4.2 81.9±1.9 65.2±6.0 74.4±3.2 71.8±6.6 82.9±3.5 84.3±1.4 90.9±1.0 74.0 82.5
L-PIE (Ours) 74.5±4.4 81.4±2.2 67.2±8.2 76.9±3.9 73.7±6.3 83.6±3.2 85.4±1.8 91.2±1.2 75.2 83.3

L-BERTTAPT 70.1±4.8 78.5±2.2 63.1±4.3 69.4±2.9 69.5±4.6 80.5±1.9 79.5±2.6 86.5±1.1 70.6 78.7
L-SBERTParaphrase ProtAugment 77.4±3.6 82.8±1.7 67.5±5.6 75.5±3.1 72.1±5.7 83.6±3.0 84.5±1.8 90.9±1.0 75.4 83.2
L-PIE (Ours) 77.6±3.4 82.9±1.6 70.6±6.6 77.4±3.5 74.6±5.7 84.2±3.1 86.5±1.6 91.8±1.0 77.3 84.1

Table 8: N-way K-shot intent classification performance of pre-trained models with and without fine-tuning on four
test set. Averaged accuracies and standard deviations across five class splits are reported. The ‘L-’ prefixes indicate
the use of intent label names when creating prototypes. Highest scores are boldfaced. Fine-tuning is done in the
5-way setting due to memory constraints.2

N-way K-shot intent classification We show-
case the performance of our PIE model and the
baselines in a more challenging and practical sce-
nario (Table 8). In this scenario, the intent for user
utterances needs to be classified among a signifi-
cantly larger number of intent classes (e.g., 10× for
Clinc150). The results show that our L-PIE model
achieves 73.3% and 82.0% in zero- and one-shot
settings, respectively, outperforming the baseline
L-SBERTParaphrase by 5.4% and 4.0%. These per-
formance improvements are significantly higher
than those observed in the 5-way K-shot IC task.
This indicates that our PIE model performs well in
practical scenarios, as stated above.

6 Analysis

6.1 Pre-training Corpus Ablation

Pre-training Data Average
K=0 K=1

None 68.3 78.0

SGD 69.6 78.6
DSTC11-T2 70.7 79.4
TOP (+TOPv2) 73.1 81.7

+ DSTC11-T2 73.3 81.9
+ SGD 73.7 82.0

Table 9: Pre-training data ablation of L-PIE in N-way
K-shot intent classification on four datasets (Banking77,
HWU64, Liu54, and Clinc150). ‘None’ indicates L-
SBERTParaphrase which used as the initial encoder before
applying the intent-aware pre-training method.

We leverage dialogue datasets for building
the PIE model as described in Section 5.2. Here,
we perform an ablation study over the pre-training
datasets on N-way K-shot IC tasks (Table 9). The
result shows that using the TOP (+TOPv2) dataset,
which has 31K utterances, 61 gold intents, and 23K
pseudo intents, improves the performance the most
over L-SBERTParaphrase (indicated as None in Ta-
ble 9). Specifically, there is an improvement of
4.8% and 3.7% in the zero- and one-shot settings,
respectively. Although using other datasets, such as
SGD or DSTC11-T2, does not improve the perfor-
mance in comparison with using the TOP dataset,
we observe that merging them further improves the
overall performance on downstream tasks.

6.2 Pre-training Loss Ablation

Method HWU64N=25 Clinc150N=50
K=0 K=1 K=0 K=1

L-PIE (Ours) 68.7 76.8 83.1 90.4
- Lpseudo 66.9 75.7 81.4 89.7
- Lgold_intent 68.7 76.2 82.7 90.4
- Lgold_utterance 68.7 75.9 82.7 90.0

Table 10: Loss ablation in N-way K-shot intent classifi-
cation with accuracy on HWU64 and Clinc150.

As described in Section 4, our intent-aware con-
trastive loss comprise three sub-losses, Lgold_intent,

2When fine-tuning models in the N-way setting, we en-
countered out-of-memory issues on a single 12GB GPU. To
work around this limitation, we fine-tuned models in the 5-way
setting and evaluated them in the N-way setting.
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Figure 2: Performance on N-way K-shot intent classification with varying K. PA refers to ProtAugment.
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Figure 3: Performance on N-way 0-shot intent classification with varying N.

Lgold_utterance, and Lpseudo. To see the benefit of
using these losses during pre-training, we ablate
each loss function in the N-way K-shot IC tasks
on HWU64 and Clinc150 (Table 10). The re-
sults indicate that two sub-losses, Lgold_intent and
Lgold_utterance show relatively marignal improve-
ments. However, it is noteworthy that Lpseudo
serves as the key sub-loss for PIE, highlighting
the effectiveness of using pseudo intents. Specifi-
cally, removing Lpseudo from the final loss results
in up to 1.8% and 1.1% degradation in performance
in the zero- and one-shot settings, respectively.

6.3 Varying K and N

We visualize the performance of the PIE model in
challenging N-way K-shot IC task settings where
the number of example utterances K or the num-
ber of candidate intent classes N varies. Plots of
performance at varying K (Figure 2) show that our
model has consistently higher performance than
the baselines, and the performance improvement of
our model is the largest when K is small (e.g., K=0).
Plots of performance at varying N (Figure 3) show
that the performance improvement of our model
increases as the number of intents N increases (i.e.
increasing from N=5 to N=50). These visualiza-
tions reveal that the PIE model can be utilized in

more practical and realistic settings where many
user intents are used for the TOD system and only
a few utterances are available.

6.4 Impact of Overlapping Intents

Banking77N=27 HWU64N=25 Clinc150N=50

All intents 71.4 68.7 83.1
- overlapping intents 72.0 69.6 82.8

Table 11: N-way 0-shot IC performance of L-PIE by
removing overlapping intents from evaluation sets.

As shown in Table 6, there are a few overlap-
ping intent names between pre-training data and
downstream data (except for Liu54). These coinci-
dental overlaps can hinder an accurate evaluation
of the generalization ability of our model. To un-
derstand the impact of intent overlaps, we also mea-
sure the performance using only non-overlapping
intents (Table 11). We observe that the impact
is marginal enough to be neglected, and surpris-
ingly, removing overlapping intents rather can lead
to better performance on Banking77 and HWU64.
Through further analysis, we discover that this is
partly because of the bias towards pairs of utter-
ances and intent annotated in pre-training datasets.
For example, an utterance ‘please play my favorite



song’ in pre-training data has an intent ‘play music’.
Our model then incorrectly predicted ‘play music’
for a test utterance ‘that song is my favorite’, where
the correct intent is ‘music likeness’.

7 Conclusions

In this work, we propose a pre-training method that
leverages pseudo intent names constructed using an
IRL tagger in a semi-supervised manner, followed
by intent-aware pre-training (PIE). Experiments
on four intent classification datasets show that our
model achieves state-of-the-art performance on all
datasets, outperforming the strongest sentence en-
coder baseline by up to 5.4% and 4.0% in N-way
zero- and one-shot settings, respectively. Our anal-
ysis shows that PIE performs robustly compared to
the baselines in challenging and practical settings
with a large number of classes and small number of
support examples. In future work, we will explore
the use of IRL and our PIE model in multi-label in-
tent classification or out-of-scope detection tasks.

Limitations

One limitation of our method is that while it lever-
ages annotations from the IRL tagger, the detection
of spans for certain labels, such as ‘Problem,’ is not
accurate enough (38.1% F1 score). This is likely
due to the relatively short number of annotations
of this type in the training set (45 annotations). To
mitigate this limitation, we could consider annotat-
ing more instances of this label or implementing
techniques for handling imbalanced labels.

Another limitation is that we currently treat all
IRL labels equally when constructing pseudo in-
tents. However, the importance of each label in
interpreting intent can vary. To address this, we
plan to investigate treating different labels differ-
ently when pre-training the encoder (e.g. by giving
more weight to ‘Action’ and ‘Argument’ labels and
less weight to ‘Slot’ labels).

Ethics Statement

Our proposed method is for enhancing zero- and
few-shot intent classification, and it does not raise
any ethical concerns. We believe that this research
has valuable merits that can lead to more reliable
task-oriented dialogue systems. All experiments in
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datasets.
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