
Interpretable Neural PDE Solvers using Symbolic
Frameworks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Partial differential equations (PDEs) are ubiquitous in the world around us, mod-
elling phenomena from heat and sound to quantum systems. Recent advances in
deep learning have resulted in the development of powerful neural solvers; how-
ever, while these methods have demonstrated state-of-the-art performance in both
accuracy and computational efficiency, a significant challenge remains in their
interpretability. Most existing methodologies prioritize predictive accuracy over
clarity in the underlying mechanisms driving the model’s decisions. Interpretability
is crucial for trustworthiness and broader applicability, especially in scientific and
engineering domains where neural PDE solvers might see the most impact. In this
context, a notable gap in current research is the integration of symbolic frameworks
(such as symbolic regression) into these solvers. Symbolic frameworks have the
potential to distill complex neural operations into human-readable mathematical
expressions, bridging the divide between black-box predictions and solutions.

1 Introduction

Partial differential equations (PDEs) are ubiquitous to modern physics and engineering. Though
they have existed since the first system of equations found by Euler over 250 years ago, many
challenges remain in finding numerical solutions resolving spatiotemporal features over multiple
scales and nonlinear stochastic systems. Currently, numerical solvers such as finite differences and
finite elements can solve PDEs when analytical solutions cannot be found, like in nonlinear and high
dimensional systems, by discretizing a problem over a grid and evolving over time at very fine-grain
timesteps. However, such solvers are computationally complex even with modern computers, and
can fail when faced by multiscale and/or stochastic PDEs.

1.1 Neural PDE Solvers

Neural networks can learn and generalize to new contexts such as different initial/boundary conditions,
coefficients, or even different PDEs entirely. They are a particularly promising avenue for solving
highly complex PDEs such as those found in weather prediction and fluid dynamics. For a review
which contextualizes physics informed machine learning with regards to classical problems and
methods, see [22].

Today, neural PDE solvers are capable of remarkable performance in historically challenging tasks.
FourCastNet, proposed by Pathak et al. [24], achieves comparable short-term forecasting precision
to the ECMWF Integrated Forecasting System (IFS), a cutting-edge numerical weather prediction
(NWP) model, for large-scale variables like atmospheric pressure. It surpasses IFS in predicting
small-scale variables, such as precipitation. Most notably, however, is the fact that it is 4 to 5 orders
of magnitude faster than most NWP models and uses a fraction of the number of variables to achieve

Submitted to NeurIPS 2021 AI for Science Workshop, Attention Track.



its remarkable performance. This success is based off of the popular neural operator framework and,
more specifically, Fourier neural operators (FNOs) [18].

However, models designed to solve more fundamental mathematical tasks like PDEs directly do
not see as much acclaim or practical adoption. While we use PDEs to model the mathematics
underlying heat, sound, electrodynamics, fluid dynamics, and many other physical phenomena which
are essential to many engineering and medical tasks (among other fields), one major issue hinders
real-world applications of neural methods: interpretability.

Neural PDE solvers lack the guarantees and transparency that numerical solvers have. This prevents
them to be used in what are often high-stakes applications like engineering and medical simulations,
even despite any potential gains in accuracy, generalisability, or computation time.

Now that we have demonstrated the clear potential for cutting edge neural PDE solvers, some of
which are laid out below, focus should move toward bringing these methods closer to real-world
application by considering needs beginning with interpretability and extending to more stringent
demands such as performance bounds or limits.

2 An overview of the current methods

The idea of using deep learning techniques to solve differential equations has a long history, including
Dissanayake’s and Phan-Thien’s attempt to use multilayer perceptrons (MLPs) as universal approxi-
mators to solve PDEs, and arguably includes any work involving incorporating prior knowledge into
models in general [9, 15, 25]. Although some hybrid classical-neural methods exist [13, 23, 31? ],
which are inherently interpretable to varying degrees, we focus on fully neural methods: methods
which rely on the universal function approximation theory, such that a sufficiently complex network
can represent any arbitrary function. One very popular method mentioned already above is the neural
operator, which models the solution of a PDE as an operator mapping inputs to outputs. The problem
is set such that a neural operator M satisfies M(t,u0) = u(t) where u is the solution, and u0 are
the initial conditions [5, 20]. Simple MLPs, convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and other networks used to map input vectors to output vectors are naive examples
of finite-dimensional operators.

2.1 Physics Informed Neural Networks

In 2017, Raissi et al. introduced the physics-informed neural network (PINN) [27]. They structure
the problem such that the network, denoted as N , fulfills N (t,u0) = u(t), with u0 representing
the initial conditions. The core idea of PINNs is to directly integrate relevant physical laws into the
network’s predictions, which is achieved by incorporating additional loss term(s) into the network’s
objective function.

For a typical loss function θ = argminθL(θ)
the loss with a physics prior may be defined as follows:

L(θ) = ωFLF (θ) + ωBLB(θ) + ωdLdata(θ) (1)

where LB penalises against the initial and/or boundary conditions to fit the known data over the net-
work, LF enforces the PDE itself at collocation points (which are calculated using auto-differentiation
to compute derivatives of ûθ(z)), and Ldata (the standard loss) forces ûθ to match measurements of u
over the provided data points.

Since the network maps input variables to output variables which are both finite-dimensional and
dependent on the grid used to discretize the problem domain, it is considered a finite dimensional
neural operator. The paper gained a lot of traction and inspired many architectures which now fall
under the PINN family; for a more thorough review, see [8], and for hands-on examples visit this
digital book [29].

The success of this loss-based approach is apparent when considering the rapid growth of papers which
extend the original iteration of the PINN. It is conceptually interpretable (though its performance
pales in comparison to later methods) and can be simple to implement.

2



However, Krishnapriyan et al. [14] has shown that even though standard fully-connected neural
networks are theoretically capable of representing any function given enough neurons and layers, a
PINN may still fail to approximate a solution due to the complex loss landscapes arising from soft
PDE constraints.

2.2 DeepONets

The DeepONet architecture is a seminal example of an infinite dimensional neural operator in contrast
to the finite dimensional PINN [20]. It consists of one or multiple branch nets which encode discrete
inputs to an input function space, and a single trunk net which receives the query location to evaluate
the output function. The model maps from a fixed, finite dimensional grid to an infinite dimensional
output space.

Since the development of the DeepONet, many novel neural operators have emerged which generalize
this finite-infinite dimensional mapping to an infinite-infinite dimensional mapping [10, 12, 17, 19,
24, 26, 30], including the FNO [18]. This network operates within Fourier space and takes advantage
of the convolution theorem to place the integral kernel in Fourier space as a convolutional operator.

2.3 Fourier Neural Operators

Concretely, the mapping between two infinite-dimensional spaces is learned from the discrete number
of observed pairs. These global integral operators (implemented as Fourier space convolutional
operators) are combined with local nonlinear activation functions, resulting in an architecture which
is highly expressive yet computationally efficient, as well as being resolution-invariant. The FNO
acts as a DeepONet with the branch net approximating the input functions and the trunk net using
Fourier basis functions.

While the vanilla FNO required the input function to be defined on a grid due to its reliance on the
fast Fourier transform (FFT), further work developed mesh-independent variations as well [19]. In
brief, the dFNO+ and gFNO+ presented in [21] which adapt the FNO to nonlinear mappings and
complex geometries respectively. Tripura and Chakraborty [30] present the wavelet neural operator
(WNO) which learns the network parameters in wavelet space rather than Fourier space to allow for
both frequency and spatial resolution (the latter of which Fourier basis functions are not explicitly
able to capture). The WNO was shown to handle highly nonlinear PDEs with sharp changes and
discontinuities on both smooth and complex geometries. The physics-informed neural operator
(PINO) [19], combines the PINN methodology with the FNO resulting in an architecture which
ameliorates the optimization challenges that PINNs face, as well as improving the accuracy of both
models. In short, the PINO first learns a solution operator using some combination of the data loss
and/or PDE loss, and then uses the learned operator as an ansatz to approximate the ground truth
operator with the PDE loss (and, optionally, the operator loss from the previous step).

Neural methods are often able to operate on multiple domains, computationally efficient at test time,
and can be completely data-driven. However, none of the above popular examples have a clear
interpretation.

3 Symbolic Programming

Symbolic regression was first proposed by Koz [1] and is synonymous to regular linear or nonlinear
regression except it fits over the parameters and structure of an equation rather than numerical data
points. An equation can be represented as an acyclic graph, with its leaves being the operations and
its terminal nodes being variables and constants. The method generates random operations as the base
structure of the graph, and uses genetic programming techniques such as point mutation and crossover
to introduce variation (exploration of the search space) [3]. Each equation is assessed against how
many data points it can handle, often with an error metric defined using mean squared error or other
standard forms. As promising equations are iterated and evaluated, the algorithm converges toward
the resulting symbolic equation that best describes the data. For a more detailed overview of symbolic
regression, Angelis et al. [3] presents a recent overview including the applications in machine learning
to date.

3



Numerical models have traditionally been developed systematically by hand and with a deep under-
standing of the system and its setting. Accordingly, fewer models exist for larger systems or those
that are less explored. With the still-growing amount of compute available now, there is new potential
for data-driven methods to discover relationships in data. Neural networks have been combined with
symbolic regression in a variety of ways.

Cranmer et al. [7] capitalize on the development of graph neural networks (GNNs) [4, 28] such that
the GNN has some inductive biases imposed to mimic some true latent space. This model is then
trained to predict the dynamics of common physical systems, and symbolic regression is finally used
to extract algebraic equations from the GNN messages and inputs. As an example, the update to some
physical body’s velocity may be calculated using Euler integration

v
′

i = vi + ϕv(vi, ē
′

i) (2)

where ϕv is the node update function which takes the node updates vi and the pooled messages
ē

′

i at the i-th receiver node. For the ideal case that the GNN predicts v
′

i, the node update over all
received and pooled messages must then be equal to the net force acting on the body. The message
vectors therefore would be linear transformations of the forces, which can be extracted as symbolic
expressions using symbolic regression.

4 The Potential for Symbolic Frameworks in Neural PDE Solvers

Some work in this direction has begun to emerge. Lee et al. [16] interprets the neural ODE by using
its resulting time derivative predictions as inputs to SINDy (a framework based on sparse regression
to discover parsimonious governing equations including, but not limited to PDEs) which interprets the
results as a symbolic equation. In this case, two outputs are expected: the solutions across however
many time steps the network predicts, and also a symbolic equation describing the former. Another
similar approach by Fronk and Petzold [11] adapts the Deep Polynomial Neural Networks from [6],
which constrains the output vector such that each element is represented as a polynomial based on
every input element, directly for symbolic regression. Then, this network is embedded into the neural
ODE to design a network capable of learning polynomial differential equations, such as those found
in certain dynamical systems.

While the former two approaches add or otherwise modify an existing architecture, [2] presents a
"model-of-a-model" approach called the symbolic metamodel, which takes a learned model as input
and outputs a symbolic equation as a post-hoc interpretation. The symbolic metamodel is based on
the Meijer G-function, Gp,q

m,n(ap, bq|x), where a and b are two sets of real-values which specify a
particular instance of G. One limitation is that this method cannot represent the outputs by means of
any differential equations due to the limitations of the Meijer G-function. Since the target symbolic
equation can be expressed (within this limited scope) as a Meijer G-function, it can be learned using
standard gradient descent methods instead of symbolic regression.

However, further integrations would greatly benefit popular models like the neural operator methods
described above, among others. In fact, closer interdisciplinary work involving "XAI" (explainable
AI) methodology will also have bidirectional benefit. Neural solvers such as these which tackle
rigorous problems such as complex PDEs pose a great stepping stone problem since it uniquely
presents many ways to evaluate the correctness of an interpretation and its fitness to the network itself.
Being able to verify interpretation techniques in this type of problem also makes the techniques more
trustworthy to be used in less straightforward problem settings more generally.

4.1 Considerations for further study

Key performance indicators, such as predictive accuracy, computational efficiency, and convergence
speed, need to be thoroughly assessed to determine the effectiveness and reliability of the integrated
model. As in the standard neural PDE solvers, striking a balance between high-accuracy predictions
and computational efficiency. Furthermore, exploring how well these models generalize across varied
problem domains, scales, and complexities would offer insights into their robustness and versatility,
thus making them suitable for a broader spectrum of practical applications.

4



Addressing the interpretability and transparency of the model’s predictions stands as another cor-
nerstone in this integration. Embedding symbolic frameworks should not only facilitate accurate
and computationally efficient PDE solutions but more importantly provide clear, understandable
mathematical formulations that highlight the underlying relationships and dynamics captured by the
neural network. As such, the symbolic expressions derived from the model should be mathemati-
cally coherent, ideally providing a lens through which the model’s predictions and decision-making
processes can be analyzed and validated against known physical laws and empirical observations.

5 Summary

Enhanced interpretability is crucial, especially in science and engineering, where understanding the
underlying processes and making sure our predictions are reliable is vital. By integrating symbolic
programming with neural PDE solvers, we ensure that the models we create are not just data-driven
black boxes. Instead, they have enhanced visibility thanks to their ability to respect and show
physical laws and principles, filling the gap between data-driven machine learning and scientific
modelling guided by theories. So, combining symbolic frameworks and neural PDE solvers opens up
a promising path. It brings together the strength of machine learning and the clarity and accuracy of
symbolic math expressions, pushing forward our abilities in scientific computing and simulation.

References
[1] Koza: On the programming of computers by means of... - Google Scholar.

https://scholar.google.com/scholar_lookup?title=Genetic+Programming%3A+On+the+Programming+of+Computers+by+Means+of+Natural+Selection&publication_year=1992.

[2] Ahmed M. Alaa and Mihaela van der Schaar. Demystifying Black-box Models with Symbolic
Metamodels. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[3] Dimitrios Angelis, Filippos Sofos, and Theodoros E. Karakasidis. Artificial Intelligence in
Physical Sciences: Symbolic Regression Trends and Perspectives. Archives of Computational
Methods in Engineering, 30(6):3845–3865, July 2023. ISSN 1886-1784. doi: 10.1007/
s11831-023-09922-z.

[4] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, and Ryan
Faulkner. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[5] Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message Passing Neural PDE
Solvers. In International Conference on Learning Representations, January 2022.

[6] Grigorios Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Jiankang Deng, Yannis Panagakis,
and Stefanos Zafeiriou. Deep Polynomial Neural Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–1, 2021. ISSN 0162-8828, 2160-9292, 1939-3539.
doi: 10.1109/TPAMI.2021.3058891.

[7] Miles D. Cranmer, Rui Xu, Peter Battaglia, and Shirley Ho. Learning symbolic physics with
graph networks. arXiv preprint arXiv:1909.05862, 2019.

[8] Salvatore Cuomo, Vincenzo Schiano di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar
Raissi, and Francesco Piccialli. Scientific Machine Learning through Physics-Informed Neural
Networks: Where we are and What’s next, June 2022.

[9] MWMG Dissanayake and Nhan Phan-Thien. Neural-network-based approximations for solving
partial differential equations. communications in Numerical Methods in Engineering, 10(3):
195–201, 1994.

[10] V. Fanaskov and I. Oseledets. Spectral Neural Operators, May 2022.

[11] Colby Fronk and Linda Petzold. Interpretable Polynomial Neural Ordinary Differential Equa-
tions. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(4):043101, April 2023.
ISSN 1054-1500, 1089-7682. doi: 10.1063/5.0130803.

5



[12] Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-Informed
Deep Neural Operator Networks, July 2022.

[13] Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learn-
ing Neural PDE Solvers with Convergence Guarantees. In International Conference on Learning
Representations, April 2019.

[14] Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, and Michael W. Ma-
honey. Characterizing possible failure modes in physics-informed neural networks, November
2021.

[15] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial Neural Networks for Solving Ordinary
and Partial Differential Equations. IEEE Transactions on Neural Networks, 9(5):987–1000,
Sept./1998. ISSN 10459227. doi: 10.1109/72.712178.

[16] Kookjin Lee, Nathaniel Trask, and Panos Stinis. Structure-preserving Sparse Identification of
Nonlinear Dynamics for Data-driven Modeling, September 2021.

[17] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural Operator: Graph Kernel Network for Partial
Differential Equations, March 2020.

[18] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial
Differential Equations, May 2021.

[19] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021.

[20] Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear operators
for identifying differential equations based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5.

[21] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang,
and George Em Karniadakis. A comprehensive and fair comparison of two neural operators
(with practical extensions) based on fair data. Computer Methods in Applied Mechanics and
Engineering, 393:114778, 2022.

[22] Chuizheng Meng, Sungyong Seo, Defu Cao, Sam Griesemer, and Yan Liu. When Physics Meets
Machine Learning: A Survey of Physics-Informed Machine Learning, March 2022.

[23] Brek Meuris, Saad Qadeer, and Panos Stinis. Machine-learning-based spectral methods for
partial differential equations. Scientific Reports, 13(1):1739, January 2023. ISSN 2045-2322.
doi: 10.1038/s41598-022-26602-3.

[24] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. FourCastNet: A Global Data-
driven High-resolution Weather Model using Adaptive Fourier Neural Operators, February
2022.

[25] Dimitris C. Psichogios and Lyle H. Ungar. A hybrid neural network-first principles approach to
process modeling. AIChE Journal, 38(10):1499–1511, 1992.

[26] Md Ashiqur Rahman, Zachary E. Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped Neural
Operators, May 2022.

[27] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, February 2019. ISSN
0021-9991. doi: 10.1016/j.jcp.2018.10.045.

6



[28] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Ried-
miller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for
inference and control. In International Conference on Machine Learning, pages 4470–4479.
PMLR, 2018.

[29] Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon Um.
Physics-based Deep Learning, April 2022.

[30] Tapas Tripura and Souvik Chakraborty. Wavelet neural operator: A neural operator for paramet-
ric partial differential equations, May 2022.

[31] Kiwon Um, Robert Brand, Yun (Raymond) Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-
Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers. In Advances
in Neural Information Processing Systems, volume 33, pages 6111–6122. Curran Associates,
Inc., 2020.

7


	Introduction
	Neural PDE Solvers

	An overview of the current methods
	Physics Informed Neural Networks
	DeepONets
	Fourier Neural Operators

	Symbolic Programming
	The Potential for Symbolic Frameworks in Neural PDE Solvers
	Considerations for further study

	Summary

