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Abstract
Deep Neural Networks (DNNs) are one of the
most powerful tools for prediction, but many of
them implicitly assume that the data are statisti-
cally independent. However, in the real world,
it is common for large-scale data to be clustered
with temporal-spatial correlation structures. Vari-
ational approaches and integrated likelihood ap-
proaches have been proposed to obtain approxi-
mate maximum likelihood estimators (MLEs) for
correlated data. However, due to the large size
of data, they cannot provide exact MLEs. In this
study, we propose a new hierarchical likelihood
approach to DNNs with correlated random ef-
fects for clustered data. By jointly optimizing
the the negative h-likelihood loss, we can pro-
vide exact MLEs for both mean and dispersion
parameters, as well as the best linear unbiased
predictors for the random effects. Moreover, the
hierarchical likelihood allows a computable proce-
dure for restricted maximum likelihood estimators
of dispersion parameters. The proposed two-step
algorithm enables online learning for the neural
networks, whereas the integrated likelihood can-
not decompose like a widely-used loss function
in DNNs. The proposed h-likelihood approach
offers several advantages, which we demonstrate
through numerical studies and real data analyses.

1. Introduction
Deep neural network (DNN) models have served as the
method of learning highly nonlinear relationship between
the input and output variables with strong prediction perfor-
mance (LeCun et al., 2015; Goodfellow et al., 2016). How-
ever, most DNN models implicitly assume independence
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of the data and ignore underlying correlation structures, de-
spite large-scale data in the real world often being clustered
by multiple categorical features. Recently, there have been
emerging attempts to enhance the prediction for clustered
data by introducing the random effects into the DNN models
(Tran et al., 2020; Mandel et al., 2021; Simchoni & Rosset,
2021; 2022).

Simchoni & Rosset (2021; 2022) proposed linear mixed
model neural network (LMMNN) models with single in-
dependent random effects and extended LMMNN models
to multiple random effects allowing temporal-spatial cor-
relation structure. However, their conventional integrated
likelihood approach is computationally intractable because
it does not allow decomposition like an ordinary loss func-
tion in DNNs. They proposed the use of block-diagonal ap-
proximation to the covariance matrix to obtain approximate
maximum likelihood estimators (MLEs) for their LMMNN
models. However, their approximate likelihood can give
a severe bias in parameter estimation for models with cor-
related random effects. Also, this difficulty prevents them
from obtaining restricted maximum likelihood estimators
(REMLEs) for LMMNN models. Variational approach can
be an alternative. However, this cannot provide exact MLEs
either but only approximate MLEs.

Lee & Nelder (1996) proposed the use of h-likelihood as
an extension of classical likelihood for statistical models
with random effects. In LMMs, the h-likelihood is Hender-
son’s joint likelihood (Henderson et al., 1959) of which the
joint maximization gives the MLEs for fixed effects and the
best linear unbiased predictors (BLUPs) for random effects.
However, it does not give MLEs for variance components by
a simple joint maximization. This causes the computational
difficulty of Simchoni & Rosset (2021; 2022). In this paper,
we introduce the new h-likelihood for LMMNN models with
various temporal-spatial random effects from the multiple
categorical features. The proposed negative h-likelihood
serves as a loss function, which allows the exact MLEs for
all fixed parameters and BLUPs for random effects. The pro-
posed negative h-likelihood for LMMNN models allows the
highly non-linear functions of input variables and multiple
random effects with complex covariance structures, which
is the key to overcoming the computational difficulties in
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LMMNN models.

In Section 2, we briefly review the integrated likelihood ap-
proach to LMMs. In Section 3, the h-likelihood for LMMs
with multiple random effects is proposed. It is worth empha-
sizing that its simple joint maximization can give the MLEs
for the whole fixed parameters and BLUPs for random ef-
fects, and bypasses the heavy computation difficulties to
obtain the exact MLEs. In Section 4, we propose the use of
negative h-likelihood as a loss function of LMMNN models
and introduce a useful adjustment for random effect predic-
tions. This allows online learning algorithm. To compare
with the existing methods, we provide simulation studies
in Section 5 and real data analyses in Section 6, followed
by concluding remarks in Section 7. All the proofs and
technical details are in Appendix.

2. Integrated Likelihood Approach for LMMs
Let y be a vector of N responses, X and Z be N × p and
N × q model matrices for fixed effects β ∈ Rp and random
effects v ∈ Rq , respectively. We start with a standard LMM,

y = Xβ + Zv + e

where e ∼ N(0, σ2
eIN ) is a vector of N random noises,

v ∼ N(0,D) is a vector of q random effects, IN is N ×
N identity matrix and D = D(λ) is q × q covariance
matrix parameterized by λ. Let ψ =

(
σ2
e ,λ

)
be the vector

of dispersion parameters and θ = (β,ψ) be the vector
of whole fixed parameters. To obtain the estimates for β
and v, Henderson et al. (1959) proposed to maximize the
Henderson’s joint likelihood,

J (θ,v) = log fθ(y,v) = log fθ(y|v) + log fθ(v)

= − 1

2σ2
e

||y −Xβ − Zv||2 − N

2
log(2πσ2

e)

− 1

2
vTD−1v − 1

2
log |2πD|, (1)

where || · ||2 denotes the L2-norm and | · | denotes the
determinant. For given variance components ψ =

(
σ2
e ,λ

)
,

optimization of the joint likelihood (1) gives MLEs for β
and the BLUPs for v,

β̂ = (XTX)−1XT (y − Zv̂),

v̂ = Ê(v|y) = (ZTZ+ σ2
eD

−1)−1ZT (y − ZTXβ̂).

However, it cannot give MLEs for the variance compo-
nents ψ. For the MLEs of ψ, the integrated likelihood
has been used from the multivariate normal distribution of
y ∼ N(Xβ,V),

ℓ(θ) = log

∫
exp (J (θ,v)) dv

= −1

2
(y −Xβ)TV−1(y −Xβ)− 1

2
log |2πV|,

where the marginal covariance matrix V is

V = V(ψ) = ZDZT + σ2
eIN .

For given variance components, it is known that the MLEs
for β from the integrated likelihood ℓ(θ) is the same as
Henderson’s MLE for β,

β̂ = (XTV−1X)−1XTV−1y = (XTX)−1XT (y−Zv̂).

In LMMs, MLEs for variance components could be biased
in finite sample. To reduce the bias, REMLEs for ψ are
often used (Patterson & Thompson, 1971). In LMMs, REM-
LEs maximize the restricted likelihood,

ℓR(ψ) = ℓ(ψ; β̂)− 1

2
log |XTV−1X|, (2)

which is an adjusted profile likelihood (Cox & Reid, 1987;
Lee et al., 2017). However, both the integrated likelihood
ℓ(θ) and the restricted likelihood ℓR(ψ) involve the compu-
tation of the inverse of N ×N matrix V. In LMMNNs with
single independent random effects of Simchoni & Rosset
(2021), V has a block-diagonal form. This allows compu-
tation of exact MLEs. Simchoni & Rosset (2022) noted
that V is not a block-diagonal form in general, even for
LMMs with single categorical feature, when the random ef-
fects have a complex correlation structure. In order to avoid
computing V−1, they proposed the use of block-diagonal
approximation to V. However, it requires a rigorous theo-
retical justification and the resulting approximate MLEs can
have severe biases.

Further difficulties arise when the model contains multiple
categorical features Z = (Z1, ...,ZK) with corresponding
random effects v = (v1, ...,vK),

y = Xβ+Zv+e = Xβ+Z1v1+ · · ·+ZKvK +e, (3)

where vk ∼ N(0,Dk) is qk-dimensional vector for k =
1, ...,K. Simchoni & Rosset (2022) claimed that the use of
block-diagonal approximation can avoid heavy computation
in the inverse of N×N matrix. We found that the integrated
likelihood can be computed by using the Woodbury formula,

V−1 = (ZDZT + σ2
eIN )−1

=
1

σ2
e

[
IN − Z(ZTZ+ σ2

eD
−1)−1ZT

]
,

and the matrix determinant lemma,

log |V| = log |ZDZT + σ2
eIN |

= log |ZTZD+ σ2
eIQ|+ (N −Q) log σ2

e ,

where D = block-diag(D1, ...,DK). This formulation can
reduce the computations of integrated likelihood without
any approximations. However, ZTZ is not a block-diagonal
matrix when k ̸= 1. Thus, it still requires heavy computa-
tion for every mini-batch. We study how the h-likelihood
overcomes the computational difficulties of an integrated
likelihood approach.
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3. New H-likelihood Approach for LMMs
In Henderson’s joint likelihood, v is additive to the fixed
effects β in the linear predictor of LMMs

E(y|v) = Xβ + Zv.

Lee et al. (2017) called the v-scale the weak-canonical scale
and Lee & Nelder (1996) proposed the use of Henderson’s
joint likelihood J (θ;v) as the h-likelihood for general non-
normal models. However, its joint maximization cannot
give the MLEs for the variance components, which leads
to the use of integrated likelihood. Thus, the key to avoid
computational difficulty due to integration is to define a
new proper h-likelihood whose joint maximization gives the
MLEs for the whole parameters including variance compo-
nents. We define the h-likelihood for LMMs, which contain
the multiple categorical features Z = (Z1, ...,ZK) with
corresponding random effects v = (v1, ...,vK). Since

log fθ(y|v) + log fθ(v) = log fθ(y,v)

= log fθ(v|y) + log fθ(y),

let us define the h-likelihood based on the canonical scale
of random effects vc,

h = h(θ,vc) = ℓ(θ) + log fθ(v
c|y)

where ℓ(θ) = log fθ(y) is the integrated likelihood. Given
θ, let ṽc be mode of h. A sufficient condition for h(θ,vc) to
be the h-likelihood is that fθ(ṽc|y) is free of θ. In Appendix
A1, we show that

vc =

(
1

σ2
e

ZTZ+D−1

) 1
2

v

is the canonical scale and the resulting predictive likelihood
at vc,

log fθ(ṽ
c|y) = log fθ(ṽ|y) + log

∣∣∣∣ dvdvc

∣∣∣∣ = −1

2
log |2πIQ|

is free of θ. This leads to

h(θ, ṽc) ∝ ℓ(θ),

so that the joint maximization of h(θ,v) gives the MLEs for
the whole fixed parameters. Let h(θ,v) be a reparameteri-
zation of h(θ,vc), then the h-likelihood can be expressed
as

h = h(θ,v) = log fθ(y|v) + log fθ(v) + log

∣∣∣∣ dvdvc

∣∣∣∣
= J (θ,v)− 1

2
log

∣∣∣∣ 1σ2
e

ZTZ+D−1

∣∣∣∣ .
Thus, the h-likelihood h(θ,v) is not proportional to the Hen-
derson’s joint likelihood J (θ,v) in (1), since log |dv/dvc|

depends upon the variance components. So the h-likelihood
is different from the Henderson’s joint likelihood. Given
θ, the h-likelihood and joint likelihood of v are propor-
tional. Thus, joint maximization of the h-likelihood pro-
vides BLUPs for random effects. With the model (3), the
h-likelihood is

h = h(θ,v) =− 1

2σ2
e

||y −Xβ − Zv||2 − N

2
log σ2

e

− 1

2
vTD−1v − 1

2
log

∣∣∣∣ 1σ2
e

ZTZD+ IQ

∣∣∣∣ .
(4)

In Markov random field models or smoothing splines, the
precision matrix of the random effects Pk = D−1

k are ex-
plicitly expressed and in independent random effect models
Pk = λ−1

k Iqk . Let P = block-diag(P1, ...,PK). Then the
canonical scale vc becomes

vc =

(
1

σ2
e

ZTZ+P

) 1
2

v

and the h-likelihood becomes

h =− 1

2σ2
e

||y −Xβ − Zv||2 − N

2
log σ2

e

− 1

2
vTPv +

1

2
log |P| − 1

2
log

∣∣∣∣ 1σ2
e

ZTZ+P

∣∣∣∣ ,
which does not requires the computation of D−1.

It is worth emphasizing that the h-likelihood approach does
not require the inverse of N × N matrix but only Q × Q
matrix where Q =

∑K
k=1 qk. It is often true that Q ≪ N.

When
∑K

k=2 qK ≪ q1 < N and D1 = λ1Iq1 , it is not
necessary to compute the inverse and the determinant of
the whole Q×Q matrix but (Q− q1)× (Q− q1) matrix.
In Appendix A2 and A3, we derive the first and the sec-
ond derivatives of the h-likelihood, which can be obtained
without computing the inverse of full Q×Q matrix directly.

The h-likelihood has advantage over the Henderson’s joint
likelihood, equivalent to the h-likelihood of Lee & Nelder
(1996), in that it is computationally efficient and gives MLEs
for all parameters. Given variance components, the joint
likelihood and the h-likelihood provides common estimators.
Thus, difference is ML estimation of variance components.
In Appendix A1, we show that the restricted likelihood (2)
is the adjusted profile h-likelihood,

ℓR(ψ) = hR(ψ)

= h(ψ; β̂, v̂c)− 1

2
log

∣∣∣∣ 1σ2
e

XTX− 1

σ4
e

XTZA−1ZTX

∣∣∣∣
(5)

where A = 1
σ2
e
ZTZ + D−1. Since the additional log de-

terminant term involves an inverse of Q × Q matrix, the
REML procedure is computationally harder than the ML
procedure.
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4. H-likelihood Learning Algorithm for
LMMNNs

Following Simchoni & Rosset (2022), we first extend the
LMM (3) to the LMMNN with random effects for the mul-
tiple categorical features,

y = f(X)β + g1(Z1)v1 + · · ·+ gK(ZK)vK + e (6)

where f : Rp∗ → Rp and gk : Rq∗k → Rqk are non-linear
functions to be estimated by the neural networks, X and Zk

are n× p∗ and n× q∗k model matrix, respectively. LMMNN
allows complex covariance structures of clustered data due
to categorical variables, temporal-spatial structures, and
combinations of these. Here, f(X) denotes the last hidden
layer including the bias node and β is the weight vector
from the last hidden layer to the output layer.

The extension of the h-likelihood (4) to the proposed model
(6) is straightforward. By replacing X and Zk to f(X) and
gk(Zk) for k = 1, ...,K, respectively, the canonical scale
vc = (vc

1, ...,v
c
K) is given by

vc =

(
1

σ2
e

g(Z)T g(Z) +D−1

) 1
2

v

where g(Z) = (g1(Z1), ..., gK(ZK)). Then, the objective
function for training the network is defined by the negative
h-likelihood,

Loss = −2h =
1

σ2
e

N∑
i=1

[
yi − f(xi)

Tβ − g(zi)
Tv
]2

+

K∑
k=1

vT
k D

−1
k vk + c(ψ), (7)

where c(ψ) = log
∣∣σ−2

e g(Z)T g(Z)D+ IQ
∣∣+N log σ2

e is
a function of ψ and g(Z) only. Each component of the
negative h-likelihood has straight-forward interpretation:

• 1
σ2
e
||y − Xβ − Zv||2 represents the conditional log-

density −2 log fθ(y|v), which can be decomposed for
online learning.

• vTD−1v represents the log-density −2 log fθ(v),
which can be viewed as a kernel regularizer for the
weights of categorical features.

• The remaining term c(ψ) is a function of dispersion
parameters, which does not affect learning of mean
parameters, i.e., all the weights in neural network and
random effects.

Therefore, the h-likelihood loss for LMM can be understood
as the sum of the squared loss, kernel regularizer for random

effects, and an additional function for yielding MLEs of
dispersion parameters.

Let
ŷi = E(yi|v) = f(xi)

Tβ + g(zi)
Tv,

then the loss function becomes

Loss =
N∑
i=1

[
(yi − ŷi)

2

σ2
e

+

∑K
k=1 v

T
k D

−1
k vk

N

]
+ c(ψ).

and its gradient with respect to the mean parameters in
f, g,β,v is given by

∇ Loss = ∇
N∑
i=1

[
(yi − ŷi)

2

σ2
e

+

∑K
k=1 v

T
k D

−1
k vk

N

]

∝
N∑
i=1

[
∇(yi − ŷi)

2 +
σ2
e

N

K∑
k=1

∇vT
k D

−1
k vk

]
,

which does not involve the log-determinant of Q×Q matri-
ces in c(ψ). Note further that the gradient with respect to
the random effects is ∇vk

vT
k D

−1
k vk = 2vk/λk when vk

is independent random effect. Even if every pair of vk is
correlated, it only involves the inverse of qk × qk matrix.
Thus, for given variance components ψ, optimization of
the negative h-likelihood loss (7) with respect to the mean
parameters can naturally decompose for online learning
frameworks. Furthermore, it can be interpreted as the op-
timization of the sum of squared error

∑
i(yi − ŷi)

2 with
the penalty function

∑
k σ

2
ev

T
k D

−1
k vk. In LMMs, MLEs

for mean parameters are robust against estimation of disper-
sion parameters, whereas MLEs for dispersion parameters
are sensitive to estimation of mean parameters. Thus, we
update the variance components every m epoch, not every
mini-batch.

An advantage of the h-likelihood is that it avoids heavy com-
putation in the integrated likelihood. Figure 1 shows our
two-step algorithm with the negative h-likelihood loss. The
proposed algorithm allows online learning of mean param-
eters including random effects while saving the computa-
tional cost required for estimation of dispersion parameters.

• M-step: Update the mean parameters (f, g,β,v) in
the neural network for every mini-batch.

• V-step: Update the variance components in ψ using
the whole training data for every m epoch.

Figure 2 shows the MSE vs. time curves of the h-likelihood
approach and the improved integrated likelihood approach
with the Woodbury formula and the matrix determinant
lemma. This assess the relative efficiency of the two meth-
ods in terms of computational complexity and accuracy
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Figure 1. A sketch of the proposed model fitting algorithm via h-likelihood.

(MSE). The MSE of the h-likelihood approach (blue) de-
creased more rapidly than that of the integrated likelihood
approach (red). These results provide evidence that the
proposed h-likelihood approach is computationally more
efficient than the integrated likelihood approach, even when
the latter is improved by using the Woodbury formula and
the matrix determinant lemma.

In early stage of learning, the method-of-moments estima-
tors (MMEs) could be used for training the variance com-
ponents, because MLEs are often sensitive to the bias in
the mean parameters and MMEs take less computational
cost. It is worth noting that the MMEs require the random
effect predictors v̂, which are not provided by the integrated
likelihood while training the network. When the number of
dispersion parameters is small, second order optimization
algorithms can be used for the covariance kernel, such as
the RBF kernel. Newton-Raphson method is implemented
for estimation of dispersion parameters.

4.1. REML procedure

The restricted h-likelihood of the proposed model (6) can be
obtained by replacing X and Z in (5) with f̂(X) and ĝ(Z).

For given f̂ and ĝ, the restricted h-likelihood is given by

hR(ψ) = h(ψ; f̂ , ĝ, β̂, v̂)− 1

2
log

∣∣∣∣ 1σ2
e

f̂(X)T f̂(X)

− 1

σ4
e

f̂(X)T ĝ(Z)A−1ĝ(Z)T f̂(X)

∣∣∣∣ ,
where A = 1

σ2
e
ĝ(Z)T ĝ(Z) + D−1, which allows REML

procedure for LMMNN models.

4.2. Adjustments for Random Effects

In LMMs, constraints are imposed on the random effects
E(v) = 0. Without the constraints, the proposed model (6)
has additional parameter µk = E(vk) and the transforma-
tion

β∗
0 = β + ϵk

v∗
k = vk − ϵk ∼ N (µ∗

k = µk − ϵk,Dk)

gives the same h-likelihood, so that the parameters may
not be identifiable. Thus, when the DNN models contains
the random effects, the bias in local minima can cause
poor predictions. Simchoni & Rosset (2022) considered
two cases of gk(·), the identity function gk(Zk) = Zk and
gk(Zk) = ZkWk where Wk is q∗k×qk matrix with qk ≤ q∗k.
When gk(·) is identity function, we propose the following
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Figure 2. MSE curves of the integrated likelihood approach and the proposed h-likelihood approach from 20 repetitions. N = 10, 000
data are generated from the normal distribution with a nonlinear function f(x) = (x1+x2) cos(x1+x2)+2x1x2, q = 100 dimensional
Gaussian random effects v1 and v2 from N(0, I100), and σ2

e = 1.

adjustment for local minima by putting constraints on the
random effect predictors,

v̂∗
k = v̂k − v̂T

k D̂
−11qk

1T
qk
D̂−1

k 1qk

,

β̂∗
0 = β̂0 +

v̂T
k D̂

−11qk

1T
qk
D̂−1

k 1qk

, (8)

where 1qk = (1, ..., 1)T . When the random effect vk is
independent, i.e., Dk = λkIqk , the adjustment becomes

v̂∗
k = v̂k − 1

qk

qk∑
j=1

v̂kj and β̂0 = β̂ +
1

qk

qk∑
j=1

v̂kj .

Following theorem shows that the proposed adjustment (8)
can always reduce the proposed loss function.

Theorem 4.1. In the LMMNN (6), suppose that (θ̂
∗
, v̂∗)

is the replacement of β̂0 and v̂k in (θ̂, v̂) with the adjusted
values θ̂

∗
and v̂∗

k in (8), then

h(θ̂
∗
, v̂∗) ≥ h(θ̂, v̂)

and the equality holds if and only if v̂T
k D̂

−11qk = 0, i.e.,
v̂∗
k = v̂k.

Proof is in Appendix A5. The proposed algorithm is de-
scribed in Algorithm 1.

Algorithm 1 Two-step Algorithm for H-likelihood
Input: xi, zi
Initialize all the fixed and random parameters.
repeat

< M-step >
for epoch = 1 to m do

Update the mean parameters in f , g, β and v for
every mini-batch.

end for
< V-step >
Update dispersion parameters in ψ by using the whole
training data (full batch).

until the loss function is not improved for pre-determined
number of times
Adjust the random effect predictors v̂ as in (8).

5. Comparison with existing methods
To show the performance of their integrated likelihood ap-
proaches, namely the LMMNN with and without assuming
spatial correlation (LMMNN-R and LMMNN-E), Simchoni
& Rosset (2022) reported the results from various exist-
ing methods, one-hot encoding (OHE), entity embedding
(EMB; Guo & Berkhahn (2016)), convolutional neural net-
work (CNN; LeCun et al. (1998)) and stochastic variational
deep kernel learning (SV-DKL; Wilson et al. (2016b)). To
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Table 1. Mean and standard error of test MSPEs. Results of existing models are cited from Simchoni & Rosset (2022).

l2 OHE EMB CNN SV-DKL LMMNN-E LMMNN-R HL (PROPOSED)

0.1 1.35 (.01) 1.34 (.01) 1.28 (.02) 1.26 (.03) 1.26 (.02) 1.29 (.07) 1.11 (.03)
1.0 1.33 (.01) 1.34 (.02) 1.27 (.02) 1.12 (.01) 1.18 (.02) 1.13 (.02) 1.03 (.03)

10.0 1.34 (.01) 1.30 (.02) 1.22 (.02) 1.09 (.03) 1.10 (.01) 1.10 (.01) 1.10 (.05)

Table 2. Estimated variance components on average when σ2
e = σ2

v = 1. Results of LMMNN-R are cited from Simchoni & Rosset
(2022).

TRUE LMMNN-R HL (MLE) HL (REMLE)
l2 σ̂2

e σ̂2
v l̂2 σ̂2

e σ̂2
v l̂2 σ̂2

e σ̂2
v l̂2

0.1 1.12 0.99 0.48 0.9337 0.9832 0.0967 0.9337 0.9830 0.0971
1.0 1.12 1.10 1.49 1.0013 1.0594 1.0085 1.0013 1.0588 1.0083

10.0 1.11 0.74 4.93 0.9623 0.7124 8.9290 0.9623 0.7131 8.9338

study the performance of the proposed model, we first re-
view the existing methods for comparison.

• OHE is a basic approach to handle the categorical fea-
tures, but it becomes challenging when the number of
categories is large.

• EMB is known to improve OHE by mapping the
high-cardinality categorical features into the low-
dimensional Euclidean spaces.

• CNN is the most widely used method to analyze vi-
sual images. For spatial data, CNN can be applied by
handling the locations as images.

• SV-DKL is a stochastic variational procedure which
generalize the deep kernel learning (Wilson et al.,
2016a). It is considered as a SOTA method for han-
dling spatial data. Deep kernel learning combines the
non-parametric flexibility of kernel methods with the
inductive biases of deep learning architectures. Wilson
et al. (2016b) showed that SV-DKL can take advan-
tages over alternative scalable Gaussian process models
and stand-alone DNNs.

• LMMNN-E transforms the locations into a 1000 dimen-
sional vector which is treated as a single independent
random effects.

• LMMNN-R uses the RBF covariance kernel for the
spatial random effects. It has the similar model for-
mulation with our proposed HL methods but different
loss function and learning algorithm using the block-
diagonal approximation.

The h-likelihood approach gives exact MLEs, whereas
SOTA methods such as SV-DKL, LMMNN-E and LMMNN-
R provide only approximate MLEs.

6. Numerical Studies
We present numerical studies using spatial data to demon-
strate the performance of the proposed method. Following
Simchoni & Rosset (2022), we generate the data as follows.
For i = 1, ..., N , input variable xi = (xi1, ..., xi10)

T are
sampled from U(−1, 1) distribution and

yi = xi+ · cosxi+ + 2xi1xi2 + zTi v + ϵi

where xi+ = xi1 + · · ·+ xi10, the noise ϵi is sampled from
N(0, σ2

e), and a vector of random effects v is sampled from
the multivariate normal distribution with zero mean and
covariance represented by RBF kernel, for i, j ∈ {1, ..., q},

Cov(vi, vj) = σ2
v exp

{
− (si − sj)

2

2l2

}
,

where si and sj are 2-dimensional locations sampled from
U(−10, 10)× U(−10, 10) grid.

We generate N = 100, 000 data points with q = 1, 000
random effects. We randomly separate the data into train-
ing set (60%), validation set (20%) and test set (20%). All
experiments are repeated 100 times. To fit the proposed
method, Adam optimizer is used for the mean parameters,
and Newton-Raphson methods is used for the variance com-
ponents. Since the MLEs for variance components could
be sensitive to the bias in the mean parameters, method-of-
moments estimators in Appendix A4 are used in early stages.
Standard multi-layer perceptrons (MLPs) with 4 hidden lay-
ers of 100-50-25-12 neurons and 25% dropout were applied
for all the experiments. Sigmoid activation function is used
for the last hidden layer to obtain the REMLEs, and ReLU
activation function is used for the others. Early stopping
criteria with validation loss is employed to prevent overfit-
ting. The proposed method is implemented using Python
based on Keras (Chollet et al., 2015) and Tensorflow (Abadi

7
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Table 3. Test MSPEs for Asthma data set. Results of existing models are cited from Simchoni & Rosset (2022).

DATA IGNORE EMB CNN SV-DKL LMMNN-E LMMNN-R HL (PROPOSED)

INCOME .034 (.00) .032 (.00) .032 (.00) .030 (.00) .027 (.00) .028 (.00) 0.028 (.00)
AIR QUALITY .285 (.02) .260 (.04) .163 (.06) .044 (.01) .088 (.02) .035 (.00) 0.023 (.00)

CARS .152 (.00) .092 (.00) .137 (.00) .149 (.00) .136 (.00) .084 (.00) 0.084 (.00)

et al., 2015), and all the experiments are made on Nvidia
RTX 2080Ti GPU.

We report the mean and standard error of mean squared
prediction errors (MSPEs) of test data,

MSPE =
1

Ntest

Ntest∑
i=1

(yi − ŷi)
2.

Since the prediction is insensitive to the estimation of dis-
persion parameters, the MLE and REMLE have the same
prediction MSPE. Difference between LMMNN methods
and HL method is dispersion parameter estimation of the
HL method. Thus, the exact ML estimation of dispersion
parameters enhance the predictability. Table 1 shows that
the proposed method is better than all the existing methods.
Table 2 shows the estimation of variance components. For
the length-scale parameter l2 in RBF kernel, block-diagonal
approximation of LMMNN method produces severely bi-
ased estimates, whereas the proposed method estimates ac-
curately. For both σ2

e and σ2
v , the proposed exact MLEs

are slightly better than the approximate MLEs using block-
diagonal approximation. Compared to MLE, REMLE is
slightly less biased, but the difference is small despite the ad-
ditional computing cost. In LMMs of finite samples, REM-
LEs often reduces the bias of the MLEs, but in LMMNN
with large N , the improvement seems negligible.

To demonstrate the usefulness of the adjustment (8) of ran-
dom effects predictor, we report the root mean squared
errors (RMSEs) of random effects predictors. Without ad-
justment, mean and standard error of RMSEs are 0.14 (0.06).
With adjustment, mean and standard error of RMSEs are
0.13 (0.05). We have focused that the adjustment improves
not only the random effect prediction but also estimation
of MLEs for variance components, which gives the good
prediction performance of the HL procedure.

In summary, the proposed HL method outperforms the ex-
isting methods including the SOTA methods of variational
approach and integrated likelihood approach for the spatial
data, including SV-DKL (Wilson et al., 2016b), LMMNN-E
and LMMNN-R (Simchoni & Rosset, 2022).

7. Real Data Analysis
Simchoni & Rosset (2022) analyzed several data sets. They
used the 5-fold cross validation (CV) procedures where 80%

of the data is used to predict and the remaining 20% is test
data. Standard MLPs with two hidden layers of 10-3 neu-
rons and ReLU activation function were used for all the data
sets. RBF kernel was used for spatial correlation. Instead of
OHE, analysis ignoring correlation structure (Ignore) was
shown, since OHE perform similarly to EMB in simulation
studies.

7.1. Income data

Income data (MuonNeutrino, 2019) have mean yearly in-
come in dollars for 71, 371 US census tracts from 3, 108
counties. The response variable is log-income and in ad-
dition to the location features (longitude and latitude), the
data contain p = 30 input variables. Here, N = 71, 371,
K = 1, and q = 3, 108.

7.2. Air quality data

Centers for Disease Control and Prevention reported air
quality data (CDC, 2020) of PM2.5 particles level in 71, 347
US census tracts. Simchoni & Rosset (2022) analyzed the
air quality data by using additional features from the income
data. The response variable is PM2.5 particles level with
p = 32 input variables. Here, N = 71, 347, K = 1, and
q = 3, 107.

7.3. Cars data

Cars data (Reese, 2020) have the price of N = 97, 729
used cars. The response variable is log-price of the cars. It
contains q1 = 15, 226 models, q2 = 12, 235 locations to
give Q = q1 + q2 = 27, 461, and p = 73 input variables.
Since D1 = λ1Iq1 , we only need to compute the q2 × q2
inverse matrix, instead of either N ×N or Q×Q inverse
matrices.

7.4. Prediction results

Table 3 shows the mean of the MSPEs for test data from
5-fold CV procedure. In air quality data, the proposed
method has the smallest MSPEs. In income data, it has
comparable MSPEs to the smallest MSPE of LMMNN-E
without spatial random effects. In cars data, the proposed
method and LMMNN-R outperform the other methods. Fig-
ure 3 shows the predicted values of output variables against
the true values for the income data and air quality data.
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Figure 3. The HL predictors from income data (left) and air quality data (right).

When Simchoni & Rosset (2022)’s block-diagonal approx-
imation works well (income data and cars data), the pro-
posed method and LMMNN-R behave similarly, whereas
the approximation does not work well (air quality data), the
proposed method outperforms LMMNN-R. However, not
only the correlation matrix, but also the data, parameters,
and the batch size can affect the accuracy of the approxima-
tion. Thus, it is hard to know whether the approximation
will work well or not.

8. Concluding Remarks
In LMMs, the conventional integrated likelihood has been
successfully implemented to obtain the MLEs. However,
with the surge of DNN models, the integrated likelihood
encounters a computational difficulty due to the large size of
data. Variational methods and approximate integrated likeli-
hood approach have been proposed to obtain approximate
MLEs. However, they could have non-negligible biases,
so the algorithm to obtain the exact MLEs is of interest.
Lee & Nelder (1996) proposed the h-likelihood to avoid
numerically difficult integration. However, it does not give
the exact MLEs for variance components. In this paper, we
introduce a new h-likelihood for LMMs, which gives the
MLEs for whole parameters and BLUPs for random effects.

For LMMNN models, the two-step algorithm enables on-
line learning by minimizing the negative h-likelihood loss
function. Its joint optimization produces exact MLEs for

mean and dispersion parameters and BLUP for the random
effects. The algorithm also avoids a difficulty to imple-
ment the REMLE procedure for variance components. In
LMMNN models, we found that an adjustment for random
effect predictors is useful for enhancing the performance
of variance component estimation. In this paper, we only
considered simple MLP for the neural network f(x), but
more complex architectures can be easily implemented.

Via simulations and real data analyses, we show that pre-
dictive performance of HL method outperforms the existing
methods, OHE, EMBED, CNN, and SOTA methods, SV-
DKL, LMMMNN-E and LMMNN-R.

In the future we hope to make the proposed method more
computationally efficient, applicable to non-normal hierar-
chical models such as hierarchical generalized linear models
(Lee & Nelder, 1996) with neural networks.

Software and Data
Source codes for numerical studies and real data analyses
in this paper are available on Github: https://github.
com/hangbin221/deepHGLM.
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A. Appendix
A.1. Derivation of the new h-likelihood

Since v|y has the multivariate normal distribution,

v|y ∼ N

(
1

σ2
e

A−1ZT (y −Xβ), A−1

)
,

where A = σ−2
e ZTZ+D−1, the distribution of vc|y is given by

vc|y ∼ N

(
1

σ2
e

A− 1
2ZT (y −Xβ), IQ

)
,

which leads to ṽc = σ−2
e A− 1

2ZT (y −Xβ) and the predictive likelihood

log fθ(ṽ
c|y) = −1

2
log |2πIQ| = constant.

Thus, vc = A
1
2v is the canonical scale to give the h-likelihood,

h(θ,vc) =− 1

2σ2
e

(
y −Xβ − ZA− 1

2vc
)T (

y −Xβ − ZA− 1
2vc
)
− N

2
log(2πσ2

e)

− 1

2
vcTA− 1

2D−1A− 1
2vc − 1

2
log
∣∣∣2πA 1

2DA
1
2

∣∣∣ .
of which the joint maximization gives the MLEs for the whole parameters.

The first derivatives of the h-likelihood with respect to β and vc are

∂h(θ,vc)

∂β
=

1

σ2
e

XT
(
y −Xβ − ZA− 1

2vc
)
,

∂h(θ,vc)

∂vc
=

1

σ2
e

A− 1
2ZT (y −Xβ)− vc,

and the second derivatives are

∂2h(θ,vc)

∂β2 = − 1

σ2
e

XTX,
∂2h(θ,vc)

∂β∂vc
= − 1

σ2
e

A− 1
2ZTX,

∂2h(θ,vc)

∂vc2
= −IQ,

which leads to ∣∣∣∣−∂2h(θ,vc)

∂(β,vc)2

∣∣∣∣ =
∣∣∣∣∣
(

IQ
1
σ2
e
A− 1

2ZTX
1
σ2
e
XTZA− 1

2
1
σ2
e
XTX

)∣∣∣∣∣ =
∣∣∣∣ 1σ2

e

XTX− 1

σ4
e

XTZA−1ZTX

∣∣∣∣ .
Thus, the adjusted profile h-likelihood is given by

hR(ψ) = h(ψ; β̂, v̂c)− 1

2
log

∣∣∣∣ 1σ2
e

XTX− 1

σ4
e

XTZA−1ZTX

∣∣∣∣ ,
which is the integrated likelihood,

hR(ψ) = log

∫∫
exp(h(θ,vc))dvcdβ = log

∫∫
fθ(y,v

c)dvcdβ = log

∫
fθ(y)dβ

= log

∫
exp(ℓ(θ))dβ = ℓ(ψ; β̂)− 1

2
log |XTV−1X| = ℓR(ψ).

Thus, the restricted likelihood is an adjusted profile h-likelihood.
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A.2. The computation of h-likelihood when q1 is large

Suppose that the model contains a large q1 dimensional independent random effects with D1 = λ1Iq1 Since ZT
1 Z1 is

diagonal, the determinant
∣∣∣ 1
σ2
e
ZTZD+ IQ

∣∣∣ in the h-likelihood (4) can be expressed as

log

∣∣∣∣ 1σ2
e

ZTZD+ IQ

∣∣∣∣ = log

∣∣∣∣∣∣∣∣∣∣

1
σ2
e
ZT

1 Z1D1 + Iq1
1
σ2
e
ZT

1 Z2D2 . . . 1
σ2
e
ZT

1 ZKDK
1
σ2
e
ZT

2 Z1D1
1
σ2
e
ZT

2 Z2D2 + Iq2 . . . 1
σ2
e
ZT

2 ZKDK

...
...

. . .
...

1
σ2
e
ZT

KZ1D1
1
σ2
e
ZT

KZ2D2 . . . 1
σ2
e
ZT

KZKDK + IqK

∣∣∣∣∣∣∣∣∣∣
= log |B11|+ log

∣∣∣∣IQ−q1 +
1

σ2
e

ZT
−1Z−1D−1 −

1

σ4
e

ZT
−1Z1D1B

−1
11 Z

T
1 Z−1D−1

∣∣∣∣
where Z−1 = (Z2, ...,ZK), D−1 = block-diag(D2, ...,DK),

B11 =
1

σ2
e

ZT
1 Z1D1 + Iq1 = diag

(
λ1

σ2
e

n1j + 1

)
j=1,...,q1

,

and n1j =
∑N

t=1 z1jt is the number of observations in the j-th category of the first categorical variable Z1. Since the first
term is the determinant of diagonal matrix B11 and the second term is the determinant of the size

∑K
k=2 qK ≪ q1 matrix,

the h-likelihood can be easily computed without handling the inverse computation of Q ×Q matrices. In Appendix A3
below, the first and the second derivatives of the h-likelihood with respect to the variance components are derived and they
can be obtained without computing the inverse of full Q×Q matrix.

A.3. First and second derivatives with respect to variance components

Let se = log σ2
e be the log-variance of random noise and λk = (λk1, ..., λkjk) be the vector of jk dispersion parameters

involved in Dk for k = 1, ...,K, then the objective function can be expressed as

Loss = e−se (y − ŷ)
T
(y − ŷ) +Nse +

K∑
k=1

vT
k D

−1
k vk + log |B|

= a0(se) +

K∑
k=1

ak(λk) + log |B(se,λ1, ...,λK)|

where ŷ = Xβ̂+Zv̂, B = AD = e−seZTZD+ IQ, a0(se) = e−se (y − ŷ)
T
(y − ŷ) +Nse and ak(λk) = vT

k D
−1
k vk.

Here the derivatives of log |B| is difficult to evaluate. The first deirvatives of B are given by

∂B

∂se
= −e−seZTZD = IQ −B,

∂B

∂λkj
= e−seZTZ

∂D

∂λkj
= e−se

(
0k−, Z

TZk
∂Dk

∂λkj
, 0k+

)
,

where 0k− and 0k+ are zero matrices of size Q× (q1 + · · ·+ qk−1) and Q× (qk+1 + · · ·+ qK), respectively, so that

ZTZ
∂D

∂λkj
=

(
0k−, Z

TZk
∂Dk

∂λkj
, 0k+

)
=


0 · · · 0 ZT

1 Zk
∂Dk

∂λkj
0 · · · 0

...
. . .

...
...

...
. . .

...
0 · · · 0 ZT

KZk
∂Dk

∂λkj
0 · · · 0

 ,
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and the non-zero second derivatives are given by

∂2B

∂s2e
= e−seZTZD = B− IQ,

∂2B

∂se∂λkj
= −e−seZTZ

∂D

∂λkj
= − ∂B

∂λkj
,

∂2B

∂λ2
kj

= e−seZTZ
∂2D

∂λ2
kj

= e−se

(
0k−, Z

TZk
∂2Dk

∂λ2
kj

, 0k+

)
,

∂2B

∂λki∂λkj
= e−seZTZ

∂D

∂λkj
= e−se

(
0k−, Z

TZk
∂2Dk

∂λki∂λkj
, 0k+

)
.

Thus, the first derivatives of log |B| are

∂ log |B|
∂se

= tr

[
B−1 ∂B

∂se

]
= tr[B−1 − IQ] = tr[B−1]−Q

∂ log |B|
∂λkj

= tr

[
B−1 ∂B

∂λkj

]
= e−setr

[
[B−1]kZ

TZk
∂Dk

∂λkj

]
and the second derivatives of log |B| are

∂2 log |B|
∂s2e

= tr

[
B−1 ∂

2B

∂s2e

]
− tr

[(
B−1 ∂B

∂se

)2
]
= tr[B−1 −B−2]

∂2 log |B|
∂λ2

kj

= tr

[
B−1 ∂

2B

∂λ2
kj

]
− tr

[(
B−1 ∂B

∂λkj

)2
]

= e−setr

[
[B−1]kZ

TZk
∂2Dk

∂λ2
kj

]
− e−setr

[(
[B−1]kZ

TZk
∂Dk

∂λkj

)2
]

∂2 log |B|
∂se∂λkj

= tr

[
B−1 ∂2B

∂se∂λkj

]
− tr

[
B−1 ∂B

∂se
B−1 ∂B

∂λkj

]
= −e−setr

[
[B−2]kZ

TZk
∂Dk

∂λkj

]
∂2 log |B|
∂λki∂λkj

= tr

[
B−1 ∂2B

∂λki∂λkj

]
− tr

[
B−1 ∂B

∂λki
B−1 ∂B

∂λkj

]
= e−setr

[
[B−1]kZ

TZk
∂2Dk

∂λki∂λkj

]
− e−setr

[
[B−1]kZ

TZk
∂Dk

∂λki
[B−1]kZ

TZk
∂Dk

∂λkj

]
where [B−1]k is the submatrix of B−1 from (q1 + · · ·+ qk−1 + 1)-th row to (q1 + · · ·+ qk)-th row. In real data analyses,
one of the categorical features has sometimes extremely high cardinality q1 ≫

∑K
k=2 qk. In such cases, the corresponding

random effect v1 is assumed to be independent but B = 1
σ2
e
ZTZD + IQ is not a diagonal, so the computation of the

derivatives involves the inverse of extremely high dimensional matrix. However, here the matrix B is a sparse matrix such
that

B−1 =

(
B11 B12

B21 B22

)−1

=

(
diag

(
λ1n1j

σ2
e

+ 1
)

1
σ2
e
ZT

1 ZD
1
σ2
e
ZTZ1D1

1
σ2
e
ZT

−1Z−1D−1 + IQ−q1

)−1

,

so the inverse B−1 can be computed by using decomposition of the submatrices.

Note here that the second derivative of Dk becomes zero when vk is independent. Suppose that v1, ...,vK−1 are independent
random effects and the last random effect vK is correlated, i.e., Dk = λkIqk for k = 1, ...,K − 1 and DK = DK(λK)
for λK = (λK1, ..., λKJ). The computation can be further reduced, because for k = 1, ...,K − 1, the first and the second
derivatives of Dk are the identity matrix and zero matrix, respectively.
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A.4. Methods-of-moments estimators in early stage

In early stage of learning, including the initial values, MMEs of variance components are used because it is computationally
fast and less sensitive to the bias in the mean parameters. For j = 1, ..., qk, each vkj has normal distribution with mean zero
and variance λk. Thus, we can use

λ̂k =
1

qk − 1

qk∑
j=1

(vkj − v̄k)
2,

for the variance of random effects and

σ̂2
e =

1

N − 1

qk∑
j=1

[
yi − f̂(xi)

T β̂ −
K∑

k=1

ĝk(zki)
T v̂k

]2

for the variance of noise.

A.5. Proof of Theorem 1

Let β̂∗
0 = β̂0 + δ and v̂∗

k = v̂k − δ. Note here that δ does not affect the predicted values of the output variable ŷ, because
β̂∗
0 + Zkv̂

∗
k = β̂0 + Zkv̂k. The first derivative of h-likelihood with respect to δ is given by

∂h(θ̂
∗
, v̂∗)

∂δ
=

∂

∂δ

(
−1

2
(v̂k − δ)T D̂−1

k (v̂k − δ)

)
= v̂T

k D̂
−1
k 1qk − δ · 1T

qk
D̂−1

k 1qk ,

which leads to the solution δ = v̂T
k D̂

−1
k 1qk/1

T
qk
D̂−1

k 1qk , where 1qk = (1, ..., 1)T . The second derivative is given by

∂2h(θ̂
∗
, v̂∗)

∂δ2
= −1qkD̂

−1
k 1qk < 0,

since D̂k should be positive definite. Thus, for given θ̂ and v̂, the h-likelihood has the unique maximum at δ =
v̂T
k D̂

−11qk/1
T
qk
D̂−11qk . This implies that the adjustment (8) can always increase the h-likelihood,

h(θ̂
∗
, v̂∗) ≥ h(θ̂, v̂),

and the equality holds if and only if v̂T
k D̂

−1
k 1qk = 0.
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