
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COLLABORATIVE CODING WITH MIXED INITIATIVE
LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) is quickly arising as a partner for users to solve
complex task through multiple interaction turns. To study such interaction, we
introduce COWEBDESIGN, a task and evaluation framework for multi-turn User-
LLM interaction for collaborative coding task, where a user work with an LLM
assistant to design a website. Most existing LLM assistant work study single-
initiative settings, where the LLM assistant generates only output attempts or only
clarifying questions to ask the user. We demonstrate both are suboptimal: attempt-
ing to predict at every turn is inefficient, as it significantly increases interaction
length. Asking questions at every turn is ineffective, as LLM are not very good at
asking good clarifying questions consecutively without attempting the task. Given
these tradeoffs, we propose mixed-initiative interactions, where LLM alternates
between generate clarifying questions and attempting an output, achieving 99%
of the output quality from such single-initiative interactions with conversations
that are only 55% as long. Lastly, we investigate why mixed-initiative interactions
are so effective, demonstrating that mixed-initiative interactions can lead to more
helpful user answers to clarifying questions and more efficient communication
between the user and assistant.

1 INTRODUCTION

Collaborative programming is a fundamentally interactive process; however, the current experience
of programming with LLM assistants is often more iterative than interactive. Initial user queries for
complex coding tasks are typically incomplete and underspecified, yet it is the norm for LLMs to
generate a full output attempts at each interaction turn. While this interaction pattern can lead to
high quality outputs, it is also inefficient for both Users and LLM assistants. For users, interpreting,
evaluating, and constructing freeform feedback to correct the LLM’s code outputs imposes a high
cognitive load. For LLMs, generating intermediate output attempts leads to long context lengths and
high inference costs.

To address these issues with current User-LLM interactions, we study mixed-initiative interaction
patterns with LLM-assistants for collaborative tasks. Here, over the course of a conversation the
LLM may proactively elicit feedback from users by asking them questions instead of always pre-
senting their best guess output, reducing the above costs to the user and LLM.

While prior work (Zhang et al., 2025; Li et al., 2024a) has explored training and evaluating LLMs for
multi-turn interactions, they primarily study single-initiative interactions. In other words, interac-
tions are furthered by only the user, by providing feedback to the LLM’s previous output prediction,
or only the LLM, by asking clarifying questions at each turn before finally predicting on output.
Recent work (Wu et al., 2025; Laban et al., 2025) address settings that allow for mixed-initiative
interactions, where conversations may be furthered by either party, but do not explicitly track the
LLM’s actions or consider the subsequent cost to the user or assistant in their evaluations. Evaluating
such costs is critical as users task LLMs with increasingly complex tasks where freeform feedback is
more difficult to produce and as LLM predictions become increasingly expensive to generate (Snell
et al., 2024; Muennighoff et al., 2025).

We address these challenges by developing evaluations for multi-turn interactions in a collaborative
web design task, COWEBDESIGN: given a user’s description of webpage, the user and LLM must
work together to generate the code to generate a webpage. In our setting, each system is evaluated

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ai – Assistant
Predicts Output

ai – Assistant
Predicts Output

y – User’s Target
Design

u1– User’s Initial Request + Design Description
Could you write a HTML+CSS code of this webpage for me?
The webpage features a simple layout with a header titled
"Healthcare Company." Below the header are two sections
labeled …

u2 – User Provides Answers
“Copyright © 2022
Healthcare Company”…

a1 – Assistant asks Clarifying Qs
What is the exact text for the copyright
notice in the footer?...

a1 – Assistant asks Clarifying Questions
Should the "Learn More" buttons have a
specific color…?

Fixed Initiative – Always Clarify

u2 – User Provides Feedback
Change the header and footer
background to light gray…

Repeats Until
User Stops
Responding

Repeats Until Model
Predicts its First and
Final output

Fixed Initiative – Always Predict Mixed Initiative — Clarify or Predict

u2 – User Provides Answers
Blue…

a2 – Assistant
Predicts Output

u3 – User Provides Feedback
Adjust the background color a lighter shade

u4 – User Provides Answers
Light Gray…

ai – Assistant
Predicts Output

…

a3 – Assistant asks Clarifying Questions
What specific lighter shade should be used for
the background color?

…

Figure 1: On the top, we present COWEBDESIGN example. In the bottom, we present how users in-
teract with LLMs starting from their initial request u1 containing a textual description of their target
design y. Over multiple turns of interaction, LLMs must understand and implement the webpage to
match the target design. On the left, we depict the two most common methods for designing bench-
marks for multi-turn interaction, which are based on the assistant always predicting output attempts
or always asking the user clarifying questions until predicting a final output. On the right, we depict
mixed initiative interaction patterns explored in this work, where assistants have the ability to utilize
multiple strategies through the interaction.

based on its efficacy, how closely does the system’s final output compares to the user’s desired
webpage design, and efficiency, what is the load imposed on the user and the computational cost on
the assistant. While we focus on this task of collaborative web design, our framework for evaluating
multi-turn interactions is general and can be applied to many collaborative tasks.

We compare the performance of LLM coding assistants over different single-initiative and mixed-
initiative interaction patterns with two LLMs as coding agents (Dubey et al., 2024; Team, 2025b). In
both cases, we find mixed-initiative strategies are more effective than single-initiative interactions in
the tradeoff between interaction efficacy and efficiency. We find that simple mixed-initiative strate-
gies such as alternating between LM-assistant turns of asking clarifying questions and attempting
output predictions achieves 99% of the performance of the standard single-initiative interactions
while only requiring interactions to be 55% as long.

We then take a look at why mixed-initiative interactions are able to achieve more favorable tradeoffs
between interaction length and output quality. Through ablations and analysis, we identify two
key factors to the success of such strategies. First, we find that intermediate output generations in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison between the setting proposed in our work, COWEBDESIGN, with settings
from prior work for benchmarking multi-turn coding for LLM assistants: CollabLLM, ColBench,
and Sketch2Code. While the settings in CollabLLM and ColBench can support mixed-initiative in-
teractions, they do not distinguish differing actions from the LLM assistant nor quantify the differing
load imposed on the user based on the LLM’s actions (i.e., answering questions or evaluating and
providing freeform feedback to an LLM’s output prediction). For evaluation, many works utilize
automatic metrics such as BLUE or pixel-level overlap between visual elements.

Multimodal Mixed-Initiative Evaluations Open-source LLMs

Sketch2Code (Li et al., 2024a) Yes No Auto + CLIP No1

CollabLLM (Wu et al., 2025) No Untracked Auto Yes
ColBench (Zhou et al., 2025) Yes Untracked Auto + CLIP Yes

COWEBDESIGN(Ours) Yes Tracked VLM-Judge Yes

mixed-initiative interactions allow the models to make assumptions about an underspecified task
and communicate them to the user, who may then identify which assumptions were incorrect and
correct them via feedback. Second, we demonstrate that intermediate generations also broadens
the scope of possible clarifying questions and allows users to provide more informative answers by
contextualizing them in the model’s prior attempts.

2 TASK: HUMAN-LLM COLLABORATIVE WEB DESIGN

Our proposed task, COWEBDESIGN, is based on the realistic scenario where users must collaborate
with an LLM assistant to implement a website they have designed. We center our study of multi-turn
interactions around this scenario for several key reasons. First, such coding and media generation
tasks represent a significant proportion of real user requests to LLM assistants (Zhao et al., 2024;
Chatterji et al., 2025). Second, this task is its suitability for novel user-simulation settings that do
not rely on prompting users with the full, disambiguated input task (Andukuri et al., 2024; Pan et al.,
2025) nor the gold model output (Zhang et al., 2025), which we further discuss in Section 2.3.

Lastly, the task provides testbed for collaborative interactions where non-expert users can easily
provide feedback. In collaborative web design, simulated users can easily evaluate and critique with
attempted model outputs. In contrast, prior works studying multi-turn interactions are primarily de-
signed around on settings where users cannot reliably evaluate the correctness of an LLMs predicted
outputs, like solving math problems (Li et al., 2025; Laban et al., 2025), providing clinical advice (Li
et al., 2024b), or general question answering (Zhang et al., 2025; Chen et al., 2025). Because users
cannot reliably identify incorrect model predictions, they incentive systems that only ask clarifying
questions before predicting a single, final output and are poorly suited for the types of collaborative
interaction patterns explored in this work. While several other recently proposed benchmarks have
also studied multi-turn settings involving coding with an LLM assistant, man benchmarks are of-
ten designed around interaction frameworks based on the needs of these other tasks. We provide a
breakdown of such multi-turn coding benchmarks in Table 1.

2.1 TASK DEFINITION

Each interaction is based around a gold image y of the website design the user wants the LLM’s
help to implement. To achieve this, users present an initial input query u1 containing a brief textual
description of their desired website design y. Assistants then produce their response a1, and users
and assistants then continue to take turns (u2, a2, ...) until the assistant produces its final code output.

At each turn, the assistant can advance the conversation ψ(ai) = Clarify by asking a clarify-
ing questions to the user, or on the user ψ(ai) = Predict by predicting its best-guess output
and awaiting user’s freeform feedback. At each turn, the assistant’s decision in its response ai to
Clarify or Predict an output attempt determines whether the user’s subsequent response ui+1
answers the assistant’s clarifying questions or critiques their predicted output attempt.

While prior works (Li et al., 2024a;b) have explored similar settings where models must decide to
Clarify or Predict an output attempt at each turn, these works have exclusively studied single-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

initiative interaction patterns, where the LM assistant always places the initiative on exclusively the
user or the assistant (ψ(a1) = ψ(a2) = . . .) in this work we examine the benefits of mixed-initiative
interaction settings where the initiative can go back and forth between the user and assistant (e.g.,
[ψ(a1) = Clarify, ψ(a2) = Predict, . . .]). This setting only considers conversations that are
oriented toward a single goal, and does not cover situations where the user’s goals may change over
the course of the conversation (Zhao et al., 2024; Chen et al., 2025).

Dataset Implementation We source example website designs y from the WebSight
dataset (Laurençon et al., 2024), a dataset containing 2 million synthetically generated webpage
screenshots. All website designs in this dataset are implemented in plain HTML+CSS. To initiate
interactions based on these images y, we generate initial user requests ui by prompting GPT-4o to
construct concise descriptions of each webpage design y (prompt in Appendix B). Using this, we
construct a test set of 500 examples which we use throughout this work for all experiments.

2.2 EVALUATIONS

We evaluate each interaction along two axes: efficacy and efficiency.

Efficacy Metrics We evaluate the efficacy by rating the quality of the LLM assistant’s final output
prediction (ai where ϕ(ai) = Predict). To do this, we first render the model’s final output
prediction to produce a screenshot ŷ and directly compare it against the original, gold design image y
using VLM-as-a-Judge (Zheng et al., 2023; Joseph et al., 2025). Our judge system takes both images
as input and is tasked with rating the quality of the replication on a 1-10 scale: (y, ŷ) → [1, 10].
We experiment with both API-based (GPT-4o, GPT-4o-mini (Achiam et al., 2023)) and open-
sourced options (Qwen-2.5-VL (Team, 2025a)) for our VLM-as-Judge system. To compare these
methods and test their veracity, the authors of this paper manually annotate a set of 100 pairwise
comparisons, labeling the screenshots from two replications of the same target webpage and identi-
fying which is better, or if they are tied. We then evaluate VLM-as-Judge systems by scoring each
replication, and comparing the numerical scores to determine the model’s pairwise judgment.

Table 2: Comparing automatic efficacy eval-
uation models (Pointwise VLM-as-Judge)
against human annotation (n = 100) using
Cohen’s Kappa and three-way accuracy.

Model Cohen’s κ Accuracy

GPT-4o 0.31 54
GPT-4o-mini 0.09 40
Qwen2.5-VL-7B 0.04 34
Qwen2.5-VL-32B 0.18 46

In Table 2 we report both three-way accuracy and
Cohen’s kappa of each system’s predictions, evalu-
ated against our manually annotated labels. Over-
all, we find that performance is heavily tied to
model size, with almost random agreement with
Qwen2.5-VL-7B variants and GPT-4o-Mini, and
significant improvements with their larger coun-
terparts, Qwen2.5-VL-32B and GPT-4o. We see
the best performance when using GPT-4o with fair
agreement to human labels, and thus use this system
as our evaluation metric throughout the remainder of
this work. We include details on prompts and anno-
tation methods in Appendix B. In the appendix, we
also explore alternative pairwise VLM-as-Judge variants, which demonstrate stronger human agree-
ment than pointwise methods presented above. However, we do not use such systems for evaluations
in this work due to computational and cost constraints.

Efficiency Metrics When evaluating an interaction, we weigh the efficacy of the interaction (i.e.,
the quality of the final model output) against the efficiency or cost of the interaction. We consider
two metrics: the length of the interaction in turns and the length of the interaction as the total number
of assistant and user characters.

Prior work (Li et al., 2024a) has demonstrated that users prefer answering clarifying questions over
provided freeform feedback responses, thus it may be advantageous to rate efficiency by tracking
the number of each user response type in the interaction. Wu et al. (2025) uses a LLM-as-a-Judge to
evaluate “interactivity” of conversation, aiming to judge how engaging users would find the interac-
tions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: The model output quality as the interaction progresses for each interaction pattern. On
the left, we plot Llama-3.1-8B-Instruct model, on the right, we plot Qwen3-8B model as coding
agent. The plots on the top row represent performance versus the length of the interaction in turns,
while the bottom plots represent performance versus length of the conversation in characters. As we
discuss in Section 2.2, the latter is a more apt representation performance versus the computational
cost imposed on the model and load imposed on the user.

2.3 USER SIMULATION

Simulating users has become a prominent method for evaluating LLM assistants across a range of
multi-turn settings such as question-answering (Chen et al., 2025), writing (Andukuri et al., 2024),
and coding (Wu et al., 2025). Typically, simulating user responses is done by prompting LLMs
with either a fully-specified version of the input request (Wu et al., 2025; Laban et al., 2025), or by
conditioning on the gold output (Zhang et al., 2025). Such methods for user-simulation, however, are
prone to pitfalls such as generating over-informative answers to or leaking gold target outputs (Lin
& Tomlin), and can allow LLMs to solve tasks over a single round of interaction by asking the user
open-ended questions (i.e., “Can you tell me more?”).

In this work, we specify goals to our simulated user by conditioning on the reference design im-
age y rather than the target output of the LLM system (i.e. the gold code implementation of the
reference design). This allows us to specify the user’s goals while preventing simulated users from
inadvertently leaking the task or solution to the model. In the case where the model’s most recent
utterance ai was to predict an output attempt ϕ(ai) = Predict, we render the model’s prediction
to get a screenshot of the model’s prediction ŷi and task the user with generating freeform feedback
(y, ŷi) → ui+1. In the case where the model asked clarifying questions ϕ(ai) = Clarify, we task
the user with answering the the model’s questions based on the gold target image y and the screen-
shot from the system’s most recent prediction ŷj , if the model has made one (y, a, ŷj) → ui+1.
Throughout all our experiments, we use GPT-4o as our user simulator system, and provide our full
prompts in Appendix B.

3 EXPERIMENTS

We evaluate models over range of single and mixed-initiative interaction patterns described below.
For each interaction pattern we experiment we report results for all interaction length up to a max-
imum length of 6 (M ∈ [1, 6]). We repeat all experiments with two different LLM base models:
Llama-3-8B-Instruct (Dubey et al., 2024) and Qwen3-8B (Team, 2025b). Below, we outline the
different interaction patterns experimented with in this work.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.1 COMPARED INTERACTION METHODS

Single-Initiative Baselines Most prior work establishing benchmarks for multi-turn interactions
focus on one of two single-initiative settings:

• Always Predict reflects the most common interaction mode of LLMs where each assistant turn ai
contains an attempted output prediction and does not probe the user for any additional information
regarding the task.

• Always Clarify represents an alternative approach, where for all turns up until the final assistant
turn (i ∈ [1,M −1]) the assistant asks the user clarifying questions. The system then, for its final
turn aM , predicts an output.

Mixed-Initiative Methods We present two variants of mixed-initiative trajectories:

• Alternate (Clarify, Predict) here, we consider the most basic mixed-initiative method of alter-
nating between between asking the user clarifying questions (turns i ∈ {1, 3, 5}) and predicting
an outputs (turns i ∈ {2, 4, 6}).

• Swap (Clarify → Predict) This strategy is grounded in the intuition that clarifying questions
may be helpful in the early stages of a conversation for getting clarification regarding to high-
level details about the website design, but less helpful making more fine-grained adjustments to
the implementation. Here, for turns i ∈ [0,M/2], the assistant turn ai contains a clarifying
question. For the remaining turns i ∈ [0,M/2] swaps its strategy by always predicting an output
and elicits freeform feedback from the user.

3.2 RESULTS

We report our main results in Table 2. Looking first at the our two single-initiative interaction
patterns, we find that Always-Predict shows consistent improvements in output quality after each
interaction turn for both LLM systems, with diminishing returns in later turns of the interaction.
In contrast, the Always-Clarify method demonstrates mixed or negligible changes after subsequent
turns of the interaction, with notable exception in a small improvement in Qwen3-8B output quality
after asking a single round of clarifying questions.

When comparing the results of the Always-Predict interactions against our two mixed-initiative
methods, we see that its performance falls short when compared across conversations of equal turn
length. This pattern is reflective of the interpretation of Always-Predict interactions as an upper
bound for output quality at each turn at the cost of maximizing computational cost and effort from
the user. When comparing these methods on performance versus conversation length in charac-
ters, however, we see that mixed-initiative methods are able to flip this trend, ultimately achieving
stronger eficacy versus efficiency tradeoffs, particularly for the Qwen3.

While these results above suggest that clarifying questions asked by the systems are not helpful
for learning more about the user’s goal’s, looking at our mixed-initiative interaction settings tell a
different story. In particular, looking the results from our Swap (Clarify → Predict) experiments,
we see that the prior rounds of clarifying questions actually increase the rate of improvement from
rounds of freeform feedback when compared against the early rounds of our Always Predict base-
line. The benefits of these early rounds of question asking are further reinforced when looking at the
the tradeoff between output quality and conversation length when measured in number of characters.

4 ANALYSIS

Interactive Human-LLM collaboration is a recent research topic, and very little work provides anal-
ysis on when and where model fails. We present analysis breaking down key components for suc-
cessful human-LLM collaboration.

We analyze where the gains in mixed-initiative interaction may be coming from. In particular, we
look at two possible sources of the gains: (1) the model’s ability to generate intermediate solution
attempts during a conversation (Section 4.1) and (2) enhancing the scope of useful questions that
can be asked when the user is given access to the model’s current attempt (Section 4.2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Model output quality results after ablating intermediate model output attempts from the
context. Predict w/ Reprompting simply removes the intermediate output attempts from the context
of from our Always Clarify baseline’s interactions. Always Clarify w/ Hindsight QAs further para-
phrases these conversations into ones in the style of our Always Clarify baseline, where the assistant
asks and the user answers clarifying questions at each conversation turn.

4.1 UNDERSTANDING THE ROLE OF INTERMEDIATE OUTPUT GENERATIONS IN
INTERACTIONS

A significant distinction between the Always-Clarify method and the other interaction patterns is
the absence of intermediate output generations. To investigate their role, we compare the quality of
LLM outputs after removing them from interactions in the following two settings:

• Always Predict w/o Intermediate Output: LLM directly generate an output in a single conver-
sation turn after appending all user-provided feedback from our Always-Predict baseline. Con-
cretely, using the Always-Predict interaction u0, a0, . . . , ui, ai, we concatenate all user-turns to
the user’s initial instruction uReprompt

0 = [u0, u1, . . . , ui] and task the model with predicting an
output uReprompt

0 .

• Always Clarify w/ Hindsight QAs: We change the input format from free-form feedback to
clarifying question answer pairs from the above method. To accomplish this, we prompt GPT-
4o to paraphrase each turn of user feedback into QA pairs, ui → (aHindsight

i−1 , u
Hindsight
i). We then

prompt the LM with the full interaction (u0, a
Hindsight
1 , u

Hindsight
1 . . . u

Hindsight
i) and task the LLM

with predicting an output webpage on the subsequent turn.

We report the results of these ablations in Figure 3. Here, we find that both our ablation methods
perform similarly, significantly outperforming our Always Clarify baseline while lagging behind the
performance of our Always Predict setting. This demonstrates two things. First, that the poor per-
formance of Always-Clarify interactions is not due to the LM’s inability to incorporate additional
instruction specifications when presented in Clarifying Question-Answer format. Second, that inter-
mediate generations are important to model performance.

Figure 4 depicts an example demonstrating the communicative role that intermediate generations
play. Here, we see that our Always-Predict initial prediction was able to correctly assume the user’s
desired intent in their descriptions of the navigation bar and background color based on only the
user’s initial description. Thus, there was no mention of either of these two features in any of the
later rounds of feedback. In contrast, the Reprompting ablation makes two different assumptions
regarding the shade of white of the background and formatting of the navigation bar. This highlights
how intermediate generations can actually allow users to avoid over-specifying their instructions,
relying on the assistant to make reasonable assumptions based on the given information. Later turns
of the interaction, thus, can be focused on correcting only details where the model’s assumptions
were incorrect.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

y – User’s Target
Design

u1– User’s Initial Request
This webpage is a music website featuring a navigation bar with links to
Home, Music, Live Shows, and Store
…
The design is minimalistic with a black header and white background.

Always Predict

a1 – Assistant Predicts Output

Model’s initial attempt (a1) correctly
assumes the user’s intended
navigation bar & background

u2 – User Provides Feedback
Update the description to match the
intended text: … Add a black square…

User’s feedback does not rehash design
features the model correctly guessed

a6 – Assistant Predicts Output

…

u1– User’s Initial Request

Always Predict w/o
Intermediate Output

u1
Reprompt – User’s Initial Request +

Feedback [u2 , … , u5]

(u1) This webpage is a music website
featuring a navigation bar with links to
Home, Music, Live Shows, and Store
…
The design is minimalistic with a black
header and white background.

Here’s some feedback from other
model attempts:

(u2) Update the description to match the
intended text: … Add a black square…

...
(u4) … Remove the footer…

...

a1
Reprompt – Assistant Predicts Output

Model makes incorrect assumptions
about the user’s intended navigation
bar & background

u1– User’s Initial Request

Always Clarify
w/ Hindsight QAs

a1
Hindsight – Assistant asks Questions

1. What text should go in the
description?
…
3. Where should the black square…

u2
Hindsight – User Provides

As
1. “Here you can explore…
…
3. … left side…

Paraphrased
from u2

a2
Hindsight – Assistant asks Questions…

u3
Hindsight – User Provides Answers…

a6
Hindsight – Assistant Predicts Output

… Paraphrased from u3

Figure 4: Example comparing an Always Predict interaction against two others where intermedi-
ate output attempts have been removed, while the user-provided details and specifications regarding
their target design are maintained. In the Always Predict interaction, the system made correct as-
sumptions with respect to the background color (light gray / off-white shade) and navigation bar
format (items listed horizontally, left justified). This intermediate prediction allows the user to forgo
any further details regarding either of these elements in later rounds of the conversation. When in-
termediate predictions are removed, we see that systems may change their assumptions regarding
the navigation bar (vertically listed, right justified) or background elements (true white shade).

4.2 MIXED-INITIATIVE INTERACTIONS EMPOWER QUESTION ASKING SYSTEMS

Here, we examine whether Mixed-Initiative interactions can elicit more helpful answers to clari-
fying questions from the user. We hypothesize that giving the user access to intermediate output
generations can help users to provide better answers to LLMs’ clarifying questions.

Table 3: Comparing user simulation w/ and w/o im-
age.

Model % of data
w/ img is Better Tied w/o img is Better

Llama 46 28 26
Qwen 46 30 24

To evaluate this, we construct conversa-
tion histories from the interactions from our
Always-Predict baseline (u1, a1, ...ai). We
then replace the last assistant turn with QA
pairs that were hindsight generated from the
subsequent turn of user feedback, following
the same process as described in Section 4.1,
giving us (u1, a1, ...a

hindsight
i).

We then generate answers to the hindsight-generated clarifying questions ahindsight
i using two differ-

ent user-simulators. The first is our standard setting where users are given access to the previous
model output generation. In the second, we task the users to answer questions based on only their
gold target y. We then compare the model’s subsequent output generations after observing the an-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

swers from each of these two user simulators, W/ Img and W/o Img using our GPT-4o pairwise
VLM-as-Judge.

Table 3 presents the results. In both models, the answers from our user simulator with access to
the prior image are significantly more helpful to the assistant than answers from the user simulator
without access.

5 RELATED WORK

Multi-Turn Benchmarks Numerous prior works have established benchmarks for multi-turn in-
teraction. Closely related to our work, Li et al. (2024a) proposed Sketch2Code benchmark for inter-
active web-design; however, they study generating webpages from wire frame sketches, which lies
beyond the capability of open-sourced LLMs. We study more typical user scenario, where the task
description is given in text rathre than sketch. Likewise, works have established multi-turn bench-
marks for LLM-agents (Yao et al., 2024; Barres et al., 2025), factoid QA (Zhang et al., 2025), and
Medical QA (Li et al., 2024b). The tasks explored in these benchmarks, however, are less suitable
for collaborative interactions, as users may not be able to provide feedback to erroneous intermedi-
ate output predictions to factoid or medical questions. In contrast, our collaborative setting does not
have the same risks associated with presenting intermediate, imperfect solutions to the user.

Code Generation Numerous works have established benchmarks for generic code genera-
tion (Jimenez et al., 2023; Li et al., 2024a). Recent work has built upon such benchmarks, test-
ing the ability for models to recognize and resolve ambiguity in such benchmarks with the use of
clarifying questions (Vijayvargiya et al., 2025). Zhou et al. (2025) proposes similar coding bench-
marks for front-end and back-end coding tasks as well as learning algorithms for training coding
agents in interactive settings. Recent work has also explored visual settings similar to web design,
like generating code for multimodal domains (Yang et al., 2024) and generating slide decks from
instructions (Ge et al., 2025).

LLMs and Ambiguity Prior work has explored identifying ambiguities in user requests, which
may be used to determine whether to ask a clarifying question or to predict an output, as an uncer-
tainty estimation task (Cole et al., 2023; Zhang & Choi, 2023). Such techniques, however, are not
directly aligned with our goals in mixed-initative interaction where inputs are always ambiguous,
even after multiple rounds of clarification, and systems must weigh the information gained from an
action against its cost. Other works have studied the prevalence of ambiguity, and whether LMs can
identify then, in a range of other tasks not explored in this work, such as NLI (Liu et al., 2023),
co-reference resolution (Yuan et al., 2023), and translation (Voita et al., 2019). In such settings,
however, ambiguities can typically be resolved within a single turn of interaction, compared to the
webdesign task in this work where LLMs are able to continually improve their output predictions
over many rounds of interaction.

6 CONCLUSION

We study mixed-initiative, multi-turn interactions with LLM assistants in a collaborative coding
task, COWEBDESIGN. In this task, a simulated user must work together with an LLM assistant
to implement their intended website design by communicating and specifying their design over
multiple interaction turns. While most multi-turn interaction benchmarks are designed for single-
initiative interactions, we find that mixed-initiative interactions are able to achieve strong efficiency
versus efficacy tradeoffs. Specifically, we find that giving the LLM the option to either generate
clarifying questions or an output attempt allows them to to achieve 99% of the output quality from
single-initiative interactions with conversations that are only 55% as long. We further investigate
why mixed-initiative interactions are so effective, demonstrating that mixed-initiative interactions
can lead to more helpful user answers to clarifying questions and more efficient communication
between the user and assistant.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

All results and artifacts from this work are from open-source or publicly available models. We
include all necessary prompts for reproducing the datasets and settings in this work in our Appendix.
Additionally, we plan to release code for all experiments and data generation upon acceptance.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah D Goodman. Star-gate:
Teaching language models to ask clarifying questions. arXiv preprint arXiv:2403.19154, 2024.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ2-bench: Evaluating
conversational agents in a dual-control environment, 2025. URL https://arxiv.org/abs/
2506.07982.

Aaron Chatterji, Thomas Cunningham, David J Deming, Zoe Hitzig, Christopher Ong, Carl Yan
Shan, and Kevin Wadman. How people use chatgpt. Technical report, National Bureau of Eco-
nomic Research, 2025.

Maximillian Chen, Ruoxi Sun, Sercan Ö Arık, and Tomas Pfister. Learning to clarify: Multi-turn
conversations with action-based contrastive self-training. International Conference on Learning
Representations (ICLR), 2025.

Jeremy R Cole, Michael JQ Zhang, Daniel Gillick, Julian Martin Eisenschlos, Bhuwan Dhingra, and
Jacob Eisenstein. Selectively answering ambiguous questions. arXiv preprint arXiv:2305.14613,
2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Jiaxin Ge, Zora Zhiruo Wang, Xuhui Zhou, Yi-Hao Peng, Sanjay Subramanian, Qinyue Tan,
Maarten Sap, Alane Suhr, Daniel Fried, Graham Neubig, et al. Autopresent: Designing struc-
tured visuals from scratch. arXiv preprint arXiv:2501.00912, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Sebastian Antony Joseph, Syed Murtaza Husain, Stella SR Offner, Stéphanie Juneau, Paul Tor-
rey, Adam S Bolton, Juan P Farias, Niall Gaffney, Greg Durrett, and Junyi Jessy Li. Astrovis-
bench: A code benchmark for scientific computing and visualization in astronomy. arXiv preprint
arXiv:2505.20538, 2025.

Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn
conversation. arXiv preprint arXiv:2505.06120, 2025.

Hugo Laurençon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots
into html code with the websight dataset. ArXiv, 2024.

Belinda Z Li, Been Kim, and Zi Wang. Questbench: Can llms ask the right question to acquire
information in reasoning tasks? arXiv preprint arXiv:2503.22674, 2025.

Ryan Li, Yanzhe Zhang, and Diyi Yang. Sketch2code: Evaluating vision-language models for
interactive web design prototyping, 2024a.

Shuyue Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan S Ilgen, Emma Pierson,
Pang Wei Koh, and Yulia Tsvetkov. Mediq: Question-asking llms and a benchmark for reliable
interactive clinical reasoning. 2024b.

10

https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jessy Lin and Nick Tomlin. User simulators bridge rl with real-world interaction. https://
jessylin.com/2025/07/10/user-simulators-1/.

Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr, Peter West, Alexander Koller, Swabha
Swayamdipta, Noah A Smith, and Yejin Choi. We’re afraid language models aren’t modeling
ambiguity. arXiv preprint arXiv:2304.14399, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Jane Pan, Ryan Shar, Jacob Pfau, Ameet Talwalkar, He He, and Valerie Chen. When benchmarks
talk: Re-evaluating code llms with interactive feedback. arXiv preprint arXiv:2502.18413, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Qwen Team. Qwen2.5-vl, January 2025a. URL https://qwenlm.github.io/blog/
qwen2.5-vl/.

Qwen Team. Qwen3 technical report, 2025b. URL https://arxiv.org/abs/2505.09388.

Sanidhya Vijayvargiya, Xuhui Zhou, Akhila Yerukola, Maarten Sap, and Graham Neubig. Inter-
active agents to overcome ambiguity in software engineering. arXiv preprint arXiv:2502.13069,
2025.

Elena Voita, Rico Sennrich, and Ivan Titov. When a good translation is wrong in context: Context-
aware machine translation improves on deixis, ellipsis, and lexical cohesion. arXiv preprint
arXiv:1905.05979, 2019.

Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou,
Jure Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collaborators.
ArXiv, 2025.

John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal:
Do ai systems generalize to visual software domains? arXiv preprint arXiv:2410.03859, 2024.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Yuewei Yuan, Chaitanya Malaviya, and Mark Yatskar. Ambicoref: Evaluating human and model
sensitivity to ambiguous coreference. arXiv preprint arXiv:2302.00762, 2023.

Michael JQ Zhang and Eunsol Choi. Clarify when necessary: Resolving ambiguity through interac-
tion with lms. arXiv preprint arXiv:2311.09469, 2023.

Michael JQ Zhang, W Bradley Knox, and Eunsol Choi. Modeling future conversation turns to teach
llms to ask clarifying questions. International Conference on Learning Representations (ICLR),
2025.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat:
1m chatgpt interaction logs in the wild. arXiv preprint arXiv:2405.01470, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks. arXiv preprint
arXiv:2503.15478, 2025.

11

https://jessylin.com/2025/07/10/user-simulators-1/
https://jessylin.com/2025/07/10/user-simulators-1/
https://qwenlm.github.io/blog/qwen2.5-vl/
https://qwenlm.github.io/blog/qwen2.5-vl/
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Table 4: Comparing automatic efficacy evaluation models (Pointwise VLM-as-Judge) against hu-
man annotation (n = 100) using Cohen’s Kappa and three-way accuracy.

Model Method Cohen’s κ Accuracy

GPT-4o Pointwise 0.31 54
Pairwise 0.70 81

GPT-4o-mini Pointwise 0.09 40
Pairwise 0.32 54

Qwen2.5-VL-7B Pointwise 0.04 34
Pairwise 0.23 50

Qwen2.5-VL-32B Pointwise 0.18 46
Pairwise 0.49 68

A EVALUATION DETAILS

Our manually labeled set of 100 examples is performed by randomly sampling 100 interactions from
LLama-3.1-8b-Instruct using the Always Predict interaction pattern. Of these 100 interactions, we
randomly sample two model predictions and label which rendered screenshot more closely matches
the gold target design.

In addition the the pointwise evaluation metrics used in this work, we additionally explore pairwise
evaluation methods. For our pairwise methods, we prompt models compare two replications to
determine which is better or if they are tied: (y, ŷ1, ŷ2) → {ŷ1, ŷ2,TIE}. In Table 4, we report
our results and find that pairwise methods, overall, have substantially higher agreement with human
labels. Due to the increased cost of running such evaluations, however, we rely on the pointwise
judge method throught our main experiments.

A.1 PROMPT DETAILS

We include all prompts used for data generation, user simulation, and VLM-as-Judge evaluation.
We additionally include the system prompt for instructing our evaluated coding assistant LLMs.

B IMPLEMENTATION DETAILS

Instruction Generation Prompt

Generate a concise, two to three sentence description of the this webpage screenshot
and its layout.

Figure 5: Prompt for generating website descriptions for initial user requests u1

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Coding Assistant System Prompt

Task
You are web developer assistant who specializes in HTML and CSS.
Users come to you with a description of a website they’ve designed that they want your
help to implement.
Your task is to have a conversation with the user to understand their design and create
an implementation of it.

Instructions
During each turn of the conversation, you may respond with either an implementation
of their design or by asking the user three clarifying questions.
All implementations should be a single, self-contained HTML file that uses HTML and
CSS to produce a webpage that strictly follows the user’s description.
Include all CSS code in the HTML file itself.
Do not hallucinate any dependencies to external files.
All clarifying questions should help you understand the user’s exact design specifica-
tions.
Pay attention to things like size and position of all the elements, as well as the overall
layout.
You may assume that the page is static and ignore any user interactivity.

Formatting
Each response should immediately begin with ”[[CODE]]” if you decide to generate
an implementation of their design or ”[[CLARIFY]]” if you decide to ask the user
clarifying questions.
Your implementation or clarifying questions should immediately follow, starting on a
new line.
Do not include any additional text.

If you decide to generate an implementation of their design, your response should look
like this:
[[CODE]]
{{HTML CSS CODE}}

If you decide to ask the user clarifying questions you should respond like this:
1: {{FIRST QUESTION}}
2: {{SECOND QUESTION}}
3: {{THIRD QUESTION}}

Figure 6: System Prompt for all LLM coding assistant systems

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

User Simulation Freeform Feedback Prompt

Design Review Instructions

You are a design reviewer helping a code agent implement an HTML webpage.
You will receive two images:
1. **Target design** - the intended webpage layout
2. **Current implementation** - what the code agent has built so far

Your Task
Compare the current implementation against the target design and provide feedback in
the form of three specific, actionable instructions to help the code agent improve their
work.

Critical Guidelines
- Your feedback **MUST** be **strictly** based on the provided screenshots.
- You should **NEVER** make things up.
- The agent is not supposed to know about the target design, so you should **NEVER**
mention the target design in your response, nor should you ever give out any HTML
content to the agent.
- Only mention what needs to change, not what’s already correct

Formatting
You may compare and analyze the two webpages step by step.
Once you are ready, provide your final feeback on a new line using triple quotes like
this:
Feedback: ”””
1: {{FIRST FEEDBACK INSTRUCTION}}
2: {{SECOND FEEDBACK INSTRUCTION}}
3: {{THIRD FEEDBACK INSTRUCTION}}
”””

Inputs
Target design:

Current Implementation:

Figure 7: Prompt for simulating freeform user feedback to model predictions

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

User Simulation Prompt for Answering Clarifying Questions (w/o img)

Design Review Instructions

You are a design reviewer helping a code agent implement an HTML webpage.
You will receive one images:
1. **Target design** - the intended webpage layout

You will also recieve a list of one or more questions asked by the code agent.

Your Task
Answer the code agent’s questions based on the target design.
Your answers should help the code agent improve their work.

Critical Guidelines
- Your answers **MUST** be **strictly** based on the provided screenshots.
- You should **NEVER** make things up or provide any information more than what
the agent asks for.
- The agent is not supposed to know about the target design, so you should **NEVER**
mention the target design in your response, nor should you ever give out any HTML
content to the agent.

Formatting
Your answers should concise and at most one sentence long.
When possible, answers should be a single word or phrase.
You may consider each question step by step before providing your answers.
Once you are ready, provide your final answers on a new line using triple quotes like
this:
Answers: ”””
1: {{ANSWER TO FIRST AGENT QUESTION}}
2: {{ANSWER TO SECOND AGENT QUESTION}}
...”””

Inputs
Target design:

Agent’s questions:

Figure 8: Prompt for simulating user responses to model clarifying questions when there is no prior
model prediction attempt in the conversation history.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

User Simulation Prompt for Answering Clarifying Questions (w/ img)

Design Review Instructions
You are a design reviewer helping a code agent implement an HTML webpage.
You will receive a screenshot of the target design.
You will also recieve a list of one or more questions asked by the code agent.

Your Task
Please answer the agent’s questions based on the provided target design.

Critical Guidelines
- Your answers **MUST** be **strictly** based on the provided target design
screenshot.
- You should **NEVER** make things up or provide any information more than what
the agent asks for.
- The agent is not supposed to know about the target design, so you should **NEVER**
mention the target design in your response, nor should you ever give out any HTML
content to the agent.

Formatting
Your answers should concise and at most one sentence long.
When possible, answers should be a single word or phrase.
You may consider each question step by step before providing your answers.
Once you are ready, provide your final answers on a new line using triple quotes like
this:
Answers: ”””
1: {{ANSWER TO FIRST AGENT QUESTION}}
2: {{ANSWER TO SECOND AGENT QUESTION}}
...”””

Inputs
Target design:

Current Implementation:

Agent’s questions:

Figure 9: Prompt for simulating user responses to model clarifying questions when there is a prior
model prediction attempt in the conversation history.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Pointwise VLM-as-Judge Prompt

Instructions
You are a design reviewer evaluating a code agent’s implementation an HTML
webpage. You will receive two images:
1. Target design - the intended webpage layout
2. Agent’s implementation - what the code agent has built

Your Task
Your task is to judge the agent’s implementation by comparing it against the intended
webpage and assigning it a score from 1 (worst) to 10 (best).

Formatting
You may compare and analyze the two webpages step by step.
Once you are ready, your provide a score on a new line like this:
{{STEP BY STEP COMPARISON}}
Score: {{FINAL SCORE}}

Inputs
Target design:

Agent’s implementation:

Figure 10: Pointwise VLM-as-Judge prompt for evaluating replicated webpage screenshots ŷ against
gold design images y

Pairwise VLM-as-Judge Prompt

Instructions
You will be provided with screenshots of three webpages.
The first one is the original design.
The next two are attempted replications: ”Attempt 1” and ”Attempt 2”.
Your task is to determine which of the two replications more closely matches the
original design, or if they are tied.
You should respond by selecting ”1”, ”2” or ”Tie”.

Formatting
You should first compare the two replications step-by-step before providing your final
answer.
When you are ready, provide your final response on a new line like this:
{{STEP BY STEP COMPARISON}}
Final Answer: {{1/2/Tie}}

Inputs
Original Design:

Attempt 1:

Attempt 2:

Figure 11: Pairwise VLM-as-Judge prompt for comparing two replicated webpage screenshots ŷa
and ŷb against gold design images y

17

	Introduction
	Task: Human-LLM Collaborative Web Design
	Task Definition
	Evaluations
	User Simulation

	Experiments
	Compared Interaction Methods
	Results

	Analysis
	Understanding the Role of Intermediate Output Generations in Interactions
	Mixed-Initiative Interactions Empower Question Asking Systems

	Related Work
	Conclusion
	Reproducibility Statement
	Evaluation Details
	Prompt Details

	Implementation Details

