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ABSTRACT

Large Language Models (LLMs) is quickly arising as a partner for users to solve
complex task through multiple interaction turns. To study such interaction, we
introduce COWEBDESIGN, a task and evaluation framework for multi-turn User-
LLM interaction for collaborative coding task, where a user work with an LLM
assistant to design a website. Most existing LLM assistant work study single-
initiative settings, where the LLM assistant generates only output attempts or only
clarifying questions to ask the user. We demonstrate both are suboptimal: attempt-
ing to predict at every turn is inefficient, as it significantly increases interaction
length. Asking questions at every turn is ineffective, as LLM are not very good at
asking good clarifying questions consecutively without attempting the task. Given
these tradeoffs, we propose mixed-initiative interactions, where LLM alternates
between generate clarifying questions and attempting an output, achieving 99%
of the output quality from such single-initiative interactions with conversations
that are only 55% as long. Lastly, we investigate why mixed-initiative interactions
are so effective, demonstrating that mixed-initiative interactions can lead to more
helpful user answers to clarifying questions and more efficient communication
between the user and assistant.

1 INTRODUCTION

Collaborative programming is a fundamentally interactive process; however, the current experience
of programming with LLM assistants is often more iterative than interactive. Initial user queries for
complex coding tasks are typically incomplete and underspecified, yet it is the norm for LLMs to
generate a full output attempts at each interaction turn. While this interaction pattern can lead to
high quality outputs, it is also inefficient for both Users and LLM assistants. For users, interpreting,
evaluating, and constructing freeform feedback to correct the LLM’s code outputs imposes a high
cognitive load. For LLMs, generating intermediate output attempts leads to long context lengths and
high inference costs.

To address these issues with current User-LLM interactions, we study mixed-initiative interaction
patterns with LLM-assistants for collaborative tasks. Here, over the course of a conversation the
LLM may proactively elicit feedback from users by asking them questions instead of always pre-
senting their best guess output, reducing the above costs to the user and LLM.

While prior work (Zhang et al., 2025; Li et al., 2024a) has explored training and evaluating LLMs for
multi-turn interactions, they primarily study single-initiative interactions. In other words, interac-
tions are furthered by only the user, by providing feedback to the LLM’s previous output prediction,
or only the LLM, by asking clarifying questions at each turn before finally predicting on output.
Recent work (Wu et al., 2025; Laban et al., 2025) address settings that allow for mixed-initiative
interactions, where conversations may be furthered by either party, but do not explicitly track the
LLM’s actions or consider the subsequent cost to the user or assistant in their evaluations. Evaluating
such costs is critical as users task LLMs with increasingly complex tasks where freeform feedback is
more difficult to produce and as LLM predictions become increasingly expensive to generate (Snell
et al., 2024; Muennighoff et al., 2025).

We address these challenges by developing evaluations for multi-turn interactions in a collaborative
web design task, COWEBDESIGN: given a user’s description of webpage, the user and LLM must
work together to generate the code to generate a webpage. In our setting, each system is evaluated
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ai  –  Assistant
Predicts Output

ai  –  Assistant
Predicts Output

y  –  User’s Target
Design

u1– User’s Initial Request + Design Description
Could you write a HTML+CSS code of this webpage for me?
The webpage features a simple layout with a header titled 
"Healthcare Company." Below the header are two sections 
labeled …

u2  – User Provides Answers
“Copyright © 2022 
Healthcare Company”…

a1 – Assistant asks Clarifying Qs
What is the exact text for the copyright 
notice in the footer?...

a1 – Assistant asks Clarifying Questions
Should the "Learn More" buttons have a 
specific color…?

Fixed Initiative – Always Clarify

u2  – User Provides Feedback
Change the header and footer
background to light gray…

Repeats Until
User Stops
Responding

Repeats Until Model 
Predicts its First and 
Final output

Fixed Initiative  – Always Predict Mixed Initiative — Clarify or Predict

u2  – User Provides Answers
Blue…

a2 –  Assistant
Predicts Output

u3  – User Provides Feedback
Adjust the background color a lighter shade

u4  – User Provides Answers
Light Gray…

ai  –  Assistant
Predicts Output

…

a3 – Assistant asks Clarifying Questions
What specific lighter shade should be used for 
the background color?

…

Figure 1: On the top, we present COWEBDESIGN example. In the bottom, we present how users in-
teract with LLMs starting from their initial request u1 containing a textual description of their target
design y. Over multiple turns of interaction, LLMs must understand and implement the webpage to
match the target design. On the left, we depict the two most common methods for designing bench-
marks for multi-turn interaction, which are based on the assistant always predicting output attempts
or always asking the user clarifying questions until predicting a final output. On the right, we depict
mixed initiative interaction patterns explored in this work, where assistants have the ability to utilize
multiple strategies through the interaction.

based on its efficacy, how closely does the system’s final output compares to the user’s desired
webpage design, and efficiency, what is the load imposed on the user and the computational cost on
the assistant. While we focus on this task of collaborative web design, our framework for evaluating
multi-turn interactions is general and can be applied to many collaborative tasks.

We compare the performance of LLM coding assistants over different single-initiative and mixed-
initiative interaction patterns with two LLMs as coding agents (Dubey et al., 2024; Team, 2025b). In
both cases, we find mixed-initiative strategies are more effective than single-initiative interactions in
the tradeoff between interaction efficacy and efficiency. We find that simple mixed-initiative strate-
gies such as alternating between LM-assistant turns of asking clarifying questions and attempting
output predictions achieves 99% of the performance of the standard single-initiative interactions
while only requiring interactions to be 55% as long.

We then take a look at why mixed-initiative interactions are able to achieve more favorable tradeoffs
between interaction length and output quality. Through ablations and analysis, we identify two
key factors to the success of such strategies. First, we find that intermediate output generations in
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Table 1: Comparison between the setting proposed in our work, COWEBDESIGN, with settings
from prior work for benchmarking multi-turn coding for LLM assistants: CollabLLM, ColBench,
and Sketch2Code. While the settings in CollabLLM and ColBench can support mixed-initiative in-
teractions, they do not distinguish differing actions from the LLM assistant nor quantify the differing
load imposed on the user based on the LLM’s actions (i.e., answering questions or evaluating and
providing freeform feedback to an LLM’s output prediction). For evaluation, many works utilize
automatic metrics such as BLUE or pixel-level overlap between visual elements.

Multimodal Mixed-Initiative Evaluations Open-source LLMs

Sketch2Code (Li et al., 2024a) Yes No Auto + CLIP No1

CollabLLM (Wu et al., 2025) No Untracked Auto Yes
ColBench (Zhou et al., 2025) Yes Untracked Auto + CLIP Yes

COWEBDESIGN(Ours) Yes Tracked VLM-Judge Yes

mixed-initiative interactions allow the models to make assumptions about an underspecified task
and communicate them to the user, who may then identify which assumptions were incorrect and
correct them via feedback. Second, we demonstrate that intermediate generations also broadens
the scope of possible clarifying questions and allows users to provide more informative answers by
contextualizing them in the model’s prior attempts.

2 TASK: HUMAN-LLM COLLABORATIVE WEB DESIGN

Our proposed task, COWEBDESIGN, is based on the realistic scenario where users must collaborate
with an LLM assistant to implement a website they have designed. We center our study of multi-turn
interactions around this scenario for several key reasons. First, such coding and media generation
tasks represent a significant proportion of real user requests to LLM assistants (Zhao et al., 2024;
Chatterji et al., 2025). Second, this task is its suitability for novel user-simulation settings that do
not rely on prompting users with the full, disambiguated input task (Andukuri et al., 2024; Pan et al.,
2025) nor the gold model output (Zhang et al., 2025), which we further discuss in Section 2.3.

Lastly, the task provides testbed for collaborative interactions where non-expert users can easily
provide feedback. In collaborative web design, simulated users can easily evaluate and critique with
attempted model outputs. In contrast, prior works studying multi-turn interactions are primarily de-
signed around on settings where users cannot reliably evaluate the correctness of an LLMs predicted
outputs, like solving math problems (Li et al., 2025; Laban et al., 2025), providing clinical advice (Li
et al., 2024b), or general question answering (Zhang et al., 2025; Chen et al., 2025). Because users
cannot reliably identify incorrect model predictions, they incentive systems that only ask clarifying
questions before predicting a single, final output and are poorly suited for the types of collaborative
interaction patterns explored in this work. While several other recently proposed benchmarks have
also studied multi-turn settings involving coding with an LLM assistant, man benchmarks are of-
ten designed around interaction frameworks based on the needs of these other tasks. We provide a
breakdown of such multi-turn coding benchmarks in Table 1.

2.1 TASK DEFINITION

Each interaction is based around a gold image y of the website design the user wants the LLM’s
help to implement. To achieve this, users present an initial input query u1 containing a brief textual
description of their desired website design y. Assistants then produce their response a1, and users
and assistants then continue to take turns (u2, a2, ...) until the assistant produces its final code output.

At each turn, the assistant can advance the conversation ψ(ai) = Clarify by asking a clarify-
ing questions to the user, or on the user ψ(ai) = Predict by predicting its best-guess output
and awaiting user’s freeform feedback. At each turn, the assistant’s decision in its response ai to
Clarify or Predict an output attempt determines whether the user’s subsequent response ui+1
answers the assistant’s clarifying questions or critiques their predicted output attempt.

While prior works (Li et al., 2024a;b) have explored similar settings where models must decide to
Clarify or Predict an output attempt at each turn, these works have exclusively studied single-
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initiative interaction patterns, where the LM assistant always places the initiative on exclusively the
user or the assistant (ψ(a1) = ψ(a2) = . . . ) in this work we examine the benefits of mixed-initiative
interaction settings where the initiative can go back and forth between the user and assistant (e.g.,
[ψ(a1) = Clarify, ψ(a2) = Predict, . . . ]). This setting only considers conversations that are
oriented toward a single goal, and does not cover situations where the user’s goals may change over
the course of the conversation (Zhao et al., 2024; Chen et al., 2025).

Dataset Implementation We source example website designs y from the WebSight
dataset (Laurençon et al., 2024), a dataset containing 2 million synthetically generated webpage
screenshots. All website designs in this dataset are implemented in plain HTML+CSS. To initiate
interactions based on these images y, we generate initial user requests ui by prompting GPT-4o to
construct concise descriptions of each webpage design y (prompt in Appendix B). Using this, we
construct a test set of 500 examples which we use throughout this work for all experiments.

2.2 EVALUATIONS

We evaluate each interaction along two axes: efficacy and efficiency.

Efficacy Metrics We evaluate the efficacy by rating the quality of the LLM assistant’s final output
prediction (ai where ϕ(ai) = Predict). To do this, we first render the model’s final output
prediction to produce a screenshot ŷ and directly compare it against the original, gold design image y
using VLM-as-a-Judge (Zheng et al., 2023; Joseph et al., 2025). Our judge system takes both images
as input and is tasked with rating the quality of the replication on a 1-10 scale: (y, ŷ) → [1, 10].
We experiment with both API-based (GPT-4o, GPT-4o-mini (Achiam et al., 2023)) and open-
sourced options (Qwen-2.5-VL (Team, 2025a)) for our VLM-as-Judge system. To compare these
methods and test their veracity, the authors of this paper manually annotate a set of 100 pairwise
comparisons, labeling the screenshots from two replications of the same target webpage and identi-
fying which is better, or if they are tied. We then evaluate VLM-as-Judge systems by scoring each
replication, and comparing the numerical scores to determine the model’s pairwise judgment.

Table 2: Comparing automatic efficacy eval-
uation models (Pointwise VLM-as-Judge)
against human annotation (n = 100) using
Cohen’s Kappa and three-way accuracy.

Model Cohen’s κ Accuracy

GPT-4o 0.31 54
GPT-4o-mini 0.09 40
Qwen2.5-VL-7B 0.04 34
Qwen2.5-VL-32B 0.18 46

In Table 2 we report both three-way accuracy and
Cohen’s kappa of each system’s predictions, evalu-
ated against our manually annotated labels. Over-
all, we find that performance is heavily tied to
model size, with almost random agreement with
Qwen2.5-VL-7B variants and GPT-4o-Mini, and
significant improvements with their larger coun-
terparts, Qwen2.5-VL-32B and GPT-4o. We see
the best performance when using GPT-4o with fair
agreement to human labels, and thus use this system
as our evaluation metric throughout the remainder of
this work. We include details on prompts and anno-
tation methods in Appendix B. In the appendix, we
also explore alternative pairwise VLM-as-Judge variants, which demonstrate stronger human agree-
ment than pointwise methods presented above. However, we do not use such systems for evaluations
in this work due to computational and cost constraints.

Efficiency Metrics When evaluating an interaction, we weigh the efficacy of the interaction (i.e.,
the quality of the final model output) against the efficiency or cost of the interaction. We consider
two metrics: the length of the interaction in turns and the length of the interaction as the total number
of assistant and user characters.

Prior work (Li et al., 2024a) has demonstrated that users prefer answering clarifying questions over
provided freeform feedback responses, thus it may be advantageous to rate efficiency by tracking
the number of each user response type in the interaction. Wu et al. (2025) uses a LLM-as-a-Judge to
evaluate “interactivity” of conversation, aiming to judge how engaging users would find the interac-
tions.
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Figure 2: The model output quality as the interaction progresses for each interaction pattern. On
the left, we plot Llama-3.1-8B-Instruct model, on the right, we plot Qwen3-8B model as coding
agent. The plots on the top row represent performance versus the length of the interaction in turns,
while the bottom plots represent performance versus length of the conversation in characters. As we
discuss in Section 2.2, the latter is a more apt representation performance versus the computational
cost imposed on the model and load imposed on the user.

2.3 USER SIMULATION

Simulating users has become a prominent method for evaluating LLM assistants across a range of
multi-turn settings such as question-answering (Chen et al., 2025), writing (Andukuri et al., 2024),
and coding (Wu et al., 2025). Typically, simulating user responses is done by prompting LLMs
with either a fully-specified version of the input request (Wu et al., 2025; Laban et al., 2025), or by
conditioning on the gold output (Zhang et al., 2025). Such methods for user-simulation, however, are
prone to pitfalls such as generating over-informative answers to or leaking gold target outputs (Lin
& Tomlin), and can allow LLMs to solve tasks over a single round of interaction by asking the user
open-ended questions (i.e., “Can you tell me more?”).

In this work, we specify goals to our simulated user by conditioning on the reference design im-
age y rather than the target output of the LLM system (i.e. the gold code implementation of the
reference design). This allows us to specify the user’s goals while preventing simulated users from
inadvertently leaking the task or solution to the model. In the case where the model’s most recent
utterance ai was to predict an output attempt ϕ(ai) = Predict, we render the model’s prediction
to get a screenshot of the model’s prediction ŷi and task the user with generating freeform feedback
(y, ŷi) → ui+1. In the case where the model asked clarifying questions ϕ(ai) = Clarify, we task
the user with answering the the model’s questions based on the gold target image y and the screen-
shot from the system’s most recent prediction ŷj , if the model has made one (y, a, ŷj) → ui+1.
Throughout all our experiments, we use GPT-4o as our user simulator system, and provide our full
prompts in Appendix B.

3 EXPERIMENTS

We evaluate models over range of single and mixed-initiative interaction patterns described below.
For each interaction pattern we experiment we report results for all interaction length up to a max-
imum length of 6 (M ∈ [1, 6]). We repeat all experiments with two different LLM base models:
Llama-3-8B-Instruct (Dubey et al., 2024) and Qwen3-8B (Team, 2025b). Below, we outline the
different interaction patterns experimented with in this work.
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3.1 COMPARED INTERACTION METHODS

Single-Initiative Baselines Most prior work establishing benchmarks for multi-turn interactions
focus on one of two single-initiative settings:

• Always Predict reflects the most common interaction mode of LLMs where each assistant turn ai
contains an attempted output prediction and does not probe the user for any additional information
regarding the task.

• Always Clarify represents an alternative approach, where for all turns up until the final assistant
turn (i ∈ [1,M −1]) the assistant asks the user clarifying questions. The system then, for its final
turn aM , predicts an output.

Mixed-Initiative Methods We present two variants of mixed-initiative trajectories:

• Alternate (Clarify, Predict) here, we consider the most basic mixed-initiative method of alter-
nating between between asking the user clarifying questions (turns i ∈ {1, 3, 5}) and predicting
an outputs (turns i ∈ {2, 4, 6}).

• Swap (Clarify → Predict) This strategy is grounded in the intuition that clarifying questions
may be helpful in the early stages of a conversation for getting clarification regarding to high-
level details about the website design, but less helpful making more fine-grained adjustments to
the implementation. Here, for turns i ∈ [0,M/2], the assistant turn ai contains a clarifying
question. For the remaining turns i ∈ [0,M/2] swaps its strategy by always predicting an output
and elicits freeform feedback from the user.

3.2 RESULTS

We report our main results in Table 2. Looking first at the our two single-initiative interaction
patterns, we find that Always-Predict shows consistent improvements in output quality after each
interaction turn for both LLM systems, with diminishing returns in later turns of the interaction.
In contrast, the Always-Clarify method demonstrates mixed or negligible changes after subsequent
turns of the interaction, with notable exception in a small improvement in Qwen3-8B output quality
after asking a single round of clarifying questions.

When comparing the results of the Always-Predict interactions against our two mixed-initiative
methods, we see that its performance falls short when compared across conversations of equal turn
length. This pattern is reflective of the interpretation of Always-Predict interactions as an upper
bound for output quality at each turn at the cost of maximizing computational cost and effort from
the user. When comparing these methods on performance versus conversation length in charac-
ters, however, we see that mixed-initiative methods are able to flip this trend, ultimately achieving
stronger eficacy versus efficiency tradeoffs, particularly for the Qwen3.

While these results above suggest that clarifying questions asked by the systems are not helpful
for learning more about the user’s goal’s, looking at our mixed-initiative interaction settings tell a
different story. In particular, looking the results from our Swap (Clarify → Predict) experiments,
we see that the prior rounds of clarifying questions actually increase the rate of improvement from
rounds of freeform feedback when compared against the early rounds of our Always Predict base-
line. The benefits of these early rounds of question asking are further reinforced when looking at the
the tradeoff between output quality and conversation length when measured in number of characters.

4 ANALYSIS

Interactive Human-LLM collaboration is a recent research topic, and very little work provides anal-
ysis on when and where model fails. We present analysis breaking down key components for suc-
cessful human-LLM collaboration.

We analyze where the gains in mixed-initiative interaction may be coming from. In particular, we
look at two possible sources of the gains: (1) the model’s ability to generate intermediate solution
attempts during a conversation (Section 4.1) and (2) enhancing the scope of useful questions that
can be asked when the user is given access to the model’s current attempt (Section 4.2).
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Figure 3: Model output quality results after ablating intermediate model output attempts from the
context. Predict w/ Reprompting simply removes the intermediate output attempts from the context
of from our Always Clarify baseline’s interactions. Always Clarify w/ Hindsight QAs further para-
phrases these conversations into ones in the style of our Always Clarify baseline, where the assistant
asks and the user answers clarifying questions at each conversation turn.

4.1 UNDERSTANDING THE ROLE OF INTERMEDIATE OUTPUT GENERATIONS IN
INTERACTIONS

A significant distinction between the Always-Clarify method and the other interaction patterns is
the absence of intermediate output generations. To investigate their role, we compare the quality of
LLM outputs after removing them from interactions in the following two settings:

• Always Predict w/o Intermediate Output: LLM directly generate an output in a single conver-
sation turn after appending all user-provided feedback from our Always-Predict baseline. Con-
cretely, using the Always-Predict interaction u0, a0, . . . , ui, ai, we concatenate all user-turns to
the user’s initial instruction uReprompt

0 = [u0, u1, . . . , ui] and task the model with predicting an
output uReprompt

0 .

• Always Clarify w/ Hindsight QAs: We change the input format from free-form feedback to
clarifying question answer pairs from the above method. To accomplish this, we prompt GPT-
4o to paraphrase each turn of user feedback into QA pairs, ui → (aHindsight

i−1 , u
Hindsight
i ). We then

prompt the LM with the full interaction (u0, a
Hindsight
1 , u

Hindsight
1 . . . u

Hindsight
i ) and task the LLM

with predicting an output webpage on the subsequent turn.

We report the results of these ablations in Figure 3. Here, we find that both our ablation methods
perform similarly, significantly outperforming our Always Clarify baseline while lagging behind the
performance of our Always Predict setting. This demonstrates two things. First, that the poor per-
formance of Always-Clarify interactions is not due to the LM’s inability to incorporate additional
instruction specifications when presented in Clarifying Question-Answer format. Second, that inter-
mediate generations are important to model performance.

Figure 4 depicts an example demonstrating the communicative role that intermediate generations
play. Here, we see that our Always-Predict initial prediction was able to correctly assume the user’s
desired intent in their descriptions of the navigation bar and background color based on only the
user’s initial description. Thus, there was no mention of either of these two features in any of the
later rounds of feedback. In contrast, the Reprompting ablation makes two different assumptions
regarding the shade of white of the background and formatting of the navigation bar. This highlights
how intermediate generations can actually allow users to avoid over-specifying their instructions,
relying on the assistant to make reasonable assumptions based on the given information. Later turns
of the interaction, thus, can be focused on correcting only details where the model’s assumptions
were incorrect.

7
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y  –  User’s Target
Design

u1– User’s Initial Request
This webpage is a music website featuring a navigation bar with links to 
Home, Music, Live Shows, and Store
…
The design is minimalistic with a black header and white background.

Always Predict

a1  –  Assistant Predicts Output

Model’s initial attempt (a1 ) correctly 
assumes the user’s intended 
navigation bar & background 

u2  – User Provides Feedback
Update the description to match the 
intended text: …  Add a black square…

User’s feedback does not rehash design 
features the model correctly guessed

a6  –  Assistant Predicts Output

…

u1– User’s Initial Request 

Always Predict w/o 
Intermediate Output

u1
Reprompt – User’s Initial Request +

Feedback [u2 , … , u5 ]

(u1) This webpage is a music website 
featuring a navigation bar with links to 
Home, Music, Live Shows, and Store
…
The design is minimalistic with a black 
header and white background.

Here’s some feedback from other 
model attempts:

(u2 ) Update the description to match the 
intended text: …  Add a black square…

...
(u4 ) … Remove the footer…

...

a1
Reprompt –  Assistant Predicts Output

Model makes incorrect assumptions 
about the user’s intended navigation 
bar & background  

u1– User’s Initial Request 

Always Clarify
w/ Hindsight QAs

a1
Hindsight – Assistant asks Questions

1. What text should go in the 
description?
…
3. Where should the black square…

u2
Hindsight – User Provides 

As
1. “Here you can explore…
…
3. … left side…

Paraphrased 
from u2

a2
Hindsight – Assistant asks Questions…

u3
Hindsight – User Provides Answers…

a6
Hindsight   –  Assistant Predicts Output

… Paraphrased from u3

Figure 4: Example comparing an Always Predict interaction against two others where intermedi-
ate output attempts have been removed, while the user-provided details and specifications regarding
their target design are maintained. In the Always Predict interaction, the system made correct as-
sumptions with respect to the background color (light gray / off-white shade) and navigation bar
format (items listed horizontally, left justified). This intermediate prediction allows the user to forgo
any further details regarding either of these elements in later rounds of the conversation. When in-
termediate predictions are removed, we see that systems may change their assumptions regarding
the navigation bar (vertically listed, right justified) or background elements (true white shade).

4.2 MIXED-INITIATIVE INTERACTIONS EMPOWER QUESTION ASKING SYSTEMS

Here, we examine whether Mixed-Initiative interactions can elicit more helpful answers to clari-
fying questions from the user. We hypothesize that giving the user access to intermediate output
generations can help users to provide better answers to LLMs’ clarifying questions.

Table 3: Comparing user simulation w/ and w/o im-
age.

Model % of data
w/ img is Better Tied w/o img is Better

Llama 46 28 26
Qwen 46 30 24

To evaluate this, we construct conversa-
tion histories from the interactions from our
Always-Predict baseline (u1, a1, ...ai). We
then replace the last assistant turn with QA
pairs that were hindsight generated from the
subsequent turn of user feedback, following
the same process as described in Section 4.1,
giving us (u1, a1, ...a

hindsight
i ).

We then generate answers to the hindsight-generated clarifying questions ahindsight
i using two differ-

ent user-simulators. The first is our standard setting where users are given access to the previous
model output generation. In the second, we task the users to answer questions based on only their
gold target y. We then compare the model’s subsequent output generations after observing the an-
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swers from each of these two user simulators, W/ Img and W/o Img using our GPT-4o pairwise
VLM-as-Judge.

Table 3 presents the results. In both models, the answers from our user simulator with access to
the prior image are significantly more helpful to the assistant than answers from the user simulator
without access.

5 RELATED WORK

Multi-Turn Benchmarks Numerous prior works have established benchmarks for multi-turn in-
teraction. Closely related to our work, Li et al. (2024a) proposed Sketch2Code benchmark for inter-
active web-design; however, they study generating webpages from wire frame sketches, which lies
beyond the capability of open-sourced LLMs. We study more typical user scenario, where the task
description is given in text rathre than sketch. Likewise, works have established multi-turn bench-
marks for LLM-agents (Yao et al., 2024; Barres et al., 2025), factoid QA (Zhang et al., 2025), and
Medical QA (Li et al., 2024b). The tasks explored in these benchmarks, however, are less suitable
for collaborative interactions, as users may not be able to provide feedback to erroneous intermedi-
ate output predictions to factoid or medical questions. In contrast, our collaborative setting does not
have the same risks associated with presenting intermediate, imperfect solutions to the user.

Code Generation Numerous works have established benchmarks for generic code genera-
tion (Jimenez et al., 2023; Li et al., 2024a). Recent work has built upon such benchmarks, test-
ing the ability for models to recognize and resolve ambiguity in such benchmarks with the use of
clarifying questions (Vijayvargiya et al., 2025). Zhou et al. (2025) proposes similar coding bench-
marks for front-end and back-end coding tasks as well as learning algorithms for training coding
agents in interactive settings. Recent work has also explored visual settings similar to web design,
like generating code for multimodal domains (Yang et al., 2024) and generating slide decks from
instructions (Ge et al., 2025).

LLMs and Ambiguity Prior work has explored identifying ambiguities in user requests, which
may be used to determine whether to ask a clarifying question or to predict an output, as an uncer-
tainty estimation task (Cole et al., 2023; Zhang & Choi, 2023). Such techniques, however, are not
directly aligned with our goals in mixed-initative interaction where inputs are always ambiguous,
even after multiple rounds of clarification, and systems must weigh the information gained from an
action against its cost. Other works have studied the prevalence of ambiguity, and whether LMs can
identify then, in a range of other tasks not explored in this work, such as NLI (Liu et al., 2023),
co-reference resolution (Yuan et al., 2023), and translation (Voita et al., 2019). In such settings,
however, ambiguities can typically be resolved within a single turn of interaction, compared to the
webdesign task in this work where LLMs are able to continually improve their output predictions
over many rounds of interaction.

6 CONCLUSION

We study mixed-initiative, multi-turn interactions with LLM assistants in a collaborative coding
task, COWEBDESIGN. In this task, a simulated user must work together with an LLM assistant
to implement their intended website design by communicating and specifying their design over
multiple interaction turns. While most multi-turn interaction benchmarks are designed for single-
initiative interactions, we find that mixed-initiative interactions are able to achieve strong efficiency
versus efficacy tradeoffs. Specifically, we find that giving the LLM the option to either generate
clarifying questions or an output attempt allows them to to achieve 99% of the output quality from
single-initiative interactions with conversations that are only 55% as long. We further investigate
why mixed-initiative interactions are so effective, demonstrating that mixed-initiative interactions
can lead to more helpful user answers to clarifying questions and more efficient communication
between the user and assistant.

9
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7 REPRODUCIBILITY STATEMENT

All results and artifacts from this work are from open-source or publicly available models. We
include all necessary prompts for reproducing the datasets and settings in this work in our Appendix.
Additionally, we plan to release code for all experiments and data generation upon acceptance.
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Table 4: Comparing automatic efficacy evaluation models (Pointwise VLM-as-Judge) against hu-
man annotation (n = 100) using Cohen’s Kappa and three-way accuracy.

Model Method Cohen’s κ Accuracy

GPT-4o Pointwise 0.31 54
Pairwise 0.70 81

GPT-4o-mini Pointwise 0.09 40
Pairwise 0.32 54

Qwen2.5-VL-7B Pointwise 0.04 34
Pairwise 0.23 50

Qwen2.5-VL-32B Pointwise 0.18 46
Pairwise 0.49 68

A EVALUATION DETAILS

Our manually labeled set of 100 examples is performed by randomly sampling 100 interactions from
LLama-3.1-8b-Instruct using the Always Predict interaction pattern. Of these 100 interactions, we
randomly sample two model predictions and label which rendered screenshot more closely matches
the gold target design.

In addition the the pointwise evaluation metrics used in this work, we additionally explore pairwise
evaluation methods. For our pairwise methods, we prompt models compare two replications to
determine which is better or if they are tied: (y, ŷ1, ŷ2) → {ŷ1, ŷ2,TIE}. In Table 4, we report
our results and find that pairwise methods, overall, have substantially higher agreement with human
labels. Due to the increased cost of running such evaluations, however, we rely on the pointwise
judge method throught our main experiments.

A.1 PROMPT DETAILS

We include all prompts used for data generation, user simulation, and VLM-as-Judge evaluation.
We additionally include the system prompt for instructing our evaluated coding assistant LLMs.

B IMPLEMENTATION DETAILS

Instruction Generation Prompt

Generate a concise, two to three sentence description of the this webpage screenshot
and its layout.

Figure 5: Prompt for generating website descriptions for initial user requests u1

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Coding Assistant System Prompt

# Task
You are web developer assistant who specializes in HTML and CSS.
Users come to you with a description of a website they’ve designed that they want your
help to implement.
Your task is to have a conversation with the user to understand their design and create
an implementation of it.

# Instructions
During each turn of the conversation, you may respond with either an implementation
of their design or by asking the user three clarifying questions.
All implementations should be a single, self-contained HTML file that uses HTML and
CSS to produce a webpage that strictly follows the user’s description.
Include all CSS code in the HTML file itself.
Do not hallucinate any dependencies to external files.
All clarifying questions should help you understand the user’s exact design specifica-
tions.
Pay attention to things like size and position of all the elements, as well as the overall
layout.
You may assume that the page is static and ignore any user interactivity.

# Formatting
Each response should immediately begin with ”[[CODE]]” if you decide to generate
an implementation of their design or ”[[CLARIFY]]” if you decide to ask the user
clarifying questions.
Your implementation or clarifying questions should immediately follow, starting on a
new line.
Do not include any additional text.

If you decide to generate an implementation of their design, your response should look
like this:
[[CODE]]
{{HTML CSS CODE}}

If you decide to ask the user clarifying questions you should respond like this:
1: {{FIRST QUESTION}}
2: {{SECOND QUESTION}}
3: {{THIRD QUESTION}}

Figure 6: System Prompt for all LLM coding assistant systems
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User Simulation Freeform Feedback Prompt

# Design Review Instructions

You are a design reviewer helping a code agent implement an HTML webpage.
You will receive two images:
1. **Target design** - the intended webpage layout
2. **Current implementation** - what the code agent has built so far

## Your Task
Compare the current implementation against the target design and provide feedback in
the form of three specific, actionable instructions to help the code agent improve their
work.

## Critical Guidelines
- Your feedback **MUST** be **strictly** based on the provided screenshots.
- You should **NEVER** make things up.
- The agent is not supposed to know about the target design, so you should **NEVER**
mention the target design in your response, nor should you ever give out any HTML
content to the agent.
- Only mention what needs to change, not what’s already correct

## Formatting
You may compare and analyze the two webpages step by step.
Once you are ready, provide your final feeback on a new line using triple quotes like
this:
Feedback: ”””
1: {{FIRST FEEDBACK INSTRUCTION}}
2: {{SECOND FEEDBACK INSTRUCTION}}
3: {{THIRD FEEDBACK INSTRUCTION}}
”””

# Inputs
Target design:

Current Implementation:

Figure 7: Prompt for simulating freeform user feedback to model predictions
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User Simulation Prompt for Answering Clarifying Questions (w/o img)

# Design Review Instructions

You are a design reviewer helping a code agent implement an HTML webpage.
You will receive one images:
1. **Target design** - the intended webpage layout

You will also recieve a list of one or more questions asked by the code agent.

## Your Task
Answer the code agent’s questions based on the target design.
Your answers should help the code agent improve their work.

## Critical Guidelines
- Your answers **MUST** be **strictly** based on the provided screenshots.
- You should **NEVER** make things up or provide any information more than what
the agent asks for.
- The agent is not supposed to know about the target design, so you should **NEVER**
mention the target design in your response, nor should you ever give out any HTML
content to the agent.

## Formatting
Your answers should concise and at most one sentence long.
When possible, answers should be a single word or phrase.
You may consider each question step by step before providing your answers.
Once you are ready, provide your final answers on a new line using triple quotes like
this:
Answers: ”””
1: {{ANSWER TO FIRST AGENT QUESTION}}
2: {{ANSWER TO SECOND AGENT QUESTION}}
...”””

# Inputs
Target design:

Agent’s questions:

Figure 8: Prompt for simulating user responses to model clarifying questions when there is no prior
model prediction attempt in the conversation history.
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User Simulation Prompt for Answering Clarifying Questions (w/ img)

# Design Review Instructions
You are a design reviewer helping a code agent implement an HTML webpage.
You will receive a screenshot of the target design.
You will also recieve a list of one or more questions asked by the code agent.

## Your Task
Please answer the agent’s questions based on the provided target design.

## Critical Guidelines
- Your answers **MUST** be **strictly** based on the provided target design
screenshot.
- You should **NEVER** make things up or provide any information more than what
the agent asks for.
- The agent is not supposed to know about the target design, so you should **NEVER**
mention the target design in your response, nor should you ever give out any HTML
content to the agent.

## Formatting
Your answers should concise and at most one sentence long.
When possible, answers should be a single word or phrase.
You may consider each question step by step before providing your answers.
Once you are ready, provide your final answers on a new line using triple quotes like
this:
Answers: ”””
1: {{ANSWER TO FIRST AGENT QUESTION}}
2: {{ANSWER TO SECOND AGENT QUESTION}}
...”””

# Inputs
Target design:

Current Implementation:

Agent’s questions:

Figure 9: Prompt for simulating user responses to model clarifying questions when there is a prior
model prediction attempt in the conversation history.
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Pointwise VLM-as-Judge Prompt

# Instructions
You are a design reviewer evaluating a code agent’s implementation an HTML
webpage. You will receive two images:
1. Target design - the intended webpage layout
2. Agent’s implementation - what the code agent has built

## Your Task
Your task is to judge the agent’s implementation by comparing it against the intended
webpage and assigning it a score from 1 (worst) to 10 (best).

## Formatting
You may compare and analyze the two webpages step by step.
Once you are ready, your provide a score on a new line like this:
{{STEP BY STEP COMPARISON}}
Score: {{FINAL SCORE}}

# Inputs
Target design:

Agent’s implementation:

Figure 10: Pointwise VLM-as-Judge prompt for evaluating replicated webpage screenshots ŷ against
gold design images y

Pairwise VLM-as-Judge Prompt

# Instructions
You will be provided with screenshots of three webpages.
The first one is the original design.
The next two are attempted replications: ”Attempt 1” and ”Attempt 2”.
Your task is to determine which of the two replications more closely matches the
original design, or if they are tied.
You should respond by selecting ”1”, ”2” or ”Tie”.

## Formatting
You should first compare the two replications step-by-step before providing your final
answer.
When you are ready, provide your final response on a new line like this:
{{STEP BY STEP COMPARISON}}
Final Answer: {{1/2/Tie}}

# Inputs
Original Design:

Attempt 1:

Attempt 2:

Figure 11: Pairwise VLM-as-Judge prompt for comparing two replicated webpage screenshots ŷa
and ŷb against gold design images y
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