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Abstract

Learn-to-Defer is a paradigm that enables learning algorithms to work not in iso-
lation but as a team with human experts. In this paradigm, we permit the system
to defer a subset of its tasks to the expert. Although there are currently systems
that follow this paradigm and are designed to optimize the accuracy of the final
human-AI team, the general methodology for developing such systems under a
set of constraints (e.g., algorithmic fairness, expert intervention budget, defer of
anomaly, etc.) remains largely unexplored. In this paper, using a d-dimensional
generalization to the fundamental lemma of Neyman and Pearson (d-GNP), we
obtain the Bayes optimal solution for learn-to-defer systems under various con-
straints. Furthermore, we design a generalizable algorithm to estimate that solution
and apply this algorithm to the COMPAS, Hatespeech, and ACSIncome datasets.
Our algorithm shows improvements in terms of constraint violation over a set of
learn-to-defer baselines and can control multiple constraint violations at once. The
use of d-GNP is beyond learn-to-defer applications and can potentially obtain a so-
lution to decision-making problems with a set of controlled expected performance
measures.

1 Introduction

Machine learning algorithms are increasingly used in diverse fields, including critical applications,
such as medical diagnostics [72] and predicting optimal prognostics [63]. To address the sensitivity of
such tasks, existing approaches suggest keeping the human expert in the loop and using the machine
learning prediction as advice [35], or playing a supportive role by taking over the tasks on which
machine learning is uncertain [39, 60, 4]. The abstention of the classifier in making decisions, and
letting the human expert do so, is where the paradigm of learn-to-defer (L2D) started to exist.

The development of L2D algorithms has mainly revolved around optimizing the accuracy of the final
system under such paradigm [60, 50]. Although they achieve better accuracy than either the machine
learning algorithm or the human expert in isolation, these works provide inherently single-objective
solutions to the L2D problem. In the critical tasks that are mentioned earlier, more often than not,
we face a challenging multi-objective problem of ensuring the safety, algorithmic fairness, and
practicality of the final solution. In such settings, we seek to limit the cost of incorrect decisions
[46], algorithmic biases [13], or human expert intervention [57], while optimizing the accuracy of
the system. Although the seminal paper that introduced the first L2D algorithm targeted an instance
of such multi-objective problem [44], a general solution to such class of problems, besides specific
examples [26, 57, 51, 52], has remained unknown to date. Multi-objective machine learning extends
beyond the realm of L2D problems. A prime example that is extensively studied in various settings is
ensuring algorithmic fairness [18] while optimizing accuracy. Recent advances in the algorithmic
fairness literature have suggested the superiority of post-processing methodology for tackling this
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Figure 1: Diagram of applying d-GNP to solve multi-objective L2D problem. The role of randomness
is neglected due to simplicity of presentation.

multi-objective problem [73, 14, 20, 76]. Post-processing algorithms operate in two steps: first, they
find a calibrated estimation of a set of probability scores for each input via learning algorithms, and
then they obtain the optimal predictor as a function of these scores. Similarly, in a recent set of
works, optimal algorithms to reject the decision-making under a variety of secondary objectives are
determined via post-processing algorithms [51, 52], which is in line with classical results such as
Chow’s rule [16] that is the simplest form of a post-processing method, thresholding the likelihood.

Inspired by the above works, in this paper, we fully characterize the solution to multi-objective L2D
problems using a post-processing framework. In particular, we consider a deferral system together
with a set of conditional performance measures {Ψ0, . . . ,Ψm} that are functions of the system
outcome Ŷ , the target label Y , and the input X . The goal is to optimize the average value of Ψ0 over
data distribution while keeping the average value of the rest of performance measures Ψ1, . . . ,Ψm
for all inputs under control. As an example, in binary classification, Ψ0 can be the 0− 1 deferral loss
function, while Ψ1 can be the difference between positive prediction rates of Ŷ for all instances of X
that belong to demographic group A = 0 or A = 1. The solution for which we aim optimizes the
accuracy while assuring that the demographic parity measure between the two groups is bounded by
a tolerance value δ1 ∈ [0, 1].

To provide the optimal solution, we move beyond staged learning [12] methodology, in which the
classifier h(x) is trained in the absence of human decision-makers, and then the optimal rejection
function r(x) is obtained for that classifier to decide when the human expert should intervene
(r(x) = 1). Instead, we jointly obtain the classifier and rejection function. The reason that we avoid
this methodology is that firstly, objectives such as algorithmic fairness are not compositional, i.e.,
even if the classifier and the human are fair, due to the emergence of Yule’s effect [62] the obtained
deferral system is not necessarily fair (see Appendix A), and in fact abstention systems can deter
the algorithmic biases [36]. Secondly, the feasibility of constraints is not guaranteed under staged
learning methodology [74], e.g., there can be cases in which achieving a purely fair solution is
impossible, while this occurs neither in vanilla classification [20] nor in our solution.

This paper shows that the joint learning of classifier and rejection function for finding the optimal
multi-objective L2D solution boils down to a generalization of the fundamental Neyman-Pearson
lemma [55]. This lemma is initially introduced in studying hypothesis testing problems and char-
acterizes the most powerful test (i.e., the test with the highest true positive rate) while keeping the
significance level (true negative rate) under control. As a natural extension to this paradigm, we con-
sider a multi-hypothesis setting where for each true positive prediction and false negative prediction,
we receive a reward and loss, respectively. Then, we show that the extension of Neyman-Pearson
lemma to this setting provides us with a solution for our multi-objective L2D problem.

In summary, the contribution of this paper is as below:

• In Section 3, we show that obtaining the optimal deterministic classifier and rejection function
under a constraint is, in general, an NP-Hard problem, then
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• by introducing randomness, we rephrase the multi-objective L2D problem into a functional linear
programming.

• In Section 4, we show that such linear programming problem is an instance of d-dimensional
generalized Neyman-Pearson (d-GNP) problem, then

• we characterize the solution to d-GNP problem, and we particularly derive the corresponding
parameters of the solution when the optimization is restricted by a single constraint.

• In Section 5, we show that a post-processing algorithm that is based on d-GNP solution
generalizes in constraints and objective with the rate O(

√
log n/n,

√
log(1/ϵ)/n, ϵ′) and

O((log n/n)1/2γ , (log(1/ϵ)/n)1/2γ , ϵ′), respectively, with probability at least 1 − ϵ where n
is the size of the set using which we fine-tune the algorithm, ϵ′ measures the accuracy of learned
post-processing scores, and γ is a parameter that measures the sensitivity of the constraint to the
change of the predictor. Then,

• we show that the use of in-processing methods in L2D problem does not necessarily generalize to
the unobserved data, and finally

• we experiment our post-processing algorithm on two tabular datasets and a text dataset, and
observe its performance compared to the baselines for ensuring demographic parity and equality
of opportunity on final predictions.

Lastly, the d-GNP theorem has potential use cases beyond the L2D problem, particularly in vanilla
classification problems under constraints. However, such applications are beyond the scope of this
paper, and except for a brief explanation of the use of d-GNP in algorithmic fairness for multiclass
classification, we leave them to future works.

2 Related Works
Human and ML’s collaboration in decision-making has been demonstrated to enhance the accuracy
of final decisions compared to predictions that are made solely by humans or ML [37, 68]. This
overperformance is due to the ability to estimate the accuracy and confidence of each agent on
different regions of data and subsequently allocate instances between human and ML to optimize
the overall accuracy [2]. Since the introduction of the L2D problem, the implementation of its
optimal rule has been the focus of interest in this field [8, 50, 12, 51, 9, 43, 48, 45]. The multi-
objective classification with abstention problems is studied for specific objectives in [44, 57, 48]
via in-processing methods. The application of Neyman-Pearson lemma for learning problems with
fairness criteria is recently introduced in [75].
We refer the reader to Appendix B for further discussion on related works.

3 Problem Setting
Assume that we are given input features xi ∈ X , corresponding labels yi ∈ Y = {1, . . . , L}, and
the human expert decision mi for such input, and assume that these are i.i.d. realizations of random
variables X,Y,M ∼ µ = µXYM . Since there exists randomness in the human decision-making
process, for the sake of generality, we treat M as a random variable similar to Y and do not assume
that mi = m(xi) for some function m. Further, assume that for the true label y and a certain feature
vector x, the cost of incorrect predictions is measured by a loss function ℓAI(y, h(x)) for the classifier
prediction h(x), and a loss function ℓH(y,m) for human’s prediction m. The question that we tackle
in this paper is the following: What is an optimal classifier and otherwise an optimal way of deferring
the decision to the human when there are constraints that limit the decision-making? The constraints
above can be algorithmic fairness constraints (e.g., demographic parity, equality of opportunity,
equalized odds), expert intervention constraints (e.g., when the human expert can classify up to b
proportion of the data), or spatial constraints to enforce deferral on certain inputs, or any combination
thereof.
Let us put the above question in a formal optimization form. To that end, let r(x) ∈ {0, 1} be the
rejection function1, i.e., when r(x) = 0 the classifier makes the decision for input x and otherwise x
is deferred to the expert. We obtain the deferral loss on x and given a label y and the expert decision
m as

ℓdef(y,m, h(x), r(x)) = r(x)ℓH(y,m) + (1− r(x))ℓAI(y, h(x)).

1The rejection here differs from hypothesis rejection and indicates that the classifier rejects making a decision
and defers the decision to the human expert.
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Table 1: A list of embedding functions corresponding to the constraints that are discussed in
Section 3. This list is a version of the results in Appendix D when we assume that the input
feature contains demographic group identifier A. To simplify the notations, we define t(A, y) :=

IA=1

Pr(Y=y,A=1) −
IA=0

Pr(Y=y,A=0) .

Name Embedding Function ψi(x)

Accuracy [Pr(Y = 0|x), . . . ,Pr(Y = n|x),Pr(Y =M |x)]

Expert Intervention Budget [57] [0, . . . , 0, 1]

OOD Detection [53] [0, . . . , 0,
fout
X (x)

f in
X (x)

]

−
[∑K

i=1
Pr(Y ̸=1,Y ∈Gi|X=x)

αi Pr(Y ∈Gi)
, . . . ,

∑K
i=1

Pr(Y ̸=l,Y ∈Gi|X=x)
αi Pr(Y ∈Gi)

, 0
]

Long-Tail Classification [52] and
Pr(Y ∈Gi|X=x)

Pr(Y ∈Gi)

[
1, . . . , 1, 0

]
− αi

K

Bound on Type-K Error [69] Pr(Y=k|x)
Pr(Y=k) [1, . . . , 0︸︷︷︸

k-th

, . . . , 1,Pr(M ̸= k |Y = k, x)]

Demographic Parity [28] ( IA=1

Pr(A=1) −
IA=0

Pr(A=0) )[0, 1,Pr(M = 1|x)]
Equality of Opportunity [34] t(A, 1)[0,Pr(Y = 1|x),Pr(M = 1, Y = 1|x)]

t(A, 1)[0,Pr(Y = 1|x),Pr(M = 1, Y = 1|x)]
Equalized Odds [34] and

t(A, 0)[Pr(Y = 0|x), 0,Pr(M = 0, Y = 0|x)]

Therefore, we can find the average deferral loss on distribution µ as

Lµdef(h, r) := EX,Y,M∼µ
[
ℓdef(Y,M, h(X), r(X))

]
. (1)

We aim to find a randomized algorithm A that defines a probability distribution µA onH×R that
solves the optimization problem

µA ∈ argmin
µA

E(h,r)∼A
[
Lµdef(h, r)

]
,

s.t. EX,Y,M∼µE(h,r)∼µA

[
Ψi

(
X,Y,M, h(X), r(X)

)]
≤ δi (2)

where Ψi is a performance measure that induces the desired constraint in our optimization problem.
We assume that Ψi, similar to ℓdef , is an outcome-dependent function, i.e., if the deferral occurs, the
outcome of the classifier does not change Ψi, and otherwise, if deferral does not occur, the human
decision does not change Ψi. In other words, the value of the constraints can only be a function of
input feature x and of the deferral system prediction Ŷ = r(x)M +

(
1− r(x)

)
h(x). Here, Ŷ is the

expert decision when deferral occurs, and is the classifier decision otherwise.
Types of constraints. Before we discuss our methodology to solve (2), it is beneficial to review the
types of constraints with which we are concerned: (1) expert intervention budget that can be written
in form of Pr

(
r(X) = 1

)
≤ δ, limits the rejection function to defer up to δ proportion of the instance,

(2) demographic parity that is formulated as
∣∣P (Ŷ = 1|A = 0)− P (Ŷ = 1|A = 0)

∣∣ ≤ δ, ensures
that the proportion of positive predictions for the first demographic group (A = 0) is comparable
to that for the second demographic group (A = 1). (3) equality of opportunity that is defined as
|Pr(Ŷ = 1|A = 1, Y = 1) − Pr(Ŷ |A = 0, Y = 1)| ≤ δ limits the differences between correct
positive predictions among two demographic groups, (4) equalized odds that is similar to equality
of opportunity but targets the differences of correct positive and negative predictions among two
groups, i.e., maxy=0,1

∣∣Pr(Ŷ = 1|A = 1, Y = y) − Pr(Ŷ = 1|A = 0, Y = y)
∣∣ ≤ δ, (5) out-of-

distribution (OOD) detection that is written as Prout(r(X) = 0) ≤ δ limits the prediction of the
classifier on points that are outside its training distribution and incentivizes deferral in such cases, (6)
long-tail classification deals with high class imbalances. This method aims to minimize a balanced
error of classifier prediction on instances where deferral does not occur. Achieving this objective as
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mentioned in [53] is equivalent to minimizing
∑K
i=1

1
αi

Pr(Y ̸= h(X), r(X) = 0|Y ∈ Gi) when
the feasible set is Pr(r(X) = 0, Y ∈ Gi) = αi

K , and where {Gi}Ki=1 is a partition of classes, and
finally (7) type-k error bounds that is a generalization of Type-I and Type-II errors, limits errors of
a specific class k using Pr(Ŷ ̸= k|Y = k) ≤ δ.
All above constraints are expected values of outcome-dependent functions (see Appendix D for
proof). To put it informally, if we change the classifier outcome after the rejection, such constraints
do not vary.
Linear Programming Equivalent to (2). The outcome-dependence property helps us to show that
(see Appendix C) obtaining the optimal classifier and rejection function is equivalent to obtaining the
solution of

f∗ = [f∗1 , . . . , f
∗
d ] ∈ argmax

f∈∆X
d

E
[
⟨f(X), ψ0(X)⟩

]
, s.t. E

[
⟨f(x), ψi(x)⟩

]
≤ δi, i ∈ [1 : m] (3)

where ∆d is a simplex of d dimensions, d = L+ 1, and ψi : X → Rd is defined as

ψi(x) := EY,M |X=x

[[
Ψi(x, Y,M, 1, 0), . . . ,Ψi(x, Y,M, l, 0),Ψi(x, Y,M, 0, 1)

]]]
(4)

that we name the embedding function2 corresponding to the performance measure Ψi for i ∈ [0 : m],
where for simplifying the notation we define Ψ0 ≡ −ℓdef . Furthermore, the optimal algorithm
is obtained by predicting h(x) = i with normalized probability of f∗i (x)/

∑d−1
j=1 f

∗
j (x), where∑d−1

j=1 f
∗
j (x) ̸= 0, and rejecting r(x) = 1 with probability f∗d (x). In case of

∑d−1
j=1 f

∗
j (x) = 0 the

classifier is defined arbitrarily. A list of embedding functions for the mentioned constraints and
objectives is provided in Table 1 (See Appendix D for derivations).
Hardness. We first derive the following negative result for the optimal deterministic predictor in (3).
We use the similarity between (3) and 0−1 Knapsack problem (see [58, pp. 374]) to show that there are
cases in which solving the former is equivalent to solving an NP-Hard problem. More particularly, if
we assume that the distribution of X contains finite atoms x1, . . . , xn, each of which have probability
of Pr(X = xi) = pi, and if we set ψ1(xi) = [0, wi

pi
] and ψ0(xi) = [0, vipi ] for vi, wi ∈ R+, then (3)

reduces in argmax
∑
i f

1(xi)vi subjected to f1 : X → {0, 1} and
∑
i f

1(xi)wi ≤ δ1, which is the
main form of the Knapsack problem. In the following theorem, we show that a similar result can be
obtained if we choose ψ0 and ψ1 to be embedding functions corresponding to accuracy and expert
intervention budget. All proofs of theorems can be found in the appendix.
Theorem 3.1 (NP-Hardness of (2)). Let the human expert and the classifier induce 0 − 1 losses
and assume X to be finite. Finding an optimal deterministic classifier and rejection function for a
bounded expert intervention budget is an NP-Hard problem.
Note that the above finding is different from the complexity results for deferral problems in [49,
Theorem 1] and [23, Theorem 1]. NP-hardness results in these settings are consequences of restricting
the search to a specific space of models, i.e., the intersection of half-spaces and linear models on
a subset of the data. However, in our theorem, the hardness arises due to a possibly complex data
distribution and not because of the complex model space.
The above hardness theorem for deterministic predictors justifies our choice of using randomized
algorithms to solve multi-objective L2D. In the next section, by finding a closed-form solution for the
randomized algorithm, we show that such relaxation indeed simplifies the problem.

4 d-dimensional Generalization of Neyman-Pearson Lemma
The idea behind minimizing an expected error while keeping another expected error bounded is
naturally related to the problem that is designed by Neyman and Pearson [55]. They consider two
hypotheses H0, H1 as two distributions with density functions g0(x) and g1(x) for which a given
point x can be drawn. Then, they maximize the probability of correctly rejecting H0, while bounding
the probability of incorrectly rejecting H0, i.e., for a test T (x) ∈ [0, 1] that rejects the null hypothesis
when T (x) = 1, they solved the problem

max
T∈[0,1]X

EX∼g1
[
T (X)

]
, s.t. EX∼g0

[
T (X)

]
≤ α. (5)

2We named this an embedding function because it embeds the constraint or loss of the optimization problem
into a vector function.
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They concluded that thresholding the likelihood ratio is a solution to the above problem. Formally,
they show that all optimal hypothesis tests take the value T (x) = 1 when g1(x)/g0(x) > k and take
the value T (x) = 0 when g1(x)/g0(x) < k, where k is a scalar and dependent on α.
Multi-hypothesis testing with rewards. In this section, we aim to solve (3) as a generalization
of Neyman-Pearson lemma for binary testing to the case of multi-hypothesis testing, in which
correctly and incorrectly rejecting each hypothesis has a certain reward and loss. To clarify how the
extension of this setting and the problem (3) are equivalent, assume the general case of d hypotheses
H0, . . . ,Hd−1, each of which corresponding to X being drawn from the density function gi(x) for
i ∈ {0, . . . , d− 1}. Further, assume that for each hypothesis Hi, in case of true positive, we receive
the reward ri(x), and in case of false negative, we receive the loss ℓi(x). Assume that we aim to
find a test f : X → ∆d that for each input x ∈ X rejects d − 1 hypotheses, each hypothesis Hi

with probability 1− f i(x) and maximizes a sum of true positive rewards, and that keeps the sum of
false negative losses under control. Then, this is equivalent to argmax

f∈∆X
d

∑d−1
i=0 EX∼gi

[
f i(x)ri(x)

]
subjected to

∑d−1
i=0 EX∼gi

[
(1− f i(x))ℓi(x)

]
≤ δ1 which in turns is equivalent to

argmax
f∈∆X

d

EX∼g0

[ d−1∑
i=0

f i(x)ri(x)
gi(x)

g0(x)

]
s.t. EX∼g0

[ d−1∑
i=0

f i(x)
∑
j ̸=i

ℓj(x)
gj(x)

g0(x)

]
≤ δ1. (6)

This problem can be seen as instance of (3), when we set ψ0(x) = [r0(x), . . . , rd−1(x)
gd−1(x)
g0(x)

]

and ψ1(x) =
[∑

j ̸=0 ℓj(x)
gj(x)
g0(x)

, . . . ,
∑
j ̸=d−1 ℓj(x)

gj(x)
g0(x)

]
. Similarly, we can show that for all

ψ0(x), ψ1(x) in (3) there exists a set of densities g1(x), . . . , gd−1(x) and rewards and losses such
that (6) and (3) are equivalent. This can be done by setting gi ≡ g0 and noting that the mapping from
ℓis and ris into ψ0 and ψ2 is invertible.
The formulation of (3) can be seen as an extension of the setting in [69] when we move beyond type-k
error bounds to a general set of constraints. That work achieves the optimal test by applying strong
duality on the Lagrangian form of the constrained optimization problem. However, we avoided using
this approach in proving our solution, since finding f∗, and not the optimal objective, is possible via
strong duality only when we know apriori that the Lagrangian has a single saddle point (for more
details and fallacy of such approach, see Section E). As another improvement to the duality method,
we not only find a solution to (3), but also show that there is no other solution that works as well as
ours.
Before we express our solution in the following theorem, we define an import notation as an extension
of the argmax function that helps us articulate the optimal predictor. In fact, we define

Td =
{
τ : Rd × Rd → ∆d |

∑
i:xi=max{x1,...,xd}

(
τ(xd1, ·)

)
(i) = 1

}
(7)

that is a set of functions that result in one-hot encoded argmax when there is a clear maximum, and
otherwise, based on its second argument, results in a probability distribution on all components that
achieved the maximum value.
Theorem 4.1 (d-GNP). For a set of functions ψi where i ∈ [0,m], assume that (δ1, . . . , δm) is an

interior point3 of the set F =
{(

E[⟨r(x), ψ1(x)⟩], . . . ,E[⟨r(x), ψm(x)⟩]
)
: f ∈ ∆X

d

}
. Then, there

is a set of fixed values k1, . . . , km and τ ∈ Td such that the predictor

f∗(x) = τ
(
ψ0(x)−

m∑
i=1

kiψi(x), x
)
, (8)

obtains the optimal solution of supf∈∆X
d
E
[
⟨f(x), ψ0(x)⟩

]
, subjected to the constraints being

achieved tightly, i.e., when for i ∈ [1 : m] we have E
[
⟨f(x), ψi(x)⟩

]
= δi. If k1, . . . , km are

further non-negative, then f∗(x) is the optimal solution to (3). Moreover, all optimal solutions of (3)
that tightly achieve the constraints are in form of (8) almost everywhere on X .
Example 1 (L2D with Demographic Parity). In the setting that we have a deferral system and we
aim for controlling demographic disparity under the tolerance δ, we can set ψ0(x) =

[
Pr(Y =

3A point is an interior point of a set, if the set contains an open neighborhood of that point.
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0|x),Pr(Y = 1|x),Pr(Y = M |x)
]

and ψ1(x) = s(A)
[
0, 1,Pr(M = 1|x)

]
, using Table 1, where

s(A) :=
( IA=1

Pr(A=1) −
IA=0

Pr(A=0)

)
. Therefore, d-GNP, together with the discussion after (4) shows that

the optimal classifier and rejection function are obtained as

h(x) =

{
1 Pr(Y = 1|x) > 1+ks(A)

2

0 Pr(Y = 1|x) < 1+ks(A)
2

,

and

r(x) =

{
1 Pr(Y =M |x)− ks(A) Pr(M = 1|x) > λ(A, x)

0 Pr(Y =M |x)− ks(A) Pr(M = 1|x) < λ(A, x)
,

for a fixed value k ∈ R, and where λ(A, x) := max{Pr(Y = 0|x),Pr(Y = 1|x) − ks(A)}. The
above identities imply that the optimal fair classifier for the deferral system thresholds the scores
for different demographic groups using two thresholds ks(0) and ks(1). This is similar in form to
the optimal fair classifier in vanilla classification problem [14, 20]. However, the rejection function
does not merely threshold the scores for different groups, but adds an input-dependent threshold
ks(A) Pr(M = 1|x) to the unconstrained deferral system scores.
It is important to note that although we have a thresholding rule for the classifier, the thresholds are
not necessarily the same as of isolated classifier under fairness criteria. Furthermore, the deferral
rule is dependent on the thresholds that we use for the classifier. Therefore, we cannot train the
classifier for a certain demographic parity and a rejection function in two independent stages. This
further affirms the lack of compositionality of algorithmic fairness that we discussed earlier in the
introduction of this paper.
Example 2 (L2D with Equality of Opportunity). Here, similar to the previous example, we can obtain
the embedding function for accuracy and equality of opportunity constraint as ψ0(x) =

[
p0x, p

1
x, p

M
x

]
and ψ1(x) = t(A, 1)

[
0, p1x,Pr(M = 1, Y = 1|x)

]
, respectively, where pix := Pr(Y = i|x) for

i ∈ {1, 2} and similarly pMx = Pr(Y =M |x). Therefore, the characterization of optimal classifier
and rejection function using d-GNP results in

h(x) =

{
1

(
2− kt(A, 1)

)
p1x > 1

0
(
2− kt(A, 1)

)
p1x < 1

,

and

r(x) =

{
1 pMx

(
1− kt(A, 1)Pr(M = 1|Y =M,x)

)
> ν(A, x)

0 pMx
(
1− kt(A, 1)Pr(M = 1|Y =M,x)

)
< ν(A, x)

,

for k ∈ R and where ν(A, x) := max{p0x,
(
1− kt(A, 1)

)
p1x}. Assuming 2− kt(A, 1) takes positive

values for all choices of A, we conclude that the optimal classifier is to threshold positive scores
differently for different demographic groups. However, the optimal deferral is a function of probability
of positive prediction by human expert.
Example 3 (Algorithmic Fairness for Multiclass Classification). In addition to addressing the L2D
problem, the formulation of d-GNP in Theorem 4.1 allows for finding the optimal solution in vanilla
classification. In fact, for an L-class classifier, if we aim to set constraints on demographic parity∣∣Pr(Ŷ = 0|A = 0)− Pr(Ŷ = 0|A = 1)

∣∣ ≤ δ or equality of opportunity
∣∣Pr(Ŷ = 0|Y = 0, A =

0) − Pr(Ŷ = 0|Y = 0, A = 1)
∣∣ ≤ δ on Class 0, then we can follow similar steps as in Appendix

D to find the embedding functions as ψDP = s(A)
[
1, 0, . . . , 0

]
and ψEO = t(A, 0)

[
p0x, 0, . . . , 0

]
,

where pix := Pr(Y = i|x) for i ∈ [L].
As a result, since the accuracy embedding function is ψ0(x) =

[
p0x, . . . , p

L
x

]
, then, by neglecting the

effect of randomness, the optimal classifier under such constraints are as

hDP(x) = argmax
{
p0x − ks(A), p1x, . . . , pLx

}
,

and
hEO(x) = argmax

{
p0x

(
1− kt(A, 0)

)
, p1x, . . . , p

L
x

}
.

Equivalently, for demographic parity, the optimal classifier includes a shift on the score of Class 0
as a function of demographic group, and for equality of opportunity, the optimal classifier includes
a multiplication of the score of Class 0 with a value that is a function of demographic group. It is
easy to show that under condition of positivity of the multiplied value, these classifiers both reduce to
thresholding rules in binary setting.
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Note that although Theorem 4.1 characterizes the optimal solution of (3), it leaves us uninformed
regarding parameters k1, . . . , km, and further does not give us the form of the optimal solution when
ψ0(x)−

∑m
i=1 kiψi(x) has more than one maximizer. In the following theorem, we address these

issues for the case that we have a single constraint.

Theorem 4.2 (d-GNP with a single constraint). The optimal solution (8) of the optimization problem
(3) with one constraint is equal to f∗k,p(x) = τ

(
ψ0(x)− kψ1(x), x

)
where τ is a member of Td such

that if there is a non-singleton set I of maximizers of a vector y ∈ Rd, then we have
(
τ(y, x)

)
(i) = p

and
(
τ(y, x)

)
(j) = 1−p, where i and j are the first indices in I that minimizes ψ1(x), and maximizes

ψ0(x), respectively. In this case, k is a member of the set K =
{
t : δ ∈

[
limτ↑t C(τ), C(t)

]}
where C(t) = E

[
⟨f∗t,0(x), ψ0(x)⟩

]
is the expected constraint of the predictor f∗t,0. Moreover, p =

C(k)−c
C(k)−limτ↑t− C(τ) , if C(·) is lower-discontinuous at k, and otherwise p = 0.

This theorem reduces the complexity of finding kis from the complexity of an exhaustive search to
the complexity of finding the root of the monotone function C(t)− δ (see Lemma J.2 for the proof
of monotonicity), and further finds the randomized response for the cases that Theorem 4.1 leaves
undetermined.
Before we proceed to the designed algorithm based on d-GNP, we should address two issues. Firstly,
during the course of optimization, it can occur that the solution of Theorem 4.1 does not compute
non-negative values ki for an i ∈ [1 : m]. This means that the constraints are not achieved tightly in
the final solution of (3). Therefore, we are able to achieve the optimal solution with the constraint
δ′i < δi. Now, if we can assure that the constraint tuples are still inner points of F when we substitute
δi by δ′i, then Theorem 4.1 shows that (8) is still an optimal solution to (3).
Secondly, for tackling various objectives that are defined in Section 3, we usually need to upper- and
lower-bound a performance measure by δ and −δ. However, since both bounds cannot hold tightly
and simultaneously unless the tolerance is δ = 0, then we can use only one of the constraints in turn
and apply the result of Theorem 4.2 and check whether the constraint is active in the final solution.
In the next section, we design an algorithm based on these results and show its generalization to the
unseen data.

5 Empirical d-GNP and its Statistical Generalization
In previous sections, we obtained the optimal solution to the constrained optimization problem (3)
using d-GNP. Based on this optimal solution, we can design a plug-in method (see Algorithm 1 in
Appendix F) to solve the constrained learning problem using empirical data. This algorithm varies
from many Lagrangian-based algorithms for solving constrained learning problem (e.g., Primal-Dual
method [10]) in which the optimal predictor parameter and constraint penalties are dependent to
each other, and therefore we should learn them iterativaly. However, as we saw in Theorem 5.1
(respectively in Algorithm 1), the solution of d-GNP is a mere thresholding on the corresponding
embedding functions, where the threshold is obtained in a post-hoc manner and from validation
dataset. Therefore, although Lagrangian-based algorithms can lead to oscillations or converge with
a large computational cost, the d-GNP can potentially reduce such complexity costs and improve
convergence conditions. To show such convergence, we bound the generalization error of the objective
and constraints based on this solution. These results are extensions of the generalization results for
Neyman-Pearson [1, 71] and further hold when multiple constraints should be controlled at once. The
first result is the following theorem that shows if the solution to our plug-in method meets constraints
of the optimization problem on training data, this generalizes to the unseen data.

Theorem 5.1 (Generalization of the Constraints). For the approximation of the Neyman-Pearson
solution f̂k̂,p̂(x) in Algorithm 1 such that ESn

[
⟨f̂k̂,p̂(x), ψ̂i(x)⟩

]
≤ δi for i ∈ [1 : m], if we assume

that embedding functions are bounded, then for dn(ϵ) ≃ O(
√
logn+

√
log 1/ϵ√

n
) and Sn ∼ µ we have

Eµ
[
⟨f̂k̂,p̂(x), ψi(x)⟩

]
≤ δi + dn(

ϵ
m ) for all i ∈ [1 : m] and with probability at least 1− ϵ.

In the above theorem, we show that the optimal empirical solution for the constraint, probably
and approximately satisfies the constraint on true distribution. Therefore, if we assume that we
have an approximation ψ̂i(x) in hand where ∥ψ̂i(x) − ψi(x)∥∞ ≤ ϵ′ with high probability, this
theorem together with Hölder’s inequality shows that we need to assure ESn

[
⟨f̂k̂,p̂(x), ψ̂i(x)⟩

]
≤

δ − dn( ϵm )− ϵ′ to achieve the corresponding generalization with high probability.
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Figure 2: Performance of d-GNP on COMPAS dataset (left), and ACSIncome (center and right)

Next, we ask whether the objectives of the empirical optimal solution and the true optimal solution
are close. We answer to this question positively in the following theorem. First, however, let us
define the notions of (γ, ∆)-sensitivity condition as the following. This is an extension to detection
condition in [71] and assumes that changing the parameter in predictor leads to a detectable change
in constraints.
Definition 5.2. For an embedding function ψ1, and a distribution µX on X , we refer to a function
rk(x) as a prediction with (γ, ∆)-sensitivity around k, if there exists C ∈ R+ such that for all
δ ∈ (0,∆] we have ∣∣∣EµX

[
⟨rk(x)− rk+δ(x), ψ1(x)⟩

]∣∣∣ ≥ Cδγ . (9)

Now, we express the following generalization theorem for predictors that address the above conditions:
Theorem 5.3 (Generalization of Objective). Assume that (δ − ϵl, δ + ϵu) is a subset of of all
achievable constraints E

[
⟨f(x), ψ1(x)⟩

]
, and that ∥ψi(x)∥∞ ≤ 1 for i = 1, 2. Further, let the size

n of validation data be large enough such that dn(δ/3) ≤ ϵl
2 . Now, if the optimal predictor f∗k,0(x)

is (γ, ∆)-sensitive around optimal k∗ for ∆ ≃ Ω
(
d
1/γ
n (δ/3), δ

1/2γ
0 , δ

1/2γ
1

)
and γ ≤ 1, then for

n ≥ 16
ϵ2l

log 3
δ , and with probability at least 1− δ, the optimal empirical classifier, as of Algorithm

1 has an objective that is at most O
(
d
1/γ
n (δ/3), δ

1/γ
0 , δ

1/2
0 , δ

1/2
1 , C−1/γ , C−1/2

)
-far from the true

optimal objective.
Now that we have proven generalization of our post-processing method, we should briefly compare
this to other possible algorithms to learn an approximation of the optimal classifier and rejection
function pair. A possible method is to find the appropriate ’defer’ or ‘no defer’ value for each instance
in the training dataset, and for a given set of constraints. Although these types of in-processing
algorithms can perform computationally efficient (e.g., O(n log n) complexity for 1

n -suboptimal
solution for human intervention budget as shown in Theorem G.1), they do not necessarily generalize
to unseen data. In particular, we can show that for all algorithms that estimate deferral labels from
empirical data, there exist two underlying distributions on the data on which the algorithm results
in similar deferral labels, while the optimal rejection functions for these two distributions are not
interchangeable. This argument is further formalized in the following proposition:
Proposition 5.4 (Impossibility of generalization of deferral labels). For every deterministic deferral
rule r̂ for empirical distributions and based on the two losses 1m ̸=y and 1h(x) ̸=y, there exist two
probability measures µ1 and µ2 on X × Y × M such that the corresponding (r̂, X) for both
measures is distributed equally. However, the optimal deferral r∗µ1

and r∗µ2
for these measures are

not interchangeable, that is Lµi

def(h, r
∗
µi
) ≤ 1

3 while Lµi

def(h, r
∗
µj
) = 2

3 for i = 1, 2 and j ̸= i.
In a nutshell, this proposition implies that, every algorithm that reduces the two-bit data of human
accuracy and AI accuracy for an input into a single-bit data of ‘defer’ or ‘no defer’ looses the
information that is important for obtaining the optimal rejection function that generalizes to the unseen
data. This is a drawback of in-processing algorithms that are used in multi-objective L2D problems.
We refer the reader to Appendix M for more details and proof of aforementioned proposition.

6 Experiments
COMPAS dataset. We implemented 4 Algorithm 1, first for COMPAS dataset [27] in which the
recidivism rate of 7214 criminal defendants is predicted. The human assessment is done in this

4The code is available in https://github.com/AminChrs/PostProcess/.
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Figure 3: Prediction of d-GNP on Hatespeech dataset [22] and for tweets with predicted African-
American (left), and Non-African-American (center) dialect and the disparity between groups (right).

dataset on 1000 cases by giving humans a description of the case and asking them whether the
defendant would recidivate within two years of their most recent crime.5 The demographic parity
is assessed for two racial groups of white and non-white defendants. Figure 2 shows the average
performance of d-GNP over 10 random seeds compared to two baselines: (1) Madras et al. [44]
in which a demographic parity regularizer is added to the surrogate loss, and over a variation of
100 regularizer coefficient, and (2) Mozannar et al. [50] in which after training the classifier and
rejector pair, we shift the corresponding scores to find a new thresholding rule. All scores, classifiers,
and rejection functions are trained on a 1-layer feed-forward neural network. The figure shows that
achieving better fairness criteria is possible using d-GNP, while this might not lead to better accuracy
when the constraint violation is not of interest.
Hatespeech dataset. The next experiment is on flagging offensive tweets in Hatespeech dataset
[22]. This dataset contains 24,802 tweets that are labeled by at least three crowd workers as hate
speech, offensive but not hate speech, or neither hate speech nor offensive. We used a pre-trained
model [5] to detect whether the tweet contains an African-American dialect. Next, we used d-GNP
method to control the demographic disparity of predicting a tweet hate speech or offensive bounded
by δHS = 0.1 and δO = 0.01. In the result of this experiment that is displayed in Figure 3 we can
observe the following points: (i) in test-time the resulting demographic disparity for both classes are
bounded as expected, (ii) the accuracy of d-GNP method is bounded by the vanilla deferral method,
while stricter constraint control (in here offensive prediction parity) keeps the accuracy lower, and
(iii) interestingly, the performance of d-GNP for controlled offensive prediction parity copies that of
human. Therefore, a good strategy for obtaining such constrained learn-to-defer system seems to be
to defer the offensive tweet prediction to human, when the tweet contains African-American dialect,
and otherwise either bias the classifier scores or use a mixture of human and classifier involvement to
achieve the final controlled disparity.
ACS dataset. We further tested our method on folktables dataset [25] that contains an income
prediction task based on 1.6M rows of American Community Survey data. Since we had no access to
human expert data, we simulated a human expert that has different accuracy on two racial groups of
white and non-white individuals (85% and 60%, respectively). We considered the L2D problem with
bounded equalized odds violation. Figure 2 shows our method’s accuracy and constraint violation,
coupled with a confidence bound that is obtained using ten iterations of bootstrapping. This figure
shows that violation bounds are accurately met for the test data, and the performance increases when
these bounds are loosened.

7 Conclusion

The d-GNP is a general framework that obtains the optimal solution to various constrained learning
problems, including but not limited to multi-objective L2D problems. Using this post-processing
framework, we can first estimate the scores related to our problem and then find a linear rule of
these scores by fine-tuning for specific violation tolerances. This method reduces the computational
complexity of in-processing methods while guaranteeing achieving a near-optimal solution in a large
data regime.

5This is as opposed to the experiment in [44] where the human decision is simulated.
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A Lack of Compositionality of Fairness Criteria
Here, we show an example of lack of compositionality of fairness criteria for learn-to-defer problems.
This falls in line with [29], where the authors studied the effect of the operators such as ‘OR’ or
‘AND’. Here, we show that a similar non-compositionality holds for the operator ‘DEFER’. The
following example is found based on the insight that a fair predictor is fair over all the space X , and
if it could take a decision over only a subset of X it will not necessarily be a fair predictor. This can
be seen as a particular application of Yule’s effect [62] which explains that vanishing correlation
in a mixture of distributions does not necessarily concludes vanishing correlation on each of such
distributions.
Let us assume that the space X contains only four points x1, x2, x3, and x4, and that the input takes
these values with probability Pr(X = x1) = Pr(X = x2) = Pr(X = x3) = Pr(X = x4) =

1
4 .

The first two points x1, x2 are corresponded to the demographic group A = 0 and the last two points
are corresponded to the demographic group A = 1. Further, assume that the conditional target
probability is Pr(Y = 1|x1) = Pr(Y = 1|x2) = Pr(Y = 1|x3) = Pr(Y = 1|x4) = 1. Moreover,
we consider the equality of opportunity as the measure of fairness. Now, assume that the classifier
h(·) : X → {0, 1} is taking values h(x1) = 1, h(x2) = 0, h(x3) = 1, and h(x4) = 0 and the
human decision maker predicts M = 0 conditioned on x1, M = 1 conditioned on x2, and M = 1
conditioned on x3, and M = 0 conditioned on x4. Therefore, both classifier and human expert have
accuracy of 1

2 on the data.
Following the above assumptions, we can find the fairness measure for classifier as

Pr(h(X) = 1|Y = 1, A = 0)− Pr(h(X) = 1|Y = 1, A = 1)

=Pr(h(X) = 1|Y = 1, A = 0, X = x1) Pr(X = x1|Y = 1, A = 0)

+ Pr(h(X) = 1|Y = 1, A = 0, X = x2) Pr(X = x2|Y = 1, A = 0)

− Pr(h(X) = 1|Y = 1, A = 1, X = x3) Pr(X = x3|Y = 1, A = 1)

− Pr(h(X) = 1|Y = 1, A = 1, X = x4) Pr(X = x4|Y = 1, A = 1) =
1

2
+ 0− 1

2
− 0 = 0,

(10)

which means that the classifier is fully fair. We can derive a similar result for the human expert, i.e.,

Pr(M = 1|Y = 1, A = 0)− Pr(M = 1|Y = 1, A = 1) = 0. (11)

Now that we established a fair classifier and a fair expert, we take the step to find an optimal deferral
solution, i.e., a deferral system that minimizes the overall loss. We can observe that for x1 the
classifier is accurate, while for x2 the human expert is accurate. Furthermore, for x3 and x4 they both
are equally inaccurate. Therefore, an optimal solution is not to defer for x1, and defer for x2, and
take an arbitrary decision for x3 and x4. Now, if we find the fairness measure of the resulting deferral
predictor, we have

Pr(Ŷ = 1|Y = 1, A = 0)− Pr(Ŷ = 1|Y = 1, A = 1)

=Pr(h(X) = 1|Y = 1, A = 0, X = x1) Pr(X = x1|Y = 1, A = 0)

+ Pr(M = 1|Y = 1, A = 0, X = x2) Pr(X = x2|Y = 1, A = 0)

− Pr(h(X) = 1|Y = 1, A = 1, X = x3) Pr(X = x3|Y = 1, A = 1)

− Pr(h(X) = 1|Y = 1, A = 1, X = x4) Pr(X = x4|Y = 1, A = 1) =
1

2
+

1

2
− 1

2
− 0 =

1

2
,

(12)

or equivalently the resulting predictor is unfair for the demographic group A = 1. This means the
‘DEFER’ composition of the predictors does not preserve fairness. One can further easily show that
no deferral system from the above classifier and human expert that has the accuracy better than 1

2 is
fair.

B Extended Related Works
The deferral problem has been studied under a variety of conditions. Rejection learning [19, 3, 11, 15]
or selective classification [30, 33, 32], assumes that a fixed cost is incurred to the overall loss, when
ML decides not to make a prediction on an input. The first Bayes optimal rule for rejection learning
was derived in [16]. Assuming that the accuracy of human, and consequently the cost of deferring to
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the human, can vary for different inputs, [50] obtained the Bayes optimal deferral rule. The deferral
problem is further studied assuming that the number of available instances for deferral are bounded
and a near-optimal classifier and deferral rule is required as a solution of empirical risk minimization
[23, 24]. Most recently, the implementation of deferral rules using neural networks and surrogate
losses is studied for binary and multi-class classification [8, 50, 12, 51, 9, 43, 48, 45]. A possible
shift in human expert for L2D methods recently studied in [67]. The problem multi-objective L2D
and rejection learning is mainly studied in an in-processing approach. A few instances of tackling
such problems can be found in [57, 52, 53] and [74, 41] for L2D and rejection learning, respectively.
Neyman-Pearson’s fundamental lemma is introduced in [55] originally for binary hypothesis testing
and later was generalized in [56] to give a close-form formulation for a variety of binary constrained
optimization problems. Later, [21] found conditions for which Neyman and Pearson solution exists
and is unique. The generalization error of the empirical solution to Neyman-Pearson problem
is studied in two lines of works: (i) the generalization of direct (in-processing) solutions to the
optimization problem [65, 64, 61], and (ii) the generalization of plug-in methods [71] that first
approximate the score functions and then use Neyman-Pearson lemma to approximate the predictor.
The generalization of Neyman-Pearson lemma to multiclass setting is first empirically studied in
[40] and under strong duality assumption is proved in [69]. Our lemma d-GNP extends these
works in order to (i) be able to control a general set of constraints instead of Type-K errors, and
(ii) be valid in absence of strong duality assumption. Further, the idea of using Neyman-Pearson
lemma for controlling fairness criteria originally dates back to [76] (later as [75]). More recently, a
similar post-processing method is introduced in [14] using cost-sensitive learning and strong duality
technique. Although these works cover binary classification problem, in this paper we focus on
solving multi-class classification problem, and particularly in a deferral system.
Moreover, his work differs from multi-class classification with complex performance metrics [54]
in the sense that they consider constraints that are non-linear functions of confusion matrix, while
ignoring the dependence on input x. In our setting, the constraints are linear in terms of confusion
matrix when conditioned on the input, but the linear coefficients vary with the input.
Finally, the work [70] has recently studied an extension of post-processing method to other constrained
learning problems. The difference of that work with our method is threefold: (i) while we prove
that the optimal post-processing method is a linear combination of scores, they have no such claim,
(ii) we have no assumption on the format of the loss function, while they assume a particular set of
strictly convex loss functions, (iii) we have no bound on our hypothesis class while they assume the
representation of the predictor with a multidimensional vector and a fixed dimension.

C Rephrasing (2) into Linear Functional Programming
Here, we first characterize functions that are outcome-dependent. To that end, we define ı(x) as

ı =
[
Ir(x)=0Ih(x)=1, . . . , Ir(x)=0Ih(x)=L, Ir(x)=1

]
. (13)

This function can retrieve the value of r(x) and can retrieve the value of h(x) only if r(x) = 0. In
fact, we can obtain r(x) =

(
ı(x)

)
(L+ 1) and h(x) = i if r(x) = 0 and

(
ı(x)

)
(i) = 1. Therefore,

for a function Ψ(x, h(x), r(x)) = EY,M |X=x

[
Ψ(x, Y,M, h(x), r(x))

]
and ℓdef(x, h(x), r(x)) =

EY,M |X=x

[
ℓdef(x, Y,M, h(x), r(x))

]
to be outcome dependent, it must only be a function of x and

ı(x). In fact, we must have

Ψi(x, h(x), r(x)) = Ψ′
i(x, ı(x)), (14)

and

ℓdef(x, h(x), r(x)) = ℓ′def(x, ı(x)), (15)

for a choice of Ψ′ and ℓ′def , where ℓdef(x, h(x), r(x)) = EY,M |X=x

[
ℓdef(x, Y,M, h(x), r(x))

]
.

Now, we can check that ı(x) can take L+ 1 different values, in each of which one of its components
takes the value 1 and others take the value 0. Therefore, by conditioning on each of these L + 1
values we have

Ψ′
i(x, ı(x)) =

L+1∑
i=1

Ψ′(x, [0, . . . , 1︸︷︷︸
i

, . . . , 0])
((
ı(x)

)
(i)

)
= ⟨ı(x), ψi(x)⟩, (16)
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where ψi(x) is defined as

ψi(x) =
[
Ψ′
i(x, [1, 0, . . . , 0]), . . . ,Ψ

′(x, [0, 0, . . . , 1])
]

=
[
Ψi(x, 1, 0), . . . ,Ψi(x, L, 0),Ψi(x, 0, 1)

]
. (17)

Similarly, we can show that

ℓ′def(x, ı(x)) = ⟨ı(x), ℓ⃗def(x)⟩, (18)

where ℓ⃗def(x) is defined as

ℓ⃗def(x) =
[
ℓdef(x, 1, 0), . . . , ℓdef(x, L, 0), ℓdef(x, 0, 1)

]
. (19)

Next, we know that due to the randomization of A, the vector ı(x) can take various values on each
instance x. This, however, is not the case for ψi(x) and ℓ⃗def(x), since they are defined independent
of r(x) and h(x). Therefore, the average of constraints and loss can be rewritten as

E(r,h)∼A
[
Ψi(x, h(x), r(x))

]
= E(r,h)∼A

[
⟨ψi(x), ı(x)⟩

]
= ⟨f(x), ψi(x)⟩, (20)

and

E(r,h)∼A
[
ℓdef(x, h(x), r(x))

]
= E(r,h)∼A

[
⟨ℓ⃗def(x), ı(x)⟩

]
= ⟨f(x), ℓ⃗def(x)⟩, (21)

where f(x) is defined as

f(x) = E[ı(x)] =
[
Pr(r(x) = 0, h(x) = 1), . . . ,Pr(r(x) = 0, h(x) = L),Pr(r(x) = 1)

]
. (22)

Therefore, the optimization problem in (2) is effectively reduced to the linear programming problem
in (3). Moreover, if f∗(x) is the solution to that linear program, then the corresponding r(x)
should be distributed as Pr(r(x) = 1) =

(
f∗(x)

)
(L + 1), where h(x) should be distributed

as Pr(h(x) = i) = Pr(h(x) = i|r(x) = 0) =

(
f(x)

)
(i)∑L

i=1

(
f(x)

)
(j)

. Note that the assumption of

independence of h(x) and r(x) comes with no loss of generality, since the value of h(x) does not
variate the loss or constraints in the system when we have r(x) = 1.

D Derivation of Embedding Functions
In this appendix we derive the embedding functions in Table 1 that are corresponded to the constraints
of choice, as named in Section 3. The trick that we use for all these constraints is that we first rewrite
the constraint in terms of the expected value of a function over the randomness of the algorithmA and
the input variable X , and then we use (17) to transform that function into the embedding function.

• Overall Loss: To find the embedding function that is corresponded to the overall loss of
the system, we should first note that by loss we mean the probability of incorrectness of Ŷ .
Therefore, the corresponding ℓdef (x, h(x), r(x)) in this case, as defined in (1) is obtained
as

ℓdef (x, h(x), r(x)) =EY,M |X=x

[
Ir(x)=1IM ̸=Y + Ir(x)=0Ih(x)̸=Y

]
= Ir(x)=1 Pr(M = Y |X = x) + Ir(x)=0 Pr(Y ̸= h(x)|X = x).

Therefore, using (19) we find ℓ⃗def as

ℓ⃗def =
[
Pr(Y ̸= 1|X = x), . . . ,Pr(Y ̸= n|X = x),Pr(Y ̸=M |X = x)

]
.

• Expert intervention budget: In this case, similar to the case before, we first derive
Ψ(x, h(x), r(x)). To that end, we first note that the expert intervention constraint in Section
3 is equivalent with

Pr(r(X) = 1) = Ex∼µX ,(r,h)∼A
[
Ir(x)=1

]
≤ δ,

which in turn suggests that

Ψ(x, h(x), r(x)) = Ir(x)=1.

Next, we find ψ(x) using (17), as

ψ(x) = [0, . . . , 0, 1].
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• OOD Detection: To obtain the corresponding embedding function to the OOD detection
constraint in Section 3, we can rewrite Prout

(
r(X) = 1

)
as

Pr
out

(
r(X) = 1

)
= EX∼fout

X ,(r,h)∼A
[
Ir(X)=1

]
= EX∼µXin ,(r,h)∼A

[ Ir(X)=1f
out
X (X)

f in
X (X)

]
,

where the last equation holds when X and Xout are absolutely continuous distributions, and
therefore have probability density functions. A similar assumption is made by [53]. This
results in Ψ(x, h(x), r(x)) being obtained as

Ψ(x, h(x), r(x)) =
Ir(x)=1f

out
X (X)

f inX (X)
.

Therefore, we conclude that the embedding function can be calculated using (17) as

ψ(x) =
[
0, . . . , 0,

fout
X (X)

f in
X (X)

].

In the simple case that foutX (x) =
f in
X (x)I

fin
X

(x)≤ϵ∫
f in
X (x)I

fin
X

(x)≤ϵ
dx

, the embedding function is equal to

ψ(x) =
[
0, . . . , 0,

If in
X (x)≤ϵ

Prin(f inX (X) ≤ ϵ)
].

• Long-Tail Classification: This methodology aims to minimize the balanced loss

1

K

K∑
i=1

Pr(Y ̸= h(X)|r(X) = 0, Y ∈ Gi).

However, as mentioned in [52], this optimization problem can be rewritten as
K∑
i=1

Pr(Y ̸= h(X), r(X) = 0|Y ∈ Gi)
αi

, s.t. Pr(r(X) = 0|Y ∈ Gi) =
αi
K
.

Therefore, the objective can rewritten as
K∑
i=1

E(r,h)∼A,X′∼µX

[
Pr(Y ̸= h(X), r(X) = 0, Y ∈ Gi|X = X ′)

]
αi Pr(Y ∈ Gi)

,

which together with (17) shows that

ψ0(x) = −
[ K∑
i=1

Pr(Y ̸= 1, Y ∈ Gi|X = x)

αi Pr(Y ∈ Gi)
, . . . ,

K∑
i=1

Pr(Y ̸= L, Y ∈ Gi|X = x)

αi Pr(Y ∈ Gi)
, 0
]
.

The reason that we use negative sign is because in the definition of (3) we aim to maximize
the objective.
Similarly, we can rewrite the objectives as

E(r,h)∼A,X′∼µX

[
Pr(r(X) = 0, Y ∈ Gi|X = X ′)− αi

K Pr(Y ∈ Gi)
]

Pr(Y ∈ Gi)
.

Therefore, using (17) we can obtain ψi(x) as

ψi(x) =
Pr(Y ∈ Gi|X = x)

Pr(Y ∈ Gi)

[
1, . . . , 1, 0

]
− αi
K
. (23)

• Type-k Error Bound: We first rewrite Type-k constraint in 3 as

Pr(Ŷ ̸= k|Y = k) =
Pr(Ŷ ̸= k, Y = k)

Pr(Y = k)

(a)
=

EX∼µX

[
Pr(Ŷ ̸= k, Y = k|X = x)

]
Pr(Y = k)

=
EX∼µX

[
Pr(Ŷ ̸= k|Y = k,X = x) Pr(Y = k|X = x)

]
Pr(Y = k)

, (24)
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where (a) is followed by chain rule.
Next, we condition Pr(Ŷ ̸= k|Y = k,X = x) on r(X) being 1 and 0, which concludes
that

Pr(Ŷ ̸= k|Y = k,X = x) = Pr(Ŷ ̸= k, r(x) = 1|Y = k,X = x)

+ Pr(Ŷ ̸= k, r(x) = 0|Y = k,X = x)

= Pr(M ̸= k, r(x) = 1|Y = k,X = x)

+ Pr(h(x) ̸= k, r(x) = 0|Y = k,X = x)

= E(r,h)∼A,M |X=x,Y=k

[
IM ̸=kIr(x)=1 + Ih(x)̸=kIr(x)=0

]
= E(r,h)∼A|X=x,Y=k

[
Pr(M ̸= k|X = x, Y = k)Ir(x)=1

+ Ih(x) ̸=kIr(x)=0

]
.

Therefore, using (24) we conclude that

Pr(Ŷ ̸= k|Y = k) =
EX′∼µX ,(r,h)∼A

[
Ir(X)=1 Pr(M ̸= k, Y = k|X = X ′)

]
Pr(Y = k)

+
EX′∼µX ,(r,h)∼A

[
Ih(X′ )̸=kIr(X′)=0 Pr(Y = k|X = X ′)

]
Pr(Y = k)

,

which together with (17) shows that the embedding function is obtained as

ψ(x) =
Pr(Y = k|X = x)

Pr(Y = k)

[
1, . . . , 1, 0︸︷︷︸

k

, 1, . . . , 1,Pr(M ̸= k|X = x, Y = k)
]
.

Note that here we used the assumption that (Y,M) and A are independent for each choice
of X , i.e., the value noise that is introduced in A for each X = x is generated independent
of the value of Y and M , which is the true assumption, since the algorithm only has access
to X and not true label or the human label.

• Demographic Parity: We know that the demographic parity constraint in Section 3 can be
written as

−δ ≤ Pr(Ŷ = 1|A = 0)− Pr(Ŷ = 1|A = 1) ≤ δ. (25)

Here, we find the corresponding embedding function ψ(x) for the upper-bound in the above
inequality. For the lower-bound, we can use −ψ(x) and follow the steps that are proposed
in the main text of the manuscript.
To find the embedding function that corresponds to the upper-bound of (25), we first rewrite
Pr(Ŷ = 1|A = 0)− Pr(Ŷ = 1|A = 1) as

Pr(Ŷ = 1|A = 0)− Pr(Ŷ = 1|A = 1) =
Pr(Ŷ = 1, A = 0)

Pr(A = 0)
− Pr(Ŷ = 1, A = 1)

Pr(A = 1)
.

(26)

Now, similar to what we did in previous section, we condition Pr(Ŷ = 1, A = a) for
a ∈ {0, 1} on the value of h(x) and r(x), and we conclude

Pr(Ŷ = 1, A = a) = Pr(Ŷ = 1, A = a, r(X) = 1) + Pr(Ŷ = 1, A = a, r(X) = 0)

= Pr(M = 1, A = a, r(X) = 1) + Pr(h(X) = 1, A = a, r(X) = 0)

= EX,A,M,A
[
IM=1IA=aIr(X)=1 + Ih(X)=1IA=aIr(X)=0

]
= EX,A

[
Pr(M = 1, A = a|X = x)Ir(X)=1

+ Pr(A = a|X = x)Ih(X)=1Ir(X)=0

]
. (27)

Here, we used the assumption of independence of X and (M,Y ) given a choice of X .
As a result of (26), (27), and (17) we can find the embedding function as

ψ(x) =
[
0,

Pr(A = 1|X = x)

Pr(A = 1)
− Pr(A = 0|X = x)

Pr(A = 0)
,

Pr(M = 1, A = 1|X = x)

Pr(A = 1)
− Pr(M = 1, A = 0|X = x)

Pr(A = 0)

]
.
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• (In-)Equality of Opportunity: Similar to the previous items, we rewrite equality of
opportunity constraint in Section 3 as

−δ ≤ Pr(Ŷ = 1|Y = 1, A = 1)− Pr(Ŷ = 1|Y = 1, A = 0) ≤ δ.

Again, we only consider the upper-bound and rewrite Pr(Ŷ = 1|Y = 1, A = 1)− Pr(Ŷ =
1|Y = 1, A = 0) as

Pr(Ŷ = 1|Y = 1, A = 1)− Pr(Ŷ = 1|Y = 1, A = 0)

=
Pr(Ŷ = 1, Y = 1, A = 1)

Pr(Y = 1, A = 1)
− Pr(Ŷ = 1, Y = 1, A = 0)

Pr(Y = 1, A = 0)
. (28)

Next, by conditioning on r(X) = 1 and r(X) = 0, we rewrite Pr(Ŷ = 1, Y = 1, A = a)
for a ∈ {0, 1} as

Pr(Ŷ = 1, Y = 1, A = a) = Pr(Ŷ = 1, Y = 1, A = a, r(X) = 1)

+ Pr(Ŷ = 1, Y = 1, A = a, r(X) = 0)

= Pr(M = 1, Y = 1, A = a, r(X) = 1)

+ Pr(h(X) = 1, Y = 1, A = a, r(X) = 0)

= EX,Y,M,A,A
[
IM=1IY=1IA=aIr(X)=1

+ Ih(X)=1IY=1IA=aIr(X)=0

]
= EX,A

[
Ir(X)=1 Pr(M = 1, Y = 1, A = a|X = x)

+ Ih(X)=1Ir(X)=0 Pr(Y = 1, A = a|X = x)
]
, (29)

where the last identity is followed by the assumption of independence of A and (Y,M,A)
given an instance X = x.
As a result of (28), (29), and (17) we can obtain the embedding function as

ψ(x) =
[
0,

Pr(Y = 1, A = 1|X = x)

Pr(Y = 1, A = 1)
− Pr(Y = 1, A = 0|X = x)

Pr(Y = 1, A = 0)

Pr(M = 1, Y = 1, A = 1|X = x)

Pr(Y = 1, A = 1)
− Pr(M = 1, Y = 1, A = 0|X = x)

Pr(Y = 1, A = 0)

]
.

• (In-)Equality of Odds: This induces the same constraint as that of equality of opportunity,
and further induces an extra constraint that is in nature similar to equality of opportunity
with the difference that it uses Y = 0 instead of Y = 1. Therefore, we have two embedding
functions, one is similar to that of equality of opportunity as

ψ1(x) =
[
0,

Pr(Y = 1, A = 1|X = x)

Pr(Y = 1, A = 1)
− Pr(Y = 1, A = 0|X = x)

Pr(Y = 1, A = 0)

Pr(M = 1, Y = 1, A = 1|X = x)

Pr(Y = 1, A = 1)
− Pr(M = 1, Y = 1, A = 0|X = x)

Pr(Y = 1, A = 0)

]
,

and another similar to that with changing Y = 1 into Y = 0, and therefore as

ψ2(x) =
[Pr(Y = 0, A = 1|X = x)

Pr(Y = 0, A = 1)
− Pr(Y = 0, A = 0|X = x)

Pr(Y = 0, A = 0)
, 0

Pr(M = 1, Y = 0, A = 1|X = x)

Pr(Y = 0, A = 1)
− Pr(M = 1, Y = 0, A = 0|X = x)

Pr(Y = 0, A = 0)

]
.

E Limitations of Cost-Sentitive Methods
A variety of works have tackled constrained classification problems using cost-sensitive modeling
[42, 17, 57]. In other words, they use the expected loss that is penalized with the constraints and solve
that for certain coefficients for those constraints (a.k.a., they form Lagrangian from that problem). In
the next step, they optimize the coefficients and obtain the optimal predictor. The issue that we discuss
further in the following we concern is that during this process, the optimal predictor is achieved only
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when the corresponding cost-sensitive Lagrangian has a single saddle point in terms of coefficients
and predictors. Such assumption, unless by analyzing the Lagrangian closely, is hard to be validated.
However, our results in this paper have no such assumption, and instead use statistical hypothesis
testing methods to show their optimality.
To further clarify the issue with such methodology, we bring an example of L2D problem when
human intervention budget is controlled. Suppose that the features in X are distributed with an
atomless probability measure µX (e.g., normal or uniform distribution).6 Further, assume that the
human has perfect information of the label, i.e. Y =M , while the input features have no information
of the label, i.e., Pr(Y = 1|X = x) = 1/2 for all x ∈ X . Moreover, let the classifier and the human
induce the 0− 1 loss function. In this case, we can see that the optimal classifier is the maximizer of
the scores (see the early discussion of Section H), which in this case, since there is no clear maximizer,
without loss of generality can be set to h(x) ≡ 1.
For such assumptions, if we write the Lagrangian in form of

L(λ, r) = Lµdef(h, r) + λ(E[r(X)]− b) = 1

2
− 1

2
E
[
r(X)

]
+ λ(E[r(X)]− b),

then strong duality shows that
min

r∈[0,1]X
max
λ≥0

L(λ, r) = max
λ≥0

min
r∈[0,1]X

L(λ, r), (30)

or to put it informally, the objective is invariant under the interchange of minimum and maximum over
Lagrange multipliers and the variable of interest. However, this does not prove the interchangeability
of the saddle points in these settings, i.e., we cannot guarantee argminr∈[0,1] L(λ

∗, r) = f∗, where
λ∗ ∈ argmaxλminr∈[0,1] L(λ, r), and f∗ ∈ argminr∈[0,1] maxλ L(λ, r). In fact, this guarantee
holds only in particular examples, e.g., when L(λ∗r , r) is strictly convex [7, page 8].

In fact, if we optimize r for all λ as in RHS of (30), we can show that rλ(x) =
{

1 λ < 1
2

0 otherwise
.

Therefore, λ∗ can be obtained as λ∗ = argmax
λ≥0

(λ − 1/2)− − λb where (x)− := min{x, 0}. This

can be rewritten as

λ∗ = argmax
λ≥0

{
− 1

2 − λ(b− 1) 0 ≤ λ ≤ 1
2

−λb λ > 1
2

=
1

2
.

Hence, the condition λ < 1/2 is never satisfied and we have rλ∗(x) = 0, i.e., we should never defer.
For the deferral rule rλ∗ , the deferral loss (1) is

Lµdef(h, f̂) = EX,Y,M
[
ℓAI(Y, h(X), X)

]
=

1

2
.

To show that rλ∗ is not optimal, we provide random and deterministic deferral rules f∗ and r∗∗ that
satisfy the constraint in (2), while having a smaller deferral loss:

⋄ Let f∗(x) = b, that is a random deferral rule that defers with probability b everywhere on
X . Therefore, on average b proportion of inquiries are deferred and thus it satisfies the
constraint in (2). The deferral loss for f∗(x) is equal to

Lµdef(h, f
∗) = E[r(X)]︸ ︷︷ ︸

b

·E[ℓH(Y,M)]︸ ︷︷ ︸
0

+ E[1− r(X)]︸ ︷︷ ︸
1−b

·E[ℓAI(Y, h(X))]︸ ︷︷ ︸
1
2

=
1− b
2

<
1

2
.

⋄ The second example is a deterministic deferral rule. Since the probability measure on X is
atomless, for all b ∈ [0, 1] there exists a set A such that Pr(X ∈ A) = b [31, Proposition
215D]. Hence, defining r∗∗(x) = 1x∈A the constraint in (2) is met. Similar to the last
example Lµdef(h, r

∗∗) = 1−b
2 < 1

2 .
The above two examples show that the deferral rule rλ∗ is sub-optimal. The reason is that, for
optimality of rλ∗ we should make sure that L(λ∗r , r) has a single minimizer of r. However, in our
example we had L( 12 , r) = −λb has infinite number of minimizers in terms of r(x). Therefore, the
equality of the solutions to minimax problem and maximin problem is not guaranteed.

6If we have a probability measure that contains atoms, one can follow the same steps for the first counterex-
ample.
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F d-GNP Learning Algorithm

Algorithm 1 Finding Optimal Classifier and Rejection Function

Require: The formulation of ℓdef(·, ·, ·) and {Ψi(·, ·, ·)}mi=1, and the datasets Dtrain =
{(xi, ai,mi, yi)}ntrain

i=1 , Dval = {(xi, ai,mi, yi)}ntrain+nval
i=ntrain+1, and tolerances {δi}mi=1

Ensure: Optimal deferral rule r∗(x) and classifier h∗(x)
1: Parameters: ϵ = 1e− 8
2: procedure CONSTRAINEDDEFER(ℓdef , {Ψi}mi=1, Dtrain, Dval)
3: Obtain closed-form of {ψi(x)}mi=0 using ℓdef and Ψis via (4) and in terms of the scores as in

Table 1
4: Estimate the scores in Table 1 using classification/regression methods on Dtrain

5: Find estimate {ψ̂i}mi=0 using estimated scores in previous step and closed-form of Step 3
6: if m = 2 then
7: Define routine f̂k,p(x) := τ

(
ψ̂0(x)− kψ̂1(x), x

)
for τ in Theorem 4.2

8: Define routine Ĉ(t) := ÊDval

[
⟨f̂k,0(xi), ψ̂1(xi)⟩

]
9: Find k̂ = min k over the feasibility set Ĉ(t) ≤ δ1

10: if k̂ = ∅ then
11: Return ‘Not Feasible’
12: else
13: if Ĉ(k̂ − ϵ)− Ĉ(k∗) ≤ 1e− 3 then
14: p̂← 0
15: else
16: p̂← δ−Ĉ(k̂)

Ĉ(k̂−ϵ)−Ĉ(k̂)

17: end if
18: end if
19: s(x) := f̂k̂,p̂(x)

20: else
21: Optimize (3) for Dval and for f(x) = τ(ψ̂0(x) −

∑m
i=1 ψ̂i(x), x) for τ as in Theorem

4.1 and via exhaustive search over {k1, . . . , km} and randomizations of τ and find s(x) := f̂(x)
22: end if
23: h∗(x) := argmax

i∈[0:L−1]

si(x)

24: r∗(x) := argmax
i∈{0,1}

[
sh∗(x)(x), sL(x)

]
25: Return h∗(x), r∗(x)
26: end procedure

G On Failure of In-Processing Methods
One might think that the need of using post-processing methods does not necessarily appear in some
examples of multi-objective L2D problem. As an instance, for the expert intervention budget we can
rank samples based on the difference between machine and human loss and defer the top b-proportion
of samples for which the machine loss is higher than the human one. This method is illustrated in
Algorithm 2. Indeed, in the following we show that the sub-optimality of such deterministic deferral
rule, compared to the optimal deferral rule diminishes as the size of training set increases.
Theorem G.1 (Optimal Deferral for Empirical Distribution). For a classifier h(x) and dataset
D = {(xi, yi,mi)}ni=1, where we assume xi ̸= xj , i ̸= j, the deterministic deferral rule as
in Algorithm 2 is (i) the optimal deterministic deferral rule for the empirical distribution on D
and bounded expert intervention budget, and (ii) at most 1

n -suboptimal (in terms of deferral loss)
compared to the optimal random deferral rule for the empirical distribution on D.

Next in the following, we show that such policy does not provide sufficient information to determine
the optimal deferral rule for the true distribution. To that end, we first recall that in classification tasks,
the optimal classifier typically thresholds an estimation of conditional probability of the label Y given
X that is obtained using the available dataset. As a result, if we observe enough pairs of (xi, yi), then
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Algorithm 2 Deterministic Algorithm for Deferring Tasks to Human or AI for the Empirical Distri-
bution and Expert Intervention Budget

Input: The dataset D, he human and classifier loss ℓH and ℓAI and available proportion b of
instances to defer

Output: Labels of ”defer" or ”no defer" for each instance in D
1: procedure DEFERTASKS(D, ℓH , ℓAI , b)
2: Make the set A = {(x, y,m) ∈ D : ℓH(y,m)− ℓAI(y, h(x)) ≤ 0}
3: if |A| ≥ b|D| then
4: Defer all tasks in A to human
5: else
6: Defer the b|D| tasks with the lowest ℓH(x, y,m)− ℓAI(x, y) to human
7: end if
8: end procedure

we improve upon such estimation of conditional probability and increase the accuracy of the obtained
classifier. However, we argue that this paradigm is inapplicable in the case of deferral rule as follows.
Although the output r̂ of Algorithm 2 for each feature x is a deterministic 0 or 1 label, it varies with
the choice of the dataset D. Hence, if we draw datasets from a distribution µ, the outcome of r̂
becomes probabilistic. In the following, we introduce two probability distributions µ1 and µ2 over
(X,Y,M) such that for random draws of the dataset from µi, the conditional probability of such
optimal deferral label r̂ given X is equal, yet the optimal deferral rule for the true distribution is
different.
Although the following discussion bears some resemblance with the No-Free-Lunch theorem [e.g.
66], there exists the following difference between the two. The No-Free-Lunch theorem states that for
each learning algorithm, there exists a data distribution on which the algorithm does not generalize
well. However, in the following discussion, we assume that we can observe infinite number of
datasets and indeed, we can find the underlying probability of the deferral labels. In fact, we show
that the limiting factor for finding the optimal deferral for the true distribution is that we only use
deferral labels and if we use values of both losses, we can accordingly find the optimal deferral rule
as suggested in Theorem 4.1.
Assume that we have a datasetD = {(xi, yi,mi)}ni=1 that contains i.i.d. samples from the distribution
µXYM . Further, assume that we have no budget constraint, that is b = 1 in Algorithm 2. Therefore,
the optimal randomized deferral rule over the empirical distribution is the solution of the problem

min
r̂i∈[0,1]

n∑
i=1

1mi ̸=yi r̂i + 1h(xi )̸=yi

(
1− r̂i

)
.

It is easy to see that the solution to this problem is given by r̂i = 0 if 1h(xi) ̸=yi < 1mi ̸=yi and r̂i = 1
if 1h(xi) ̸=yi > 1mi ̸=yi . As a result, the optimal deferral is obtained as

r̂i =


1 mi = yi , h(xi) ̸= yi
0 mi ̸= yi, h(xi) = yi

any value in [0, 1] o.w.

. (31)

Among all the possible policies, we can choose

r̂i =

{
1 mi = yi&h(xi) ̸= yi
0 o.w.

.

Next, we assume that we have a classifier h and two probability distributions µ1

and µ2 over (X,Y,M). For both distributions X is uniformly distributed over
[0, 1], and we have µ1(Y =M,h(X) = Y ) = 2

3 , µ1(Y = M,h(X) ̸= Y )= 1
3 and

µ2(Y ̸=M,h(X) = Y ) = 2
3 , µ2(Y = M,h(X) ̸= Y )= 1

3 . We can see that although the ob-
served r̂s are fixed for a given choice of D, since D is randomly drawn, r̂ values are randomly
distributed. Furthermore, the distribution of Pr(r̂|X) is according to Bern( 13 ), since in both cases
we have µi(Y = M,h(X) ̸= Y ) = 1

3 . However, the optimal deferral rule for the first distribution
is r∗1(x) = 1 for all x ∈ X , since we have Lµ1

def(h, r
∗
1) = 0, while for the second case the optimal

deferral rule is r∗2(x) = 0 for all x ∈ X because we have Lµ2

def(h, r
∗
2) =

1
3 . Furthermore, such deferral
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rules are not interchangeable, because we have Lµ1

def(h, r
∗
2) = Lµ2

def(h, r
∗
1) =

2
3 . As a result, Pr(r̂|X)

does not provide sufficient information for obtaining optimal deferral rule on true distribution.
For an arbitrary choice of deterministic deferral rule for empirical distribution, we state the following
proposition as a proof of insufficiency of deferral labels for obtaining optimal deferral rule over the
true distribution.
Proposition G.2 (Impossibility of generalization of deferral labels). For every deterministic deferral
rule r̂ for empirical distributions and based on the two losses 1m ̸=y and 1h(x) ̸=y, there exist two
probability measures µ1 and µ2 on X × Y × M such that the corresponding (r̂, X) for both
measures is distributed equally. However, the optimal deferral r∗µ1

and r∗µ2
for these measures are

not interchangeable, that is Lµi

def(h, r
∗
µi
) ≤ 1

3 while Lµi

def(h, r
∗
µj
) = 2

3 for i = 1, 2 and j ̸= i.

Proof. As mentioned in (31), there are four possibilities of a deterministic deferral rule for empirical
distribution based on the events h(X) ̸= Y and M ̸= Y . The reason is that

r̂ =


1 h(x) ̸= y , m = y

0 h(x) = y , m ̸= y

a h(x) ̸= y , m ̸= y

b h(x) = y , m = y

,

the parameters a and b can take binary values. One of the cases in which a = b = 0 is analyzed
previously in this section. We study the other cases as follows:

1. a = 1,b = 0: In this case we have

r̂ =

{
1 h(x) ̸= y

0 o.w.
.

If we define a measure µ1 such that

µ1

(
h(X) ̸= Y,M = Y

)
=

1

3
, µ1

(
h(X) = Y,M ̸= Y ) =

2

3
,

and a measure µ2 such that

µ2

(
h(X) ̸= Y,M = Y

)
=

1

3
, µ2

(
h(X) = Y,M = Y

)
=

2

3
,

then on one hand one can see that r̂ is according to Bern( 13 ) in both cases. On the other
hand, because the probability of classifier accuracy is larger than human accuracy in µ1 and
is smaller than human accuracy in µ2, we have r∗µ1

(x) = 0 while r∗µ2
(x) = 1. Therefore,

we conclude that

Lµ1

def(r
∗
µ1
, h) =

1

3
,

and

Lµ2

def(r
∗
µ2
, h) = 0,

while the losses with interchanging deferral policies are equal to

Lµ1

def(r
∗
µ2
, h) = Lµ2

def(r
∗
µ1
, h) =

2

3
.

2. a = 0,b = 1: In this case, the deferral rule is as

r̂ =

{
0 m ̸= y

1 o.w.
.

Next, if we set two probability measures µ1 and µ2 such that

µ1

(
M ̸= Y, h(X) = Y

)
=

1

3
, µ1

(
M = Y, h(X) ̸= Y ) =

2

3
,

and

µ2

(
M ̸= Y, h(X) = Y

)
=

1

3
, µ2

(
M = Y, h(X) = Y

)
=

2

3
,
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then r̂ is according to Bern( 23 ) in both cases. However, r∗µ1
= 1 while r∗µ2

= 0. Further-
more, the expected deferral losses are equal to

Lµ1

def(r
∗
µ1
, h) =

1

3
, Lµ2

def(r
∗
µ2
, h) = 0,

while after interchanging the deferral policies we have

Lµ1

def(r
∗
µ2
, h) = Lµ2

def(r
∗
µ1
, h) =

2

3
.

3. a = 1,b = 1: In this case, the deferral rule is as

r̂ =

{
0 h(x) = y,m ̸= y

1 o.w.
.

Next, if we set two probability measures µ1 and µ2 such that

µ1

(
M ̸= Y, h(X) = Y

)
=

1

3
, µ1

(
M = Y, h(X) ̸= Y ) =

2

3
,

and

µ2

(
M ̸= Y, h(X) = Y

)
= µ2

(
M ̸= Y, h(X) ̸= Y

)
= µ2(M = Y, h(X) = Y ) =

1

3
,

then we can see that r̂ has the distribution Bern( 23 ). However, one can find the optimal
deferral policies for the true distributions are r∗µ1

= 1 and r∗µ2
= 0. Furthermore, we have

Lµ1

def(r
∗
µ1
, h) =

1

3
,

and

Lµ2

def(r
∗
µ2
, h) =

2

3
,

while

Lµ1

def(r
∗
µ1
, h) =

1

3
, Lµ2

def(r
∗
µ2
, h) =

1

3
.

H Proof of Theorem 3.1
Let X = {x1, . . . , xn} and Y = {1, . . . , n}. We first show that obtaining the optimal classifier
is of O(n) complexity, since in this case is equivalent to obtaining the Bayes optimal classifier in
isolation. The reason is that, the unconstrained Bayes optimal classifier is a deterministic classifier
that minimizes

h∗(x) ∈ argmin
ŷ

EµY |X

[
ℓAI(Y, ŷ,X)|X = x

]
,

for all x ∈ X . This is regardless of whether the deferral occurs or not. Therefore, this solution is
further the solution to

h∗(x) ∈ argmin
ŷ

EµY |X

[
(1− r(X))ℓAI(Y, ŷ,X)|X = x

]
= argmin

ŷ
EµY,M|X

[
(1− r(X))ℓAI(Y, ŷ,X) + r(X)ℓH(Y,M,X)|X = x

]
,

for every rejection function r, including the optimal rejection function of the constrained optimization
problem. In the particular case of expert intervention budget, the constraint is further independent of
h and is only a function of r. Therefore, the unconstrained Bayes classifier is an optimal classifier for
the constrained L2D problem with human intervention budget.
Next, we consider a specific case in which EµY |X

[
ℓAI(Y, 1, X)|X = x

]
>

EµY |X

[
ℓAI(Y, 0, X)|X = x

]
for all x ∈ X , and therefore h(x) = 1 over all input space.
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Further, we assume the data distribution has the property µXYM = µXY δ(M = Y ), i.e. M = Y on
all the data. In this case, we know that

E
[
ℓH(Y,M,X)|X = xi

]
= E

[
1M ̸=Y |X = xi

]
= 0,

and we define

E
[
ℓAI(Y, h(X), X)|X = xi

]
= E

[
1Y ̸=1|X = xi

]
= ℓi.

Now, if we set Pr(X = xi) = pi, and r(xi) = ri, then the optimization problem

f∗ = argmin
r(·)∈{0,1}X

Lµdef(h, r),

is equivalent to

argmin
ri∈{0,1}

n∑
i=1

pi × 0× ri + pi × (1− ri)× ℓi, s.t.

n∑
i=1

piri ≤ b,

that is equivalent to

argmax
ri∈{0,1}

n∑
i=1

piriℓi, s.t.

n∑
i=1

piri ≤ b. (32)

Next, we show that the above problem spans all instances of the 0− 1 knapsack problem, which is
known to be NP-hard (Theorem 15.8 of [58]). Let

argmax
ri∈{0,1}

n∑
i=1

rici, s.t.

n∑
i=1

wiri ≤ K, (33)

be an instance of the 0 − 1 knapsack problem 7 with wi, ci > 0, i ∈ [n], and K > 0. With
ℓi =

ci/wi∑n
i=1 ci/wi

, pi = wi∑n
i=1 wi

and b = K∑n
i=1 wi

, problem (33) can be written in the form of (32).
Because of

∑n
i=1 li =

∑n
i=1 pi = 1 this yields indeed a valid problem.

I Proof of Theorem 4.1
We start this proof by introducing a few useful lemmas:
Lemma I.1. The set F = ∆X

n of all functions that map X to an n−dimensional probability is weakly
compact, i.e., for each sequence {fn}∞n=1, there is a sub-sequence {fni} and a function f∗ ∈ F such
that for all measurable embedding functions ψ, we have

lim
k→∞

E
[
⟨fnk

, ψ⟩
]
= E

[
⟨f∗, ψ⟩

]
.

Proof. We know that all components of each element of the function sequence is bounded by 1. We
define {f im}∞m=1 as the sequence of the ith component of the function sequence. Therefore, using
[42, Theorem A.5.1] we know that there is a sub-sequence {f1

m1
k
}∞k=1 and a non-negative 1-bounded

function f∗1 , such that for each µ-integrable function ψ1(x) we have

lim
k→∞

Eµ
[
f1mk

(x)ψ1(x)
]
= Eµ

[
f∗1 (x)ψ1(x)

]
.

Next, we can repeat the same process for {f i
m1

k
}∞k=1 where i ∈ [2 : n], and we can find a sub-sequence

mi+1
k of mi

k and a non-negative 1−bounded function f∗i+1 for which

lim
k→∞

Eµ
[
f i+1

mi+1
k

(x)ψi+1(x)
]
= Eµ

[
f∗i+1(x)ψi+1(x)

]
.

Now, since all sub-sequences of a converging sequence converges to the same limit, we can use mn
k

that is the intersection of all sequences and show that

lim
k→∞

Eµ
[
f imn

k
(x)ψi(x)

]
= Eµ

[
f∗i (x)ψi(x)

]
,

7Note that in case that wi = 0 the Knapsack problem has a degenerate solution of ri = 1. Hence, we could
drop that point and without loss of generality assume that wi is non-zero.
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for all i ∈ [1 : n] and integrable functions ψi. As a result, due to interchangeability of limit and
summation, when the sum is over a finite set of elements, it is easy to show that

lim
k→∞

E
[
⟨fmn

k
, ψ⟩

]
= lim
k→∞

E
[ n∑
i=1

fnmn
k
(x)ψi(x)

]
=

n∑
i=1

lim
k→∞

E
[
fnmn

k
(x)ψi(x)

]
=

n∑
i=1

Eµ
[
f∗i (x)ψi(x)

]
= Eµ

[
⟨f∗(x), ψ(x)⟩

]
.

Next, we need to show that f∗ ∈ F . We already know that all components of f∗ is 1-bounded
and non-negative. Therefore, we only need to prove that all elements of f∗ sum up to 1 almost
everywhere. If not, then assume that there is a non-zero set A where µ(A) > 0 and there exists l > 0
such that |

∑
i f

∗
i −1| ≥ l for all x ∈ A. We know that there is either a subset B ⊆ A with µ(B) > 0

such that for all x ∈ B we have
∑
i f

∗
i (x) ≥ 1+ l, or similarly a subset for which

∑
i f

∗
i (x) ≤ 1− l.

The reason is that otherwise a non-zero measure set A is a union of two zero-measure set, which is a
contradiction. Without loss of generality we assume the first, which means

∑
i f

∗
i (x) ≥ 1 + l for

x ∈ B. Now, if we define ψ̂(x) = [1, . . . , 1] for x ∈ B and otherwise ψ̂(x) = [0, . . . , 0], then we
have

Eµ
[
⟨f∗(x), ψ̂(x)⟩

]
≥ (1 + l)µ(B),

while
Eµ

[
⟨fmn

k
(x), ψ⟩

]
= 1,

for all k ∈ N. This is a contradction, because the limit of a constant sequence is not different from
that constant value. Hence, f∗ sums up to 1 almost everywhere, and that completes the proof.
Proof of Theorem 4.1: We prove the theorem using the following steps: (i) for the class C of
prediction functions for which E

[
⟨f(x), ψi(x)⟩

]
= δi for i ∈ [1 : m], we show that the supremum of

the objective function E
[
⟨f(x), ψ0(x)⟩

]
is a maximum, (ii) we show that it is sufficient for a predictor

f ∈ C to be in form of (8) to achieve the maximum objective E
[
⟨f(x), ψ0(x)⟩

]
in C and also for all

predictors with E
[
⟨f(x), ψi(x)⟩

]
≤ δi, (iii) we show that the space of all possible constraints for any

prediction function in ∆X
d is convex and compact, and (iv) we show that if the tuple of constraints is

an interior point of all possible tuples of constraints, then a point in C achieves its maximum if and
only if it follows the thresholding rule (8) almost everywhere.

• Step (i): Due to the definition of supremum, we know that for each ϵ > 0, there exists a
function fϵ in C such that E

[
⟨fϵ, ψ0(x)⟩

]
≥ supf∈C E

[
⟨f, ψ0(x)⟩

]
− ϵ. Equivalently, there

is a sequence of functions fn for which limn→∞ E
[
⟨fn, ψ0(x)⟩

]
= supf∈C E

[
⟨f, ψ0(x)⟩

]
.

Using weakly-compactness of the function class ∆X
n+1 as in Lemma I.1, we know that for

the sequence fn, there exists a subsequence fnk
and a function f∗ ∈ ∆X

n+1 such that

lim
k→∞

E
[
⟨fnk

, ψm+1(x)⟩
]
= E

[
⟨f∗(x), ψm+1(x)⟩

]
.

Furthermore, we know that each subsequence ank
of a converging sequence an has the same

limit as the limit of the mother sequence an [59, Chapter 2, Theorem 1]. Therefore, we have
E
[
⟨f∗(x), ψm+1(x)⟩

]
= sup

f∈C
E
[
⟨f, ψm+1(x)⟩

]
,

which means that the supremum of the objective is achievable by f∗.
Moreover, for ψi(x) where i ∈ [1 : m], we have E

[
⟨fn, ψi(x)⟩

]
= δi for all n, which

concludes
δi = lim

k→∞
E
[
⟨fnk

, ψi(x)⟩
]
= E

[
⟨f∗(x), ψi(x)⟩

]
.

This means that the equality constraints holds for f∗, i.e., f∗ ∈ C, if it holds for each
predictor fn.

• Step (ii): Assume that there is a predictor f̂ such that E
[
⟨f̂ , ψi⟩

]
≤ δi. In this step, we show

that if exists a predictor f in form of (8) and in C, then f̂ always has smaller objective than
f̂ . To that end, consider the following expression:

A = E
[
⟨f(x)− f̂(x), ψ0(x)−

m∑
i=1

kiψi(x)⟩
]
.
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Now, we know that

E
[
⟨f(x)− f̂(x),

m∑
i=1

kiψi(x)⟩
]
=

m∑
i=1

ki

(
E
[
⟨f(x), ψi(x)⟩

]
− E

[
⟨f̂(x), ψi(x)⟩

])
(a)
=

m∑
i=1

ki

(
δi − E

[
⟨f̂(x), ψi(x)⟩

])
≥ 0,

where (a) holds because f ∈ C. As a result, if A ≥ 0, then we could show that

E
[
⟨f(x)− f̂(x), ψ0(x)⟩

]
≥ 0, (34)

and complete the proof.
To that end, first note that both f and f̂ are in ∆X

d , and therefore

⟨f(x), [1, . . . , 1]⟩ = ⟨f̂(x), [1, . . . , 1]⟩ = 1.

As a result, for any fixed scalar c, we have

⟨f(x)− f̂(x), ψ0(x)−
m∑
i=1

kiψi(x)⟩ = ⟨f(x)− f̂(x), ψ0(x)−
m∑
i=1

kiψi(x)− c⟩. (35)

Next, we fix c to be the maximum component of the vector ψ0(x)−
∑m
i=1 kiψi(x), i.e.,

c := max
i∈[1:d]

{ψi0(x)−
m∑
j=1

kjψ
i
j(x)}.

Now, we rewrite A using (35) as

A = E
[
⟨f(x)− f̂(x), ψ0(x)−

m∑
i=1

kiψi(x)− c⟩
]

=

d∑
i=1

E
[
(fi(x)− f̂i(x))(ψi0(x)−

m∑
j=1

kjψ
i
j(x)− c)⟩

]
Now, we consider two cases for which Ei1(x) : fi(x) > f̂i(x), and Ei2(x) : fi(x) ≤ f̂i(x).
If fi(x) > f̂i(x), then we have fi(x) > 0, because 1 ≥ f̂i(x) ≥ 0 for all i ∈ [1 : d].
Therefore, using the definition of Sd and because f ∈ Sd we have

ψi0(x)−
m∑
j=1

kjψ
i
j(x) = max

i∈[1:d]

{
ψi0(x)−

m∑
j=1

kjψ
i
j(x)

}
= c. (36)

Consequently, we have

A =

d∑
i=1

E
[
(fi(x)− f̂i(x))(ψi0(x)−

m∑
j=1

kjψ
i
j(x)− c)⟩

]

=

d∑
i=1

E
[
(fi(x)− f̂i(x))(ψi0(x)−

m∑
j=1

kjψ
i
j(x)− c)⟩|Ei1(x)

]
Pr

(
Ei1(x)

)
+

d∑
i=1

E
[
(fi(x)− f̂i(x))(ψi0(x)−

m∑
j=1

kjψ
i
j(x)− c)⟩|Ei2(x)

]
Pr

(
Ei2(x)

)
(a)
=

d∑
i=1

E
[
(fi(x)− f̂i(x))(ψi0(x)−

m∑
j=1

kjψ
i
j(x)− c)⟩|Ei2(x)

]
Pr

(
Ei2(x)

)
(b)

≥ 0,

where (a) holds due to (36) and (b) holds because fi(x) ≤ f̂i(x) and ψim+1(x) −∑m
j=1 kjψ

i
j(x) ≤ c = maxi∈[1:n+1]{ψim+1(x) −

∑m
j=1 kjψ

i
j(x)}. As a result, we have

A ≥ 0 that concludes (34) and completes the proof of this step.
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Figure 4: If an interior point ofN has one corresponding point at M , then so are all interior points of
N

• Step (iii): In this step, we show that the space of joint set of expected inner-products

G =
{(

E[⟨f(x), ψ1(x)⟩], . . . ,E[f(x), ψm(x)]
)
: f ∈ ∆X

d },

is compact under Euclidean metric, and convex.
To show the compactness of that space, assume that there is a sequence {gn}∞n=1 such
that limn→∞ gn = g, or accordingly there is a sequence of fn ∈ ∆X

d for which
limn→∞

(
E[⟨fn(x), ψ1(x)⟩], . . . ,E[fn(x), ψm(x)]

)
= (g1, . . . , gm). Since the metric is

Euclidean, this is equivalent to limn→∞ E[⟨fn(x), ψi(x)⟩] = gi for all i ∈ [1 : m]. The
weak compactness of ∆X

d , as proved in Lemma I.1, shows that there exists f∗ and a sub-
sequence fnk

such that limk→∞ E[⟨fnk
(x), ψi(x)⟩] = E[⟨f∗, ψi(x)⟩] for all i ∈ [1 : d].

Therefore, because of the choice of Euclidean metric, we have

lim
k→∞

(
E[⟨fnk

(x), ψ1(x)⟩], . . . ,E[⟨fnk
(x), ψm(x)⟩]

)
=

(
E[⟨f∗, ψ1(x)⟩], . . . ,E[⟨f∗, ψm(x)⟩]

)
,

which is equivalent to compactness of G.
To show the convexity of G, it is enough to prove the convexity of ∆X

d . The reason is that
g(f) =

(
E[⟨f(x), ψ1(x)⟩], . . . ,E[f(x), ψm(x)]

)
is a linear functional of f , and a linear

functional images a convex set to another convex set.
To prove the convexity of ∆X

d , let f, f ′ ∈ ∆X
d . This means that fi(x), f ′i(x) ∈ [0, 1] for all

i ∈ [1 : d] and
∑d
i=1 fi(x) =

∑d
i=1 f

′
i(x) = 1. Consequently, afi(x) + (1− a)f ′i(x) ≥ 0,

since a, 1 − a ≥ 0. Moreover,
∑d
i=1 afi(x) + (1 − a)f ′i(x) = a

∑d
i=1 fi(x) + (1 −

a)
∑d
i=1 f

′
i(x) = a+ 1− a = 1. As a result of these two facts, af + (1− a)f ′ ∈ ∆X

d , and
the proof of this step is completed.

• Step (iv): In this step we show that if the tuple of constraints is an interior points of all
possible achievable tuples of constraints using different prediction functions, then a point in
C achieves its supremum in terms of objective E

[
⟨f(x), ψ0(x)

]
if and only if it is in form of

(8) almost everywhere. This is an extension to [21, Theorem 3.1] and its proof resembles to
the proof that is provided there. The sufficiency is already shown in Step (ii). Therefore, we
only need to show that if a prediction function in C maximizes the objective, then it is in
form of (8).
Firstly, using Step (iii), we know that the space N of all points(
E[⟨f(x), ψ1(x)⟩], . . . ,E[f(x), ψm(x)]

)
and the space M of all points(

E[⟨f(x), ψ1(x)⟩], . . . ,E[f(x), ψ0(x)]
)

are compact and convex. Now, assume that
v = (δ1, . . . , δm) is an interior point of N . Then, the corresponding set in M, i.e.,
Bv = {(δ0, . . . , δm) ∈ M : δ0 ∈ R} has a supremum and an infimum of the first compo-
nent that we name δ∗∗ and δ∗. Now, sinceM is compact, then v∗∗ = (δ∗∗, δ1, . . . , δm) and
v∗ = (δ∗, δ1, . . . , δm) are contained inM. Next, assume the following two cases:
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1. δ∗∗ = δ∗: In this case for all other points v = (δ1, . . . , δm) of N , the corresponding
setBv′ inM is a single point. The reason is that, if it is not so, then we have two points
v∗∗ = (δ

∗∗
, δ1, . . . , δm) and v∗ = (δ

∗
, δ1, . . . , δm) where δ

∗∗
> δ

∗
. Now, since v is

an interior point of N , then on any direction in a small neighborhood around v there
exists a point v′ withinN . Let that direction be opposite the connecting line of v and v,
i.e., let v be on a connecting line of v′ and v∗. Now, make a convex hull using the three
points v′, v∗∗, and v∗, which are all inM. Because of the convexity ofM, the convex
hull is also a subset ofM. Since v is an interior point of the convex hull, this means
that a neighborhood of v along any direction is insideM. Now, if we set (m+ 1)th
axis to be that direction, we contradict with the fact that δ∗ = δ∗∗. (See Figure 4)
Now, we know that in such case all points within N have one corresponding point
in M. Because of the convexity of M this is equivalent to M being a subset of
a hyperplane with the generating formula x0 =

∑m
i=1 kixi + k0. Therefore, we

have E
[
⟨f, ψ0⟩

]
= E

[
⟨f,

∑m
i=1 kiψi⟩

]
+ k0 for all f ∈ ∆X

d . Therefore, for d ≥ 2,
if we set f1 = (p(x)d−2 , . . . ,

p(x)
d−2 , 1− p(x)︸ ︷︷ ︸

i

, p(x)d−2 , . . . , 0︸︷︷︸
j

, p(x)d−2 , . . . ,
p(x)
d−2 ) and f2 =

(p(x)d−2 , . . . ,
p(x)
d−2 , 0︸︷︷︸

i

, p(x)d−2 , . . . , 1− p(x)︸ ︷︷ ︸
j

, p(x)d−2 , . . . ,
p(x)
d−2 ) for p(x) ∈ [0, 1]X , then we

have

E
[
⟨f1, ψ0⟩

]
− E

[
⟨f1,

m∑
i=1

kiψi⟩
]
= E

[
⟨f2, ψ0⟩

]
− E

[
⟨f2,

m∑
i=1

kiψi⟩
]
,

or equivalently

E
[
(1− p(x))(ψi0(x)−

m∑
t=1

ktψ
i
t(x)− ψ

j
m+1(x) +

m∑
t=1

ktψ
j
t (x))

]
= 0,

for all function p(x) ∈ ∆X
d . A similar result can be achieved for d = 2 and by setting

f1 = (p(x), 1− p(x)) and f2 = (1− p(x), p(x)). As a result, we have

ψi0(x)−
m∑
t=1

ktψ
i
t(x) = ψj0(x)−

m∑
t=1

ktψ
j
t (x),

for all i ̸= j ∈ [1 : d], and consequently

ψi0(x)−
m∑
t=1

ktψ
i
t(x) = max

j∈[1:d]
{ψj0(x)−

m∑
t=1

ktψ
j
t (x)},

for all i ∈ [1 : n + 1]. As a result, there is a set of k1, . . . , km such that ψ0(x) −∑m
i=1 kiψi(x) has equal components almost everywhere. As a result, due to the

freedom of choice for τ(ψ0(x) −
∑m
i=1 kiψi(x), x) where τ ∈ Sd and when we

have more than one maximizer component, then, without loss of generality we can
assume that every prediction function f almost everywhere is in form of τ(ψm+1(x)−∑m
i=1 kiψi(x), x).

2. δ∗∗ > δ∗: In such case, for all δ0 ∈ [δ∗, δ∗∗], we can show that v = (δ0, . . . , δm) is
an interior point ofM. To show that, we first find m points v′1, . . . , v

′
m ∈ N that are

linearly independent and such that their convex hull include (δ1, . . . , δm). Using the
definition ofM, for each of these points v′i = (δ′1

i
, . . . , δ′m

i
), there exists h′i ∈ R such

that v′′i = (h′i, δ
′
1
i
, . . . , δ′m

i
) is withinM. Now, we add the two points v∗∗ and v∗ to

these sets of points. It is easy to see that v′′i s are linearly independent. Furthermore, we
know that (δ1, . . . , δm) is a convex combination of v′is, i.e.,

∑
i aiv

′
i = (δ1, . . . , δm).

As a result, if
∑
i biv

′′
i − v∗∗ = (0, . . . , 0), then we have bi = ai for i ∈ [1 : m].

Furthermore, we have
∑
aih

′
i =

∑
bih

′
i = δ∗∗. Similarly, if

∑
i civ

′′
i − v∗ =

(0, . . . , 0) we have ci = ai and
∑
aih

′
i =

∑
cih

′
i = δ∗. As a result, since δ∗ ̸= δ∗∗ at

least one of these cases would not occur, or equivalently, the dimension of the convex
hull of v′′1 , . . . v

′′
m, v

∗∗, v∗ is of dimension m+ 1. As a result, v is an interior point of
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this convex hull, and because the convex hull is (m+ 1)-dimensional, it is an interior
point ofM.
Now, since v∗∗ is a border point in M and due to the convexity of M there is a
hyperplane P such that it passes v∗∗ and it lays above all points ofM. Since v is
an interior point ofM, a neighborhood of v is laid under the hyperplane P , hence
v cannot be laid on the hyperplane. Therefore, if the generating formula of such
hyperplane is

∑m
i=0 kixi =

∑m
i=1 kiδi + k0δ

∗∗, since v is not laid on the hyperplane
we assure that

∑m
i=1 kiδi+k0δ0 ̸=

∑m
i=1 kiδi+k0δ

∗∗, or equivalently k0 ̸= 0. Hence,
without loss of generality assume that k0 = −1. This shows that for all points in
(u0, . . . , um) ∈M we have

u0 −
m∑
i=1

kiui ≤ δ∗∗ −
m∑
i=1

kiδi,

or equivalently, by the definition ofM, for all prediction function f , we have

E
[
⟨f(x), ψ0(x)−

m∑
i=1

kiψi(x)⟩
]
≤ δ∗∗ −

m∑
i=1

kiδi.

Assuming that f̂ ∈ C maximizes the objective, we have

E
[
⟨f(x), ψ0(x)−

m∑
i=1

kiψi(x)⟩
]
≤ E

[
⟨f̂(x), ψ0(x)−

m∑
i=1

kiψi(x)⟩
]
. (37)

This shows that almost everywhere when there is a unique maximizing component j
in ψ0(x)−

∑m
i=1 kiψi(x), then f̂j(x) = 1. The reason is that otherwise and if there

is a set A such that µ(A) > 0 and for x ∈ A and a choice of l ∈ [0, 1), ϵ ∈ R, and
all t ̸= j we have ψjm+1(x)−

∑m
i=1 kiψ

j
i (x) ≥ ϵ+ ψtm+1(x)−

∑m
i=1 kiψ

t
i(x) while

fj ≤ 1− l, then we can make a function f(x) that is f(x) = f̂(x) for x ∈ X \A and
f(x) = [0, . . . , 1︸︷︷︸

j

, . . . , 0] for x ∈ A. Such function leads to

E
[
⟨f(x), ψ0(x)−

m∑
i=1

kiψi(x)⟩
]
≥ ϵlµ(A) + E

[
⟨f̂(x), ψ0(x)−

m∑
i=1

kiψi(x)⟩
]
,

that is in contradiction with (37). This completes the proof of this step.

J Proof of Theorem 4.2
In the following, we introduce a few lemmas that are useful in our proofs.

Lemma J.1. For every random variable X on R we have

lim
τ→t−

Pr(τ ≤ X < t) = lim
τ→t+

Pr(t < X < τ) = 0

Proof. For each increasing sequence {τi}∞i=1 we show that the first limit is zero, which proves the
claim that the function of τ has a zero limit.
We define

Si = [τi, t),

and notice that

S1 ⊇ S2 ⊇ . . . .
Further, we note that

∞⋂
i=1

Si = ∅.

As a result

Sc1 ⊆ Sc2 ⊆ . . . ,
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and
∞⋃
i=1

Sci = R.

Next, because probability measure is σ-additive, we conclude its lower-semicontinuity [38, Theorem
13.6], and therefore we have

lim
i→∞

Pr(X ∈ Sci ) = Pr(X ∈ ∪∞i=1Sci ) = 1,

which proves limi→∞ Pr(X ∈ Si) = 0.
We could take similar steps to show that since

⋂∞
i=1(t, τ

′
i) = ∅ for decreasing τ ′i we have

lim
i→∞

Pr(X ∈ (t, τ ′i)) = 0.

Lemma J.2. Let ψ1 : X → Rd be a bounded function. Further, we define two functions C(k) =
E
[
⟨f∗k,0(x), ψ1(x)⟩

]
, D(k) = E

[
⟨f∗k,1(x), ψ1(x)⟩

]
, and F (k) = E

[
⟨f∗k,1(x), ψ0(x)⟩

]
, where f∗k,p is

defined in Theorem 4.2. Then,

1. C(k) is monotonically non-increasing,
2. C(k) is upper semi-continuous,
3. F (k) is monotonically non-decreasing,
4. D(k) is lower semi-continuous, and we have
5. limk′↑k C(k) = limk′↑kD(k)

Proof. 1. Firstly, let us define ℓk(x) = ψ0(x) − kψ1(x). For the setting where p = 0, the
prediction function f∗k,p(x) is defined as

f∗k,0(x, p) =

 1 i = min{ argmin
j∈argmax ℓk(x)

(
ψ1(x)

)
(j)}

0 otherwise
. (38)

Further, for k1, k2 such that k1 ≤ k2, let us define j1 and j2 as the only non-zero index of
f∗k1,0(x, p) and f∗k2,0(x, p), respectively. To show that C(k) is monotonically non-increasing
we only need to show that

(
ψ1(x)

)
(j1) = ⟨f∗k1,0(x), ψ1(x)⟩ ≥ ⟨f∗k2,0(x), ψ1(x)⟩ =(

ψ1(x)
)
(j2). Assume that this does not occur, or equivalently

(
ψ1(x)

)
(j1) <

(
ψ1(x)

)
(j2).

In such case we have

max ℓk2(x)
(a)
=

(
ℓk2(x)

)
(j2)

=
(
ℓk1(x)− (k2 − k1)ψ1(x)

)
(j2)

≤ (k1 − k2)
(
ψ1(x)

)
(j2) + max

j

(
ℓk1(x)

)
(j)

(b)
= (k1 − k2)

(
ψ1(x)

)
(j2) +

(
ℓk1(x)

)
(j1)

(c)
< (k1 − k2)

(
ψ1(x)

)
(j1) +

(
ℓk1(x)

)
(j1)

=
(
ℓk2(x)

)
(j2), (39)

where (a) and (b) holds due to the definition of j1 and j2, and (c) holds due to the assumption(
ψ1(x)

)
(j1) <

(
ψ1(x)

)
(j2). The last inequality is clearly a contradiction, and shows that

⟨f∗k1,0(x), ψ1(x)⟩ ≥ ⟨f∗k2,0(x), ψ1(x)⟩, and therefore C(k1) ≥ C(k2).
2. Let us divide the space X into two subsets

Ak =
{
x ∈ X :

∣∣ argmax
i

(ℓk(x))(i)
∣∣ = d

}
,

Bk =
{
x ∈ X :

∣∣ argmax
i

(ℓk(x))(i)
∣∣ ∈ [1 : d− 1]

}
.
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For each x ∈ Ak we know

(
f∗k,0(x)

)
(i) =

{
1 i = min{argmin

j

(
ψ1(x)

)
(j)}

0 otherwise

Using previous part, we know that by increasing k we have no increase in ⟨f∗k,0(x), ψ1(x)⟩,
and in this case since ⟨f∗k,0(x), ψ1(x)⟩ = minj

(
ψ1(x)

)
(j), then this value cannot reduce

with the change of k. Therefore, ⟨f∗k,0(x), ψ1(x)⟩ is a constant function for all k′ ≥ k, and
consequently E

[
⟨f∗k′,0(x), ψ1(x)⟩|x ∈ Ak

]
Pr(x ∈ Ak) is a constant function for k′ ≥ k.

If x ∈ Bk, then for j /∈ argmax
i

(
ℓk(x)

)
(i) and l ∈ argmax

i

(
ℓk(x)

)
(i), we have(

ℓk(x)
)
(j) <

(
ℓk(x)

)
(l). Define the set Cδ for δ ≥ 0 as

Cδ = {x ∈ Bk :
(
ℓk(x)

)
(j) ≤

(
ℓk(x)

)
(l)− δ}.

Using Lemma J.1 we know that

lim
δ→0

Pr(Bk \ Cδ) = 0,

or equivalently for all ϵ ≥ 0, there exists δ such that

Pr(Bk \ Cδ) ≤ ϵ′.

Therefore, if without loss of generality, we assume that ψ1(x) is bounded by 1, then there
exists δ ≥ 0 such that we have

E
[
⟨f∗k′,0(x), ψ1(x)⟩|x ∈ Bk \ Cδ

]
Pr(x ∈Bk \ Cδ)

(a)

≤ ∥ψ1(x)∥∞ Pr(x ∈ Bk \ Cδ) ≤ ϵ/2,

where (a) holds due to Hölder’s inequality.
If x ∈ Cδ, and because we assumed ∥ψ1(x)∥∞ ≤ 1, then we know that by increasing k to
k′ ∈ [k − δ/2, k + δ/2), we have

I = argmax ℓk′(x) ⊆ argmax ℓk(x) = J . (40)

This means that

⟨f∗k,0(x), ψ1(x)⟩ = min
j∈J

(
ψ1(x)

)
(j) ≤ min

j∈I

(
ψ1(x)

)
(j) = ⟨f∗k′,0(x), ψ1(x)⟩.

This, together with the previous part in which we showed ⟨f∗k,0(x), ψ0(x)⟩ ≥
⟨f∗k′,0(x), ψ0(x)⟩, concludes that ⟨f∗k,0(x), ψ0(x)⟩ = ⟨f∗k′,0(x), ψ0(x)⟩. This means that
E
[
⟨f∗k′,0(x), ψ0(x)⟩|x ∈ Cδ

]
Pr(x ∈ Cδ) is a constant function for all k′ ≥ k .

Finally, since we have

C(k′) = E
[
⟨f∗k′,0(x), ψ1(x)⟩

]
=E

[
⟨f∗k′,0(x), ψ1(x)⟩|x ∈ Ak

]
Pr(x ∈ Ak)

+ E
[
⟨f∗k′,0(x), ψ1(x)⟩|x ∈ Bk \ Cδ

]
Pr(x ∈ Bk \ Cδ)

+ E
[
⟨f∗k′,0(x), ψ1(x)⟩|x ∈ Cδ

]
Pr(x ∈ Cδ),

and because the first term and the third term in RHS are constant in terms of k′ and for
k′ ≥ k, and the second term is diminishing, then we have∣∣C(k′)− C(k)∣∣ = ∣∣E[⟨f∗k′,0(x), ψ1(x)⟩|x ∈ Bk \ Cδ

]
Pr(x ∈ Bk \ Cδ)

− E
[
⟨f∗k,0(x), ψ1(x)⟩|x ∈ Bk \ Cδ

]
Pr(x ∈ Bk \ Cδ)

∣∣ ≤ ϵ/2 + ϵ/2,

which is equivalent to say that limk′↑k C(k
′) = C(k).

3. For p = 1, we know that the prediction function f∗k,p(x) is obtained as

f∗k,1(x) =

 1 i = min{ argmax
j∈argmax ℓk(x)

(
ψ0(x)

)
(j)}

0 otherwise
.
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If we define ψ′
1(x) := −ψ0(x), then we have

f∗k,1(x) =

 1 i = min{ argmin
j∈argmax ℓk(x)

(
ψ′
1(x)

)
(j)}

0 otherwise
.

Since the above is equal to (38), then using the first part of this lemma, we know that
E
[
⟨f∗k,1(x), ψ′

1(x)⟩
]
= −E

[
⟨f∗k,1(x), ψ0(x)⟩

]
is monotonically non-increasing, which is

equivalent to F (k) = E
[
⟨f∗k,1(x), ψ0(x)⟩

]
being monotonically non-decreasing.

4. This part is similar to the second part of the proof. In fact, if x ∈ Ak, then we have

(
f∗k,1(x)

)
(i) =

{
1 i = min{argmax

j

(
ψ0(x)

)
(j)}

0 otherwise
. (41)

For k′ ≤ k and because of the third part of this lemma, we know that ⟨f∗k′,1(x), ψ0(x)⟩ ≥
⟨f∗k,1(x), ψ0(x)⟩. Furthermore, because of (41) we know that ⟨f∗k,1(x), ψ0(x)⟩ =

maxψ0(x), and therefore by reducing k′, the prediction function f∗k′,1(x) stays constant.
As a result, E

[
⟨f∗k′,1(x), ψ1(x)⟩|x ∈ Ak

]
Pr(x ∈ Ak) is a constant function for k′ ≤ k.

Furthermore, similar to the second part of this lemma, we can show that for each ϵ > 0,
there exists δ′ ≥ 0 such that for all 0 ≤ δ ≤ δ′ we have

E
[
⟨f∗k′,1(x), ψ1(x)⟩|x ∈ Bk \ Cδ

]
Pr(x ∈Bk \ Cδ)

(a)

≤ ∥ψ1(x)∥∞ Pr(x ∈ Bk \ Cδ) ≤ ϵ/4, (42)

Moreover, for the case of x ∈ Cδ , since in this case J ⊆ I, then we know that

⟨f∗k,1(x), ψ0(x)⟩ = max
j∈J

(
ψ0(x)

)
(j) ≤ max

j∈I

(
ψ0(x)

)
(j) = ⟨f∗k′,1(x), ψ0(x)⟩. (43)

Next, using the third part of this lemma, we know that for k′ ≤ k we have
⟨f∗k′,1(x), ψ0(x)⟩ ≤ ⟨f∗k,1(x), ψ0(x)⟩, which together with (43) concludes that
⟨f∗k,1(x), ψ0(x)⟩ = ⟨f∗k′,1(x), ψ0(x)⟩. Next, because

(
ψ0(x) − kψ1(x)

)
(i) =

(
ψ0(x) −

kψ1(x)
)
(j) for i, j ∈ J , then we know that

∣∣∣(ℓk′(x))(i) − (
ℓk′(x)

)
(j)

∣∣∣ =
∣∣(k −

k′)
((
ψ1(x))(i) −

(
ψ1(x))(j)

)
≤ 2|k − k′|. Therefore, if for i, j ∈ J we know that(

ψ0(x)
)
(i) =

(
ψ0(x)

)
(j), then the difference between ψ1 for those indices is bounded as∣∣∣(ψ1(x)
)
(i)−

(
ψ1(x)

)
(j)

∣∣∣ ≤ 1

k

∣∣∣(ψ0(x)
)
(i)−

(
ψ0(x)

)
(j)

∣∣∣
+

∣∣∣(ℓk(x))(i)− (
ℓk(x)

)
(j)

∣∣∣
≤ 2|k − k′|. (44)

Now, we know that because x ∈ Cδ, then ⟨f∗k,1(x), ψ1(x)⟩ =
(
ψ1(x)

)
(i) for i ∈

argmax
j∈J

(
ψ0(x)

)
(j), and ⟨f∗k′,1(x), ψ1(x)⟩ =

(
ψ1(x)

)
(j) for j ∈ argmax

k∈I

(
ψ0(x)

)
(j).

Hence, we can see that i ∈ J ⊆ I and j ∈ I, and because
(
ψ0(x)

)
(i) =

⟨f∗k,1(x), ψ0(x)⟩ = ⟨f∗k′,1(x), ψ0(x)⟩ =
(
ψ0(x)

)
(j), and due to (44) we have∣∣∣⟨f∗k,1(x), ψ1(x)⟩ − ⟨f∗k′,1(x), ψ1(x)⟩

∣∣∣ ≤ 2|k − k′|,

as long as k′ ∈ [k − δ/2, k). Therefore, if we set δ = max{δ′, ϵ/2} we have∣∣⟨f∗k,1(x), ψ1(x)⟩ − ⟨f∗k′,1(x), ψ1(x)⟩
∣∣ ≤ ϵ/2,

and therefore∣∣∣E[⟨f∗k′,1(x), ψ1(x)⟩|x ∈ Cδ
]
−E

[
⟨f∗k,1(x), ψ1(x)⟩|x ∈ Cδ

]∣∣∣
≤ E

[∥∥⟨f∗k,1(x), ψ0(x)⟩ − ⟨f∗k′,1(x), ψ0(x)⟩
∥∥] ≤ ϵ/2

(45)
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Finally, we can rewrite D(k′) as

D(k′) = E
[
⟨f∗k′,1(x), ψ0(x)⟩

]
=E

[
⟨f∗k′,1(x), ψ0(x)⟩|x ∈ Ak

]
Pr(x ∈ Ak)

+ E
[
⟨f∗k′,1(x), ψ0(x)⟩|x ∈ Bk \ Cδ

]
Pr(x ∈ Bk \ Cδ)

+ E
[
⟨f∗k′,1(x), ψ0(x)⟩|x ∈ Cδ

]
Pr(x ∈ Cδ),

and because of (42) and (45), and since the first term is a constant function in terms of k′
and for all k′ ∈ [k − δ/2, k], then we have

|D(k′)−D(k)| ≤ ϵ/4 + ϵ/4 + ϵ/2 = ϵ. (46)

This shows that D(k′) is lower semi-continuous around k′ = k.
5. To prove this part, we first divide X into two subsets

Gk′ =
{
x ∈ X :

∣∣ argmax
i

(ℓk′(x))(i)
∣∣ = 1

}
, (47)

and Hk′ = X \Gk′ . We know that for x ∈ Gk′ we have

f∗k′,0(x) = f∗k′,1(x) =

{
1 i = min{j ∈ argmax ℓk′(x)}
0 otherwise

(48)

This concludes that

E
[
⟨f∗k′,0(x), ψ1(x)⟩|x ∈ Gk

]
= E

[
⟨f∗k′,1(x), ψ1(x)⟩|x ∈ Gk

]
. (49)

Moreover, let us define the set Ψk
′

1 = {x ∈ X : ∃c ∈ R,∀j ∈
argmax ℓk′(x),

(
ψ1(x)

)
(j) = c} . We show that sum of the probabilities of Hk′ \ Ψk

′

1 is
always bounded by 2d for a set of choices for k′, or equivalently∑

k′∈K

Pr(x ∈ Hk′ \Ψk
′

1 ) ≤ 2d, (50)

for all finite or countably infinite choice of K ⊆ R+. In fact, we know that for each instance
x, argmax

j∈[1:d]

(
ℓk(x)

)
(j) can take up to 2d cases of all subsets of {1, . . . , d}. Therefore, we

need to show that there cannot exist two values of k, k′ such that for x ∈
(
Hk \ Ψk1

)
∩(

Hk′ \Ψk
′

1

)
we have

argmax
j

(
ℓk(x)

)
(j) = argmax

j

(
ℓk′(x)

)
(j). (51)

If we prove such identity, then due to pigeonhole principle, we have∑
k′∈K

1x∈Hk′\Ψk′
1
≤ 2d, (52)

which by integration over all values of x concludes in (50). We prove this claim by
contradiction. If we assume k, k′ ∈ K such that for x ∈

(
Hk \ Ψk1

)
∩
(
Hk′ \ Ψk

′

1

)
the

identity (51) holds, then because x ∈ Hk ∩Hk′ , then the size of argmax
j

(
ℓk(x)

)
(j) and

argmax
j

(
ℓk′(x)

)
(j) is at least 2. This concludes that

(
ψ0(x)− kψ1(x)

)
(i) =

(
ψ0(x)− kψ1(x)

)
(j)

as well as (
ψ0(x)− k′ψ1(x)

)
(i) =

(
ψ0(x)− k′ψ1(x)

)
(j)

for all choices of i, j ∈ argmax ℓk(x). As a result, we have

(k − k′)
((
ψ1(x)

)
(i)− ψ1(x)

)
(j)

)
= 0,

37



and because k′ ̸= k, we have (
ψ1(x)

)
(i) = ψ1(x)

)
(j),

for all i, j ∈ argmax ℓk(x). Therefore, x ∈ Ψk
′

1 and that is a contradiction.
Now that we know that the sum of the probabilities of Pr(x ∈ Hk′ \Ψk

′

1 ) is bounded, we
can renormalize that and make a probability measure as

g(A) =

∑
k∈A,Pr(x∈Hk\Ψk

1 )>0 Pr(x ∈ Hk \Ψk1)∑
k:Pr(x∈Hk\Ψk

1 )>0 Pr(x ∈ Hk \Ψk1)
. (53)

Due to Lemma J.1, for all ϵ ≥ 0 we can find a small enough δ ≥ 0 such that g([k− δ, k)) ≤
ϵ/2d+1, and therefore for all k′ ∈ [k − δ, k) we have

Pr(x ∈ Hk′ \Ψk
′

1 ) ≤
∑

t∈[k−δ,k),Pr(x∈Ht\Ψt
1)>0]

Pr(x ∈ Ht \Ψt1)

= g
(
[k − δ, k)

) ∑
k:Pr(x∈Hk\Ψk

1 )>0

Pr(x ∈ Hk \Ψk1)

≤ ϵ

2d+1
2d = ϵ/2,

where the last inequality holds because of (50).
Now, using this and due to (49), and by defining gi(x) = ⟨f∗k,i(x), ψ0(x)⟩ for i = 1, 2, we
can bound the difference of D(k) and C(k) as∣∣D(k)− C(k)

∣∣ = ∣∣∣E[g1(x)− g0(x)|x ∈ Hk′
]
Pr(x ∈ Hk′)

∣∣∣
≤ Pr(x ∈ Hk′ \Ψk

′

1 |x ∈ Hk′)
∣∣∣E[g1(x)− g0(x)|x ∈ Hk′ \Ψk

′

1

]∣∣∣
+ Pr(x ∈ Hk′ ∩Ψk

′

1 |x ∈ Hk′)
∣∣∣E[g1(x)− g0(x)|x ∈ Hk′ ∩Ψk

′

1

]∣∣∣
(a)

≤ 2(ϵ/2) +
∣∣∣E[g1(x)− g0(x)|x ∈ Hk′ ∩Ψk

′

1

]∣∣∣
(b)
= ϵ,

where (a) holds because ∥f∗k,0 − f∗k,1∥1 ≤ ∥f∗k,0∥1 + ∥f∗k,1∥1 = 2 and because of Hölder
inequality we have

∣∣⟨f∗k,0(x)− f∗k,1, ψ1(x)⟩
∣∣ ≤ ∥f∗k,0 − f∗k,1∥1∥ψ1(x)∥∞ ≤ 2. Moreover,

to show that (b) holds we know that for x ∈ Ψk
′

1 we have
(
ψ1(x)

)
(i) =

(
ψ1(x)

)
(j)

for all i, j ∈ argmax ℓk′(x). Therefore, because we know g0(x) =
(
ψ1(x)

)
(i) for i ∈

argmin
j∈argmax

l

(
ℓk′ (x)

)
(l)

(
ψ1(x)

)
(j) ⊆ argmax

l

(
ℓk′(x)

)
(l) and g1(x) =

(
ψ1(x)

)
(j) for j ∈

argmax
j∈argmax

l

(
ℓk′ (x)

)
(l)

(
ψ0(x)

)
(j) ⊆ argmax

l

(
ℓk′(x)

)
(l), we have g0(x) = g1(x). The above

inequality proves that the limit of C(k′) and D(k′) for k′ ↑ k are equal and that completes
the proof.

To prove this theorem, we take the following steps: (i) We show that the set K has a non-negative
member, (ii) we show that the prediction function f∗k,p(x) achieves the inequality constraint tightly,
and by Theorem 4.1 we can conclude that f∗k,p(x) is the optimal solution.

• step (i): It is easy to see that the Bayes optimal solution of the prediction function in (3)
without any constraint is

(
f∗(x)

)
(i) =


1

(
ψ0(x)

)
(i) >

(
ψ0(x)

)
(j) for all j ̸= i

0
(
ψ0(x)

)
(i) < maxj

(
ψ0(x)

)
(j)

pi(x) otherwise
,
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where pi(x) ∈ ∆d is an arbitrary vector. We can see that by setting

(
pi(x)

)
(j) =

 1 j = min{ argmin
t∈argmax ℓ0(x)

(
ψ1(x)

)
(t)}

0 otherwise
,

then the two prediction functions f∗(x) and f∗0,0(x) are equal (See statement of Theorem
4.2).
Now, in the first and second part of Lemma J.2 we have shown that E

[
⟨f∗k,0(x), ψ1(x)⟩

]
is

upper semi-continuous and monotonically non-increasing. Therefore, for all k ∈ R+ we
have

E
[
⟨f∗k,0(x), ψ1(x)⟩

]
≤ E

[
⟨f∗0,0(x), ψ1(x)⟩

]
= E

[
⟨f∗(x), ψ1(x)⟩

]
.

Similarly, we can show that for k →∞, the solution is equivalent to the Bayes minimizer of

f∗∗(x) = argmin
f∈∆X

d

E
[
⟨f(x), ψ1(x)⟩

]
.

Therefore, since δ is an interior point of all possible values, it lays on the inter-
val

(
E
[
⟨f∗∗(x), ψ1(x)⟩

]
,E

[
⟨f∗(x), ψ1(x)⟩

])
, due to the montonicity and upper semi-

continuity of E
[
⟨f∗k,0, ψ1(x)⟩

]
, we can find t such that

E
[
⟨f∗t,0(x), ψ1(x)⟩

]
≤ δ ≤ lim

τ↑t
E
[
⟨f∗k,0(x), ψ1(x)⟩

]
. (54)

Moreover, this t should be a positive scalar, since otherwise we have

E
[
⟨f∗t,0(x), ψ1(x)⟩

]
≥ E

[
⟨f∗0,0(x), ψ1(x)⟩

]
= E

[
⟨f∗(x), ψ1(x)⟩

]
> δ,

which is a contradiction to (54).
• step (ii): In this step, we consider the following two cases:

– C(t) is continuous at t: In this case, (54) is equivalent to δ = C(t) =
E
[
⟨f∗t,0(x), ψ0(x)⟩

]
, which means that the prediction function f∗k,0(x) achieves the

constraint tightly, and therefore using Theorem 4.1 f∗k,0(x) is the optimal solution.
– C(t) is discontinuous at t: To show that we can achieve the highest constraint in

this case, we first condition the constraint into two events x ∈ Gk and x ∈ X \ Gk,
where Gk is defined in (47). We know that in the latter case x ∈ X \Gk, the prediction
function f∗k,p can be decomposed into two components

f∗k,p(x) = pf∗k,1(x) + (1− p)f∗k,0(x), (55)

while for x ∈ Gk the prediction function f∗k,p(x) = f∗k,0(x) = f∗k,1(x) for all p ∈ [0, 1].
Therefore, in both cases (55) holds, and we have

E
[
⟨f∗k,p(x), ψ1(x)⟩

]
= E

[
⟨pf∗k,1(x) + (1− p)f∗k,0(x), ψ1(x)⟩

]
= pE

[
⟨f∗k,1(x), ψ1(x)⟩

]
+ (1− p)E

[
⟨f∗k,0(x), ψ1(x)⟩

]
= pD(k) + (1− p)C(k), (56)

where C(·) and D(·) are defined in Lemma J.2. Using this lemma, we know that D(·)
is lower semi-continuous, and limk′↑k C(k) = limk′↑kD(k). Therefore, together with
(56) and the definition of p in the statement of theorem, we have

E
[
⟨f∗k,p(x), ψ0(x)⟩

]
=p lim

k′↑k
C(k′) + (1− p)C(k)

=
C(k)− c

C(k)− limk′↑k C(k′)
lim
k′↑k

C(k′)

+
c− limk′↑k C(k

′)

C(k)− limk′↑k C(k′)
C(k) = c. (57)

Equivalently, the prediction function achieves the constraint inequality tightly, and
therefore by Theorem 4.1 this is sufficient to be the optimal solution to the constrained
optimization problem.
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K Proof of Theorem 5.1
Through the proof of this theorem, we use [6, Lemma 3.2.3] that implies that the class of multi-
plications of k binary functions fi(x) for i ∈ [1 : k] within a hypothesis class with VC dimension
V C(fi) = d itself has a VC dimension that is bounded as

V C(
{ k∏
i=1

fi : fi ∈ Hi, V C(Hi) = d
}

︸ ︷︷ ︸
H′

) ≤ 2dk log 3k. (58)

In fact, we use a simple extension to this lemma for which the VC dimension of the functions is not d
itself but is bounded above by d. In such case we claim that (58) still holds. The starting point for
the proof to this lemma is bounding the size of the restriction ΠH(S) = |{h ∩ S : h ∈ H}| for the
hypothesis classH by

ΠH(S) ≤
(em
d

)d
, (59)

where V C(H) = d and m = |S|. However, this inequality holds for the hypothesis classes that have
VC dimensions that are bounded by d. The reason is increasingly monotonicity of RHS of (59). In
fact, by obtaining the gradient of

(
em
d

)d
in terms of d we have

∂
(
em
d

)d
∂d

=
∂
(
ed log em/d

)
∂d

= (log em/d− 1)(
em

d

)d
,

which is nonnegative as long as m ≥ d. If we particularly set m∗ = 2dk log 3k, then m∗ ≥ d and
therefore (59) holds. Next, similar to the proof of [6, Lemma 3.2.3], we can show that for the set S
with size m∗ we have

ΠH′(S) ≤ ΠkH1
(S) ≤

(em∗

d

)dk ≤ 2m
∗
,

which means that S cannot be shattered byH′, and therefore the VC dimension of this hypothesis
class must be bounded by m∗.
We further use the following lemma:

Lemma K.1. For arbitrary sets of functions {ϕi1(x)}ni=1 and {ϕi2(x)}ni=1 on R and for a given
d ∈ R the hypothesis class

H =
{ n∏
i=1

sgn
(
ϕi1(x)− kϕi2(x)− d

)
: k ∈ R

}
,

has the VC dimension of at most 4.

Proof. To prove this lemma, we show that the form of the product in the definition of H reduces
to the form of an interval on R, which is known to have VC dimension of 2. In fact, each term
sgn(ϕi1(x)− kϕi2(x)− d) can be rewritten as

sgn(ϕi1(x)− kϕi2(x)− d) =sgn(
ϕi
1(x)−d
ϕi
2(x)

− k)sgn(ϕi2(x)) + sgn(k − ϕi
1(x)−d
ϕi
2(x)

)sgn(−ϕi2(x))

+ sgn(ϕi1(x)− d)Iϕi
2(x)=0.

As a result, by multiplying all terms we have
n∏
i=1

sgn
(
ϕi1(x)− kϕi2(x)− d

)
= sgn(min

i∈Ax

ϕi
1(x)−d
ϕ2(x)

− k)sgn(k −max
i∈Bx

ϕi
1(x)−d
ϕ2(x)

)
∏
i∈Cx

sgn(ϕi1(x)− d),

(60)

whereAx, Bx, and Cx are defined asAx = {i ∈ [1 : n] : ϕi2(x) > 0}, Bx = {i ∈ [1 : n] : ϕi2(x) <
0}, and Cx = {i ∈ [1 : n] : ϕi2(x) = 0}. Now, we see that the first two terms define an interval
for k ∈

(
f1(x), f2(x)

)
where f1(x) = maxi∈Bx

ϕi
1(x)−d
ϕi
2(x)

and f2(x) = mini∈Ax

ϕi
1(x)−d
ϕi
2(x)

. Next,
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we prove that the VC dimension of the hypothesis class of all such functions is less than the VC
dimension of G =

{
f : R× R → {0, 1} : f(x, y) = sgn(x− k1)sgn(k2 − y), k1, k2 ∈ R

}
. The

reason is that if the aforementioned interval can shatter a set S, then we can find the corresponding
values of f1(x) and f2(x) for each x ∈ S, and then form the pair (xi, yi) where xi = f1(x) and
yi = f2(x), and by setting k1 = k2 = k, we can shatter the set {(xi, yi)}|S|

i=1 with G. Note that
here all pairs are identical. The reason is that if not, i.e., if f1(x) = f1(x

′) and f2(x) = f2(x
′)

for x, x′ ∈ S and x ̸= x′, then, for all possible k, we have sgn(k − f1(x))sgn(f2(x) − k) =
sgn(k−f1(x′))sgn(f2(x′)−k), and therefore we cannot shatter S by sgn(k−f1(x))sgn(f2(x)−k).
Therefore, the set {(xi, yi)}|S|

i=1 has the same cardinality of S , which in consequence proves that the
VC dimension of all sgn(k − f1(x))sgn(f2(x)− k) is bounded by V C(G). Moreover, V C(G) ≤ 4,
since for each 5 points in two-dimensional space, one is in the convex hull of the others, and in case
that all others are labeled as 1, the one in the convex hull also must be labeled as 1. As a result, G
cannot shatter 5 points, and therefore V C(G) ≤ 4.
Up to now, we have shown that the class of functions equal to the first two terms of (60) has a VC
dimension that is bounded by 4. Next, we show that multiplying a hypothesis classH with a binary
function ϕ(x) does not increase the VC dimension of that class. More formally, if we define

H = {ϕ(x)f(x) : f ∈ H′},
then V C(H) ≤ V C(H′). The reason is that if we can shatter a set S usingH, then for each member
x ∈ S there exists two members f1, f2 of H′ such that f1(x) = 1 and f2(x) = 0. This means that
ϕ(x) ̸= 0, because otherwise f1(x) = 1 would not be achievable. Therefore, ϕ(x) = 1 for all x ∈ S ,
and as a result similarlyH′ can shatter S, which proves that V C(H) ≤ V C(H′).
Finally, since we know that the class of all functions inH is in form of sgn(k−f1(x))sgn(f2(x)−k)
multiplied with a binary function, then we conclude that V C(H) ≤ 4.

To prove the rest of the theorem, we need to show that for all choices of k̂ and p̂ the difference of the
empirical and the true loss is bounded. In fact, we should find a bound in form of

Pr
(
sup
k,p

∣∣ESn

[
⟨f∗k,p(x), ψ0(x)⟩

]
− Eµ

[
⟨f∗k,p(x), ψ0(x)⟩

]∣∣ ≤ dn) ≥ 1− ϵ.

Here, we divide the class X into two subsets Gk and Hk = X \Gk, where Gk is defined in (47).
Now, using the definition of f∗k,p(x), we know that within Gk, the inner-product ⟨f∗k,p(x), ψ1(x)⟩
can be rewritten as

⟨f∗k,p(x), ψ1(x)⟩ =
(
ψ1(x)

)
(argmax

i

(
ℓk(x)

)
(i))

=

d∑
j=1

(
ψ1(x)

)
(j)

∏
i ̸=j

sgn
((
ℓk(x)

)
(j)−

(
ℓk(x)

)
(i)

)

=

d∑
j=1

(
ψ1(x)

)
(j)

∏
i ̸=j

sgn
((
ψ0(x)

)
(j)−

(
ψ0(x)

)
(0)− k

[(
ψ1(x)

)
(j)−

(
ψ1(x)

)
(i)

])
︸ ︷︷ ︸

Φk
j (x)

.

Now, we can condition x on being a member of Gk, and therefore the maximum difference between
the two empirical and true expectation is as

sup
k,p

∣∣∣ESn

[
⟨f∗k,p(x), ψ1(x)⟩ |x ∈ Gk

]
− Eµ

[
⟨f∗k,p(x), ψ1(x)⟩ |x ∈ Gk

]∣∣∣
≤

d∑
j=1

sup
k,p

∣∣∣ESn

[(
ψ1(x)

)
(j) · Φkj (x) |x ∈ Gk

]
− Eµ

[(
ψ1(x)

)
(j) · Φkj (x) |x ∈ Gk

]∣∣∣. (61)

Now, we bound the inner term of (61) in a high probability setting. To that end, we use Rademacher’s
inequality in [66, Theorem 26.5], which shows that maximum difference between the expected value

of a function h ∈ H over empirical distribution and the true distribution is 2R(H)+4c
√

ln 4/ϵ
n where

R(H) is the Rademacher’s complexity of the class of functionH and c is maximum value that h can
take. By defining

h(x) :=
(
ψ1(x)

)
(j) · Φkj (x),
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we have c = ∥
(
ψ1(x)

)
(j)∥∞ ≤ 1. Therefore, we have for all h,

sup
h∈H

ESn

[
h(x)]− Eµ

[
h(x)] ≤ 2R(H) + 4

√
ln 4d/ϵ

n
, (62)

with probability at least 1 − ϵ
d . Now, we can use contraction Lemma [66, Lemma 26.9] to show

that since ∥
(
ψ1(x)

)
(j)∥∞ ≤ 1, then R(H) ≤ R(F), where F = {Φkj (x), k ∈ R}. Moreover, F

contains functions that are all multiplication of d− 1 binary functions all in form of

sgn
((
ψ1(x)

)
(j)−

(
ψ1(x)

)
(0)− k

[(
ψ0(x)

)
(j)−

(
ψ0(x)

)
(i)

])
.

Lemma K.1 shows that the hypothesis class that contains products of all such function has a VC-
dimension that is bounded by 4. As a result, the Rademacher’s complexity of F is bounded using
[47, Corollary 3.8, Corollary3.18] as

R(F) ≤
√

4 log en/4

n
,

and therefore together with (62) for all h ∈ H we have

ESn

[
h(x)

]
− Eµ

[
h(x)

]
≤ 2

√
4 log en/4

n
+ 4

√
ln 4d/ϵ

n
,

with probability at least 1− ϵ
d . Hence, using (61) we have

sup
k,p

∣∣∣ESn

[
⟨f∗k,p(x), ψ1(x)⟩ |x ∈ Gk

]
− Eµ

[
⟨f∗k,p(x), ψ1(x)⟩ |x ∈ Gk

]∣∣∣
≤ 2d

√
4 log el/4

l
+ 4d

√
ln 4d/ϵ

l
, (63)

with probability at least 1 − ϵ. In the last inequality, we used Bonferroni’s inequality on ϵ/d bad
events that each summand of (61) is not within the concentration bound.
Next, we consider the region Hk in which there are at least two maximizer components of ℓk(x). In
this case, by definition of f̂k,p(x), among these maximizers, we choose the first maximizer of ψ0(x)
with probability p and the first minimizer of ψ1(x) with probability 1− p. Therefore, by condition
on these cases, and if we define

E(k, p) :=
∣∣∣ESn

[
⟨f̂k,p(x), ψ1(x)⟩ |x ∈ Hk

]
− Eµ

[
⟨f̂k,p(x), ψ1(x)⟩ |x ∈ Hk

]∣∣∣, (64)

then we have

sup
k,p

E(k, p) ≤ sup
k,p

pE(k, 1) + (1− p)E(k, 0) ≤ sup
k,p

E(k, 1) + sup
k,p

E(k, 0). (65)

Now, to bound E(k, 1), we first rewrite the closed-form solution of f̂k,1(x) as(
f̂k,1(x))(i) = sgn

((
ℓk(x)

)
(i) ≥ max

j

(
ℓk(x)

)
(j)− d

)∏
j<i

lij(x)
∏
j>i

uij(x), (66)

where lij(x) and uij(x) are defined as

lij(x) := 1− I(
ψ0(x)

)
(i)≤

(
ψ0(x)

)
(j)

I(
ℓk(x)

)
(j)≥maxt

(
ℓk(x)

)
(t)
,

and

uij(x) := 1− I(
ψ0(x)

)
(i)<

(
ψ0(x)

)
(j)

I(
ℓk(x)

)
(j)≥maxt

(
ℓk(x)

)
(t)
,

respectively. Note that the only difference between the definition of uij(x) and lij(x) is that uij(x)
permits the equality of

(
ψ0(x)

)
(i) with other components, while that is not the case for lij(x). This

difference lets us find the first component with the largest value of ψ0(x).
Now, we can rewrite sgn

((
ℓk(x)

)
(j) ≥ maxt

(
ℓk(x)

)
(t)

)
as the product

sgn
((
ℓk(x)

)
(j) ≥ max

t

(
ℓk(x)

)
(t)− d

)
:=

∏
l∈[1:d]

sgn
((
ℓk(x)

)
(j) ≥

(
ℓk(x)

)
(l)

)
.
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As shown in Lemma K.1, the class of such function has VC dimension of at most 4. Further-
more, multiplying a hypothesis class with a function such as sgn

((
ψ0(x)

)
(i) ≥

(
ψ0(x)

)
(j)

)
and

sgn
((
ψ0(x)

)
(i) >

(
ψ0(x)

)
(j)

)
does not increase the VC dimension (See proof of Lemma K.1, and

neither does negation. Therefore, in RHS of (66) we can count d number of functions, each with a
hypothesis class with the VC dimension of at most 4, and therefore using the early discussions in
this proof (58),

(
f̂k,1(x)

)
(i) is within a function class with the VC dimension of at most 8d log(3d).

Therefore, similar to (63) in previous part, we can bound supk,pE(k, 1) as

sup
k,p

E(k, 1) ≤2d

√
8d log(3d) log(en/

(
8d log(3d)

)
n

+ 4d

√
ln 4d/ϵ

n
, (67)

for l ≥ 8d log(3d) with probability at least 1− ϵ.
We can similarly, show that supk,pE(k, 0) is bounded as

sup
k,p

E(k, 0) ≤2d

√
8d log(3d) log(en/

(
(8n+ 8) log(3d)

)
n

+ 4d

√
ln 4d/ϵ

n
, (68)

Therefore, using (63), (64), (65), (67), (68), and the application Bonferonni’s inequality we have

sup
k,p

∣∣∣ESn

[
⟨f∗k,p(x), ψ0(x)⟩

]
− Eµ

[
⟨f∗k,p(x), ψ0(x)⟩

]∣∣∣
≤ 6d

√
8d log(3d) log el

(8n+8) log(3d)

l
+ 12d

√
ln 12d

ϵ

l
(69)

:= dn(ϵ), (70)

with probability at least 1 − ϵ. Therefore, by assuming ESn

[
⟨f∗k,p(x), ψ1(x)⟩

]
≤ α − dn(ϵ), we

assure that Eµ
[
⟨f∗k,p(x), ψ1(x)⟩

]
≤ α, with probability at least 1− ϵ, and this completes the proof.

L Proof of Theorem 5.3
We first introduce three lemmas that are useful in proving this theorem.
Lemma L.1. If δ is an ϵ-interior point of the set C =

{
Eµ

[
⟨f(x), ψ1(x)⟩

]
: f ∈ ∆X

d

}
, then δ is

(ϵ/2)-interior point of D =
{
ESn

[
⟨f(x), ψ1(x)⟩

]
: f ∈ ∆X

d

}
with probability 1− 2e−

lϵ2

4 .

Proof. The proof of this lemma is a direct application of Hoeffding’s inequality. In fact, for ∥ψ1∥∞ ≤
C that inequality together with Hölder’s inequality imply that

Pr
(∣∣Eµ[⟨f(x), ψ1(x)⟩

]
− ESn

[
⟨f(x), ψ1(x)⟩

]∣∣ ≥ ϵ/2) ≤ e− nϵ2

4C2 .

Therefore, if there exists f1 such that Eµ
[
⟨f1(x), ψ1(x)⟩

]
= ϵ, then with probability at least 1−e−

nϵ2

4C2

we have ESn

[
⟨f1(x), ψ1(x)⟩

]
∈ [ϵ/2, 3ϵ/2]. Similarly, if f2 exists such that Eµ

[
⟨f1(x), ψ1(x)⟩

]
=

−ϵ, then with probability 1 − e−
nϵ2

4C2 we have ESn

[
⟨f2(x), ψ1(x)⟩

]
∈ [−3ϵ/2,−ϵ/2]. As a result

of Bonferroni’s inequality, with probability at least 1 − 2e−
nϵ2

4C2 both these events happen, and
because of the convexity of the set D we can say that with such probability all values between
a0 ∈ [−3ϵ/2,−ϵ/2] and a1 ∈ [ϵ/2, 3ϵ/2] are in D too. This, of course at least contains the interval
[−ϵ/2, ϵ/2].

Lemma L.2. Assume that we have an approximation ψ̂1(x) of ψ1(x) with the error bounded as
∥ψ̂1(x)− ψ1(x)∥∞ ≤ ϵ. Further let ϵ′ ∈ R+ such that ϵ′ ≥ ϵ. Now, if for σ ∈ {−ϵ′, ϵ′} there exists
a rule f ∈ ∆X

d such that Eµ
[
⟨f(x), ψ1(x)⟩

]
= δ + σ, then there exists k ∈ R as well as p ∈ [0, 1]

such that Eµ
[
⟨f̂k,p(x), ψ̂1(x)⟩

]
= δ + ϵ′−ϵ

2 .
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Proof. Firstly, because of Hölder’s inequality we know that∣∣∣Eµ[⟨f(x), ψ1(x)⟩
]
− Eµ

[
⟨f(x), ψ̂1(x)⟩

]∣∣∣ ≤ ϵ∥f∗k,p(x)∥1 = ϵ,

for all f ∈ ∆X
d . Therefore, by setting σ = ϵ′ and σ = −ϵ′, we can show that for f1 ∈ ∆X

d such that

Eµ
[
⟨f1(x), ψ1(x)⟩⟩

]
= δ + ϵ′,

then

Eµ
[
⟨f1(x), ψ̂1(x)⟩

]
≥ δ + ϵ′ − ϵ,

and where for f2 ∈ ∆X
d

Eµ
[
⟨f2(x), ψ1(x)⟩⟩

]
= δ − ϵ′,

then

Eµ
[
⟨f2(x), ψ̂1(x)⟩

]
≤ δ − ϵ′ + ϵ.

Now, because of step (iii) of the proof of Theorem 4.1, we know that the set of constraints for
all rules within ∆X

d is convex. Therefore, since we can achieve two points f1, f2 such that the
constraint Eµ

[
⟨fi(x), ψ̂1(x)⟩

]
can achieve two points above δ + ϵ′ − ϵ and below δ − ϵ′ + ϵ, then

for each c ∈ [δ − ϵ′ + ϵ, δ + ϵ′ − ϵ] there exists f ∈ ∆X
d such that Eµ

[
⟨f(x), ψ̂1(x)⟩

]
= c. Now,

let c = δ + ϵ′−ϵ
2 . In the following, we show that there exists k ∈ R and p ∈ [0, 1] such that further

Eµ
[
⟨f̂k,p(x), ψ̂1(x)⟩

]
= c.

To that end, we first remind that Lemma J.2 shows that Eµ
[
⟨f̂k,0(x), ψ̂1(x)⟩

]
is monotonically non-

increasing in terms of k. We show that for k ∈ R− we have max ψ̂1(x)− ⟨f̂k,0(x), ψ̂1(x)⟩ ≤ − 2
k .

The reason is that if j ∈ argmax
l

(
ψ̂0(x)− kψ̂1(x)

)
(l) and j′ ∈ argmax

l

(
ψ̂1(x)

)
(l), then we have

(
ψ̂0(x)− kψ̂1(x)

)
(j) ≥

(
ψ̂0(x)− kψ̂1(x)

)
(j′),

which concludes that

−k
[(
ψ̂1(x)

)
(j)−

(
ψ̂1(x)

)
(j′)

]
≥

(
ψ̂0(x)

)
(j′)−

(
ψ̂0(x)

)
(j) ≥ −2.

Therefore, since

Eµ
[
⟨argmax ψ̂1(x), ψ̂1(x)⟩

]
= max
f∈∆X

d

Eµ
[
⟨f(x), ψ̂1(x)⟩

]
≥ δ + ϵ′ − ϵ,

where the last inequality holds due to the existence of f1, then for k ≤ −8/(ϵ′ − ϵ) we have

Eµ
[
⟨f̂k,0(x), ψ̂1(x)⟩

]
≥ δ + ϵ′ − ϵ− 2

−8/(ϵ′ − ϵ)
≥ δ + 3

ϵ′ − ϵ
4

.

Similarly, if we let k ≥ 8/(ϵ′ − ϵ) we can prove that

Eµ
[
⟨f̂k,0(x), ψ̂1(x)⟩

]
≤ δ − ϵ′ + ϵ+ 2l ≤ δ − 3

ϵ′ − ϵ
4

.

As a result, the set C = {k : Eµ
[
⟨f̂k,0(x), ψ̂1(x)⟩

]
≥ c} is non-empty and bounded below by − 8

ϵ′−ϵ .
Therefore, its infimum exists and is also bounded below by − 8

ϵ′−ϵ . Let us name that infimum k̂. Now,
if Eµ

[
⟨f̂k,0,0(x), ψ̂1(x)⟩

]
is continuous at k = k̂, then we can show that Eµ

[
⟨f̂k̂,0(x), ψ̂1(x)⟩

]
= c.

If not, then as shown in step (ii) of the proof of Theorem 4.1, and in particular in (57), there exists p
such that Eµ

[
⟨f̂k̂,p(x), ψ̂1(x)⟩

]
= c. This completes the proof.

Lemma L.3. If ∥ψ̂0 − ψ0∥∞ ≤ δ0 and ∥ψ̂1 − ψ1∥∞ ≤ δ1, and for k ∈ [−K,K], and k′ ≤
k − 2(δ0+Kδ1)

T for T ∈ R+, then we have

E
[
⟨f̂k,0,0(x)− f∗k′,0(x), ψ1(x)⟩

]
≤ T.
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Proof. The proof of this lemma bears similarity to that of Lemma J.2. Here too, we define ℓ̂k(x) =
ψ̂0(x)− kψ̂1(x). Next, we have

f̂k,0(x) =


1 i = min{ argmin

i∈argmax
l

(
ℓ̂k(x)

)
(l)

ψ̂1(x)}

0 otherwise
. (71)

Next, we need to show that
(
ψ1(x)

)
(j1) = ⟨rk′,0(x), ψ1(x)⟩ ≥ ⟨f̂k,0,0(x), ψ0(x)⟩ − T =(

ψ0(x)
)
(j2) − T . Assume otherwise, meaning that

(
ψ1(x)

)
(j1) <

(
ψ1(x)

)
(j2) − T . In this

case, we have

max ℓ̂k(x)
(a)
=

(
ℓ̂k(x)

)
(j2)

=
(
ℓk(x)

)
(j2) +

(
ψ̂0(x)− ψ0(x)

)
(j2)− k

(
ψ̂1(x)− ψ1(x)

)
(j2)

=
(
ℓk′(x)

)
(j2)− (k − k′)

(
ψ1(x)

)
(j2) +

(
ψ̂0(x)− ψ0(x)

)
(j2)− k

(
ψ̂1(x)− ψ1(x)

)
(j2)

(b)

≤
(
ℓk′(x)

)
(j2)− (k − k′)

(
ψ1(x)

)
(j2) + (δ0 +Kδ1)

(c)
<

(
ℓk′(x)

)
(j2)− (k − k′)

(
ψ1(x)

)
(j1)− (k − k′)T + (δ0 +Kδ1)

(d)

≤
(
ℓk′(x)

)
(j1)− (k − k′)

(
ψ1(x)

)
(j1)− (k − k′)T + (δ0 +Kδ1)

(e)

≤
(
ℓk′(x)

)
(j1)− (k − k′)

(
ψ1(x)

)
(j1)− 2

δ0 +Kδ1
T

T + (δ0 +Kδ1)

=
(
ℓk′(x)

)
(j1)− (k − k′)

(
ψ1(x)

)
(j1)− (δ0 +Kδ1)

=
(
ℓk(x)

)
(j1)− (δ0 +Kδ1)

=
(
ℓ̂k(x)

)
(j1)− (δ0 +Kδ1)−

(
ψ̂0(x)− ψ0(x)

)
(j1) + k

(
ψ̂1(x)− ψ1(x)

)
(j1)

(f)

≤
(
ℓ̂k(x)

)
(j1)− (δ0 +Kδ1) + (δ0 +Kδ1) =

(
ℓ̂k(x)

)
(j1),

which is a contradiction. Note that (a) holds because of definition of j2 and (71), (b) holds due
to approximation assumptions ∥ψ̂0 − ψ0∥∞ ≤ δ0 and ∥ψ̂1 − ψ1∥∞ ≤ δ1, (c) holds because
of the assumption

(
ψ1(x)

)
(j1) <

(
ψ1(x)

)
(j2) − T , (d) is followed by the definition of j1 on

maximizing ℓk′(x), and (e) holds because k ≥ k′+ 2(δ0+Kδ1)
T , and (f) is followed by approximation

assumptions.

We first formally express Theorem 5.3 as following:

Theorem L.4. Assume that (δ − ϵl, δ + ϵu) is a subset of of all achievable constraints
E
[
⟨f(x), ψ1(x)⟩

]
, and that ∥ψi(x)∥∞ ≤ 1 for i = 1, 2. Further, let the size n of validation

data be large enough such that dn(δ/3) ≤ ϵl
2 . Now, if the optimal predictor f∗k,0(x) is (γ, ∆)-

sensitive around optimal k∗ for ∆ ≥

(
2max{dn(δ/3),δ1}+

√
2γC(δ0+Kδ1)

)
C

1/γ

and γ ≤ 1, then for
n ≥ 16

ϵ2l
log 3

δ , and with probability at least 1− δ, the optimal empirical classifier, as of Algorithm 1
has an objective that is at most D0-far from the true optimal objective where D0 is defined as

E
[
⟨f∗k∗,p∗(x), ψ0(x)⟩

]
− E

[
⟨f̂k̂,p̂(x), ψ0(x)⟩

]
≤2

(2max{dn(δ/3), δ0}
C

)1/γ

+ 4

√
2(δ0 +Kδ1)

γC

+ 2(δ0 +Kδ1) + 2Kdn(δ/3), (72)

where K is an upper-bound to the absolute value of k∗.

In order to prove this theorem, we first define a measure of distance between two rules f1, f2 ∈ ∆R
d

as

Dk(f1, f2) := E
[
⟨f1(x)− f2(x), ψ0(x)− kψ1(x)⟩

]
. (73)
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Using this measure of distance, the difference of objectives between two rules f1 and f2 can be
written as

E
[
⟨f1(x), ψ0(x)⟩

]
− E

[
⟨f2(x), ψ0(x)⟩

]
=Dk∗(f1, f2)

+ k∗
(
E
[
⟨f1(x), ψ1(x)⟩

]
− E

[
⟨f2(x), ψ1(x)⟩

])
. (74)

Therefore, if two rules achieve similar constraints, and if Dk(f1, f2) is small enough, we can prove
that the two rules achieve similar objectives too, since k is bounded above by K.
In fact, if we let f1(x) = f∗k,p(x) and f2(x) := f̂k̂,p̂, where k and p are optimal solutions as in

Theorem 4.2, then due to this optimality, and because E
[
⟨f̂k̂,p̂, ψ1(x)⟩

]
≤ δ with probability at least

1− ϵ as shown in Theorem 5.1, then LHS of (74) is positive with at least the same probability. In this
proof, we show that how large is that term, and therefore, we show that how sub-optimal is f̂k̂,p̂ in
terms of the objective.
To that end, we first bound the difference between constraints. This bound can be achieved
similar to the proof of Theorem 5.1. In fact, there we showed that if the empirical con-
straint ESn

[
⟨f̂k̂,p̂, ψ1(x)⟩

]
≤ δ − dn(π), then using (69) the true expectation is bounded as

Eµ
[
⟨f̂k̂,p̂, ψ1(x)⟩

]
≤ δ with probability at least 1 − π. However, (69) is symmetric in empir-

ical and true constraint, i.e., if we show that ESn

[
⟨f̂k̂,p̂, ψ1(x)⟩

]
≥ δ − dn(π), then we have

Eµ
[
⟨f̂k̂,p̂, ψ1(x)⟩

]
≥ δ − 2dn(π) with probability at least 1− π.

To show ESn

[
⟨f̂k̂,p̂, ψ1(x)⟩

]
≥ δ − dn(π), we follow three steps, (i) because δ is (ϵl, ϵu)-interior

point of the set of constraints, i.e., (δ − ϵl, δ + ϵu) is a subset of all plausible constraints, then
δ − dn(π) is (ϵl − dn(π), ϵu + dn(π))-interior point. Now, using Lemma L.1 and by setting
ϵ′ = min{ϵl− dn(π), ϵu+ dn(π)} we can show that δ− dn(π) is ϵ′/2-interior point of the empirical
constraints with probability at least 1−2e−nϵ′2

4 , (ii) using the first step and assuming dn(π) ≤ ϵl/2 we
conclude that δ−dn(π) is dn(π)/2-interior point of the empirical constraints with the aforementioned
probability, (iii) because of Lemma L.2, we conclude that for ϵ = dn(π)/2, and with probability at
least 1− 2e−

nϵ′2
4 there exists k ∈ R and p ∈ [0, 1] such that ESn

[
⟨f̂k,p(x), ψ̂1(x)⟩

]
= δ − dn(π) +

dn(π)/2−ϵ
2 = δ − dn(π). As a result of the above discussion we conclude that with probability at

least 1− π − 2e−
nϵ′2

4 there exists k and p such that δ ≥ E
[
⟨f̂k,p(x), ψ1(x)⟩

]
≥ δ − 2dn(π). Now,

since we know that E
[
⟨f1(x), ψ1(x)⟩

]
= E

[
⟨f∗k,p(x), ψ1(x)⟩

]
= δ, then we have

0 ≤ E
[
⟨f1(x), ψ1(x)⟩

]
− E

[
⟨f2(x), ψ1(x)⟩

]
≤ 2dl(π), (75)

with probability at least 1− π − 2e−
nϵ′2

4 .
The above discussion together with (74) and the assumption of boundedness of k shows that the
difference of objectives is bounded with a high probability, if we bound Dk(f1, f2). However, before
we proceed with bounding that term, we should derive a relationship between k̂ and k∗ for the reasons
that we see in proving boundedness of Dk(f1, f2).
We have already shown that there exists p̂ ∈ [0, 1] such that δ ≥ E

[
⟨f̂k̂,p̂, ψ1(x)⟩

]
≥ δ − 2dl(π).

Here, Lemma L.3 shows that for k′ = k − 2(δ0+Kδ1)
T we have E

[
⟨f∗k′,0, ψ1(x)⟩

]
≥ δ − 2dl(π)− T

with probability at least 1 − π − 2e−
nϵ′2

4 . Moreover, using symmetry in Lemma L.3 and for
k′′ = k+ 2(δ0+Kδ1)

T we have E
[
⟨f∗k′′,0(x)− f̂k(x), ψ̂1(x)⟩

]
≤ T . Now, since ∥ψ1(x)− ψ̂1(x)∥∞ ≤

δ0, using Hölder’s inequality we conclude that E
[
⟨f∗k′′,0(x) − f̂k(x), ψ̂1(x)⟩

]
≤ T + 2δ1, and

consequently E
[
⟨f∗k′′,0(x), ψ̂1(x)⟩

]
≤ δ + T + 2δ0

Now that we have found a lower-bound on constraint of the rule f∗k−q(x) for q = 2(δ0+Kδ1)
T , then

if we find an upper bound on the constraint of the rule f∗k∗+e(x) for an e ∈ R+, then we can use
monotonicity of the constraint of f∗k in terms of k and prove a relationship between k and k∗. To that
end, we use detection assumption with which we can show that

E
[
⟨f∗
k∗+

1
C (2dn(π)+T )1/γ

, ψ1(x)⟩
]
≤ δ − 2dn(π)− T,
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where we assume that dn(π) ≤ (C∆)γ−T
2 . Now, using previous discussions conclude that

E
[
⟨f∗
k∗+

1
C (2dn(π)+T )1/γ

, ψ1(x)⟩
]
≤ E

[
⟨f∗k′,0, ψ1(x)⟩

]
,

with probability at least 1 − π − 2e−
nϵ′2

4 . This together with the first part of Lemma J.2 shows
that k′ ≤ k∗ + 1

C (2dn(π) + T )1/γ , or equivalently k ≤ k∗ + 2(δ0+Kδ1)
T + 1

C (2dn(π) + T )1/γ

with probability at least 1 − π − 2e−
nϵ′2

4 . Since we know that γ is clamped above by 1, and
using the inequality (1 + x)a ≤ 1 + ax for a ≥ 1 we can substitute the above inequality with

k ≤ k∗ + 2(δ0+Kδ1)
T +

(
2dn(π)

)1/γ

C

(
1 + T

γ(2dn(π))1/γ

)
. Now optimizing over T leads in T =√

2γC(δ0 +Kδ1), which concludes that k ≤ k∗ +∆uk with the aforementioned probability, where

∆uk =

(
2dn(π)

)1/γ

C + 2
√

2(δ0+Kδ1)
γC , if we have dn(π) ≤

(C∆)γ−
√

2γC(δ0+Kδ1)

2

Similarly, using sensitivity assumption, we have
E
[
⟨f∗
k∗+

1
C (2δ1+T )1/γ

(x), ψ1(x)⟩
]
≥ δ + 2δ1 + T,

where (2δ1+T )1/γ

C ≤ ∆. Next, using previous discussions conclude that

E
[
⟨f∗
k∗+

1
C (2δ1+T )1/γ

(x), ψ1(x)⟩
]
≥ E

[
⟨f∗k′′,0(x), ψ1(x)⟩

]
,

with the aforementioned probability. This, again, together with the first part of Lemma J.2 shows that
k′′ ≥ k∗− 1

C (2δ1+T )
1/γ , or equivalently k ≥ k∗− 1

C (2δ1+T )
1/γ− 2(δ0+Kδ1)

T . Therefore, by setting

T =
√

2γC(δ0 +Kδ1) we conclude that k ≥ k∗ −∆lk where ∆lk = (2δ1)
1/γ

C + 2
√

2(δ0+Kδ1)
γC ,

and assuming
(
2δ1+
√

2γC(δ0+Kδ1)
)1/γ

C ≤ ∆.
Next, we turn into bounding Dk∗(f1, f2). To that end, we first note that

tx(k
∗) := ⟨f∗k∗,p(x), ψ0(x)− k∗ψ1(x)⟩ = max

i

(
ψ0(x)− k∗ψ1(x)

)
(i), (76)

for all p ∈ [0, 1]. This is followed by the definition of f∗k∗,p(·). Similarly, we can show that

t̂x(k̂) := ⟨f̂k̂,p(x), ψ̂0(x)− k∗ψ̂1(x)⟩ = max
i

(
ψ̂0(x)− k̂ψ̂1(x)

)
(i),

for all p ∈ [0, 1]. Now, we can rewrite Dk∗(f1, f2) as

Dk∗(f1, f2) = E
[
⟨f∗k∗,p(x)− f̂k̂,p̂(x), ψ0 − k∗ψ1(x)⟩

]
= E[tx(k∗)]− E

[
⟨f̂k̂,p̂(x), ψ0 − k∗ψ1(x)⟩

]
= E[tx(k∗)]− E

[
⟨f̂k̂,p̂(x), ψ̂0 − k∗ψ̂1(x)⟩

]
− E

[
⟨f̂k̂,p̂(x), (ψ0(x)− ψ̂0(x))− k∗(ψ1(x)− ψ̂1(x)⟩

]
(a)

≤ E[tx(k∗)]− E
[
⟨f̂k̂,p̂(x), ψ̂0 − k∗ψ̂1(x)⟩

]
+ δ0 +Kδ1

= E[tx(k∗)]− E[t̂x(k̂)] + (k∗ − k)E
[
⟨f̂k̂,p̂(x), ψ̂0(x)⟩

]
+ δ0 +Kδ1

(b)

≤ E[tx(k∗)]− E[t̂x(k̂)] + |k∗ − k̂|+ δ0 +Kδ1, (77)
where (a) and (b) hold due to Hölder’s inequality.
Next, we show Lipschitzness of t(k) using its structure. In fact, due to its definition, t(k) is
the maximum of a set of lines with {ti =

(
ψ0(x)

)
(i) − k

(
ψ1(x)

)
(i)}n+1

i=1 in terms of k with
slope mi = −

(
ψ1(x)

)
(i) and y-intercept of bi =

(
ψ0(x)

)
(i). Therefore, such piecewise-linear

function has a Lipschitz factor equal to the maximum slope of the lines, which in here is equal to
maximi = maxi

∣∣∣(ψ1(x)
)
(i)

∣∣∣ ≤ 1. Therefore, t(k) is a 1-Lipschitz function. Therefore, using (77)
we can bound Dk∗(f1, f2) as

Dk∗(f1, f2) ≤ E[tx(k̂)− t̂x(k̂)] + 2|k∗ − k̂|+ δ0 +Kδ1

= E[max
i

(
ψ0(x)− k̂ψ1(x)

)
(i)−max

i

(
ψ̂0(x)− k̂ψ̂1(x)

)
(i) + 2|k∗ − k̂|+ δ0 +Kδ1

(a)

≤ 2|k∗ − k̂|+ 2(δ0 +Kδ1),
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where (a) holds because each component of
(
ψ0(x)− k̂ψ1(x)

)
and

(
ψ̂0(x)− k̂ψ̂1(x)

)
is bounded

by δ0 +Kδ1, and because the maximum operator is a norm, and therefore satisfies sub-additivity.
Finally, since we have bounded ∆ ≤ k∗ − k̂ ≤ ∆l with probability at least 1− π − 2e−nϵ

′2/4, then
we have

Dk(f1, f2) ≤ 2max{∆,∆l}+ 2(δ0 +Kδ1)

= 2

(
2max{dn(π), δ1}

)1/γ
C

+ 4

√
2(δ0 +Kδ1)

γC
+ 2(δ0 +Kδ1),

with such probability. This, together with (74) and (75) shows that

E
[
⟨f1(x), ψ0(x)⟩

]
− E

[
⟨f2(x), ψ0(x)⟩

]
≤2

(
2max{dn(π), δ1}

)1/γ
C

+ 4

√
2(δ0 +Kδ1)

γC

+ 2(δ0 +Kδ1) + 2Kdn(π),

which completes the proof.

M Proof of Theorem G.1
To prove this theorem, we first prove the following auxiliary lemma
Lemma M.1. For α, ϵ ≥ 0, the following holds

min
ri≥0,

∑n
i=1 ri≤α

n∑
i=1

ridi − min
ri≥0,

∑n
i=1 ri≤α+ϵ

n∑
i=1

ridi ≤ ϵ · max
i∈[1:n]

|di|

Proof of lemma. We know that for every positive vector r with
∑n
i=1 ri ≤ α+ ϵ, we could rewrite

that as a sum of two vectors r = r′ + r′′ for which
n∑
i=1

r′i ≤ α,

and
n∑
i=1

r′′i ≤ ϵ.

As a result, we can rewrite minri≥0,
∑n

i=1 ri≤α+ϵ
∑n
i=1 ridi as

min
ri≥0,

∑n
i=1 ri≤α+ϵ

n∑
i=1

ridi ≥ min
r′i≥0,

∑n
i=1 r

′
i≤α

min
r′′i ≥0,

∑n
i=1 r

′′
i ≤ϵ

n∑
i=1

(r′i + r′′i ) · di

= min
r′i≥0,

∑n
i=1 r

′
i≤α

r′idi + min
r′′i ≥0,

∑n
i=1 r

′′
i ≤ϵ

n∑
i=1

r′′i di.

Hence, we have that

min
ri≥0,

∑n
i=1 ri≤α+ϵ

n∑
i=1

ridi − min
r′i≥0,

∑n
i=1 r

′
i≤α

r′idi ≥ −
∣∣ min
r′′i ≥0,

∑n
i=1 r

′′
i ≤ϵ

n∑
i=1

r′′i di
∣∣

(a)

≥ −
n∑
i=1

r′′i · max
i∈[1:n]

|di| ≥ −ϵ · max
i∈[1:n]

|di|,

where (a) holds using Hölder’s inequality.

Next, we know that the optimal deterministic deferral policy should satisfy

min
r(xi)∈{0,1}, 1

n

∑
i r(xi)≤b

1

n

∑
i

r(xi)ℓH(xi, yi,mi) +
(
1− r(xi)

)
· ℓAI(xi, yi)

=
1

n

∑
i

ℓAI(xi, yi) + min
r(xi)∈{0,1}, 1

n

∑n
i=1 r(xi)≤b

1

n

n∑
i=1

r(xi)
(
ℓH(xi, yi,mi)− ℓAI(xi, yi)

)
(a)
=

1

n

∑
i

ℓAI(xi, yi) + min
r(xi)∈{0,1},

∑n
i=1 r(xi)≤⌊bn⌋

1

n

n∑
i=1

r(xi)
(
ℓH(xi, yi,mi)− ℓAI(xi, yi)

)
︸ ︷︷ ︸

B

,
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where (a) holds because r(xi) ∈ {0, 1} and therefore
∑
r(xi) ≤ bn if and only if

∑
r(xi) ≤ ⌊bn⌋.

Now, we turn to examining B. To that end, we first consider the following optimization problem:

min
r(xi)∈[0,1],

∑n
i=1 r(xi)≤⌊bn⌋

1

n

n∑
i=1

r(xi)
(
ℓH(xi, yi,mi)− ℓAI(xi, yi)

)
. (78)

For a minimizer r∗ of the above problem, we could form r̂ as

r̂i =

{
r∗i (xi) ℓH(xi, yi,mi)− ℓAI(xi, yi) ≤ 0

0 ℓH(xi, yi,mi)− ℓAI(xi, yi) > 0
.

One can see that r̂(x) is also a minimizer of the above problem. Hence, without loss of generality, we
assume that there is an optimal deferral policy that has only non-zero value when (x, y,m) ∈ A =
{(x, y,m) ∈ D :}. Furthermore, we know that since r̂(xi) ≤ 1, then

∑
i r̂(xi) ≤ min{⌊nb⌋, |A|}.

We argue that this inequality does not hold in a strict form, i.e., we have
∑
i r̂(xi) = min{⌊nb⌋, |A|}.

The reason is that otherwise one can find r′(x) ∈ [0, 1]X such that
∑

(xi,yi,mi)∈A f̂(xi) + r′(xi) =

min{nb, |A|} and because of negativity of ℓH(xi, yi,mi)− ℓAI(xi, yi), we can strictly reduce the
objective function that is a contradiction.
Next, we order ℓH(xi, yi,mi)− ℓAI(xi, yi) increasingly and we name them dj . In fact, we define
kj such that dj = ℓH(xkj , ykj ,mkj )− ℓAI(xkj , ykj ) and that d1 ≤ d2 . . . ≤ d|A| ≤ 0. For the sake
of simplicity, we further define rj := r(xkj ). As a result, the optimization problem in (78) can be
rewritten as

min
ri∈[0,1],

∑n
i=1 ri=min{⌊nb⌋,|A|}

n∑
i=1

ridi.

Here, we show that the optimizer of the above problem is ri = 1i≤min{⌊nb⌋,|A|}. To show that, we
consider r′i ∈ [0, 1] such that

∑n
i=1 r

′
i = min{⌊nb⌋, |A|}. Then, we have

n∑
i=1

1i≤min{⌊nb⌋,|A|}di −
n∑
i=1

r′idi =
∑

i: 1i≤min{⌊nb⌋,|A|}−r′i<0

(1i≤min{⌊nb⌋,|A|} − r′i) · di

+
∑

i: 1i≤min{⌊nb⌋,|A|}−r′i>0

(1i≤min{⌊nb⌋,|A|} − r′i) · di. (79)

Now, since we know that
∑
i 1i≤min{⌊nb⌋,|A|} =

∑
i r

′
i, we can define a parameter Q as

Q :=
∑

i: 1i≤min{⌊nb⌋,|A|}−r′i>0

1i≤min{⌊nb⌋,|A|} − r′i =
∑

i: 1i≤min{⌊nb⌋,|A|}−r′i<0

r′i − 1i≤min{⌊nb⌋,|A|}.

(80)

Next, by defining pi :=
1i≤min{⌊nb⌋,|A|}−r′i

Q for is in which 1i≤min{⌊nb⌋,|A|} − r′i > 0 and qi :=
r′i1i≤min{⌊nb⌋,|A|}

Q for is in which 1i≤min{⌊nb⌋,|A|} − r′i < 0 and 0 otherwise, we conclude that {pi}i
and {qi}i are probability mass functions. Hence, using (79) and (80), we have

n∑
i=1

1i≤min{⌊nb⌋,|A|}di −
n∑
i=1

r′idi = Q
(min{⌊nb⌋,|A|}∑

i=1

pidi −
n∑

i=min{⌊nb⌋,|A|}+1

qidi
)
.

The above identity contains the difference of two expected value over random variables that one is
always smaller than the other. As a result, we show that

n∑
i=1

1i≤min{⌊nb⌋,|A|}di −
n∑
i=1

r′idi ≤ 0,

which completes the proof.
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