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ABSTRACT

Generative modeling of crystalline materials using diffusion models presents a
series of challenges: the data distribution is characterized by inherent symmetries
and involves multiple modalities, with some defined on specific manifolds. Notably,
the treatment of fractional coordinates representing atomic positions in the unit
cell requires careful consideration, as they lie on a hypertorus. In this work, we
introduce Kinetic Langevin Diffusion for Materials (KLDM), a novel diffusion
model for crystalline materials generation, where the key innovation resides in the
modeling of the coordinates. Instead of resorting to Riemannian diffusion on the
hypertorus directly, we generalize Trivialized Diffusion Models (TDM) to account
for the symmetries inherent to crystals. By coupling coordinates with auxiliary
Euclidean variables representing velocities, the diffusion process is now offset to a
flat space. This allows us to effectively perform diffusion on the hypertorus while
providing a training objective consistent with the periodic translation symmetry of
the true data distribution. We evaluate KLDM on both Crystal Structure Predic-
tion (CSP) and De-novo Generation (DNG) tasks, demonstrating its competitive
performance with current state-of-the-art models.

1 INTRODUCTION

The discovery of novel compounds with desired properties is critical to several scientific fields, such
as molecular discovery (Bilodeau et al., 2022) and materials design (Merchant et al., 2023; Zeni
et al., 2025). In the case of crystalline materials, the search space is vast, but only a fraction of it is
physically plausible. The main challenges are to efficiently search the space for feasible materials and
to accurately estimate their properties. Conventional approaches usually combine random structure
search methods with ab-initio Quantum Mechanics (QM) methods (Oganov et al., 2019), such as
Density Functional Theory (DFT) (Kohn & Sham, 1965); however, structural optimization and
property evaluation with DFT can be computationally expensive. Recently, the field has witnessed a
paradigm shift where deep generative models have been introduced to supplement traditional search
methods (Anstine & Isayev, 2023), such as random search (Pickard & Needs, 2011) or evolutionary
algorithms (Glass et al., 2006; Wang et al., 2010). Deep generative models learn to approximate
underlying probability distributions from existing material data, and in turn can be sampled from to
generate novel materials based on the learned patterns.

Among deep generative models, Diffusion Models (DMs) have been successful on a variety of
data modalities relevant to the sciences, ranging from Partial Differential Equations (PDE) simu-
lations (Lippe et al., 2023; Rozet & Louppe, 2023; Shysheya et al., 2024) to molecule generation
(Hoogeboom et al., 2022; Xu et al., 2023; Cornet et al., 2024). Unlike molecules, crystalline materials
consist of a periodic arrangement of atoms, typically described by a unit cell, which serves as the
fundamental building block repeated to tile the entire space. A unit cell is typically represented
by three vectors that define its edges and the angles between them, along with the coordinates and
species of the atoms inside it. It can be considered a multi-modal data type, specifically a geometric
graph (Joshi et al., 2023) that combines discrete and continuous features. Notably, the atomic po-
sitions are described by coordinates that lie on a hypertorus. Dealing with non-Euclidean data in
the diffusion setting requires careful consideration: for example, restricting Brownian motion to a
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manifold requires incorporating its geometric structure to ensure trajectories remain on the manifold,
typically using projection or specialized approximations (Lou et al., 2023). Current diffusion models
for crystals either handle this by working in real space, through multi-graph representations (Xie
et al., 2022), or on fractional coordinates (Jiao et al., 2024a). In addition to this, the data distribution
is governed by inherent symmetries, including permutation invariance (swapping atom indices or
lattice bases), translation invariance (shifting atom coordinates), and rotation invariance (rotating
atom positions and the unit cell together).

When operating on fractional coordinates, the main challenge is to ensure the periodic translation
invariance of the learned distribution. This is usually enforced by parameterizing the score network
with a periodic translation invariant network. However, while existing models have successfully
demonstrated the potential of applying diffusion to crystalline materials generation, previous work
has highlighted the existence of a mismatch between architecture and supervision signal, resulting in
an inconsistent training objective (Lin et al., 2024). While the issue has been acknowledged in the
literature, the solution to this problem proposed in this paper is novel and elegant.

Contributions In this work, we introduce Kinetic Langevin Diffusion for Materials (KLDM),
a novel diffusion model for crystalline materials generation, where the key innovation resides in
the modeling of the fractional coordinates. Instead of resorting to Riemannian diffusion on the
hypertorus directly as in previous work (Jiao et al., 2024a), we generalize Trivialized Diffusion
Models (TDM) (Zhu et al., 2024) to estimate symmetric distributions over coordinates. Using the
structure of the torus, the diffusion process is offset to auxiliary Euclidean variables representing
velocities. We propose a specific parameterization of the resulting diffusion process leading to
faster training convergence and improved performance, while mitigating a mismatch in the training
objective of previous diffusion models for materials. Finally, we show that KLDM offers competitive
performance on Crystal Structure Prediction (CSP) and De-novo Generation (DNG).

2 BACKGROUND

2.1 CRYSTALLINE MATERIALS AND RELATED SYMMETRIES

In this section, we introduce the data modality we are interested in, along with the relevant symmetries.

Unit cell We are interested in learning the distribution of crystalline materials, described as the
repetition of a unit cell in 3D-space. We describe a unit cell containing K atoms as a fully connected
geometric graph x,

x = (f , l,a), (1)

where f = (f1, . . . ,fK) ∈ [0, 1)3×K denotes the fractional coordinates, l = (l1, l2, l3) ∈ R3×3

refers to the lattice vectors of the unit cell, and a = (a1, . . . , aK) ∈ ZK encodes the chemical
composition.

The infinite periodic structure can be represented as,
{
(a′,f ′)

∣∣a′ = a;f ′ = f + k1⊤,k ∈ Z3
}
, (2)

where 1 is a vector of ones with size K, and k = (k1, k2, k3) translate the unit cell to tile the entire
space. The lattice vectors l can also be compactly represented by a 6-dimensional vector consisting
of the three lattice vector lengths and their interior angles, such that the representation is invariant to
rotation.

Tasks Let pdata(x) denote the true data distribution over the unit cells, and let q(x) = 1
N

∑N
i=1 δxi

be the empirical data distribution defined by the N available samples. The goal of generative models
is to learn an approximate model pθ(x) of pdata(x) using q(x). In the realm of crystalline materials
generation, there are two tasks of interest.

Crystal Structure Prediction (CSP) aims at finding low-energy atomic arrangements (f , l), i.e. sta-
ble structures, for a given atomic composition a. This is framed as a conditional generation task
where a model pθ(f , l|a) is trained using samples {(f , l,a)}Ni=1 to approximate the true con-
ditional distribution pdata(f , l|a). Given a specific atomic composition a, the model is used to
generate possible coordinates f and lattice parameters l.
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De-novo Generation (DNG) aims at discovering novel and stable materials. The goal is to generate
samples from pdata(f , l,a). We approximate the distribution by training a generative model
pθ(f , l,a) on samples {(f , l,a)}Ni=1 and evaluate the samples generated by pθ.

Symmetries of crystalline materials Given a symmetry group G, a distribution is G-invariant if
for any group element g ∈ G, p(g · x) = p(x), with · denoting the group action. A conditional
distribution is G-equivariant if for any g ∈ G, p(g · x|g · y) = p(x|y).
A number of transformations leave a material x unchanged, meaning the true data distribution has
inherent symmetries that we want our model to inherit:

Permutation of atom indices

p(f , l,a) = p(g · f , l, g · a), ∀g ∈ SK ; (3)
Periodic translation of fractional coordinates

p
(
f , l,a

)
= p
(
g · f , l,a

)
∀g ∈ T3 ∼= R3/Z3; (4)

Rotation of lattice vectors

p
(
f , l,a

)
= p
(
f , g · l,a

)
, ∀g ∈ SO(3); (5)

Permutation of the lattice basis

p(f , l,a) = p(g · f , g · l,a), ∀g ∈ S3. (6)

Eq. (3) is naturally addressed by using graph neural networks, combined with a factorized prior
distribution with no dependency on the index. Combining fractional coordinates and rotation invariant
lattice representations addresses Eq. (5). Additional loss terms (Lin et al., 2024) or specific neural
network architectures can address Eq. (6). Remaining is to handle Eq. (4).

2.2 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) are generative
models that learn distributions through a hierarchy of latent variables, corresponding to corrupted
versions of the data at increasing noise scales. Diffusion models consist of a forward and a reverse
(generative) process. The forward process perturbs samples from the data distribution over time
through noise injection, resulting in a trajectory of increasingly noisy latent variables (xt)t∈[0,T ].
Given an initial condition, x0 ∼ p0(x) = pdata(x), the conditional distribution of (xt)t∈[0,T ] can be
described by a Stochastic Differential Equation (SDE),

dxt = f(t)xtdt+ g(t)dwt, (7)

where xt ∈ Rd denotes the latent variable at time t, f(t) and g(t) are scalar function of t, and
wt is a standard Wiener process in Rd. Due to the linearity of the drift term, for any t ≥ 0, the
corresponding transition kernel admits a closed-form expression (Särkkä & Solin, 2019). For instance,
in the Variance-Preserving SDE (VP-SDE) setting (Song et al., 2021), where f(t) = − 1

2β(t) and
g(t) =

√
β(t) for a fixed schedule β(t), the kernel writes pt|0(xt|x0) = N (xt|αtx0, σ

2
t I) with

αt = exp(−0.5
∫ t

0
β(s)ds) and σ2

t = 1 − exp(
∫ t

0
β(s)ds), and the process defined by Eq. (7)

converges geometrically from a low-variance Gaussian distribution centered around the data to
the standard Gaussian distribution pT (xt) = N (xt|0, I), which can be therefore interpreted as an
uninformative prior distribution.

The time-reversal of Eq. (7) is another diffusion process described given by the following reverse-time
SDE (Anderson, 1982),

dxt =
[
f(t)xt − g2(t)∇xt log pt(x)

]
dt+ g(t)dŵt, (8)

with pt(xt) being the density of xt and dŵt is a time-reversed Brownian motion increment. Sampling
from the prior distribution pT (xt) and simulating Eq. (8) results in a sample from pdata(x). In practice,
the score ∇xt

log pt(x) is not available and it is approximated using a score network sθ(xt, t), whose
parameters θ are trained via Denoising Score Matching (DSM),

LDSM = Et∼U [0,1],x0∼pdata(x),xt∼pt|0(xt|x0)

[
λ(t)

∥∥sθ(xt, t)−∇xt
log pt|0(xt|x0)

∥∥2
2

]
, (9)

where λ(t) is a time-dependent weighting function.
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2.3 EXISTING DIFFUSION MODELS FOR FRACTIONAL COORDINATES

As previously mentioned, the fractional coordinates define a hypertorus f ∈ [0, 1)3×K ∼= T3×K .
Most existing work has built upon DIFFCSP (Jiao et al., 2024a), that leverages the scored-based
framework of Song et al. (2021) extended to Riemmanian manifolds (De Bortoli et al., 2022; Jing
et al., 2022). In what follows, we present the key ingredients of DIFFCSP for modeling coordinates.

Transition kernel DIFFCSP implements a specific case of Eq. (7), with f(t) = 0 and g(t) =√
dσ2(t)/dt, where σ(t) = σ1−t

minσ
t
max with σmin and σmax being hyperparameters.

In practice, as sampling noisy fractional coordinates ft given f0 using a normal distribution does
not capture the bounded and cyclical nature of pdata(f), the solution consists in first sampling from
the normal distribution f̃t ∼ N (f0, σ

2(t)) and then wrapping the samples f = w(f̃t) – where
w(·) = · − ⌊·⌋ is the wrapping function. The transition kernel corresponding to this two-step
procedure corresponds to a wrapped normal distribution,

pt|0(ft|f0) ∝
∑

k∈Z3×K

exp
(
− ∥ft − f0 + k∥2

2σ2(t)

)
, (10)

whose gradient can then be approximated by truncating the series. Due to the wrapping operation,
Eq. (10) converges to a uniform distribution over the hypertorus as t → T .

Denoising score-matching Given the transition kernel pt|0(ft|f0), the approximate score function
can be optimized by minimizing a denoising score-matching objective, which at time t writes

Lft
(θ) = Ef0∼p0,ft∼pt|0(ft|f0)

[
λ(t)

∣∣∣∣∇ft
log pt|0(ft|f0)− sfθ (xt, t)

∣∣∣∣2
2

]
, (11)

where λ(t) = 1/Eft∼pt|0(ft|f0)

[
∥∇ft

log pt|0(ft|f0)∥22
]

scales the loss magnitude to be constant in
expectation for any time t (Jing et al., 2022; Jiao et al., 2024a).

3 KINETIC LANGEVIN DIFFUSION FOR MATERIALS GENERATION

We now introduce Kinetic Langevin Diffusion for Materials (KLDM), and particularize our exposition
to the fractional coordinates f ∈ [0, 1)3×K ∼= T3×K , used to define the positions of atoms inside the
unit cell. Given the isomorphism between the torus T and SO(2)1, the fractional coordinates can also
be represented as a collection of 2× 2 rotation matrices. We denote this alternative representation f̂ .
Since f̂ is defined on a direct product of Lie groups2, we propose to generalize Trivialized Diffusion
Models (TDM) (Zhu et al., 2024) to operate on geometric graphs similar to those defined in Eq. (1).

While TDM (Zhu et al., 2024) in principle allows for a proper treatment of the fractional coordinates
out-of-the-box, we find its direct application to crystalline materials generation to result in slow
convergence and subpar performance, as presented in Appendix E. In this section, we first present
TDM and then detail the proposed modifications needed to reach faster convergence and better results.

3.1 TRIVIALIZED DIFFUSION MODELS (TDM) FOR FRACTIONAL COORDINATES

Building upon previous work on momentum-based optimization (Tao & Ohsawa, 2020) and sampling
(Kong & Tao, 2023), TDM are specifically tailored to data defined on Lie groups, and exploit the
particular group structure, specifically the left-trivialization operation, to effectively perform diffusion
on the manifold via the Lie algebra. The main idea is to couple the variables of interest defined on a
manifold with auxiliary variables representing velocities defined on the Lie algebra. More precisely,
the fractional coordinates f̂ , elements of the group G, are coupled with velocities v̂ ∈ g defined on
the Lie algebra g. The latter corresponds to the tangent space TeG of the identity element of the
group e ∈ G, and crucially can be thought of as an Euclidean space, g ∼= R3×K . In the present
setting, velocities v̂ are 2× 2 skew-symmetric matrices.

1We provide an intuitive explanation of this correspondence in Appendix C.1.
2A Lie group is a smooth manifold equipped with a group structure denoted by G and smooth group

operations. We provide a short informal introduction to Lie groups and Lie algebra in Appendix B.
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For this reason, a standard diffusion process can be defined for v̂. Given its coupling with f̂
determined by left-trivialization (Zhu et al., 2024), the resulting forward process is defined as,

{
df̂t = f̂tv̂tdt,

dv̂t = −γv̂tdt+
√
2γdwg

t ,
(12)

where the Ordinary Differential Equation (ODE) describes the time evolution of the fractional
coordinates f̂t (that lie on a manifold) through a coupling with the velocity variables vt. The latter
evolve according to an SDE similar to that of Eq. (7), with constant drift f(t) = −γ and constant
volatility g(t) =

√
2γ. We note that, in principle, f and g could be time-dependent functions. In

summary, Eq. (12) corrupts f̂t living on a hypertorus via a standard Euclidean diffusion process on
the auxiliary velocities, while guaranteeing that the trajectory (f̂t)t∈[0,T ] remains on the manifold.

The time-reversal of Eq. (12) is given by
{
df̂t = f̂tv̂tdt,

dv̂t =
[
− γv̂t + 2γ∇v̂t

log pt(f̂t, v̂t)
]
dt+

√
2γdŵg

t ,
(13)

where t flows backwards and ∇v̂t
log pt(f̂t, v̂t) denotes the true score. The latter is unavailable but

can be approximated with a neural network sθ(f̂t, v̂t, t) trained using DSM as in Eq. (11). However,
we stress that the gradient is now with respect to v̂t, in contrast to Eq. (9) where it is with respect to
ft. As Eq. (12) there is no direct noise in the forward dynamics of f̂t, its time-reversal in Eq. (13)
needs no score-based correction, and it corresponds to the reverse ODE.

Discretized update of the fractional coordinates The ODEs in Eqs. (12) and (13) describe the
dynamics associated with the fractional coordinates. Since they lie on a manifold, integrating the
dynamics from time t to t + dt involves solving an exponential map. Intuitively, this operation
generalizes the concept of moving on a straight line to the manifold case. By considering an initial
velocity v̂t, an initial position f̂t and the step-size dt, the update of the positions can be written as

f̂t+dt = expf̂t
(f̂tv̂t) = f̂t expm(v̂tdt), (14)

since the matrix exponential is the exact solution of the exponential map (Zhu et al., 2024).

3.2 PRACTICALITIES

The formalism introduced in the previous section considered f̂ as a collection of rotation matrices.
However, the usual architectures used to parametrize score networks have been designed to process
fractional coordinates directly (Jiao et al., 2024a; Lin et al., 2024). We, therefore, want to work on
the hypertorus T3×K directly using the original representation of the fractional coordinates f . We
simply need to express the matrix multiplication appearing in the deterministic part of the dynamics in
Eqs. (12) and (13) as operations on the torus. Concretely, if we consider the exponential map defined
in Eq. (14) and that f̂ is a single rotation matrix by an angle θ ∈ [−π, π), the matrix exponential
corresponds to a periodic translation as follows,

f̂expm(v̂dt) → w(θ + vdt), (15)

where v̂ is a skew-symmetric matrix and v is its anti-diagonal element, while w(·) =
atan2

(
sin(·), cos(·)

)
is the wrapping function with atan2 denoting the signed atan function. We

provide more details in Appendix C.2. From now on, all operations are presented in terms of f .

Transition kernel (Zhu et al., 2024) The transition kernel corresponding to forward dynamics of
Eq. (12) writes

pt|0(ft,vt|f0,v0) = WNr

(
logm(f−1

0 ft)|µrt
,σ2

rt

)
· Nv

(
vt|µvt

,σ2
vt

)
, (16)

where WNr

(
· |µrt

,σ2
rt
) denotes the density of the Wrapped Normal distribution with mean µrt

=
1−e−t

1+e−t (vt + v0) and variance σ2
rt

= 2t + 8
et+1 − 4, while Nv is a Gaussian distribution with

µvt = e−tv0 and σ2
vt = 1− e−2t.

The joint distribution in Eq. (16) evolves from pdata(f) · p(v0), to a tractable limiting distribution that
is the product of a uniform distribution over T3×K in f and a standard Gaussian in v.
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Denoising score-matching objective As the diffusion process only acts on the (Euclidean) velocity
variables, we only need to compute the score of Eq. (16) with respect to the velocity variables, vt,
compared to the objective presented in Eq. (11) where the gradient was instead computed with respect
to the coordinates ft. It writes,

∇vt
log pt|0 = ∇rt

logWNr

(
rt|µrt

,σ2
rt

)∂µrt

∂vt
+∇vt

logNv

(
vt|µvt ,σ

2
vt

)
, (17)

where pt|0 stands for pt|0(ft,vt|f0,v0), and where we renamed rt = logm(f−1
0 ft).

3.3 PARAMETRIZATION OF THE SCORE FUNCTION

By carefully inspecting the target expression, we note that the target writes as a sum of two terms,

∇vt
logpt|0(ft,vt|f0,v0) =

1− e−t

1 + e−t
∇rt

WN
(
rt|µf ,σ

2
f

)
− εv

σvt

, (18)

where εv is the reparameterization noise sampled to obtain vt.

Initial velocities We consider zero initial velocities, i.e. p(v0) = δ(v0), which intuitively corresponds
to considering the coordinates f to be at rest at time t = 0. This allows the noise to gradually
propagate from the velocities to the coordinates over the course of the diffusion process. The benefit
of gradually adding noise, starting from with velocities close to zero, was also observed by Dockhorn
et al. (2022).

Simplified score parametrization While predicting the full score in Eq. (18) directly is possible,
alternative parameterizations exist, in particular when considering zero initial velocities, i.e. v0 = 0.
Using the relationship vt = µvt

+ σvt
εv and that µvt

= 0, the second term in Eq. (18) can be
computed in closed-form, εv = vt/σvt

, and does not need be learned. We are then left with one term
only, and the simplified parametrization writes,

svθ (xt, t) =
1− e−t

1 + e−t
sfθ (xt, t)−

vt

σ2
vt

, (19)

where superscript f in sfθ (xt, t) refers to the score contribution coming from the coordinates. More
details are provided in Appendix D. Empirically, we find the combination of the zero initial velocities
and the simplified parameterization to be beneficial for convergence and performance as discussed in
Appendix E.

Architecture of the score network As imposed by the symmetries inherent to the target distribution,
we parametrize our score network, sfθ (xt, t), using a graph neural network architecture. Its backbone
is similar to that of previous work (Jiao et al., 2024a), i.e. periodic translation invariant by featurizing
pairwise fractional coordinate differences with periodic functions of different frequencies. The sole
difference is that the network now takes velocity variables vt as additional inputs. Details about the
architecture are provided in Appendix H.

3.4 ENSURING CONSISTENT TRAINING TARGETS

Invariant approximate distribution As introduced in Eq. (4), the true data distribution pdata(x),
with x = (f , l,a) as defined in Section 2.1, is periodic translation invariant. Intuitively, this means
that unit cells equivalent up to periodic translation are equally likely. In DIFFCSP (Jiao et al.,
2024a), the learned distribution pθ(x) is made invariant by combining an invariant prior (i.e. the
uniform distribution on the hypertorus, in this case) with an approximate reverse process that is
equivariant to periodic translation, i.e. pθ(ft−1, |xt) = pθ(g · ft−1, |g · xt),∀g ∈ R3/Z3. This
is achieved in practice by having a score parametrization that is invariant to periodic translations,
i.e. sfθ (xt, t) = sfθ (g · xt, t),∀g ∈ R3/Z3. If the learned score sfθ (xt, t) correctly approximates the
score of the true target distribution, then we are guaranteed that samples from pθ(x) ≈ pdata(x).

Score parametrization and targets Although the score parametrization guarantees the desired
invariance of the learned distribution, we note that there exists a potential mismatch between training
targets and the invariance property of the score network. As a concrete example, we assume two
latents ft and g ·ft obtained by noising f0, i.e. ft and g ·ft are equivalent up to a periodic translation
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ft ∼ g · ft. On the one hand, we have that sfθ (xt, t) = sfθ (g · xt, t) by construction, in other words,
that the output of the score network is identical for both noisy samples. Whilst, on the other hand, the
corresponding target scores, ∇ft

log pt|0(ft|f0) and ∇g·ft
log pt|0(g · ft|f0), can be different. We

note that a similar observation has been previously pointed out in the literature (Lin et al., 2024) – we
defer the discussion about Lin et al. (2024) to Section 4.

While the mismatch can be seen from the perspective of the score network, the invariant architecture
is not the root of the problem, that instead originates from the employed corruption mechanism. The
corresponding transition kernel, described in Eq. (10), is equivariant, as for each pair (f0,ft), or
any periodically translated version thereof (g · f0, g · ft), we have that the target value is the same.
However, the noising process mapping f0 to ft does not ensure a unique correspondence between ft

and f0 – in other words, that among all possible f
′

0 ∼ f0, the noised f0 always remains the closest
to ft. The conditional score function used as training target in Eq. (9) always points towards f0, even
if an f

′

0 ∼ f0 lies closer to ft. With this in mind, we present now how this is solved in KLDM.

Velocity fields with zero net translation To enforce that for a given initial condition f0, all (ft)t∈[0,T ]

on trajectories generated by the forward process in Eq. (12) shares the same center of gravity as
the one of f0, we prevent velocities (vt)t∈[0,T ] from inducing a net overall translation at every time
step. This constraint ensures that all the (ft)t∈[0,T ] along the trajectory share the same group element
g ∈ R3/Z3 as f0 by avoiding that ft “jumps” to a different group element g at any t during the
corruption process. As velocities, v ∈ R3×K , are simple Euclidean variables, we leverage a trick
similar to that used for molecules, and only consider velocity fields living in the linear subspace
where the center of gravity is always zero (Xu et al., 2022; Hoogeboom et al., 2022). In the transition
kernel in Eq. (17), Nv consequently corresponds to a normal distribution where all samples are such
that

∑
i vi = 0. The corresponding velocity score output svθ (xt, t) in Eq. (19) is therefore also

constructed to be mean-free, i.e. as to not induce a net overall translation.

With this in place, we can now check that, given velocities vt, the target score in Eq. (17) is identical
for ft and g · ft,∀g ∈ R3/Z3, ensuring consistent training targets for the invariant score network.
We need only consider the first term in Eq. (17), as the second term only depends on velocities. By
inspecting the first term, we note that µrt

and σ2
rt

also only depends on the velocities. Therefore
we need only to check that rt = logm(f−1

0 ft) is the same if we consider g · ft instead of ft. Using
the fact that f0 and ft are always represented with the same group element by construction of the
forward process in Eq. (12) due to the zero net translation, we observe that rt is identical for any pair
(f0,ft) and (g · f0, g · ft), thereby ensuring consistency between training targets and the invariant
score network.

3.5 LATTICE VECTORS AND ATOM TYPES

Following previous work (Jiao et al., 2024a; Lin et al., 2024), we rely on standard Euclidean diffusion
as defined in Eqs. (7) and (8) for the lattice parameters l, where the drift and diffusion functions are
defined by a linear schedule. We represent l as a 6-dimensional vector, collecting side lengths and
angles. For the atomic compositions a, we consider three representations used in previous work:
one-hot encoding, as used in DIFFCSP (Jiao et al., 2024a); analog-bits (Chen et al., 2023), following
FLOWMM (Miller et al., 2024); and discrete diffusion, as done in MATTERGEN (Zeni et al., 2025).

4 RELATED WORK

Deep generative models for crystals Early deep generative models for crystal generation leveraged
image representations (Hoffmann et al., 2019; Court et al., 2020), ad-hoc frequency space repre-
sentations (Ren et al., 2022) or 3D coordinates without considering their geometric nature (Nouira
et al., 2018; Kim et al., 2020; Yang et al., 2024b). Since then, several works have leveraged diffusion
models operating on geometric graphs. The seminal approach of Xie et al. (2022) initially worked
in real space, and resorted to multi-graphs to account for periodicity (Xie & Grossman, 2018). The
diffusion process was limited to coordinates, with fixed lattice parameters and composition predicted
by a VAE. While such model has shown practical usefulness, e.g. to find novel 2D materials (Lyngby
& Thygesen, 2022), more recent diffusion models instead defined a (more flexible) joint diffusion
process for coordinates, lattice structure, and atom types (Jiao et al., 2024a; Zeni et al., 2025), and
accounted for periodicity by operating on fractional coordinates. Miller et al. (2024) generalized
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Riemannian flow matching (Lipman et al., 2023; Chen & Lipman, 2024) to the same setup. Sriram
et al. (2024) further leveraged the flexibility of flow matching and used a fine-tuned LLM as base
distribution. Others (Flam-Shepherd & Aspuru-Guzik, 2023; Gruver et al., 2024; Antunes et al.,
2024) also trained or fine-tuned LLMS on text representation of materials and demonstrated the
ability of such models to generate valid compositions, sometimes outperforming domain-specific
methods. Finally, a recent line of work (Jiao et al., 2024b; Levy et al., 2024) has sought to exploit
space-group information to restrict generation to the smallest asymmetric part of the unit cell only,
including disordered materials (Petersen et al., 2025).

Addressing training inconsistency To ensure a consistent training procedure, i.e. solving the
mismatch between the score parametrization and the target we highlighted in Section 3.4, Lin
et al. (2024) proposed a so-called Periodic CoM-free Noising scheme, where the sampled noise is
carefully constructed not to induce a translation of the CoM of f0. While this ensures the desired
correspondence between f0 and ft, the drawback is that the resulting kernel is no longer a Wrapped
Normal distribution as Eq. (10), and therefore Lin et al. (2024) propose to estimate the transition
kernel numerically, via a Von-Mises distribution where the concentration parameter is estimated via
Monte Carlo.

5 EXPERIMENTAL RESULTS

5.1 SETTINGS

Tasks We now evaluate KLDM on the two tasks outlined in Section 2.1: Crystal Structure Prediction
(CSP) and De-novo Generation (DNG).

Datasets We follow previous work (Jiao et al., 2024a) and evaluate KLDM across 4 datasets:
PEROV-5 (Castelli et al., 2012) including perovskite materials with 5 atoms per unit cell (ABX3),
all sharing the same structure but differing in composition; CARBON-24 (Pickard, 2020) including
materials made of carbon only and containing 6− 24 atoms in the unit cell; MP-20 including almost
all experimentally stable materials from the Materials Project (Jain et al., 2013), with unit cells
containing at most 20 atoms; and MPTS-52 also extracted from the Materials Project (Jain et al.,
2013), with unit cells containing up to 52 atoms.

Sampling schemes As DIFFCSP (Jiao et al., 2024a) and EQUICSP (Lin et al., 2024) both rely on a
Predictor-Corrector (PC) integrator (Song et al., 2021), we consider two different integration schemes
for KLDM: the first combines Euler–Maruyama (EM) for the lattice parameters with an exponential
integrator for the velocities, while the second applies a PC scheme to the velocities while retaining
EM for the other modalities. Details are provided in Algorithms 3 and 4.

5.2 CRYSTAL STRUCTURE PREDICTION (CSP) TASK

CSP metrics We follow the evaluation procedure of Xie et al. (2022) to assess the quality of
the structures generated by KLDM. We report Match Rate (MR), measuring the proportion of
reconstruction from qθ(f , l|a) that are satisfactorily close to the ground truth structures as per
StructureMatcher (Ong et al., 2013); and Root-Mean-Square-Error (RMSE), quantifying the
RMSE between coordinates of matching reconstructions and ground truth structures.

Baselines We compare KLDM to the following recent generative models: CDVAE (Xie et al., 2022),
DIFFCSP (Jiao et al., 2024a), EQUICSP (Lin et al., 2024), and FLOWMM (Miller et al., 2024).

CSP results We perform CSP on all datasets and present the corresponding results in Table 1. We
note that this task constitutes an ideal test bench for measuring the effect of the novel treatment of
the fractional coordinates specific to KLDM. On the simpler PEROV-5 and CARBON-24, KLDM
performs on par with the compared models for the @1 experiment, and yields improved results for
@20. We note that on these datasets the PC sampler did not improve the quality of the samples. On
the realistic MP-20 and MPTS-52, KLDM already yields a competitive MR for the EM sampler,
while the PC sampler improves the MR and lower the RMSE even further.
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Table 1: Crystal Structure Prediction (CSP) task results. Baseline results are extracted from the
respective papers. @ indicates the number of samples considered to evaluate the metrics, e.g. @20
indicates the best of 20. Error bars for @1 represent the standard deviation over the mean at sampling
time across 20 different seeds. For the CARBON-24 dataset, the CSP@1 task is ill-defined due to its
one-to-many nature, and we only report the obtained values for completeness. Most notably, KLDM
compares favorably to the competing models, achieving performance comparable to or better than
state-of-the-art methods.

PEROV-5 CARBON-24 MP-20 MPTS-52
MODEL MR [%] ↑ RMSE ↓ MR [%] ↑ RMSE ↓ MR [%] ↑ RMSE ↓ MR [%] ↑ RMSE ↓

METRICS @ 1

CDVAE 45.31 0.1138 17.09 0.2969 33.90 0.1045 5.34 0.2106
DIFFCSP (PC) 52.02 0.0760 17.54 0.2759 51.49 0.0631 12.19 0.1786
EQUICSP (PC) 52.02 0.0707 − − 57.59 0.0510 14.85 0.1169
FLOWMM 53.15 0.0992 23.47 0.4122 61.39 0.0566 17.54 0.1726
KLDM (EM) 53.14 ±.6 0.0758 ±.002 18.04 ±.8 0.3188 ±.008 61.72 ±.2 0.0686 ±.001 17.71 ±.3 0.2023 ±.005

KLDM (PC) 52.72 ±.8 0.0678 ±.002 17.26 ±.7 0.2827 ±.006 65.37 ±.1 0.0455 ±.001 21.46 ±.2 0.1339 ±.002

METRICS @ 20

CDVAE 88.51 0.0464 88.37 0.2286 66.95 0.1026 20.79 0.2085
DIFFCSP (PC) 98.60 0.0128 88.47 0.2192 77.93 0.0492 34.02 0.1749
FLOWMM 98.60 0.0328 84.15 0.3301 75.81 0.0479 34.05 0.1813
KLDM (EM) 99.97 0.0152 90.19 0.2154 83.68 0.0532 39.04 0.1865
KLDM (PC) 99.94 0.0226 85.86 0.1988 81.08 0.0440 39.81 0.1462

5.3 DE-NOVO GENERATION (DNG) TASK

DNG metrics We evaluate samples using a machine-learning interatomic potential, based on the
open-source pipeline from MATTERGEN (Zeni et al., 2025). Sample quality is measured in terms
of: RMSD between the generated samples and their relaxed structure, where lower values mean
generated structures are closer to equilibrium; the average energy above the hull, with lower values
meaning that generated materials are closer to (meta-)stability; stability, as measured by the proportion
of samples with an energy above the hull below 0.1eV/Å; and S.U.N (stable, unique, novel) that
measure the percentage of promising generated samples. We also provide additional results with the
usual proxy metrics in Appendix F.

DNG baselines We compare KLDM to DIFFCSP and MATTERGEN-MP on MP-20. For the
baselines, we report numbers borrowed from MATTERGEN’s own benchmark. We note that the
compared models were trained on a re-optimized version of MP-20 where some chemical elements
have been removed, specifically noble gases, radioactive elements and elements with atomic number
greater than 84. Samples with energy above the hull bigger than 0.1 eV / atom were also filtered out.
Our model was trained on the original MP-20.

DNG results As described in Section 3.5, the CSP model formulation can be readily extended to the
DNG task, by having an additional diffusion process operating on the atom types, a. To sample from
pθ(x), we first the number of atoms contained in the unit cell K from the empirical distribution over
the training set, i.e. pθ(x|K)p(K). For completeness, we compare three ways of performing diffusion
on the discrete atom types: continuous diffusion on one-hot encoded atom types (C), continuous
diffusion on analog bits (C-AB), and discrete diffusion with absorbing state (D). The results are
presented in Table 2. Notably, when relying on analog-bits or discrete diffusion to model the atom
types, KLDM performs better than DIFFCSP in terms of RMSD, energy above the hull and stability,
while being slightly subpar on S.U.N.. Compared to MATTERGEN-MP, we believe that the remaining
gap can be explained by different elements: (1) a more expressive denoiser architecture operating
in real space, (2) a PC sampler on the lattice parameters, and (3) the effect of the pre-processing of
MP-20.

5.4 ABLATION STUDY

In this section, we analyze the impact of the different design choices: the simplified parametrization
of the score formulated in Eq. (19) compared to the direct parametrization of Eq. (18), the effect
of different distributions on the initial velocities, and the effect of enforcing a zero-net translation
velocity field. Regarding the score parametrization, Table 3 and Fig. 1 (Right) show that the simplified
parametrization leads to a better final performance across sampling schemes and datasets. Using
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Table 2: Stability metrics on MP-20 as evaluated per MATTERGEN’s pipeline (Zeni et al., 2025)
(using MatterSim-v1-1M (Yang et al., 2024a)). The numbers reported for baselines are extracted
from MATTERGEN’s own benchmark. We note that KLDM was trained on the original MP-20
dataset, whereas MATTERGEN-MP* and DIFFCSP* were trained on a modified version thereof –
i.e. structures were re-optimized, some chemical elements removed and samples with energy above
the hull greater than 0.1 eV/atom removed. For completeness, we compare 3 ways of performing
diffusion on the discrete atom types: continuous diffusion on one-hot encoded atom types (C),
continuous diffusion on analog bits (C-AB), and discrete diffusion with absorbing state (D). For
each variant of KLDM, we generated 10000 samples, from which we discarded samples that contain
elements not supported by the validation pipeline. We report average and standard deviation across 3
seeds at sampling time. Notably, when relying on analog-bits or discrete diffusion to model the atom
types, KLDM performs better than DiffCSP in terms of RMSD, energy above the hull and stability,
while being slightly subpar on S.U.N..

RMSD [Å] ↓ ABOVE HULL [eV/atom] ↓ STABLE [%] ↑ S.U.N. [%] ↑
MATTERGEN-MP* 0.147 0.201 47.05 25.76
DIFFCSP* 0.413 0.189 41.25 20.13
KLDM (C) 0.371 ±.01 0.269 ±.01 38.62 ±.1 16.67 ±.1

KLDM (C-AB) 0.296 ±.01 0.187 ±.01 49.84 ±.1 17.91 ±.1

KLDM (D) 0.283 ±.01 0.155 ±.01 59.21 ±.1 18.52 ±.1

zero-initial velocities significantly improves both performance and convergence speed as seen in
Fig. 1 (Center), which can potentially also be a consequence of the simplified parameterization. With
these two design choices in place, enforcing a zero-net translation velocity field provides further
improvements in terms of the validation set match rate, though to a lesser extent, as reported in Fig. 1
(Left). We provide a more detailed discussion in Appendix E.

6 CONCLUSION

In this work, we presented KLDM, a novel diffusion model for periodic crystal structure generation.
The key innovation of the model resided in the modeling of the fractional coordinates. By coupling
coordinates with auxiliary Euclidean variables representing velocities, the diffusion process was offset
to a flat space, allowing us to effectively perform diffusion on the hypertorus. It additionally provided
a training objective consistent with the periodic translation symmetry of the true data distribution. We
presented a simplified parameterization that allowed faster convergence and improved performance.

Empirically, we demonstrated the competitive performance of KLDM compared to current state-of-
the-art baselines. On the CSP task, KLDM showed improved performance on the two larger datasets,
MP-20 and MPTS-52. On the DNG task, KLDM improves upon DIFFCSP (Jiao et al., 2024a) on
most metrics on the MP-20 dataset while being slightly subpar compared to MATTERGEN (Zeni
et al., 2025).

Further validation with proper DFT simulations is a natural next step, to measure that the empirical
performance improvement measured by proxy metrics and machine learning interatomic potential also
translates to a practical advantage. We expect further improvements by optimizing the architecture and
by investigating the combination of modality-specific noise schedules. Another interesting direction
involves, instead, considering an informed prior for the lattice parameters, as it has been shown to
provide a useful inductive bias (Miller et al., 2024). We also envision that including space-group
information (Jiao et al., 2024b) or Wyckoff positions (Levy et al., 2024) with our approach could
yield further performance improvements.
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Andreas Arvanitogeōrgos. An introduction to Lie groups and the geometry of homogeneous spaces,
volume 22. American Mathematical Soc., 2003.

Camille Bilodeau, Wengong Jin, Tommi Jaakkola, Regina Barzilay, and Klavs F Jensen. Generative
models for molecular discovery: Recent advances and challenges. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 12(5):e1608, 2022.

Ivano E Castelli, David D Landis, Kristian S Thygesen, Søren Dahl, Ib Chorkendorff, Thomas F
Jaramillo, and Karsten W Jacobsen. New cubic perovskites for one-and two-photon water splitting
using the computational materials repository. Energy & Environmental Science, 5(10):9034–9043,
2012.

Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth
International Conference on Learning Representations, 2024.

Ting Chen, Ruixiang ZHANG, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning. In The Eleventh International Conference on Learning
Representations, 2023.

François RJ Cornet, Grigory Bartosh, Mikkel N Schmidt, and Christian A Naesseth. Equivariant
neural diffusion for molecule generation. Advances in Neural Information Processing Systems, 37,
December 2024.

Callum J Court, Batuhan Yildirim, Apoorv Jain, and Jacqueline M Cole. 3-d inorganic crystal
structure generation and property prediction via representation learning. Journal of Chemical
Information and Modeling, 60(10):4518–4535, 2020.

Daniel W Davies, Keith T Butler, Adam J Jackson, Jonathan M Skelton, Kazuki Morita, and Aron
Walsh. Smact: Semiconducting materials by analogy and chemical theory. Journal of Open Source
Software, 4(38):1361, 2019.

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
Arnaud Doucet. Riemannian score-based generative modelling. Advances in Neural Information
Processing Systems, 35:2406–2422, 2022.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
damped langevin diffusion. In The Tenth International Conference on Learning Representations,
ICLR, 2022.

Daniel Flam-Shepherd and Alán Aspuru-Guzik. Language models can generate molecules, materials,
and protein binding sites directly in three dimensions as xyz, cif, and pdb files. arXiv preprint
arXiv:2305.05708, 2023.

Colin W Glass, Artem R Oganov, and Nikolaus Hansen. Uspex—evolutionary crystal structure
prediction. Computer physics communications, 175(11-12):713–720, 2006.

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C. Lawrence Zitnick, and
Zachary Ward Ulissi. Fine-tuned language models generate stable inorganic materials as text. In
The Twelfth International Conference on Learning Representations, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jordan Hoffmann, Louis Maestrati, Yoshihide Sawada, Jian Tang, Jean Michel Sellier, and Yoshua
Bengio. Data-driven approach to encoding and decoding 3-d crystal structures. arXiv preprint
arXiv:1909.00949, 2019.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pp. 8867–8887.
PMLR, 2022.

11



Published as a workshop paper at AI for Accelerated Materials Design - ICLR 2025

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, et al. Commentary: The
materials project: A materials genome approach to accelerating materials innovation. APL
materials, 1(1), 2013.

Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
structure prediction by joint equivariant diffusion. Advances in Neural Information Processing
Systems, 36, 2024a.

Rui Jiao, Wenbing Huang, Yu Liu, Deli Zhao, and Yang Liu. Space group constrained crystal
generation. In The Twelfth International Conference on Learning Representations, 2024b.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi S. Jaakkola. Torsional
diffusion for molecular conformer generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Chaitanya K Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the expressive
power of geometric graph neural networks. In International conference on machine learning, pp.
15330–15355. PMLR, 2023.

Sungwon Kim, Juhwan Noh, Geun Ho Gu, Alan Aspuru-Guzik, and Yousung Jung. Generative
adversarial networks for crystal structure prediction. ACS central science, 6(8):1412–1420, 2020.

Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects.
Physical review, 140(4A):A1133, 1965.

Lingkai Kong and Molei Tao. Convergence of kinetic langevin monte carlo on lie groups. In Shipra
Agrawal and Aaron Roth (eds.), The Thirty Seventh Annual Conference on Learning Theory
(COLT), volume 247, pp. 3011–3063. PMLR, 2023.
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A ORGANIZATION OF THE SUPPLEMENTARY MATERIAL

In this supplementary, we start by first providing a short introduction to Lie groups and manifolds in
Appendix B, aiming at explaining the intuition behind Eq. (7), Eq. (13), and the TDM and KLDM
model in general. In Appendix C, we then provide some intuitions as to why data on a torus can be
represented either as a rotation matrix or an angle. In addition to that, we show that in the case of the
torus, the matrix exponential corresponds to a simple rotation matrix that allows us to express the
update on the coordinates as a translation. In Appendix D we instead derive step-by-step the target
used to train the score network in the case of KLDM. Ablations of all the different design choices that
led to the final KLDM model are presented in Appendix E, while we report additional DNG results
in Appendix F. We then present pseudocode for all the core algorithms needed to implement our
approach in Appendix G. We conclude with Appendix H, where we present the experimental details
that can be used to reproduce our results, and we present a brief discussion on the main differences
between KLDM and the other baselines.

B A PRIMER ON LIE GROUPS AND MANIFOLDS

In this section, we provide a simple and intuitive explanation of several of the mathematical concepts
used to present our Kinetic Langevin diffusion dynamics. The fractional coordinates f used to define
the positions of atoms inside the unit cell define a hypertorus, i.e. f ∈ [0, 1)3×K ∼= T3×K . The
hypertorus is a special case of a Lie Group, which is a smooth manifold equipped with a group
structure G and smooth group operations.

Lie group In mathematics, a group is denoted by (G, ·), with G being the non-empty set of elements
that belongs to the group and · being the group operation that combines any two elements a, b in the
group G and results in an element of G. The group operation · has to satisfy three different properties:

• (a · b) · c = a · (b · c) ∀a, b, c ∈ G (associativity property)
• For every element a ∈ G, there should be an unique element e ∈ G, such that e · a = a and
a · e = a (existence of an unique identity element)

• For every element a ∈ G there is an element b ∈ G such that a · b = e and b · a = e.
(existence of an inverse element)

If the group operation · is also commutative, i.e. a · b = b · a ∀a, b ∈ G, then the group is called
an Abelian group. This property holds in the case of the hypertorus T3×K defined by the fractional
coordinates f and this fact allows us to define the transition kernel Eq. (16) in closed form. For a
complete derivation of this, we refer to Zhu et al. (2024).

We can formalize two different operations that can be done with elements of the group G that will
be useful to shed some intuition about the reason why we can model data on a manifold by just
modeling quantities on Euclidean space. Let us consider two elements a, g ∈ G of the group. The left
translation of g by a is defined as the operation La : G → G which takes g as input and returns a·g, or
equivalently g 7−→ a ·g. In the same way, we can define the right translation as Ra : G → G, g 7−→ g ·a.

Tangent space Before describing other key elements of a Lie group we have to introduce the
concept of tangent space, which comes from the fact that a Lie group is also a manifold. Possible
ways to understand the notion of a manifold involve thinking about it as a hypersurface embedded in
a higher-dimensional space or as a collection of points that are somewhat connected to generate a
surface. A tangent space is a vector space containing all the vectors that are tangential to a specific
point in the manifold, i.e. any element g ∈ G in the case of a Lie group, and it is usually denoted
as TgM for manifolds and TgG for Lie Group. The tangent space offers us a linearized view of the
manifold in the neighborhood of the point g and therefore it is usually considered as Euclidean space,
i.e. TgG ∼= Rd, with d being the dimension of g. If we consider all the elements in the group G, the
set of all the tangent spaces associated with these elements form the tangent bundle, denoted with
T M or T G, depending if we are working with a manifold or a Lie group.

Lie algebra, left-invariant vector fields and exponential maps The usual definition of the Lie
algebra, which we denote by g, consists of identifying it as the tangent space TeG at the identity
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element of the group e ∈ G. Since, as we have seen before, the tangent space is approximately
Euclidean, then we have that we can treat the Lie algebra g as Euclidean too. A different approach
to introduce the Lie algebra g is, instead, by considering the vector fields that are invariant to left-
translation. This is still related to the previous definition and, in a certain way, tries to explain why
we can think of the Lie algebra g that way. We start by defining a vector field X defined on the group
G as X : G → T G, which takes an element of the group g ∈ G and returns a vector Xg ∈ TgG
in the tangent space of the point g. Let us recall again the left-translation operation La defined
above, that given two group elements a, g ∈ G returns the new element a · g. We can now introduce
the differential operation of La, defined as (dLa)g : TgG → Ta·gG, which can be interpreted as
operating on tangent vectors instead of directly on the group elements. Then, a vector field is said
to be a left-translation invariant vector field if the following relation is satisfied for any two group
elements a, b ∈ G

(dLa)g(Xg) = Xa·g . (20)

Intuitively, a vector field is said to be left-invariant if we take a vector Xg ∈ TgG in the tangent space
of g ∈ G and by applying the differential (dLa)g of the left-operation La we get a vector Xa·g that
lies on the tangent space of the element a · g ∈ G of the group that results from left-translating g by
using element a. Therefore, the Lie algebra can be seen as the set of all the vector fields defined on G
that are left-translation invariant, thus the set of vector fields that satisfy Eq. (20). In particular, it can
be shown (Arvanitogeōrgos, 2003) that there exists a linear isomorphism between the Lie algebra
g and the tangent space of G at the identity element e, i.e. g ∼= TeG. This allows us to rewrite the
differential operation in terms of the identity element as follows:

(dLa)e : TeG → Ta·eG = TaG
(dLa)e(Xe) = Xa·e = Xa

(21)

where we use the property of the identity element that states that a·e = a. The Eq. (21) tells us that we
can consider any vector Xe ∈ TeG in the tangent space of the identity element, which is an Euclidean
space and by using the operation (dLa)e(Xe) translate that into a tangent vector Xa ∈ TaG. At this
point, we have both the element a ∈ G and a tangent vector Xa ∈ TaG in its tangent space. An
additional operation that can be computed is the exponential map expa : TaG → G, which computes
the point a′ ∈ G that we reach by starting from a with velocity Xa in one unit time. It can be
interpreted as extending the notion of moving in an Euclidean space, which in that case corresponds
to moving along a straight line, to the manifold.

How does this relate to modeling data that lives on a torus? The fractional coordinates of
crystalline materials lie on the hypertorus T3×K , a particular case of an Abelian Lie group. As
already mentioned in the main paper, diffusion-based models can either take an intrinsic or extrinsic
parametrization of the manifold. The first approach requires defining the noising SDE directly on
the manifold. In this case, the Brownian motion corresponds to the heat kernel on a manifold and
the computation of it usually requires multiple approximations which leads to learning a suboptimal
score function. The extrinsic approach, instead, defines the forward SDE on the ambient space, which
is Euclidean by assumption, but then requires a projection operation that “puts back” the data in the
manifold. In our case, we can leverage the fact that the torus is an Abelian Lie group and exploits
some of the operations we have presented in the previous section, for example, the fact that we have
a vector space that is Euclidean and that we have an operation to translate vectors defined in this
space to the tangent space at any point of the manifold. Therefore, our approach can be interpreted as
follows: we start by coupling the fractional coordinates, which are the elements of our Lie group,
with a velocity, which corresponds to a vector in tangent space at those positions. The coupling
follows Eq. (12), which can be interpreted as similar to Newton’s second law. Using the fact that the
torus is an Abelian Lie group, we have seen that these velocity vectors can be expressed in terms of
other vectors that live in the Lie algebra g, which is Euclidean. This allows us to define a standard
Euclidean diffusion model over these velocities in g and use Eq. (20) to get the corresponding
velocities tangential to the position we are interested. We can then translate the velocities defined on
g to tangential velocities at the specific data we are interested in modeling by using Eq. (21) and then
use the exponential map to implicitly noise them. This is another simple explanation of the coupled
process defined by Eq. (12). In the case we represent both the vectors on the Lie algebra g and the
elements of the group as d× d matrices, then the differential operation in Eq. (21) can be explicitly
calculated as matrix multiplication. Therefore, if we have a vector Xe ∈ g and an element a ∈ G,
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we can just get the tangent vector in a by simply performing the following matrix multiplication
Xa = aXe ∈ TaG. Moreover, the exponential map operation, as it involves a constant velocity,
can be obtained in closed form with the exact solution given by the matrix exponential. If we are
interested in computing the group element a′ we reach by starting in a with velocity Xa, we can just
compute a′ = expa(Xa) = a expm(Xa) which involves the computation of a matrix exponential.

C SAMPLING FROM THE NOISING AND DENOISING PROCESSES

C.1 INTUITION ABOUT THE CORRESPONDENCE BETWEEN T AND SO(2)

In the following, we provide an intuitive explanation of the isomorphism between T and SO(2). Let
us consider a variable x ∈ [a, b), we are going to work on an alternative representation thereof, that
we will call g – a representation in SO(2).

First, we are going to map x to an angle θ as follows,

θ = 2π

(
x

b− a
− 1

2

)
,

such that θ ∈ [−π, π).

Then, we can construct the representation g as,

g =

[
cos θ sin θ
− sin θ cos θ

]
.

From g, we can readily recover θ,

θ = sign(g0,1) · arccos g0,0,

and in turn x,

x =

(
θ

2π
+

1

2

)
(b− a).

C.2 UPDATE OF POSITIONS IS EQUIVALENT TO PERIODIC TRANSLATION

As we have mentioned in the previous section, the update of the coordinate in the forward process
can be expressed as ft = f0 expm(rt) where then rt ∼ WN

(
rt|µrt

, σ2
rt

)
. Therefore, the update

involves a matrix exponential operation. In the case of the torus, we have that the structure of rt can
be written as a 2× 2 skew-symmetric matrix of the form:

rt =

[
0 rt

−rt 0

]
, rt ∈ R

In our case, we are interested in computing the matrix exponential of rt. For simplicity, if we assume
that rt = 1, we are interested in computing a matrix exponential with the following structure:

expm (At) = expm

([
0 1
−1 0

]
t

)

This corresponds to the following infinite sum

expm (At) = expm

([
0 1
−1 0

]
t

)
=

=

[
1 0
0 1

]
+

[
0 t
−t 0

]
+

1

2

[
−t2 0
0 −t2

]
+

1

3!

[
0 −t3

t3 0

]
+

1

4!

[
t4 0
0 t4

]
+ · · ·

which can be rewritten as follows:

expm

([
0 1
−1 0

]
t

)
=

[
1− t2

2 + t4

4! − · · · t− t3

3! +
t5

5! − · · ·
−t+ t3

3! −
t5

5! + · · · 1− t2

2 + t4

4! − · · ·

]
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where we can recognize the Maclaurin series for sin(t) and cos(t). Therefore, we can conclude that:

expm

([
0 1
−1 0

]
t

)
=

[
cos(t) sin(t)
− sin(t) cos(t)

]

In forward and backward integration of the dynamics described by Eq. (7) and Eq. (13) the update of
the coordinates involves the computation of a matrix exponential. In the following, we are going to
derive step-by-step the closed-form solution for the matrix exponential, highlighting how this will be
equivalent to a translation and a wrap of the current position.

Forward process In the forward process, assuming a discretization step denoted by dt, we are
interested in computing the following update:

ft = ft−1expm(dtvt)

= ft−1 expm

(
dt

[
0 vt

−vt 0

])
= ft−1 expm

([
0 vtdt

−vtdt 0

])

= ft−1

[
cos vtdt sin vtdt
− sin vtdt cos vtdt

]
=

[
cos θ sin θ
− sin θ cos θ

] [
cos vtdt sin vtdt
− sin vtdt cos vtdt

]

=

[
cos θ cos vtdt− sin θ sin vtdt cos θ sin vtdt+ sin θ cos vtdt
− sin vtdt cos θ − cos vtdt sin θ − sin θ sin vtdt+ cos θ cos vtdt

]

=

[
cos(θ + vtdt) sin(θ + vtdt)
− sin(θ + vtdt) cos(θ + vtdt)

]

where we used the rotation matrix representation for the fractional coordinates on the torus as we
explained at the beginning of this section.

Reverse process In the backward process, instead, we are interested in computing the following
update:

ft = ft−1expm(−dtvt)

= ft−1 expm

(
−dt

[
0 vt

−vt 0

])
= ft−1 expm

([
0 −vtdt

vtdt 0

])

= ft−1

[
cos vtdt − sin vtdt
sin vtdt cos vtdt

]
=

[
cos θ sin θ
− sin θ cos θ

] [
cos vtdt − sin vtdt
sin vtdt cos vtdt

]

=

[
cos θ cos vtdt+ sin θ sin vtdt − cos θ sin vtdt+ sin θ cos vtdt
− cos vtdt sin θ + sin vtdt cos θ sin θ sin vtdt+ cos θ cos vtdt

]

=

[
cos(θ − vtdt) sin(θ − vtdt)
− sin(θ − vtdt) cos(θ − vtdt)

]

D DERIVATION OF THE TARGET OF KLDM

We recall that the transition kernel of our KLDM forward process defined in Eq. (12) can be obtained
in closed form and it is given by (Zhu et al., 2024):

pt|0(ft,vt|f0,v0) = WN
(
logm(f−1

0 ft)|µrt
, σ2

rt

)
· Nv

(
vt|µvt

, σ2
vt

)
,

where the mean and the variance of the two distributions are the following:

µrt
=

1− e−t

1 + e−t
(vt + v0) µvt

= e−tv0 (22)

σ2
rt

= 2t+
8

et + 1
− 4 σ2

vt
= 1− e−2t (23)
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Intuitively, the normal distribution describes how we should noise the initial velocity v0 to get a
sample vt, while the wrapped-normal distribution implicitly defined how to get a noisy sample for the
fractional coordinates ft starting from f0. The trick is to define rt = logm(f−1

0 ft), and by taking
the matrix-exponential on both sides, we can get the following update rule ft = f0 expm(rt) where
then rt ∼ WN

(
rt|µrt

, σ2
rt

)

The target score used in the DSM loss (Eq. (9)) for KLDM is ∇vt
log pt|0(ft,vt|f0,v0). In the

following, we derive it step-by-step highlighting at the end the parameterization used to train our
score network. The target score can be therefore computed as follows:

∇vt
log pt|0(ft,vt|f0,v0) = ∇vt

log
[
WN

(
logm(f−1

0 ft)|µrt
, σ2

rt

)
· Nv

(
vt|µv, σ

2
v

)]

= ∇vt
logWN

(
logm(f−1

0 ft)|µrt
, σ2

rt

)
︸ ︷︷ ︸

sc coordinates term

+∇vt
logNv

(
vt|µv, σ

2
v

)
︸ ︷︷ ︸

sv velocity term

(24)

We start by deriving the score for the second term sv , which can be expressed in multiple way:

sv =
−vt + µv

σ2
v

= − ϵ

σv
(25)

We can now focus on the sc term, where for simplicity we define rt = logm(f−1
0 ft) as above:

sc = ∇vt
logWN

(
logm(f−1

0 ft)|µrt
, σ2

rt

)
= ∇vt

logWN
(
rt|µrt

, σ2
rt

)

= ∇vt
log

(
1√

2πσrt

+∞∑

k=−∞
exp

(
− (rt − µrt

+ 2πk)2

2σ2
rt

))

= ∇vt
log

(
+∞∑

k=−∞
exp

(
− (rt − µrt

+ 2πk)2

2σ2
rt

))

=
1

∑+∞
k=−∞ exp

(
− (rt−µrt+2πk)2

2σ2
rt

)

︸ ︷︷ ︸
C

∇vt

[
+∞∑

k=−∞
exp

(
− (rt − µrt + 2πk)2

2σ2
rt

)]

= C ·

[
+∞∑

k=−∞
∇vt

exp
(
− (rt − µrt + 2πk)2

2σ2
rt

)]

= C ·

[
+∞∑

k=−∞
exp

(
− (rt − µrt

+ 2πk)2

2σ2
rt

)
∇vt

(
− (rt − µrt

+ 2πk)2

2σ2
rt

)]

= C ·

[
+∞∑

k=−∞
exp

(
− (rt − µrt

+ 2πk)2

2σ2
rt

)
∇vt

(
−

(rt − 1−e−t

1+e−t (vt + v0) + 2πk)2

2σ2
rt

)]

= C ·

[
+∞∑

k=−∞
exp

(
− (rt − µrt + 2πk)2

2σ2
rt

)1− e−t

1 + e−t

1

σ2
rt

(
rt −

1− e−t

1 + e−t
(vt + v0) + 2πk

)]

=
1

∑+∞
k=−∞ exp

(
− (rt−µrt+2πk)2

2σ2
rt

) ·

·

[
+∞∑

k=−∞

1− e−t

1 + e−t

1

σ2
rt

(
rt −

1− e−t

1 + e−t
(vt + v0) + 2πk

)
exp

(
− (rt − µrt

+ 2πk)2

2σ2
rt

)]

(26)

Therefore, the target score is given by summing Eq. (25) and Eq. (26) together. If we now assume
that the velocities are zeros at time t = 0, we can notice that the score sv can be rewritten as follows:

sv =
−vt + µv

σ2
v

=
−vt + e−tv0

σ2
v

= − vt

σ2
v

(27)
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Figure 1: (Left) Ablation of velocity fields with zero net translation for zero initial velocities. (Center)
Impact of the variance of the initial velocities distributions. When variance is 0, we refers to the
zero-initial velocity case, i.e. it is a delta distribution. (Right) Impact of the score parameterization
on the performance. We report mean and standard error from the mean of the validation match-rate
over 6 seeds. We note that enforcing zero initial velocities, which allows us to use the simplified
parameterization, is a key element for faster convergence and competitive results. With these two
elements in place, a marginal gain can then be obtained by considering a velocity fields with zero net
translation.
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Figure 2: Ablation of velocity fields with zero net translation for non-zero initial velocities. (Left)
Initial velocities are sampled from a N (0, 0.1 · I), i.e. σ2

v0
= 0.1. (Center) Initial velocities are

sampled from a N (0, 0.5 · I), i.e. σ2
v0

= 0.5 (Right) Initial velocities are sampled from a N (0, 1 · I),
i.e. σ2

v0
= 1.0. We report mean and standard error from the mean of the validation match-rate over 6

seeds. We note that regarding of the initial distribution variance, there is a benefit given by enforcing
a zero net translation velocity field.

where we used the definition of µv = e−tv0 and the fact that we assumed that v0 = 0, resulting in
µv = 0.

E DESIGN CHOICES ABLATION

Table 3: Impact of the score parametrization on the CSP task performance, on the realistic MP-20
and MPTS-52. The simplified parametrization introduced in Eq. (19) improves significantly upon
the direct parametrization from Eq. (18).

MP-20 MPTS-52
sampler MR [%] ↑ RMSE ↓ MR [%] ↑ RMSE ↓

DIRECT PARAMETRIZATION

EM 56.25 ±.4 0.1071 ±.001 11.55 ±.2 0.2535 ±.004

PC 63.29 ±.2 0.0591 ±.002 15.85 ±.2 0.1666 ±.004

SIMPLIFIED PARAMETRIZATION

EM 61.72 ±.2 0.0686 ±.001 17.71 ±.3 0.2023 ±.005

PC 65.37 ±.1 0.0455 ±.001 21.46 ±.2 0.1339 ±.002
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In this section, we analyze the effect of the different design choices of our method. We focus on the
score parameterization, the initial velocity distributions, and the translation-free velocity fields.

Score parameterization We compare the simplified parametrization of the score formulated in
Eq. (19) compared to the direct parametrization of Eq. (18). We present in Fig. 1, the validation
match-rate during training on the MP-20 dataset. From Fig. 1 (Right), we note that the simplified
parameterization leads to faster convergence and better performance. The direct parameterization
slowly makes the gap smaller if trained for long enough. We also compare fully trained models on
MP-20 and MPTS-52 in terms of match rate (MR) and RMSE on the test set. We note in Table 3,
that no matter the sampling scheme, the simplified parametrization always outperforms the direct
one, in addition to be much faster to converge.

Initial-velocity distributions KLDM uses zero-initial velocities, which intuitively corresponds to
considering the coordinates f at time t = 0 as being at rest, allowing the noise to gradually propagate
from the velocity to these variables. This also allowis us to use the simplified parametrization for
the score formulated in Eq. (19) ablated above. In Fig. 1 (Center), we compare the choice of using
zero initial velocities against having a zero-mean Gaussian distribution with three different variance
values. We note there is a strong benefit in using zero initial velocities, potentially explained by the
simplified parameterization.

Velocity field The last design choice we consider is the enforcement of a velocity field with a
zero-net translation. We analyze the effect of these choices both for zero initial-velocities and
therefore simplified score parametrization, and in the case of non-zero initial velocities and direct
parametrization. We report results in Fig. 1 (Left). By removing the degree of freedom of modeling
overall translations of the system, we observe a gain, albeit marginal, in terms of validation set match
rate during training in all cases, in particular with non-zero initial velocities, as displayed in Fig. 2.

F ADDITIONAL DNG RESULTS

In this section, we present additional results regarding the DNG task. We evaluate samples in terms
of validity, coverage, and property statistics. A sample is deemed structurally valid if all pairwise
distances are above 0.5Å, while SMACT (Davies et al., 2019) is used to determine compositional
validity, by checking the overall charge neutrality. The coverage metrics are computed using finger-
prints: CrystalNN structural fingerprints (Zimmermann & Jain, 2020) and Magpie compositional
fingerprints (Ward et al., 2016). COV-R (recall) and COV-P (precision) are obtained by comparing
the distances between generated and test fingerprints. Finally, the property statistics are obtained by
comparing distributions of properties, computed on the generated samples and test set respectively:
atomic densities dρ and number of unique elements delem.

We provide results in Table 4, where it can be observed that, unlike for the CSP task, the difference in
performance between the compared methods that KLDM is competitive with the compared models.

G ALGORITHMS

This section presents all the algorithms at our method’s core. We show how one can sample the
noisy inputs and the training targets in Algorithm 1, we then present the training loop used to train
the parameters of the score network sθ(ft,vt, lt,at) in Algorithm 2. We then focus on sampling,
presenting both a sampling scheme that uses an exponential integrator for simulating the reverse
SDE of the dynamics of the velocities vt and fractional coordinates ft as proposed by Zhu et al.
(2024) while using a classic Euler–Maruyama step for lattice parameters lt and atom type at in
Algorithm 3. In algorithm Algorithm 4, instead, we present how we sample from our model using the
predictor-corrector steps as proposed in (Song et al., 2021).
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Table 4: Results for the De-novo Generation (DNG) task. Baseline results are extracted from the
respective papers.

VALIDITY [%] ↑ COVERAGE [%] ↑ PROPERTY ↓
STRUC. COMP. COV-R COV-P dρ delem

PEROV-5

CDVAE 100.0 98.59 99.45 98.46 0.1258 0.0628
DIFFCSP 100.0 98.85 99.74 98.27 0.1110 0.0128
EQUICSP 100.0 98.60 99.60 98.76 0.1110 0.0503
KLDM 99.97 98.83 99.60 98.61 0.2970 0.0478

CARBON-24

CDVAE 100.0 – 99.80 83.08 0.1407 –
DIFFCSP 100.0 – 99.90 97.27 0.0805 –
EQUICSP 100.0 – 99.75 97.12 0.0734 –
KLDM 100.0 – 99.90 98.86 0.0658 –

MP-20

CDVAE 100.0 86.70 99.15 99.49 0.6875 1.432
DIFFCSP 100.0 83.25 99.71 99.76 0.3502 0.3398
EQUICSP 99.97 82.20 99.65 99.68 0.1300 0.3978
FLOWMM 96.85 83.19 99.49 99.58 0.2390 0.0830
KLDM 99.88 84.86 98.94 99.50 0.4658 0.1280

Algorithm 1 training targets(f ,v, l,a, t): Routine for sampling ft,vt, lt,at from the tran-
sition kernels and the corresponding target scores

Require: task (either CSP or DNG), timestep t, scheduler α(t) and σ(t) for l and a, scheduler αv(t)
and σv(t) for v, scheduler µrt

(t,v0,vt) and σrt
(t,v0,vt) for r. Initial sample x0 = (f0, l0,a0)

and initial velocities v0. In our experiments we considered v0 = 0 (i.e. initial velocities are 0).
## Sampling vt and ft

Sample ϵv ∼ Nv(0, I), ϵrt ∼ Nv(0, I) ▷ Nv is a normal distribution such that
∑

i vi = 0.
vt = αv(t)v0 + σv(t) · ϵv
if initial velocities are zero then

targetv = −vt/σ
2
v(t)

else
targetv = −ϵv/σv(t) ▷ See Eq. (26).

end if
rt = w(µr(t,v0,vt) + σrt

(t,v0,vt) · ϵrt
) ▷ w indicates the wrap function.

ft = w(f0 + rt)
ft = center(ft) ▷ center(·) keeps the center of gravity fixed.
targets = (1− exp(−t))/(1 + exp(−t)) · ∇r(v)Nw ▷ Equivalent computation of Eq. (26).
targetv = targetv + targets
## Sampling lt
Sample ϵl ∼ N (0, I)
lt = α(t)l0 + σ(t) · ϵl
targetl = ϵl
if task is DNG then

## Sampling at

Sample ϵa ∼ N (0, I)
at = α(t)a0 + σ(t) · ϵl
targeta = ϵa
return (vt,ft, lt,at), (targetv, targetl, targeta) ▷ Return both noisy samples and training

targets.
else

return (vt,ft, lt), (targetv, targetl)
end if
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Algorithm 2 Training algorithm

Require: score network sθ(t,ft,vt, lt,at), fractional coordinates transition kernel
pt|0(ft,vt|f0,v0), lattice parameters transition kernel pt|0(lt|l0), empirical distribution
q(x) = 1

N

∑N
i=1 δxi

and distribution over initial velocities p0(v). In our experiments we
considered p0(v) = δ(v − 0) (i.e. initial velocities are 0). For DNG task we require also an atom
type transition kernel pt|0(at|a0).
for training iterations do

x0 = {(f0, l0,a0)}Bi=1 ∼ q(x), t ∼ U(t),v0 ∼ p0(v) ▷ B indicates the batch size.
if task is DNG then

(vt,ft, lt,at), (targetv, targetl, targeta) = training targets(f ,v, l,a, t)
outv, outl, outa = sθ(t,ft,vt, lt,at) ▷ The network takes t,ft,vt, lt,at as input and

output all the scores.
La = ∥outa − targeta∥22

else
(vt,ft, lt), (targetv, targetl) = training targets(f ,v, l,None, t)
outv, outl = sθ(t,ft,vt, lt,at)

end if
Ll = ∥outl − targetl∥22
outv = (1− exp(−t))/(1 + exp(−t)) · outv − vt/σ

2
vt

▷ Construct the score, see Eq. (19)
Lv = λ(t)∥outv − targetv∥22 ▷ λ(t) computed as Jiao et al. (2024a)
if task is DNG then

Ltot = Lv + Ll + La

else
Ltot = Lv + Ll

end if
Compute gradients of Ltot with respect step θ and perform a gradient step.

end for
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Algorithm 3 Sampling algorithm

Require: trained score network sθ(t,ft,vt, lt,at), N discretization steps, dt = 1/N step-size, prior
distributions over velocities pT (v) = Nv(0, I), over fractional coordinates pT (f) = U(0,1),
over lattice parameters pT (l) = N (0, I), and over atom types pT (a) = N (0, I). We require also
the knowledge of the forward drift f(t) and the diffusion coefficient g(t) of the SDEs describing
the evolution of l and a.
## Note: in the paper we use 0 as index for samples at t = 0. However, here it will be a slightly
different notation.
Sample from the prior v0 ∼ Nv(0, I), f0 ∼ U(0,1), l0 ∼ N (0, I)
Set f0 = w(f0) ▷ w indicates the wrap function.
if task is DNG then

Sample a0 ∼ N (0, I)
end if
for n = 1, . . . , N do

if task is DNG then
out(n−1)

v , out(n−1)
l , out(n−1)

a = sθ((1− (n− 1) ∗ dt),fn−1,vn−1, ln−1,an−1)
else

out(n−1)
v , out(n−1)

l = sθ((1− (n− 1) ∗ dt),fn−1,vn−1, ln−1,an−1)
end if
## Update step for v and f
outv = (1− exp(−(1− (n− 1)dt)))/(1 + exp(−(1− (n− 1)dt))) · outv − vt/σ

2
vt

▷
Follow Eq. (19)

Sample ϵv ∼ Nv(0, I) ▷ Nv is a normal distribution such that
∑

i vi = 0.
vn = exp(dt)vn−1 + 2(exp(2dt)− 1)out(n−1)

v +
√
exp(2dt)− 1ϵv ▷ Update on v

fn = w(fn−1 − vndt) ▷ Update on f
## Update step for l
Sample ϵl ∼ N (0, I)

ln = ln−1 − (f(t)− g2(t)s(out(n−1)
l ))dt+

√
dtϵl ▷ Euler–Maruyama step for l, s(·) gets

score from ϵ-param.
if task is DNG then

## Update step for a
Sample ϵa ∼ N (0, I)

an = an−1 − (f(t)− g2(t)s(out(n−1)
a ))dt+

√
dtϵa ▷ Euler–Maruyama step for a, s(·)

gets score from ϵ-param.
end if

end for
if task is DNG then

return A crystalline material sample (fN , lN ,aN )
else

return A crystalline material sample (fN , lN )
end if
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Algorithm 4 Sampling with a single Predictor-Corrector step (PC) similar to Rozet & Louppe (2023,
Algorithm 4)

Require: trained score network sθ(t,ft,vt, lt,at), N discretization steps, dt = 1/N step-size, prior
distributions over velocities pT (v) = Nv(0, I), over fractional coordinates pT (f) = U(0,1),
over lattice parameters pT (l) = N (0, I), and over atom types pT (a) = N (0, I). We require the
scheduler αv(t) and σv(t) for v and also the knowledge of the forward drift f(t) and the diffusion
coefficient g(t) of the SDEs describing the evolution of l and a. We also require a hyperparameter
τ > 0.
## Note: in the paper we use 0 as index for samples at t = 0. However, here it will be a slightly
different notation.
Sample from the prior v0 ∼ Nv(0, I), f0 ∼ U(0,1), l0 ∼ N (0, I) ▷ First steps are similar to
Algorithm 3
Set f0 = w(f0) ▷ w indicates the wrap function.
if task is DNG then

Sample a0 ∼ N (0, I)
end if
for n = 1, . . . , N do

if task is DNG then
out(n−1)

v , out(n−1)
l , out(n−1)

a = sθ((1− (n− 1) ∗ dt),fn−1,vn−1, ln−1,an−1)
else

out(n−1)
v , out(n−1)

l = sθ((1− (n− 1) ∗ dt),fn−1,vn−1, ln−1,an−1)
end if
## Update step for v and f
## Prediction step on velocities v and coordinates f
Compute r = αv(n)/αv(n− 1)
Compute c = (rσv(n− 1)− σv(n))σv(n− 1)

vpred
n = rvn−1 + cout(n−1)

v

f pred
n = w(fn−1 + vpred

n−1dt)
## Correction step on velocities v and coordinates f
if task is DNG then

outv, outl, outa = sθ((1− n ∗ dt),f pred
n ,vpred

n , ln−1,an−1)
else

outv, outl = sθ((1− n ∗ dt),f pred
n ,vpred

n , ln−1,an−1)
end if
outv = (1− exp(−(1−n ∗dt)))/(1+exp(−(1−n ∗dt))) · outv −vt/σ

2
vt

▷ Follow Eq. (19)
Compute δ = τ dim(outv)

∥outv∥2
2

Sample ϵv ∼ Nv(0, I) ▷ Nv is a normal distribution such that
∑

i vi = 0.
vn = vpred

n + δoutv +
√
2δϵv ▷ Update on v

fn = w(f pred
n − vndt) ▷ Update on f

## Update step for l
Sample ϵl ∼ N (0, I)

ln = ln−1 − (f(t)− g2(t)s(outl))dt+
√
dtϵl ▷ Euler–Maruyama step for l, s(·) gets score

from ϵ-param.
if task is DNG then

## Update step for a
Sample ϵa ∼ N (0, I)

an = an−1 − (f(t)− g2(t)s(outa))dt+
√
dtϵa ▷ Euler–Maruyama step for a, s(·) gets

score from ϵ-param.
end if

end for
if task is DNG then

return A crystalline material sample (fN , lN ,aN )
else

return A crystalline material sample (fN , lN )
end if
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H EXPERIMENTAL DETAILS

H.1 HARDWARE

All experiments presented in this paper can be performed on a single GPU. We relied on a GPU
cluster with a mix of RTX 3090 and RTX A5000, with 24GB of memory.

H.2 ARCHITECTURE

As we have mentioned in Section 3.3, our score network is parametrized using an architecture whose
backbone is similar to that of previous work (Jiao et al., 2024a, DIFFCSP) which enforces the periodic
translation invariant by featurizing pairwise fractional coordinate differences with periodic functions
of different frequencies. There are two main differences compared to the architecture of DIFFCSP:
as we are coupling the fractional coordinates with an additional auxiliary variable that represents the
velocity, we need the network to take also this velocity variable vt as additional inputs. The network
is then outputting the score for all the diffusion processes involved in the model: the score related
to the velocities, the one for the lattice parameters, and the one for the atom types. The additional
modification we do is to consider a two-layer network instead of a single layer to predict the score
related to the velocities. Regarding the network parameters, we considered 4 message-passing layers
for PEROV-5, while we increased them to 6 for the remaining three datasets. In all the experiments
we considered the hidden dimension to be 512, the time embedding to be a 256-dimensional vector
and we used SiLU activation with layer norm. While the presentation in the paper is done in terms
of continuous time diffusion models, the implementation is done in discrete time to guarantee an
apple-to-apple comparison with baselines such as DIFFCSP and EQUICSP.

DIFFCSP employs a graph-neural network as a score network that adapts EGNN from Satorras et al.
(2021) to fractional coordinates. In the following, we are going to present all the components that
form this architecture.

Lattice parameters pre-processing We follow the same pre-processing steps for the lattice pa-
rameters (both lengths and angles) used by Lin et al. (2024, EQUICSP). Lengths are usually defined
from [0,+∞) while angles are defined in the (0, π) interval. However, the diffusion process defined
in Eq. (7) operates in the (−∞,+∞) domain, and therefore can result in unreasonable lattice param-
eters. Therefore, we use a logarithmic transformation for the lengths, mapping them from (0,+∞)
to (−∞,+∞). For angles, we map them using the following operation tan(ϕ− π/2) from (0, π) to
(−∞,+∞).

Components of EGNN Let consider ft,vt, lt,a being the input of our network. The input features
are computed by

h
(0)
i = NN(fatom, fpos(t)),

where fatom, fpos are the atomic embedding and sinusoidal positional embedding and NN is an MLP.

Then the input features are processed by a series of s message-passing layers that compute

m
(s)
ij = φm(h

(s−1)
i ,h

(s−1)
j ,v, l,SinusoidalEmbedding(fj − fi))

m
(s)
i =

N∑

j=1

m
(s)
ij

h
(s)
i = h

(s−1)
i + φh(h

(s−1)
i ,m

(s)
i )

where m
(s)
ij and h

(s−1)
j represent the messages at layer s between nodes i and j. φm and φh are two

MLPs. Compared to the DIFFCSP implementation, we want to highlight that we are also using the
velocity v as input.

The SinusoidalEmbedding is a sinusoidal embedding layer defined as

SinusoidalEmbedding(x) := (sin(2πkx), cos(2πkx))Tk=0,...,nfreq
,

with being a nfreq being an hyper-parameter.
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After S steps of message passing, we compute all the different scores by doing the following:

s(i)v = φv(h
(S)
i )

sl = φl

(
1

N

N∑

i=1

h
(S)
i

)

s(i)a = φa(h
(S)
i )

where we want to stress that φv is a 2-layer neural network while φl and φa are single-layer MLPs.

For training, we used the same loss weights that were used by DIFFSCP. We consider λv = 1
and λl = 1 for the CSP task. For the DNG task, instead, as we consider three different ways for
modelling the discrete atom type features, we used different weights depending on the modelling
choice. If we use one-hot encoding for the atom types, we still rely on the DIFFSCP weights given by
λv = 1, λl = 1, and λa = 20. In the case of analog-bits, we used λa = 1, while when using discrete
diffusion for the atom types, we scale the losses using λa = 0.33. The scaling is needed to make the
different loss terms have similar magnitudes.

H.3 PARAMETERS FOR THE KLDM FORWARD PROCESS

We kept the drift coefficient γ(t) constant at 1 in all the experiments presented in the paper, following
Zhu et al. (2024). In their experiments, they also tuned the time horizon T of the process in Eq. (12)
depending on the considered task. In our experiments for material generation, we kept the time
horizon constant at T = 2. In terms of the implementation, as we implemented everything in discrete
time, we discretize the time in the interval [0, 2) for the diffusion process. For lattice parameters
and atom types, we rely on the standard Euclidean diffusion model where the drift and diffusion
coefficients are defined by a linear schedule on the interval [0, 1). We trained all the networks using
AdamW with the default PyTorch parameters, without gradient clipping and by performing early
stopping based on metrics computed on a subset of the validation set: match-rate for the CSP task
and valid structures for the DNG task.

Table 5: Dataset hyperparameters

INFO PEROV-5 CARBON-24 MP-20 MPTS-52

Max Atoms 20 24 20 52
Total Number of Samples 18928 10153 45231 40476
Batch Size 1024 256 256 256

H.4 MAJOR DIFFERENCE BETWEEN KLDM AND THE COMPETING MODELS

In this section, we compare the key differences between our proposed KLDM and the baseline
methods discussed in Section 5, namely DIFFCSP, EQUICSP, and FLOWMM. Among these, we
think that DIFFCSP is the closest to our approach. The main differences are that we model fractional
coordinates differently and we use a linear noise schedule, as opposed to their cosine noise schedule.
In addition to that, DIFFCSP employs a matrix representation for the lattice parameters, while we
treat them as a vector of six scalars.

EQUICSP builds upon DIFFCSP with two main modifications: it introduces additional losses to
ensure the lattice permutation invariance of the learned distributions, and it defines a different noising
mechanism called Periodic CoM-free Noising scheme. This scheme ensures that the sampled noise
does not induce a translation of the center of mass of f0, thereby preserving the periodic translation
invariance in the target score. In contrast, we define the forward process on the coupling given by
fractional coordinates and associated velocity variables, and we do not account for lattice permutation
invariance, leaving that as a direction for future work.

FLOWMM generalize Riemannian Flow matching for material generation, which, although closely
related to diffusion, is a different modeling approach. In addition to that, it considers an informed prior
distribution over the lattice parameters, and in the DNG task, it represents atom types using analog bits
(Chen et al., 2023), in contrast to DIFFCSP and EQUICSP, which use a one-hot encoding. We present
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results by using three different representations for the discrete atom type features. Additionally,
for DNG, FlowMM uses additional inputs to the score network that neither KLDM nor the other
baselines use. The additional input represents the cosine of the angles between the Cartesian edges
between atoms and three lattice vectors
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