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Abstract

Event sequences appear widely in domains such as medicine, finance, and remote
sensing, yet modeling them is challenging due to their heterogeneity: sequences
often contain multiple event types with diverse structures—for example, electronic
health records that mix discrete events like medical procedures with continuous lab
measurements. Existing approaches either tokenize all entries, violating natural
inductive biases, or ignore parts of the data to enforce a consistent structure. In this
work, we propose a simple yet powerful Marked Temporal Point Process (MTPP)
framework for modeling event sequences with flexible structure, using a single uni-
fied model. Our approach employs a single autoregressive transformer with discrete
and continuous prediction heads, capable of modeling variable-length, mixed-type
event sequences. The continuous head leverages an expressive normalizing flow
to model continuous event attributes, avoiding the numerical integration required
for inter-event times in most competing methods. Empirically, our model excels
on both discrete-only and mixed-type sequences, improving prediction quality
and enabling interpretable uncertainty quantification. We make our code public at
https://github.com/czi-ai/FlexTPP.

1 Introduction

Time series are a ubiquitous data modality, arising in a wide range of domains such as electronic
health records [Wornow et al., 2023], high-frequency trading [Bacry et al., 2015], click stream
prediction [Gündüz and Özsu, 2003], hardware and access logs in cybersecurity [Fortino et al., 2023],
and earthquake monitoring in remote sensing [Ogata, 1998]. Particularly common are time series with
irregular time intervals between adjacent events (e.g., lab test times), where each event is associated
with metadata known as marks (e.g., test results). Such time series are known as Marked Temporal
Point Processes (MTPPs) [Daley and Vere-Jones, 2008].

Despite their broad applicability, existing MTPP models typically handle only simplified forms of real-
world event data. Prior work focuses on discrete marks such as event types [Mei and Eisner, 2017] or
sets of items [Chang et al., 2024], or on continuous marks such as spatio-temporal features [Chen et al.,
2021, Dong et al., 2024]. In contrast, many real datasets include mixed-type metadata that combines
discrete attributes (e.g., diagnosis codes, transaction types) with structured continuous values (e.g.,
measurements, durations). The length and structure of this metadata also vary across events—for
instance, due to different medical test panels or variable-length action logs in cybersecurity.

Ignoring these heterogeneities leads to a mismatch between model assumptions and real data. Re-
cently, Event Stream GPT [McDermott et al., 2023] modeled heterogeneous event structures, but it
treats continuous marks with unimodal Gaussians, limiting expressivity and autoregressive sequence
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p(m32 |C, t1..2, m1..2, t3, m31) =
p(m33 |C, t1..2, m1..2, t3, m31, m32) =

Diagnosis: Type 2 Diabetes 
Patient 1 
M, DOB 1951-MM-DD 

Patient Record: 

Day 1, 11:19 LAB RESULT 
  Serum Glucose: 116.0 mg/dL 
Day 8, 06:46 PROCEDURE 
  Blood collection 
Day 8, 13:14 LAB RESULT 
  Whole Glucose: 102.0 mg/dL 
...

M 
YYYY-MM-DD 
Day 1, 11:19 
LAB RESULT 
Glucose in serum 
116.0 mg/dL 
Day 8, 06:46 
PROCEDURE 
Blood collection 
Day 8, 13:14 
LAB RESULT 
Glucose in whole 
102.0 mg/dL 
...
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Figure 1: We propose a transformer-based MTPP model for event sequences of varying length and
structure. (Left) The example shows how we model electronic health record as a series of events
with variable-length and and mixed discrete and continuous variables, conditioned on demographic
information. (Right) We fit the point process using a conditional autoregressive model with separate
output heads for discrete and continuous entries.

generation. To address this, we propose a streamlined MTPP architecture that leverages expressive
distributions for all variable types, yielding a unified and powerful joint probabilistic model. As
illustrated in Figure 1, our approach converts each event sequence into a single mixed-type vector
and models it with a Transformer-based autoregressive network. Discrete event types act as “headers”
that determine variable event structure, and separate continuous and discrete prediction heads capture
heterogeneous mark attributes.

With this more expressive mark space, we can fully exploit conditioning MTPPs on external input.
While prior work considered limited forms of conditioning—such as static covariates—with minimal
impact on prediction [Šeputis et al., 2022, Verheugd et al., 2020, Isik et al., 2023], we treat condi-
tioning as central, addressing problems that cannot be solved without it. This broader perspective
allows us to use conditional MTPPs as a flexible probabilistic framework for structural mixed-type
regression.

Together, our contributions are as follows:

• We propose FLEXTPP, a flexible Transformer-based MTPP framework that supports
variable-length, mixed-type marks, encompassing both discrete and continuous event at-
tributes (section 4.1). Beyond standard generative modeling, we treat MTPPs as a structured
prediction framework, conditioning event sequences on auxiliary input to solve regression
and prediction tasks (section 4.2).

• FLEXTPP is intensity-free, avoiding the numerical integration required by competing
intensity-based approaches. Empirically, it also outperforms both intensity-free and intensity-
based methods on the discrete-only EasyTPP benchmark [Xue et al., 2024] (section 5.1).

• We demonstrate how FLEXTPP’s flexibility can be leveraged in practice: modeling het-
erogeneous events in electronic health records, performing event-series annotation with
uncertainty quantification and extracting event dependency structure (sections 5.2 to 5.4).

Together, we propose a simple and versatile framework to model heterogeneous event sequences.

2 Related Work

There is extensive literature on modeling marked temporal point processes (MTPPs); we summarize
our work in relation to existing methods in Table 1, and give a more detailed discussion below.

The predominant line of work models MTPPs with so-called Hawkes processes [Hawkes, 1971],
parameterizing an intensity function that captures the rate at which the next event will occur. Several
neural realizations have been proposed, first using recurrent neural networks [Du et al., 2016, Mei
and Eisner, 2017] and later Transformers [Zhang et al., 2020, Zuo et al., 2020, Yang et al., 2021],
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Table 1: Overview of related MTPP methods in the literature. To the best of our knowledge, we are
the first to model expressive distributions to events with mixed data types and varying dimensions. In
addition, we consider conditional MTPPs, where the point process depends on auxiliary input. [*]
collects [Du et al., 2016, Mei and Eisner, 2017, Zhang et al., 2020, Zuo et al., 2020, Yang et al., 2021,
Zhuzhel et al., 2024, Chang et al., 2025, Gao et al., 2024, Xu and Zha, 2017, Liu and Quan, 2024,
Isik et al., 2023].

Data types Mark dimension ConditionalDiscrete Continuous Multiple Variable

Classical Hawkes Process [Hawkes, 1971] ✓ ✗ ✗ ✗ ✗
Neural Hawkes Process [*] ✓ ✗ ✗ ✗ ✓
Instensity-Free TPP [Omi et al., 2019, Shchur et al., 2020] ✓ ✗ ✗ ✗ ✗
Conditional event generators [Dong et al., 2024] ✗ ✓ ✓ ✗ ✗
Set-valued MTPPs [Chang et al., 2024] ✓ ✗ ✓ ✓ ✗
Neural spatio-temporal process [Chen et al., 2021] ✗ ✓ ✓ ✗ ✗
Event Stream GPT [McDermott et al., 2023] ✓ ✓/ ✗ ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓

convolutional networks [Zhuzhel et al., 2024], and state-space models [Chang et al., 2025, Gao
et al., 2024]. Other notable directions model the next-time distribution instead of intensities [Omi
et al., 2019, Shchur et al., 2020], consider mixtures of series [Xu and Zha, 2017], or leverage the
inductive biases of pretrained language models Liu and Quan [2024]. While the aforementioned
methods only consider MTPPs where each event is associated with one discrete mark (the event
type), other kinds of marks have also been considered. Chen et al. [2021] model spatio-temporal
point processes using Neural ODEs, where marks are purely continuous. Similarly, Dong et al.
[2024] model multi-dimensional continuous marks using joint generative models such as diffusion
models. Chang et al. [2024] model sets of discrete marks. Similar to our approach, McDermott et al.
[2023] propose a system to learn heterogeneous event structures, but they do not learn an expressive
model for continuous event data, limiting performance. We generalize the previous work into one
probabilistic framework that jointly handles variable-length and mixed-type mark spaces.

Some work has considered conditioning MTPPs on external input such as for predicting failures of
water pipes [Verheugd et al., 2020] or in medical context [Šeputis et al., 2022, Isik et al., 2023]. Our
Transformer-based architecture allows for natural conditioning, which we exploit both for feeding
covariates and as the input to regression tasks.

In the context of the related work, our model is Transformer-based, intensity-free, and allows for
variable-length and mixed-type marks.

In generative modeling, autoregressively predicting variable-length sequences is at the core of
language models such as GPT [Mikolov et al., 2010, Radford et al., 2018]. Mixed data types are often
integrated in the input but cannot be generated, for example, in vision-understanding models such as
Flamingo [Alayrac et al., 2022]. Jointly modeling mixed modalities has been achieved by discretizing
(tokenizing) continuous values or fusing other generative models and language models. We refer
to [Xu et al., 2023] for a comprehensive overview. Similar to our modeling approach, [Fakoor et al.,
2020] propose and [Strauss and Oliva, 2021] perform joint modeling of discrete and continuous
data with a transformer backbone, inspired by autoregressive models for continuous data [Germain
et al., 2015]. However, neither of these works exploit the full flexibility of modeling variable-length,
mixed-type data.

3 Background: Marked Temporal Point Process

A natural way to describe the distribution of event sequences over time is through a Marked Tem-
poral Point Process (MTPP). An MTPP is a stochastic process describing a sequence of events
{(ti,mi)}Ti=1, where each event is characterized by its occurrence time ti ∈ R+ and an associated
mark mi ∈ M. While M traditionally describes a single discrete or continuous variable (see
section 2 and table 1), we generalize it in section 4.1 to mixed discrete–continuous spaces. Event
sequences are inherently stochastic: both the timing and the mark of the next event are inherently
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uncertain. Their joint distribution can be factorized using the chain rule as:

p({(ti,mi)}Ti=1) =

T∏
i=1

p(ti,mi | Hti), (1)

where Hti = {(tj ,mj) | tj < ti} denotes the history of events up to ti, capturing both temporal and
mark dependencies.

Ignoring the marks for a minute (we will re-introduce them in section 4.1), a key design choice is
how to model the one-dimensional distribution of the next event time p(ti | Hti).

First, intensity-based methods model the time distribution via a learned intensity function λ(ti | Hti),
representing the instantaneous rate of events at a time t [Daley and Vere-Jones, 2008]. Formally, the
intensity function λ(t | Ht) defines the infinitesimal expected event rate, linking the point process to
its conditional likelihood via integration over time:

p(ti | Hti) = λ(ti | Hti , [mi]) exp

(
−
∫ ti

ti−1

λ(ti | Hti) dt

)
. (2)

Since the intensity function can be any positive function, this formulation yields highly flexible time
distributions. However, the numerical integration can be unstable and be expensive both at training
(likelihood evaluation) and inference (sampling), depending on the modeling of the intensity function.

Second, intensity-free methods avoid numerical integration by directly modeling event times using
parametric distributions pφ(ti | Hti) conditioned on the history. Common choices are mixture models
or one-dimensional normalizing flows, with parameters learned as a function of past events [Shchur
et al., 2020]. This allows efficient evaluation and sampling.

Our proposed framework in section 4 is intensity-free. Outperforming previous models in section 5.1,
it overcomes concerns about expressivity of intensity-free models [Chang et al., 2025].

4 FlexTPP

4.1 Variable-length, mixed-discrete-continuous events

Real-world events often carry heterogeneous information: some attributes are discrete (e.g., event
type), others are continuous (e.g., laboratory test results such as glucose levels), and their number may
vary depending on the event. To model such data, we introduce a unified mixed-modality framework
that extends MTPPs to variable-length, mixed-type marks.

We are given events i that consist of an arrival time ti and an associated mark mi that may contain a
variable number of discrete and continuous components. Instead of treating these parts separately, we
flatten the entire event sequence into a single sequence of scalar values X = (X1, . . . , XL), together
with a corresponding type vector D = (D1, . . . , DL) indicating whether each entry is continuous or
discrete.

Figure 1 illustrates this procedure. Formally, for each event i, the first mark mtype
i denotes its type

(always discrete). The remaining components madd
i1..Ni

contain additional attributes whose number Ni

and data types dij ∈ {cont,disc} depend on the event type. Formally,

X = (t1,m
type
1 ,madd

11 , . . . ,m
add
1N1

, t2, . . . ), D = (cont,disc, d11, . . . , d1N1
, cont, . . . ). (3)

This vectorization yields a single sequence of length L = 2T +
∑T

i=1 Ni.

Modeling this vectorized event sequence is straightforward with an autoregressive model: The joint
distribution of the sequence is pD(X1, . . . , XL) =

∏L
l=1 pDl

(Xl | X<l), where each conditional
distribution matches the data type:

pDl
(Xl | X<l) =

{
Cat(Xl | X<l) if Dl = disc,

pdensity(Xl | X<l) if Dl = cont .
(4)

Here, Cat is a categorical distribution and pdensity a continuous density.
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Algorithm 1 Sampling from Mixed-Type Autoregressive Model
1: Input: Lengths N(mtype) and types d(mtype) for each event type mtype = 1, . . . ,M .
2: Initialize empty sequence X = (), i = 1, l = 1.
3: while true do
4: Sample time Xl = ti ∼ pdensity(Xl|X1, . . . , Xl−1).
5: Sample event type Xl+1 = mtype

i ∼ Cat(Xl+1|X1, . . . , Xl).
6: if mtype

i = EOS then
7: break.
8: end if
9: for j = 1, . . . , N(mtype

i ) do

10: Xl+j+1 = mijadd ∼
{
Cat(Xl+j+1|X1, . . . , Xl+j) if d(mtype

i )j = disc

pdensity(Xl+j+1|X1, . . . , Xl+j) else.
11: end for
12: Update indices: l = l + 2 + |Gmi1

| and i = i+ 1.
13: end while
14: return (ti,m

type
i ,madd

i )i

The above approach is a unified autoregressive model of variable-length, mixed-type MTPPs with
parameters θ. We train it by minimizing the negative loglikelihood of a dataset D of time series:

min
θ

−
∑

(X,D)∈D

log pD,θ(X). (5)

Algorithm 1 shows how to sample from this model. Each event begins by sampling a continuous
value for the arrival time, followed by an event type that determines the structure of the remaining
entries. Sampling a special end-of-sequence token EOS terminates the sampling.

4.2 Conditional Marked Temporal Point Processes

The general-purpose structure of our extension of MTPPs to variable data types makes them a natural
choice for the output format in supervised prediction tasks. For example, we will later formulate
the detection of events in a time series as a conditional marked time point process (see section 5.3).
Similarly, for health records, feeding demographic information can increase modeling accuracy (see
section 5.2). To this end, we modify the setup in section 4.1 to include conditional input C, so that
the likelihood of each sequence is conditioned on C: pD(X|C) =

∏L
l=1 pDl

(Xl|C,X1, . . . , Xl−1).

Now that we have generalized MTPPs to handle heterogeneous mark data and condition on auxiliary
information, we next instantiate this modeling approach with a Transformer architecture.

4.3 Flexible Marked Temporal Point Process (FLEXTPP)

We implement the the conditional likelihood pDl
(Xl | X<l) in eq. (4) with an autoregressive model.

The idea is to map the history X1...,i−1 to a fixed-dimensional representation:

ϕl = ϕ(Dl;C,X1 . . . Xl−1) ∈ Rdm , (6)

which is then used to parameterize the conditional distribution of Xl. As illustrated in Figure 2,
we implement the autoregressive computation with a Transformer [Vaswani et al., 2017]. This
architecture captures long-range dependencies between events [Zhang et al., 2020, Yang et al.,
2021, Zuo et al., 2020], and lets the size of intermediate representations grow naturally with the
dimensionality of the marks.

For predicting discrete dimensions, we map ϕl into a categorical distribution as in language modeling,

Cat(x;ϕl) = [softmax(φdisc(ϕl))]x, (7)

where we turn ϕi into logits φdisc(ϕl) with a small fully-connected neural network.

For the continuous distributions, we map ϕi to the parameters φcont(ϕi) of a one-dimensional
normalizing flow, as is common for continuous autoregressive models [Germain et al., 2015]. We use
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Figure 2: Our Transformer backbone naturally encompasses mixed-type marks and conditions. The
vectorized input data (see fig. 1) is shifted by one position so that the embedding ϕl for predicting Xl

depends only on the history X1,...,l−1 and the condition. The Transformer is equipped with a causal
mask. We use a classification head for discrete dimensions, and a one-dimensional normalizing flow
for continuous dimensions.

a rational-quadratic spline z = fφcont
(x) [Durkan et al., 2019]. The flow defines a one-dimensional

(conditional) density via the change of variables equation:

pdensity(x;ϕl) = N (z = fφcont(ϕl)(x);m = 0, σ = 1)|f ′
φ(x)|. (8)

Note that for simplicity, we use eq. (8) both for the time and continuous mark dimensions (“intensity-
free”, see section 3). We call the above model Flexible Marked Temporal Point Process FLEXTPP
when no condition is present, and we refer to FLEXTPP-C whenever it is conditioned.

5 Experiments

We evaluate our generalized MTPP framework in practice. We first confirm that FLEXTPP(-C)
reliably works with discrete mark spaces on the EasyTPP benchmark [Xue et al., 2024] in section 5.1.
We then demonstrate in section 5.2 how our generalized mark structure improves predicting medical
procedures in electronic health records extracted from the EHRSHOT dataset [Wornow et al., 2023].
Finally, we propose to use MTPPs to make structured predictions in annotating time series in
section 5.3. This MTPP heavily relies on its condition and can predict several types of annotations
together with their structurally different properties.

For the experiments that concern generalized mark spaces, we compare the following versions of our
model:

Conditional + discrete event type mark: p(t1,m
type
1 ,���madd

1 , . . . , tT ,m
type
T ,���madd

T |C), (9)

Unconditional + full mark (FLEXTPP): p(t1,m
type
1 ,madd

1 , . . . , tT ,m
type
T ,madd

T ��|C), (10)

Conditional + full mark (FLEXTPP-C): p(t1,m
type
1 ,madd

1 , . . . , tT ,m
type
T ,madd

T |C), (11)

The first model in eq. (9) only models time and a discrete event type as a mark, corresponding to
how the bulk of the literature on MTPPs would model the data. We give these models access to the
condition to allow for a fair comparison to the most general variant, FLEXTPP-C. The second model
in eq. (10), in contrast, does not have access to the condition and only models the marginal marked
time point process. Here, we measure how much the condition helps in making a prediction. Finally,
our model in eq. (11) accepts a condition and jointly models all discrete and continuous marks.

We evaluate all models on a held-out test set in terms of negative log-likelihood (NLL), capturing the
generative quality and the uncertainty in making predictions.

To compare our conditional model to the unconditional variant, we compute the negative logarithms
of eqs. (10) and (11). Intuitively, a lower value means that the conditional model can make use of the
condition to more accurately model the MTPP.

Comparing these likelihoods to the ones of the model that only captures discrete event types is not
directly possible, as eq. (9) does not model the additional mark dimensions. We therefore also report
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Table 2: Our model sets a new SOTA in four out of five datasets in terms of Negative Log-Likelihoods
(lower is better, ↓) on EasyTPP Datasets [Xue et al., 2024], notably outperforming both intensity-free
TPP [Shchur et al., 2020] and intensity-based methods. Marks are single discrete event type. Baseline
values are due to [Chang et al., 2025].

Model Amazon Retweet Taxi Taobao StackOverflow

RMTPP [Du et al., 2016] 2.136 (0.003) 7.098 (0.217) -0.346 (0.002) -1.003 (0.004) 2.480 (0.019)
NHP [Mei and Eisner, 2017] -0.129 (0.012) 6.348 (0.000) -0.514 (0.004) -1.157 (0.004) 2.241 (0.002)
SAHP [Zhang et al., 2020] 2.074 (0.029) 6.708 (0.029) -0.298 (0.057) 1.646 (0.083) 2.341 (0.058)
THP [Zuo et al., 2020] 2.096 (0.002) 6.659 (0.007) -0.372 (0.002) 1.712 (0.011) 2.338 (0.014)
AttNHP[Yang et al., 2021] -0.484 (0.077) 6.499 (0.028) -0.493 (0.009) -1.259 (0.022) 2.194 (0.016)
IFTPP [Shchur et al., 2020] -0.496 (0.002) 10.344 (0.016) -0.453 (0.002) -1.318 (0.017) 2.233 (0.009)
MHP [Gao et al., 2024] -0.496 (0.002) 10.344 (0.016) -0.453 (0.002) -1.318 (0.017) 2.233 (0.009)
S2P2 [Chang et al., 2025] -0.781 (0.011) 6.365 (0.003) -0.522 (0.004) -1.304 (0.039) 2.163 (0.009)
FLEXTPP (Ours) -0.633 (0.039) 5.646 (0.070) -0.763 (0.005) -1.402 (0.013) 2.133 (0.004)

the negative log-likelihood of the time and the event type mark dimensions under each model:

−
T∑

i=1

log p(ti,m
type
i |[C],mtype

1..i−1, [m
add
1..i−1]). (12)

We pass in the additional mark dimensions and the condition only if the model version accepts them.
A smaller loss means that the model can better estimate the arrival time and type of the next event
when it has seen all marks of the previous event instead of just arrival times and marks. For example,
in the clinical settings, it measures whether the next medical procedure prediction improves if we
know the continuous lab results.

We give all details to replicate our experiments in appendix A.

5.1 EasyTPP Datasets

The EasyTPP benchmark [Xue et al., 2024] collects five datasets to compare models fitting MTPPs.
All datasets have a discrete mark space modeling event types only, see appendix A.1. Table 2 shows
that our intensity-free, Transformer-based MTPP outperforms both intensity-based and previous
intensity-free methods.

This is an important data point in the MTPP modeling space, as it shows that intensity-free methods
can perform well, all while avoiding numerical integration at training and inference time. In the next
sections, we generalize the mark space beyond discrete marks.

5.2 Patient Record Data

As a first generalized experiment, we model a subset of EHR data from the EHRSHOT bench-
mark [Wornow et al., 2023]. Unlike standard EHR setups that capture only discrete events like
procedures [Chang et al., 2025], our construction also includes continuous lab results, enabling a
richer, mixed-modality representation of patient trajectories. This structure improves next-event
prediction and enhances uncertainty quantification by integrating diverse clinical signals. See ap-
pendix A.2 for details.

To compile the dataset, we subset the patients diagnosed with 20 different diseases such as type 2
diabetes, dyspnea, atrial fibrillation, etc., to create disease-specific longitudinal analyses. For each
disease, we capture the most used Current Procedural Terminology (CPT-4) codes that denote medical
services and the most common procedures as discrete events, and model disease-related lab results as
continuous events. Additionally, demographic data are incorporated as conditional inputs, enabling a
better modeling of patient-specific dynamics.

Table 3 demonstrates the effectiveness of our proposed method. Besides the baseline in eq. (9)
(“Procedures”) which only models procedures as discrete events, we also compare FLEXTPP and
FLEXTPP-C to another baseline (“+ Lab Tests”) which additionally measures discrete lab test types
but without their corresponding continuous results. By jointly modeling continuous lab results
alongside discrete procedure types and conditioning on demographic information, our FLEXTPP-C
approach achieves the best performance on both measures of negative log-likelihood (“Full” and
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Table 3: By incorporating continuous lab results via eq. (11), our flexible models outperform baselines
in predicting time and type of medical procedures: An MTPP with discrete marks would either not
model lab events at all [Chang et al., 2025] (“Procedures”), or model that a lab test exists, but
ignore its value (“+ Lab Tests”). Conditioning on demographic covariates (our FLEXTPP-C) always
improves prediction quality for procedures and in the majority of cases for all events. Standard
deviations in tables 9 and 10.

Time + Discrete Procedure NLL (↓) Full NLL (↓)
Dataset Procedures + Lab Tests ESGPT ESGPT-C FLEXTPP FLEXTPP-C ESGPT ESGPT-C FLEXTPP FLEXTPP-C

Type 2 diabetes mellitus 0.691 0.202 0.186 0.182 0.147 0.143 0.754 0.758 0.641 0.638
Transplanted kidney 0.755 0.170 0.199 0.192 0.134 0.130 0.859 0.863 0.670 0.668
Transplanted lung 0.912 0.089 0.078 0.075 0.068 0.063 0.851 0.857 0.581 0.546
Dyspnea 0.681 0.162 0.162 0.155 0.121 0.117 0.560 0.549 0.463 0.438
Atrial fibrillation 0.715 0.081 0.075 0.071 0.062 0.059 0.388 0.376 0.204 0.192
Cardiac transplant disorder 0.887 0.033 0.034 0.033 0.029 0.027 0.552 0.594 0.408 0.393
End-stage renal disease 0.697 0.166 0.169 0.164 0.128 0.117 0.757 0.753 0.580 0.578
Transplanted heart 0.869 0.041 0.033 0.032 0.029 0.028 0.736 0.701 0.546 0.521
Congestive heart failure 0.704 0.134 0.130 0.128 0.103 0.100 0.846 0.861 0.525 0.509
Chronic pain 0.735 0.099 0.095 0.093 0.076 0.073 0.765 0.743 0.162 0.165
Neoplasm of female breast 0.716 0.043 0.040 0.038 0.032 0.030 0.608 0.608 0.516 0.461
Obstructive sleep apnea 0.695 0.093 0.090 0.089 0.061 0.059 0.710 0.676 0.195 0.187
Diabetes with complication 0.718 0.176 0.164 0.160 0.133 0.129 0.694 0.703 0.579 0.582
Anemia 0.655 0.164 0.165 0.158 0.127 0.126 0.322 0.296 0.238 0.245
Coronary artery disease 0.692 0.144 0.138 0.134 0.108 0.105 0.966 0.986 0.636 0.625
Hypothyroidism 0.735 0.224 0.212 0.208 0.166 0.159 0.666 0.664 0.524 0.528
Acute myeloid leukemia 0.729 0.182 0.160 0.154 0.124 0.117 0.727 0.735 0.567 0.561
Depressive disorder 0.683 0.136 0.135 0.129 0.108 0.105 0.813 0.826 0.608 0.545
Transplanted liver 0.799 0.183 0.192 0.186 0.144 0.142 0.907 0.902 0.727 0.725
Acute kidney injury 0.645 0.201 0.191 0.185 0.144 0.139 0.706 0.711 0.621 0.605

“Time + Discrete Procedure”). ESGPT and ESGPT-C (McDermott et al. [2023]) are also implemented
as additional baselines, where continuous lab results and arrival times are modeled by Gaussian and
Log-Normal mixture heads, respectively, instead of the normalizing flow head used in our proposed
methods. These results validate the advantage of incorporating continuous event types, patient-
specific conditioning, and the expressiveness in modeling continuous attributes using normalizing
flow in multimodal health record modeling.

5.3 Time Series Annotation

Finding eventful subsequences in time series data is crucial in many real-world applications. For
example, in healthcare, timely and accurate identification of critical events can significantly impact
diagnosis and treatment, and in audio annotation, where a continuous time series is transformed into
an interpretable description.

A traditional approach is to have a classifier p(mtype|t, C) predict the presence of an event type mtype

at a given time t in an input sequence C [Zhao et al., 2017]. However, fig. 3 (top right) illustrates
how this is fundamentally limited when several events are present at the same time: It expresses
uncertainty in the event class instead of predicting both classes to be present. Another restriction is
that classifiers are often evaluated on small windows to save compute for long input time series.

We lift these restrictions by directly predicting the target sequence of events as a MTPP under our
flexible framework FLEXTPP-C. This allows for parallel events, and compute is naturally bounded
by the number of events. In this setting, each event is characterized by a start timestamp (continuous),
a type label (discrete), a duration (continuous), and additional event data (mixed length, mixed type).
Because our framework is fully probabilistic, we get uncertainties for all these quantities.

We evaluate our model on a set of synthetic input time series. Our dataset is based on a noisy
harmonic oscillator, a common model in biology, physics, acoustic and mechanical systems. It is
given by the following system of stochastic differential equations:

dx = vdt+ σxdwx, dv = (−γv − ω2x+ f(t))dt+ σvdwv. (13)

For each time series in our dataset, we first choose base values for the constants ω, γ, σx, σv . We then
randomly sample a list of events that alter the dynamics over some amount of time by changing one
or several of the constants, or add an external force f(t). See appendix A.3 for details.

Figure 3 shows a typical example time series with annotated events. Our FLEXTPP-C predicts event
times and properties, together with uncertainty intervals. Note how an MTPP with discrete marks
only captures the start times and type of events. Table 4 evaluates eqs. (9) and (11) to compare
negative log-likelihoods. We also train a sliding window classifier [Zhao et al., 2017] with a finite
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Input

a) Input time series

0%

50%

100% c) Sliding window classifier External force
Base frequency change
Position noise
No event

E.f.

B.f.c.

P.n. d) Only discrete marks

Time

E.f.

B.f.c.

P.n.

Omega factor: 0.89 Omega factor: 1.13

Position noise add: 1.74

Force magnitude: 1.36
Force shape: 0

Periodicity: 0.09

b) Ground truth annotations

Time

E.f.

B.f.c.

P.n.

Omega factor: 0.89 ± 0.01 Omega factor: 1.10 ± 0.08

Position noise add: 1.74 ± 0.32

Force magnitude: 0.89 ± 0.28
Force shape: 0 (38%), 1 (33%)

Periodicity: 0.06 ± 0.03

e) FlexTPP (ours)

Figure 3: Our FLEXTPP-C framework allows structured prediction tasks such as annotating events
in an input time series with full uncertainty quantification. (a) Example input time series from our
synthetic dataset. (b) Ground truth events including per-event-type properties, one row per event type,
see legend on top right for abbreviations. (c) Predicting the event type p(mtype|t, C) at a given time t
cannot properly describe several events happening at the same time, it instead expresses uncertainty
in the event class. (d) A discrete-mark MTPP only predicts start times and event types. (e) Our model
samples meaningful sequences as detailed as the ground truth. Error bars are the standard deviation
from 256 model samples.

Table 4: We formulate probabilistic time series annotation as a conditional MTPP. Our FLEXTPP-C
achieves the best AUC ROC scores by jointly sampling events, event types and durations. FLEXTPP
without condition naturally achieves random AUC ROC (0.5), but yields a useful baseline for negative
log-likelihoods (NLL). A conditional MTPP with only discrete marks does not predict event durations,
but achieves decent AUC ROC when assuming the average duration for each event. As an additional
baseline, we compare to a CNN-based time series classifier [Zhao et al., 2017] with limited window
size. Standard deviations estimated from five runs, note that the type NLL is conditioned on correct
event duration. Time + Type NLL in bits/event, Full NLL in bits/dim.

NLL (↓) AUC ROC (↑)
Model Time + Type NLL Full NLL External force Damping change Base frequency Position noise No Event Mean Single-class

FLEXTPP 0.250 (0.005) -0.010 (0.003) 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 0.5 (0.0)
Only Discrete Marks -0.474 (0.006) ✗ ✗ ✗ ✗ ✗ ✗ ✗
+ avg duration ✗ ✗ 0.96 (0.01) 0.63 (0.02) 0.990 (0.003) 0.98 (0.01) 0.91 (0.01) 0.90 (0.01)
FLEXTPP-C -0.867 (0.005) -0.930 (0.007) 0.990 (0.01) 0.66 (0.02) 0.998 (0.001) 0.997 (0.003) 0.93 (0.01) 0.92 (0.01)

Sliding Window Classifier ✗ ✗ 0.86 (0.06) 0.50 (0.01) 0.96 (0.04) 0.87 (0.06) 0.89 (0.04) 0.82 (0.02)

window size. We evaluate all methods using the area under the receiver-operator curve (AUC ROC)
[Hanley and McNeil, 1982], a common metric to identify how well predicted events overlap with the
ground truth [Schmidl et al., 2022]. FLEXTPP-C annotates most event types almost perfectly, and
outperforms the random baseline significantly on the difficult “damping change” event type, which is
hard to detect by construction. Naively, discrete mark MTPPs cannot be evaluated with AUC ROC
since they do not predict event durations, so we evaluate this metric using the average event duration.

5.4 Extracting Event Dependencies

How do events depend on one another under a learned model? Some neural Hawkes process variants
provide interpretability through structures their explicit triggering kernels q(ti,mi, t,m), so that
λ(ti,mi|Hti) =

∑
(t,m)∈Hti

q(ti,mi, t,m) [Isik et al., 2023, Zhu et al., 2022]. Such kernels directly
encode pairwise influence structures, providing global access to the modeled dependency structure.

Our framework offers a complementary, local interpretability mechanism. To derive it analogously,
we can solve eq. (2) for the intensity function λ(ti|Hti) given a time density p(ti|Hti):

λ(ti,mi|Hti) =
p(ti,mi|Hti)

1−
∫ t

ti−1
p(s,mi|Hti)ds

(14)

Here, we have reintroduced marks mi.

We can extract the local triggering kernel via eq. (14) by evaluating λ(t2,m2 | (t1,m1)). To
demonstrate this, fig. 7 in appendix A.4 replicates a synthetic setup from Isik et al. [2023]. We show
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that our model can recover an influence curve matching the ground truth with RMSE 0.01, indicating
that our learned event dependencies are both accurate and recoverable.

These approaches exhibit a broader tradeoff between global interpretability and modeling flexibility.
Kernel-based models provide a concise, fully inspectable description of event interactions, but their
rigidity can misrepresent complex real-world dynamics. For instance, some domains exhibit state-
dependent effects—such as advertising “fatigue,” where repeated exposures first increase and later
decrease response probability—that cannot be captured well by monotone additive influence kernels.
In such cases, the model is not expressive enough for the true dependency structure, and the resulting
explanations appear structured but do not reflect the true data-generating process.

Our model instead supports local interpretability: one can ask how a specific event or subset of events
affects intensities or subsequent event sequences, yielding contextual, fine-grained explanations. This
aligns with complex event sequences, where influences are often situational rather than universal.

6 Conclusion

In this work, we propose a simple yet powerful method to model more general Marked Time Point
Processes — ones with mixed-type (discrete and continuous) marks and auxiliary contextual informa-
tion. Our intensity-free modeling approach treats MTPP as one joint sequence consisting of auxiliary
information (if available), event arrival times, and marks; we then model the sequence autoregressively
using a single Transformer with appropriate output heads. We observe that incorporating additional
information generally improves modeling performance; this is expected from an information-theoretic
perspective — conditioning reduces entropy, which is the minimum achievable negative log-likelihood
[Cover and Thomas, 2006]. From a modeling perspective, we observe that complex intensity func-
tions may not be necessary — intensity-free modeling with good one-dimensional density estimators
may be enough to model temporal processes well.

Our generalized MTPP framework also highlights how MTPPs can be used as a versatile prediction
tool for annotating input time series. Crucially, MTPPs naturally model the joint probability of each
prediction, so that each sampled annotation from the model is a consistent explanation of the input.
The formulation also naturally allows for overlapping events. We envision future work to extend
this paradigm for annotating spatio-temporal sequences to enhance uncertainty quantification in the
annotation of time series, such as audio, video, as well as scientific measurements.

Broader Impact. Modeling critical data, such as in the context of medicine, can cause harm through
wrong or wrongly interpreted predictions, such as those arising from biases in the training data and
distribution shifts. On the positive side, modeling additional variables and incorporating context can
increase prediction accuracy and enable novel applications.

7 Limitations

Limitations of autoregressive modeling. Our approach inherits the limitations of autoregressive
modeling. In particular, when scaling to high-dimensional marks such as images, alternative gen-
erative modeling approaches may be more suitable [Chang et al., 2025]. Another direction is to
jointly learn a representation of the marks that is better suited for downstream modeling [Tschannen
et al., 2024]. Similarly, if the marks follow special structure such as special geometry or topology,
autoregressive models cannot be applied faithfully and generic methods such as [Sorrenson et al.,
2024] can be used to model these dimensions.

Alternative data types. In our work, we consider discrete and continuous data. Other mark
modalities, such as sets or ordered discrete variables, could be studied in the future.

Limitations of Transformer backbone. The compute of Transformers scale quadratically with
the length L of the underlying sequence: O(L2). This complexity can make them unsuitable for
modeling very long sequences. However by construction, our framework is compatible with other
autoregressive models such as recurrent neural networks [Elman, 1990], linear-attention Transformers
[Katharopoulos et al., 2020], or state-space models [Gu et al., 2021] that have better length scaling.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We explain our generalized framework and back up our claims with experi-
ments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See limitations in section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We give all details in appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See https://github.com/czi-ai/FlexTPP.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We give all details in appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We give all details in appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We give all details in appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and comply with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide a statement in the conclusion in section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We only release synthetic data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We give the references as required.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We will release our code and synthetic dataset upon publication under a
permissive license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No such research performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
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Justification: LLMs are not a core method in this research.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

Appendix:
Transformers for Mixed-type Event Sequences

A Experimental Details

We base our code on PyTorch [Paszke et al., 2019], PyTorch Lightning [Falcon and The PyTorch
Lightning team, 2019], numpy [Harris et al., 2020], hydra [Yadan, 2019] and pandas [The pandas
development team, 2020, McKinney, 2010]. Our rational-quadratic spline [Durkan et al., 2019]
implementation is adapted from FrEIA [Ardizzone et al., 2018].

Unless stated otherwise, we use the AdamW optimizer [Loshchilov and Hutter, 2019] and a one cycle
learning rate scheduler [Smith and Topin, 2019] in the PyTorch implementation with a div_factor
of 10 and a pct_start of 0.1.

A.1 EasyTPP

The EasyTPP [Xue et al., 2024] benchmark contains the following datasets:

Amazon [Ni et al., 2019] features user reviews where each product category serves as a distinct
mark. Retweet [Zhao et al., 2015] forecasts the popularity of retweet cascades, with event types
categorized by user influence levels based on follower counts. Taxi [Whong, 2014] captures pickup
and dropoff events across New York City, where marks are constructed from the Cartesian product
of five predefined locations and two action types. Taobao [Xue et al., 2022] models user browsing
behavior on an e-commerce platform, using item categories as marks. Lastly, StackOverflow collects
user badges over time [Du et al., 2016].

Table 5 shows the hyperparameters we use. We identified them using a grid search optimizing for
validation negative log-likelihood, separately for each dataset. This mirrors the procedure from which
we obtain our baselines [Chang et al., 2025]. We stop training early when the validation NLL has not
improved over 300 epochs, and use the checkpoint of best validation for evaluating the model.

We ran all experiments in parallel on a single NVIDIA H100 GPUs, taking about 3 hours for all
experiments to finish.

Table 5: Hyperparameters used for the EasyTPP benchmark.

Amazon Retweet Taobao Taxi StackOverflow

nepochs 1000
nhead 4
nff 256
Non-linearity GELU
Transformer depth 5 5 4 5 5
dK 12 32 12 24 12
pdropout 0.4 0.2 0.38 0.44 0.46
nbins 11 10 29 8 10
Batch size 159 246 207 176 204
Learning rate 0.001 0.00015 0.0008 0.0005 0.0004
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Table 6: Our method outperforms the previous intensity-free IFTPP [Shchur et al., 2020] on all
EasyTPP datasets [Xue et al., 2024] in terms of negative log-likelihood (lower is better, lowest value
in bold, second lowest value underlined). (Top) Extract of table 2 comparing our FLEXTPP to IFTPP.
(Bottom) Ablation of our transformer backbone with IFTPP’s prediction head for continuous data, a
mixture of K log-normal distributions.

Model Amazon Retweet Taxi Taobao StackOverflow

FLEXTPP (Ours) -0.633 (0.039) 5.646 (0.070) -0.763 (0.005) -1.402 (0.013) 2.133 (0.004)
IFTPP [Shchur et al., 2020] -0.496 (0.002) 10.344 (0.016) -0.453 (0.002) -1.318 (0.017) 2.233 (0.009)

K = 16 log-normal 2.211 (0.004) 6.450 (0.001) -0.734 (0.002) -1.354 (0.004) 2.253 (0.005)
K = 32 log-normal 2.210 (0.018) 6.449 (0.001) -0.732 (0.004) -1.354 (0.006) 2.251 (0.004)
K = 64 log-normal 2.208 (0.007) 6.450 (0.001) -0.727 (0.004) -1.355 (0.004) 2.263 (0.006)
K = 128 log-normal 2.215 (0.003) 6.451 (0.001) -0.719 (0.006) -1.336 (0.003) 2.266 (0.003)

Table 7: Hyperparameters used for EHRSHOT.

nepochs nhead nff Non-linearity Transformer depth dK nbins Batch size Learning rate

2000 4 256 GELU 2 16 16 128 0.0005

A.2 Patient Record Data

EHRSHOT [Wornow et al., 2023] models irregular time series of clinical events from electronic
health records, using lab tests and procedures as distinct marks.

The dataset has been split into Train-Validation-Test with a ratio of 70%-15%-15%. We pick the top
20 most common diseases as subdatasets to train and test the models. For each disease, we capture
the top 10 most frequent Current Procedural Terminology (CPT-4) codes that denote medical services
and procedures as discrete events, and model the 5 most relevant disease-related lab results as events
with their type and continuous value.

We perform early stopping during training when the validation NLL has stopped decreasing for over
200 epochs, and use the checkpoint of best of validation NLL for testing.

To make a fair comparison, all the model share the same model structure. Sinusoidal positional
encoding are applied across all models, within each event. The positions are encoded within each
event. For each event, arrival time, event type (lab test or procedure), lab test/procedure type, and
lab test result (if applicable) are placed at positions 1, 2, 3, and 4, respectively. The metadata (age,
gender, ethnicity, and race) are fed as additional tokens into the beginning of the time series, serving
as the condition part of the model. More details of the model structure can be found in table 7.

For hyperparameter tuning, the best hyperparameters are chosen based on the validation set. The best
batch size is 128 and the best learning rate is 0.0005, searched from the spaces [64, 128, 256] and
[0.0001, 0.0005, 0.001] across all models and subdatasets. The best dropout rates are listed in table 8,
searched from the space [0.0, 0.1, 0.2].

We ran all experiments in parallel on a single NVIDIA Quadro RTX 8000 GPU and a single NVIDIA
Quadro RTX 5000 GPU, taking about 120 hours for all experiments to finish.

A.3 Conditional Event Detection

A.3.1 Dataset

We generate our dataset by integrating the SDE described in eq. (13). We give the default values for
all parameters in table 11; some values are fixed for all time series and some are sampled anew for
each time series.

These parameters are then modified during the SDE integration. Recovering these modifications will
later be the prediction to be made by the model.

To this end, we first sample the number of perturbation events to occur (compare table 11). Then, we
sample the start time, duration and a ramp time for each modification event according to table 12.
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Table 8: Dropout Rates used for EHRSHOT.

Dataset Procedures + Lab Tests ESGPT ESGPT-C FLEXTPP FLEXTPP-C

Type 2 diabetes mellitus 0.0 0.0 0.0 0.0 0.0 0.0
Transplanted kidney 0.0 0.0 0.1 0.1 0.1 0.1
Transplanted lung 0.1 0.0 0.1 0.1 0.1 0.1
Dyspnea 0.0 0.0 0.0 0.0 0.0 0.0
Atrial fibrillation 0.0 0.1 0.0 0.0 0.0 0.0
Cardiac transplant disorder 0.0 0.0 0.1 0.1 0.1 0.1
End-stage renal disease 0.1 0.0 0.1 0.1 0.1 0.1
Transplanted heart 0.1 0.0 0.0 0.0 0.0 0.0
Congestive heart failure 0.0 0.1 0.0 0.0 0.0 0.0
Chronic pain 0.0 0.1 0.0 0.0 0.0 0.0
Neoplasm of female breast 0.1 0.0 0.1 0.1 0.1 0.1
Obstructive sleep apnea 0.1 0.0 0.0 0.0 0.0 0.0
Diabetes with complication 0.0 0.0 0.1 0.1 0.1 0.1
Anemia 0.0 0.0 0.0 0.0 0.0 0.0
Coronary artery disease 0.0 0.0 0.0 0.0 0.0 0.0
Hypothyroidism 0.0 0.0 0.1 0.1 0.1 0.1
Acute myeloid leukemia 0.1 0.0 0.1 0.1 0.1 0.1
Depressive disorder 0.0 0.0 0.0 0.0 0.0 0.0
Transplanted liver 0.0 0.0 0.1 0.1 0.1 0.1
Acute kidney injury 0.0 0.1 0.0 0.0 0.0 0.0

Table 9: Table 3 Time + Discrete Procedure NLL (↓) with standard deviations over five runs.

Dataset Procedures + Lab Tests ESGPT ESGPT-C FLEXTPP FLEXTPP-C

Type 2 diabetes mellitus 0.691 (0.0020) 0.202 (0.0012) 0.186 (0.0010) 0.182 (0.0010) 0.147 (0.0006) 0.143 (0.0012)
Transplanted kidney 0.755 (0.0130) 0.170 (0.0021) 0.199 (0.0020) 0.192 (0.0028) 0.134 (0.0007) 0.130 (0.0014)
Transplanted lung 0.912 (0.0019) 0.089 (0.0003) 0.078 (0.0006) 0.075 (0.0002) 0.068 (0.0003) 0.063 (0.0000)
Dyspnea 0.681 (0.0019) 0.162 (0.0003) 0.162 (0.0011) 0.155 (0.0011) 0.121 (0.0006) 0.117 (0.0005)
Atrial fibrillation 0.715 (0.0072) 0.081 (0.0001) 0.075 (0.0003) 0.071 (0.0003) 0.062 (0.0001) 0.059 (0.0005)
Cardiac transplant disorder 0.887 (0.0055) 0.034 (0.0001) 0.034 (0.0004) 0.033 (0.0005) 0.029 (0.0002) 0.027 (0.0004)
End-stage renal disease 0.697 (0.0035) 0.166 (0.0012) 0.169 (0.0020) 0.164 (0.0018) 0.128 (0.0012) 0.117 (0.0008)
Transplanted heart 0.034 (0.0024) 0.887 (0.0001) 0.033 (0.0002) 0.032 (0.0004) 0.029 (0.0003) 0.028 (0.0001)
Congestive heart failure 0.134 (0.0040) 0.704 (0.0006) 0.130 (0.0012) 0.128 (0.0026) 0.103 (0.0007) 0.100 (0.0005)
Chronic pain 0.735 (0.0042) 0.099 (0.0002) 0.095 (0.0004) 0.093 (0.0006) 0.076 (0.0017) 0.073 (0.0009)
Neoplasm of female breast 0.716 (0.0025) 0.043 (0.0007) 0.040 (0.0006) 0.038 (0.0003) 0.032 (0.0003) 0.030 (0.0006)
Obstructive sleep apnea 0.695 (0.0023) 0.093 (0.0006) 0.090 (0.0007) 0.089 (0.0013) 0.061 (0.0006) 0.059 (0.0002)
Diabetes with complication 0.718 (0.0022) 0.176 (0.0004) 0.164 (0.0017) 0.160 (0.0013) 0.133 (0.0007) 0.129 (0.0005)
Anemia 0.655 (0.0025) 0.164 (0.0013) 0.165 (0.0012) 0.158 (0.0007) 0.127 (0.0006) 0.126 (0.0008)
Coronary artery disease 0.692 (0.0021) 0.144 (0.0011) 0.138 (0.0008) 0.134 (0.0012) 0.108 (0.0006) 0.105 (0.0003)
Hypothyroidism 0.735 (0.0013) 0.224 (0.0010) 0.212 (0.0011) 0.208 (0.0013) 0.166 (0.0007) 0.159 (0.0009)
Acute myeloid leukemia 0.729 (0.0065) 0.182 (0.0021) 0.160 (0.0011) 0.154 (0.0012) 0.124 (0.0009) 0.117 (0.0005)
Depressive disorder 0.683 (0.0027) 0.136 (0.0008) 0.135 (0.0011) 0.129 (0.0007) 0.108 (0.0006) 0.105 (0.0013)
Transplanted liver 0.799 (0.0063) 0.183 (0.0008) 0.192 (0.0015) 0.186 (0.0024) 0.144 (0.0019) 0.142 (0.0026)
Acute kidney injury 0.201 (0.0026) 0.645 (0.0003) 0.191 (0.0006) 0.185 (0.0004) 0.144 (0.0010) 0.139 (0.0005)

Depending on the type, we sample the event properties via table 13. The ramp time avoids sudden
changes in parameters, so that the events are harder to detect.

The events replace the parameters in eq. (13) with the following dynamic coefficients:

σx(t) = σx,0 +
∑

E:mtype
E =D

α(t;E)σx,E , (15)

ω(t) = w0

∏
E:mtype

E =C

(1 + α(t;E)ωE), (16)

γ(t) = γ0
∏

E:mtype
E =B

(1 + α(t;E)γE), (17)

f(t) =
∑

E:mtype
E =A

α(t;E)βsE

(
t− 2π

T
t

)
. (18)

Here, the sums/products run over all events E of the corresponding type mtype
E . The function α(t;E)

turns off the event outside of its domain and interpolates over the ramp time at the beginning and end
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Table 10: Table 3 Full NLL (↓) with standard deviations over five runs.

Dataset ESGPT ESGPT-C FLEXTPP FLEXTPP-C

Type 2 diabetes mellitus 0.754 (0.0038) 0.758 (0.0056) 0.641 (0.0050) 0.638 (0.0027)
Transplanted kidney 0.859 (0.0070) 0.863 (0.0225) 0.670 (0.0083) 0.668 (0.0111)
Transplanted lung 0.851 (0.0013) 0.857 (0.0200) 0.581 (0.0060) 0.546 (0.0122)
Dyspnea 0.560 (0.0111) 0.549 (0.0185) 0.463 (0.0038) 0.438 (0.0021)
Atrial fibrillation 0.388 (0.0119) 0.376 (0.0091) 0.204 (0.0048) 0.192 (0.0090)
Cardiac transplant disorder 0.552 (0.0524) 0.594 (0.0553) 0.408 (0.0116) 0.393 (0.0203)
End-stage renal disease 0.757 (0.0145) 0.753 (0.0112) 0.580 (0.0037) 0.578 (0.0032)
Transplanted heart 0.736 (0.0233) 0.701 (0.0163) 0.546 (0.0041) 0.521 (0.0036)
Congestive heart failure 0.846 (0.0102) 0.861 (0.0116) 0.525 (0.0066) 0.509 (0.0096)
Chronic pain 0.765 (0.0046) 0.743 (0.0075) 0.162 (0.1045) 0.165 (0.0078)
Neoplasm of female breast 0.608 (0.0068) 0.608 (0.0141) 0.516 (0.0309) 0.461 (0.0270)
Obstructive sleep apnea 0.710 (0.0075) 0.676 (0.0097) 0.195 (0.0354) 0.187 (0.0285)
Diabetes with complication 0.694 (0.0113) 0.703 (0.0114) 0.579 (0.0023) 0.582 (0.0047)
Anemia 0.322 (0.0014) 0.296 (0.0190) 0.238 (0.0121) 0.245 (0.0097)
Coronary artery disease 0.966 (0.0246) 0.986 (0.0247) 0.636 (0.0138) 0.625 (0.0134)
Hypothyroidism 0.666 (0.0068) 0.664 (0.0063) 0.524 (0.0037) 0.528 (0.0080)
Acute myeloid leukemia 0.727 (0.0131) 0.735 (0.0139) 0.567 (0.0161) 0.561 (0.0050)
Depressive disorder 0.813 (0.0038) 0.826 (0.0101) 0.608 (0.0129) 0.545 (0.0133)
Transplanted liver 0.907 (0.0211) 0.902 (0.0150) 0.727 (0.0104) 0.725 (0.0159)
Acute kidney injury 0.706 (0.0037) 0.711 (0.0037) 0.621 (0.0042) 0.605 (0.0028)

Table 11: Base parameters of the harmonic oscillator specified in eq. (13). The observation noise is
randomly sampled for each time series. The notation ∼ · indicates that the corresponding value is
sampled.

Property Value

Damping γ0 0.1
Base frequency ω0 30 · 2π (30 Hz oscillator)
Time range 0..1 in 104 steps
Noise strength on position σx,0 0.01
Noise strength velocity σv 1.0
Observation noise ϵ ∼ LogNorm(µ = log(0.01), σ = log(.1))
Number of perturbation events ∼ U({1, . . . , 5})

Table 12: Shared properties for all events are randomly sampled for each event, independent of other
events. The last column indicates whether that property is to be predicted by our models.

Property Distribution To be predicted?

Event duration δt ∼ U([.025, 0.5]) ✓
Event start t ∼ U([0, 1− duration]) ✓
Event type mtype ∼ U({types defined in table 13}) ✓
Ramp time tr ∼ U([0, duration/4]) ✗

Table 13: Custom event properties per event type and how we draw them. They are all predicted by
our model.

Event Type Property Distribution

A: External force Magnitude β ∼ U([.5, 1.5])
Force shape s ∼ U({sin, square, sawtooth})
Periodicity T ∼ U([0.01, 0.1])

B: Damping change Factor κω ∼ U([0.5, 1.5])
C: Base frequency change Factor κγ 1 + sa, where s ∼ U({−1, 1}) and a ∼ U([0.1, 0.2])
D: Position noise Additional noise σx ∼ U([1.0, 5.0])
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of the event:

α(t;E) =



0 if t ≤ tE
t−tE
tr,E

if tE < t < tE + δtE

1 if tE + tr,E ≤ t ≤ tE + δtE − tr,E

1− t−(tE+δtE−tr,E)
tr,E

if tE < t < tE + δtE

0 if tE + δtE ≤ t.

(19)

We use sdeint’s itoint [Jaekel, 2015] to solve the SDE, initializing to x = 1.0, v = 0.0. After
integrating, we add independent observation noise ϵ to each time point. We avoid extreme values by
softly clamping the time series in [−10, 10], where C = L/2 and L = 10:

soft_clip(x) = sign(x) · clipped (20)

where clipped =

{
|x| if |x| ≤ L

L+ (C − L)
(
1− e−k(|x|−L)

)
if |x| > L

(21)

k =
1

C − L
. (22)

We generate 100,000 input time series with annotations, using 80% for training, and 10% for
validation and testing each. We provide the code for generating the data in the supplementary files.

A.3.2 MTPP-based event detection

It is straightforward to turn the prediction of the above events into a generative prediction task via an
MTPP.

To this end, we utilize an event E’s start time tE as its arrival time, the type of change per table 13 as
the discrete mark type mtype

E and the duration as well as the other properties as the additional marks.
Concretely:

N(A) = 4, d(A) = (cont, cont,disc, cont), (23)
N(B) = N(C) = N(D) = 2, d(B) = d(C) = d(D) = (cont, cont). (24)

As a conditioning network, we preprocess the input time series using a Transformer with full attention
(non-causal). It shares the embedding dimension dE = nheaddK with the autoregressive backbone of
the MTPP model. To tokenize the data, we split the incoming time series into windows of size l, and
map them through a linear layer to the embedding size dE . The conditioning Transformer has depth
2, dff = 256 and dropout 0.1.

All other hyperparameters are specified in Table 14, each determined from a hyperparameter optimiza-
tion. Interestingly, the discrete-only variant has significantly more monotonic bins in the continuous
distribution than our FLEXTPP-C. We think that this is due to the requirement to model a more
complicated distribution for the next-time prediction. We stop training if the last 300 epochs did not
reduce the validation loss and evaluate each run using the checkpoint with minimal validation loss.
Training takes about three hours per run, with five parallel runs on a single NVIDIA H100.

We make use of two complementary positional encodings: A learned embedding encoding the
position in the event, and a positional encoding of the event in the sequence.

A.3.3 Ablation on Event Property Order

In an autoregressive model, we can change the order of variables to obtain the same joint distribution
via the chain rule of probability:

pD(X1, . . . XL) =

L∏
l=1

pD(Xl|X1, . . . , Xl−1) =

L∏
l=1

pD(Xπ(l)|Xπ(1), . . . , Xπ(l−1)). (25)

We find that for the event annotation dataset, it is beneficial to deviate from the order in eq. (3):

(ti,mi,m
add
i ) = (ti,mi, durationi, other event propertiesi). (26)
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Table 14: Hyperparameters of the MTPP-based model.

Discrete mark MTPP FLEXTPP-C

nepochs 1000
nhead 4
nff 256
Non-linearity GELU
Transformer depth 7
dK 28
pdropout 0.25 0.2
nbins 20 8
Batch size 160
Learning rate 0.001
Conditioning window size l 200 240

Table 15: Ablation comparing different orderings of each event’s data for FLEXTPP-C in the event
annotation task. Event parts: Start of event, Type of event, Duration, and remaining Properties.
Values in brackets are standard deviations over eight runs. Time + Type NLL in bits/event, Full NLL
in bits/dim.

Order Time + Type NLL (↓) Full NLL (↓)

SDTP -0.867 (0.005) -0.930 (0.007)
STDP -0.596 (0.004) -0.778 (0.006)
STPD -0.595 (0.005) -0.775 (0.006)

and instead model in the order:
(ti, durationi,mi, other event propertiesi). (27)

Table 15 compares the validation negative log-likelihoods of different orders. Note that hyperparam-
eters were optimized for eq. (27), and thus we cannot exclude that there are hyperparameters for
which the other orders perform just as well (for example, increase the number of bins of the spline to
model more complex distributions in alternative orderings). In the end, eq. (25) suggests that the full
likelihoods should be identical across reordering the data.

A.3.4 Baseline: CNN-based Time Series Classifier

We compare FLEXTPP-C to a CNN-based classifier for conditional event detection. We follow the
structure from the time series anomaly detection survey by Schmidl et al. [2022] and make use of
convolutional neural networks as classifiers [Zhao et al., 2017]. The approach uses a classifier that
predicts the class at a time point t ∈ [0, 1] of what events it observes given a slice of the time series of
size l around t. At inference time, this classifier is applied in a sliding-window approach. The finite
window size of the classifier limits its capability to detect events. We assume that every timestamp
has been annotated by counting the number of events per event type that could occur and write that
into a normalized vector y(t) ∈ [0, 1]m+1 to be predicted with m being the number of different event
types (plus one type for “no event”). This allows the classifier to model multiple concurrent events
through weighted class activations. However, it does not allow it to differentiate this from uncertainty
in the prediction, as we analyze in appendix A.3.5.

Following [Schmidl et al., 2022], for training, we cut the input time series into slices of length l with
strides ls. We found l = 500 and ls = 100 to perform best. Each resulting window is then assigned
the label vector of its central timestamp.

Then, we train a convolutional neural network to map the observations to the target vector y(t) using
cross-entropy loss. We used Adam optimizer with a learning rate of 0.001 trained for 5 epochs.

Multiple runs were trained concurrently on a single NVIDIA A100 Tensor Core GPU, and each
single run completed within 2 hours of starting.

The classifier consists of two convolutional blocks, each followed by batch normalization, a non-linear
activation function, temporal downsampling through pooling, and dropout for regularization (see
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table 16). The first block increases the number of feature channels, and the second further refines
the representation while reducing the temporal resolution. The resulting feature maps are flattened
and passed through a fully connected layer with an intermediate activation and additional dropout.
A final linear layer maps the representation to the desired number of output classes. To recover
per-timestamp predictions from the window-based CNN outputs, we aggregate the predicted label
vectors of all windows that include a given timestamp:

ŷ(t) =
1

|W (t)|
∑

wi∈W (t)

ŷ(wi), (28)

where
W (t) := {wi | t ∈ wi} (29)

is the set of all windows that include timestamp t. This averaging doubles the field of view for each
timestamp’s prediction and improves robustness and smoothness over time.

Table 16: Architecture of the 1D CNN used for window-based event classification. The input has
shape (batch_size, 1, l + 1), where l + 1 is the window length.

Layer Operation
Conv1 Conv1d(1, 32, kernel=3, padding=1)

BatchNorm1d(32)
ReLU()

MaxPool1d(kernel_size=2)
Dropout(p=0.2)

Conv2 Conv1d(32, 64, kernel=3, padding=1)
BatchNorm1d(64)

ReLU()
MaxPool1d(kernel_size=2)

Dropout(p=0.2)

Flatten view(batch_size, -1)

FC1 Linear(64 · ⌊ l+1
4 ⌋, 128)

ReLU()
Dropout(p=0.3)

FC2 Linear(128, m)

A.3.5 Method Comparison

In this section, we expand on the evaluation in section 5.3. We compare the conditional MTPP with
only discrete marks + fixed average event length, our FLEXTPP-C also modeling duration and event
properties, and a sliding window classifier. We compare via samples, likelihoods, and per-timestamp
class probabilities.

Samples from MTPP approaches Figures 4 to 6 shows a total of six randomly selected test time
series. First, we show the predictions of the MTPP approaches: Both the classical MTPP (only
discrete marks) and our method detect events accurately, except for the damping change, which is
hard to detect in the data given its subtle effect. However, the flexible mark structure is more useful
since it models event durations and the event properties.

For the MTPP with only discrete marks, we visualize the events with a constant event duration of
(.5 + 0.025)/2 = 0.2625, which is the average length.

The sliding window classifier does not directly yield such samples since it has no understanding of
event starts.

Likelihoods Table 4 compares likelihoods of the MTPP approaches. The resulting classification
likelihood from the sliding window classifier is not directly compatible with the likelihoods of our
model in eq. (5), since they operate in different spaces.
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Figure 4: Uncurated model and baseline predictions on the event prediction task (1/3). (In boxes)
Input time series, ground truth event annotations (blue), as well as one random annotation from the
discrete-only MTPP model (orange) and our flexible-modality model (green). The ground truth and
our models also list event properties, which are not available for the discrete-only model. (Below
plot) Predicted p(y(t)|time series) from the three models (ours, discrete-only MTTP, baseline CNN).
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Figure 5: Uncurated model and baseline predictions on the event prediction task (2/3). Same as
fig. 4.
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Figure 6: Uncurated model and baseline predictions on the event prediction task (3/3). Same as
fig. 4.
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Class probabilities per timestamp To compare the different modeling approaches, we evaluate
the class probabilities p(y(t)|time series) at each time stamp given the time series. To get these
predictions about the class distribution at time t from the MTPP models, we approximate the trained
models p(y(t)|time series) by averaging event occurrence over 100 sampled event annotations. For
the MTPP with only discrete marks, we again use the average event duration for all predicted events.

Figures 4 to 6 visualize the resulting probabilities for the three approaches. One can see that all three
methods mostly agree at which time some event starts. However, the discrete-marks MTPP is biased
when multiple events occur since it does not predict the duration of the events. Also, it learns heavier
distributions for the events.

The classifier is less well calibrated in terms of regards of which class it expects. We think that this is
due to a fundamental limitation of the formulation of annotation as classification: By construction,
a classifier-based approach cannot differentiate between being unsure about which event class to
predict and there being several events present. For example, let’s assume there are two event types A
and B and the classifier predicts the following values:

p(event A at t|window) = 1/2, p(event B at t|window) = 1/2, p(no event at t|window) = 0.
(30)

This result could be caused by (a) the model is certain that both events A and B being present, or (b)
there is some event, but it is unclear what type of event (A or B) there is. We think that this ambiguity
in the task representation leads to an overall high uncertainty in the predictions of the classifier.

Table 4 quantify the performance of the models the macro-averaged Receiver Operating Characteristic
– Area Under the Curve (ROC AUC) [Hanley and McNeil, 1982] on the per-timestamp y(t) vectors.
This metric is computed by adopting a one-vs-rest strategy: for each class, a binary ROC AUC score
is calculated by treating the current class as the positive class and all others as negative. The final
score is then obtained by averaging the individual AUCs across all classes:

Macro AUC =
1

m

m∑
k=1

AUCk. (31)

Here, each AUCk represents the ROC AUC score for class k = 1, . . . ,m + 1 (compare ap-
pendix A.3.4).

Each ROC curve is insensitive to a badly calibrated model because it is based on the ranking of
predicted scores, not their absolute values. Therefore, the CNN Classifier still yields useful ROC
AUCs despite the notably worse performance in predicting p(y(t)|time series) in figs. 4 to 6.

A.4 Extracting triggering kernel

For this experiment, we sample N = 100, 000 event sequences from the following intensity function:

λ(t|Ht) = µ+
∑
ti<t

t−ti<β

α sin

(
π(t− ti)

β

)
. (32)

We choose µ = 0.1, α = 0.2, β = 1 and sample T = 4 events per sequence.

We then train a FLEXTPP with hyperparameters given in table 17.

Figure 7 shows the above kernel and the kernel extracted from our model. To get it from our model, we
average over t1 = 0.1, 0.2, . . . , 10.0 and evaluate the intensity function from the learned probabilities
via eq. (14) as a function of t2 = t1 + 0.033, . . . , t1 + 10.0.

B Details on Architecture

Figure 1 in the main text visualizes our architecture. Figure 8 visualizes the architecture with more
details and shows the sampling according to algorithm 1. The multi-head attention block is causal,
meaning that token i can only attend to tokens 1, . . . , i − 1. The transformer works with a token
dimension of dE = nheaddK and the feed-forward networks in each transformer block have a hidden
dimension of dff.
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Figure 7: FLEXTPP (orange) can accurately learn the triggering kernel in eq. (32) (blue) from data.

Table 17: Hyperparameters of the kernel extraction model.

FLEXTPP

nepochs 200
nhead 4
nff 256
Non-linearity GELU
Transformer depth 2
dK 16
pdropout 0.1
nbins 10
Batch size 1024
Learning rate 0.0008
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Figure 8: Details on our transformer architecture and visualization of sampling. The multi-head
attention layer includes both causal attention and dropout. Sampling occurs auto-regressively, where
each token is fed into the model after being sampled, until the terminal token is generated.
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The output embeddings of the transformers are ignored for the condition tokens, and the others are
passed into a small neural network predicting the parameters of the continuous respectively discrete
distributions each. These networks φcont respectively φdisc have one hidden layer with hidden width
2max{dE , dcont} (2max{dE , ddisc}) a ReLU activation. Even though different positions in the
sequence may allow separate numbers of discrete values, we find that we never sample a disallowed
class at inference (indicating that the network has learned the sequence accurately) and so we do
not need to track the actual number of allowed classes depending on position. Instead, we set the
number of classes to the maximum number of classes any token has to support. For values that are by
construction positive (that is all arrival times relative to the previous event, as well as durations for
the time series annotation experiments), we first take the logarithm of these values. We also reflect
this in the likelihood computation, which is based on linear time.

This is how we feed data into the transformer:

First, we preprocess the condition with some network to transform from its corresponding modality
to one or several tokens (for example the large vector for the time is not directly compatible with
the transformer token-based embedding). We provide the details in each experimental section in
appendix A.

Then, we embed each value in X as a token in eq. (3) depending on its type: For discrete entries
Di = disc, we use a learned embedding vector for each possible class. For continuous entries, we
learn an affine layer wx+ b, where w, b ∈ Rdm and x ∈ R is the scalar to be embedded. We shift
these tokens to the next position, since the ith output of the transformer is mapped to the distribution
p(Xi|X<i), which must only have access to the history. The first entry is replaced with 0 as a
beginning of sequence identification (there is no history for the first entry).

We also embed the data type in D (∈ {disc, cont}) to be expected for each token using a learned
embedding. These embeddings are added to the shifted value tokens. They are not shifted, the type of
entry can be determined at inference time using algorithm 1.

Finally, we add a positional encoding to inform the model about where it is in the sequence. We give
the details on the positional encoding and the conditioning networks for each case separately.

If the number of events per sequence is not constant over the dataset, we mark the end of the sequence
with a special “EOS” mark type (mtype

T+1 = EOS). Note that since the end of sequence is never fed into
the model as it is the last entry in a sequence and all values are shifted by one. Instead the “EOS”
event only enters when evaluating the last sequence entry’s distribution after the transformer.
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