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ABSTRACT

Deep learning models often struggle to maintain performance when deployed on
data distributions different from their training data, particularly in real-world ap-
plications where environmental conditions frequently change. While multi-source
domain generalization (MDG) has shown promise in addressing this challenge
by leveraging multiple source domains during training, its practical application
is limited by the significant costs and difficulties associated with creating multi-
domain datasets. To address this limitation, we propose pseudo multi-source do-
main generalization (PMDG), a novel framework that enables the application of
sophisticated MDG algorithms in a more practical single-source domain general-
ization setting. PMDG generates multiple pseudo-domains from a single source
domain through style transfer and data augmentation techniques, creating a syn-
thetic multi-domain dataset that can be used with MDG algorithms. Through
extensive experiments with PseudoDomainBed, our modified version of the Do-
mainBed benchmark, we analyze the effectiveness of PMDG across multiple
datasets and architectures. Our analysis reveals several key findings, including
a positive correlation between MDG and PMDG performance and the potential of
pseudo-domains to match or exceed actual multi-domain performance with suf-
ficient data. These comprehensive empirical results provide valuable insights for
future research in domain generalization.

1 INTRODUCTION

Deep learning models have achieved remarkable success across various domains. However, their
performance often deteriorates significantly when tested on data distributions different from their
training data. This challenge is particularly prevalent in outdoor applications such as autonomous
driving and smart cities, where environmental factors like weather conditions and lighting variations
can substantially alter the input distribution. Therefore, developing robust deep learning models that
maintain their performance on unseen distributions is crucial for real-world applications.

Domain generalization (DG) has emerged as a promising approach to address this challenge. DG
techniques can be broadly categorized into two settings: single-source domain generalization (SDG),
which uses data from a single source domain, and multi-source domain generalization (MDG),
which leverages data from multiple source domains. While most existing research focuses on the
MDG setting using multi-domain datasets (e.g., PACS dataset (Li et al., 2017) with Photo, Art, Car-
toon, and Sketch domains), creating such datasets is often impractical due to high collection and
annotation costs. This limitation significantly hinders the practical application of MDG algorithms.

To bridge this gap, we propose pseudo multi-source domain generalization (PMDG), a novel frame-
work that enables the application of sophisticated MDG algorithms in a more practical SDG setting.
Our approach generates multiple pseudo-domains from a single source domain, treating them as dis-
tinct domains to create a synthetic multi-domain dataset. We investigate two approaches for effective
pseudo-domain generation, style transformation, and data augmentation. For style transformation,
inspired by the PACS dataset, we employ AdaIN Style Transfer (Huang & Belongie, 2017; Geirhos
et al., 2018), CartoonGAN (Chen et al., 2018), and Edge Detection (Soria et al., 2020; 2023) to gen-
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erate Art-style, Cartoon-style, and Sketch-style images. For data augmentation, we utilize various
augmentation methods. An overview of PMDG is illustrated in Figure 1.

Source 
Domain

Pseudo 
Domains

Unseen
Domains

DNN Training 
w/ MDG Algorithm

Figure 1: Overview of PMDG framework. PMDG applies
multiple transformations to training samples to generate
pseudo-domains. The DNN is then trained using an MDG
algorithm on these pseudo-domains to be robust against un-
known domains.

To evaluate PMDG, we create Pseu-
doDomainBed, a modified version of
the popular MDG benchmark Do-
mainBed (Gulrajani & Lopez-Paz,
2020), adapted for the SDG set-
ting. Through extensive experiments
on multiple datasets and architec-
tures (ResNet50 (He et al., 2016) and
ViT (Dosovitskiy et al., 2021; Tou-
vron et al., 2021)), we demonstrate
that PMDG achieves superior per-
formance compared to existing SDG
baselines. Our analysis reveals key
findings, including a positive correla-
tion between MDG and PMDG per-
formance, the potential of pseudo-
domains to match or exceed ac-
tual multi-domain performance, and

architecture-specific insights for pseudo-domain generation.

Our main contributions are as follows:

• We propose PMDG, a novel framework that bridges the gap between MDG and SDG, enabling
sophisticated MDG algorithms in a practical SDG setting.

• We introduce PseudoDomainBed, a modified version of DomainBed with publicly available code.
PseudoDomainBed facilitates easy utilization of MDG algorithms implemented in DomainBed
and enables their evaluation in the SDG setting through pseudo-domains.

• Extensive experiments demonstrate that PMDG outperforms existing SDG methods and provide
valuable insights to motivate future domain generalization research.

2 RELATED WORK

2.1 MULTI-SOURCE DOMAIN GENERALIZATION (MDG)

Most domain generalization research operates under the MDG paradigm, which assumes access to
training data from multiple domains with shared label space. MDG approaches aim to learn domain-
invariant information to improve generalization to unseen domains. Researchers have proposed var-
ious approaches, including learning domain-invariant features (Ganin et al., 2016; Li et al., 2018b;
Sun & Saenko, 2016; Arjovsky et al., 2019; Motiian et al., 2017), regularization techniques (Sagawa
et al., 2020; Huang et al., 2020; Krueger et al., 2021; Kim et al., 2021; Zhang et al., 2021; Shi et al.,
2022; Chen et al., 2023; Pezeshki et al., 2021; Cha et al., 2021), data augmentation (Yan et al., 2020;
Nam et al., 2021; Huang et al., 2020; Carlucci et al., 2019), self-supervised learning (Carlucci et al.,
2019; Li et al., 2021; Kim et al., 2021), causal perspectives (Arjovsky et al., 2019; Krueger et al.,
2021), meta-learning (Li et al., 2018a), and architectural innovations (Li et al., 2023).

While these approaches have shown promising results, their practical applicability has been limited
by the requirement of multi-domain training data. Our proposed PMDG framework addresses this
limitation by enabling MDG algorithms to operate effectively in a practical SDG setting.

2.2 SINGLE-SOURCE DOMAIN GENERALIZATION (SDG)

SDG research focuses on achieving domain generalization using training data from a single do-
main, which better reflects real-world scenarios. This approach is particularly relevant given that
many widely-used computer vision datasets (e.g., ImageNet (Russakovsky et al., 2015)) consist of
data from a single domain. Current SDG approaches can be broadly categorized into three groups:
learning algorithms, domain expansion methods, and data augmentation techniques. Learning al-
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gorithms (Huang et al., 2020; Nam et al., 2021; Pezeshki et al., 2021) aim to prevent overfitting
to source domain-specific information by introducing additional training objectives. Domain ex-
pansion methods systematically generate novel domains through various approaches: domain gen-
erator (Wang et al., 2021b; Li et al., 2021), uncertainty-guided generation (Qiao & Peng, 2021),
optimal transport (Zhou et al., 2020), and adversarial data augmentation (Qiao et al., 2020; Volpi
et al., 2018; Zhao et al., 2020). Data augmentation methods (Hendrycks et al., 2020; Huang et al.,
2023; Hendrycks et al., 2022; Wang et al., 2021a; Vaish et al., 2024; Xu et al., 2021; Choi et al.,
2023; Na et al., 2021; Kang et al., 2022; Zhou et al., 2021) focus on increasing the diversity of
training data through various transformations, often with specialized training procedures.

While domain expansion methods offer sophisticated domain generation techniques, they often re-
quire complex adversarial attacks or specialized architectures that can be unstable and computation-
ally intensive. In contrast, data augmentation methods provide a more straightforward and efficient
approach to creating pseudo-domains, thus better suited for benchmarking MDG algorithms.

We treat augmented data as samples from different domains and utilize data augmentation techniques
for pseudo-domain generation. Since identifying effective transformations and their combinations
for pseudo-domain generation is non-trivial, we conducted empirical studies to address these ques-
tions. Our results demonstrate that pseudo-domains can serve as a practical testbed for the rich
collection of MDG algorithms, suggesting that future research efforts should focus on developing
effective pseudo-domain generation strategies rather than new training algorithms.

3 SDG PROBLEM SETTING

Our research follows the SDG problem setting. In SDG, we aim to learn a model that can generalize
to unknown target domains using only a single source domain. Let DS = {(xi, yi)}ni=1 be a source
domain dataset, where xi ∈ X represents input data, yi ∈ Y represents labels, and (xi, yi) follows
the source domain distribution PS(X,Y ). We consider a set of unknown target domains T =
{T1, T2, ..., Tk}, where each target domain Tj has a different distribution from the source domain:

PTj (X,Y ) ̸= PS(X,Y ). (1)

The SDG objective is to learn fθ : X → Y minimizing expected risk across target domains:

f∗
θ = argmin

fθ
ETj∈T [E(x,y)∼PTj [L(fθ(x), y)]], (2)

where L : Y × Y → R is a loss function.

4 PROPOSED FRAMEWORK

We propose pseudo multi-source domain generalization (PMDG), a novel framework that enables
the application of MDG algorithms to single-source datasets by generating pseudo multi-domain
datasets through various transformations. Algorithm 1 details its implementation.

Algorithm 1 Training a DNN with PMDG

1: Input: Training dataset DS = {(xi, yi)}ni=1 ,
Number of epochs E, Batch size B, Transformations O = {O1, O2, . . . , ON}

2: Initialize model parameters θ
3: for epoch e = 1 to E do
4: Shuffle the training dataset DS

5: for each mini-batch {(xb, yb)}Bb=1 in DS do
6: Generate pseudo-domains: {x̃k

b = Ok(xb)}Kk=1 for each image in mini-batch
7: Obtain predictions: {ŷk

b = fθ(x̃
k
b )}Kk=1 for each pseudo-domains

8: Compute MDG loss: LMDG using algorithm-specific objectives
9: Update model parameters θ ← θ − η∇θL

MDG

10: end for
11: end for
12: Output: Trained model parameters θ

3
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Original MixUp CutMix RandAugment TrivialAugment AugMix

IPMix RandConv Style Transfer CartoonGAN Edge Detection

Figure 2: Visualization of transformations applied to dog images from the PACS dataset.

4.1 PSEUDO-DOMAIN GENERATION

Identifying effective methods for generating pseudo-domains remains a crucial open challenge. We
introduce and evaluate two approaches, both independently and in combination, style transformation
and data augmentation. Visual examples are presented in Figure 2.

Style Transformation. Inspired by the PACS dataset, we propose three transformations to recreate
its constituent domains. The first transformation is AdaIN style transfer (Huang & Belongie, 2017;
Geirhos et al., 2018), a technique that preserves image content (shape) while modifying style, used
for creating art-style images. The second is CartoonGAN (Chen et al., 2018), a GAN-based ap-
proach for transforming images into cartoon-style representations. The third is Edge Detection (So-
ria et al., 2020; 2023), a method for extracting image contours used to generate sketch-style images.

Data Augmentation. We employ various data augmentation techniques, including mixing-based
methods such as MixUp (Zhang et al., 2018) and CutMix (Yun et al., 2019), advanced augmenta-
tion strategies including RandAugment (Cubuk et al., 2020) and TrivialAugment (Müller & Hutter,
2021), and robustness-focused augmentations comprising AugMix (Hendrycks et al., 2020), IP-
Mix (Huang et al., 2023), and RandConv (Xu et al., 2021). Although some augmentation techniques
have associated loss functions, we omit them for simplicity in this study.

Transformation Selection. Given the limited understanding of optimal transformation count and
inter-transformation interactions, we take an empirical approach. We select K transformations (with
replacement) from a predefined set of transformation operations to construct the transformation set
O = {O1, O2, . . . , OK}, where each O represents an individual transformation operation.

Transformation Application. We generate pseudo multi-domain data using the transformation set
O. Specifically, for an input mini-batch B = (xi, yi)

b
i=1, we apply each transformation in the set to

obtain K pseudo multi-domain mini-batches {B1, . . . , BK}:

Bk = Ok(B), k = 1, . . . ,K. (3)

4.2 TRAINING WITH MDG ALGORITHM

We train the model fθ using an MDG algorithm on the K pseudo multi-domain mini-batches, where
our framework is algorithm-agnostic and can accommodate any MDG algorithm.

5 EXPERIMENTAL SETUP

We evaluated our approach using standard domain generalization datasets. Since model selection
significantly impacts performance evaluation in domain generalization, we ensure fair comparison
by modifying DomainBed (Gulrajani & Lopez-Paz, 2020), the standard MDG benchmark, to accom-
modate the SDG setting. We call our modified benchmark PseudoDomainBed, which implements
our pseudo-domain generation approach. Implementation details are in the appendix.

4
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5.1 IMPLEMENTATION DETAILS OF PSEUDODOMAINBED

Following the original implementation, we maintain consistent training configurations with Do-
mainBed, including learning rate, batch size, and other hyperparameters. We use ResNet50 as our
backbone network, maintaining the batch normalization layers (Ioffe & Szegedy, 2015) as per com-
mon practice in single-domain settings. For model selection, we employ training-domain validation
sets, which has shown the most stable performance in MDG settings. Our pseudo-domain trans-
formations are implemented as data augmentations applied at the mini-batch level, using default
hyperparameters from their respective papers. These transformations are applied after the default
data augmentation pipeline of DomainBed. Notably, while the original DomainBed applies data
augmentation to validation sets, we omit this in PseudoDomainBed to avoid distorting the evalua-
tion of generalization to unknown distributions.

Implementing various transformation techniques in a unified framework presents challenges due to
their different operating levels. To address this, we carefully designed the implementation architec-
ture of PseudoDomainBed to handle different types of transformations consistently. Image transfor-
mations in our framework can be categorized into two levels based on their processing stage. The
first category is dataset-level transformations, which operate on raw images before converting them
to tensors. Transformations such as RandAugment fall into this category, where augmentations are
applied directly to image data. The second category is mini-batch-level transformations, which oper-
ate on normalized tensors during the training process. For example, MixUp belongs to this category
as it combines multiple normalized image tensors. To handle these different transformation types
uniformly, we implemented a standardized interface for pseudo-domain generation algorithms. Each
algorithm is required to implement both dataset-level and mini-batch-level transformation methods,
even if only one is actually used. This design choice provides a consistent API for users to employ
any transformation technique without considering its implementation level. It also enables flexible
integration of new transformation methods by implementing the standard interface.

6 RESULTS

We report the mean and standard error over three trials for each PseudoDomainBed experiment,
demonstrating that PMDG outperforms SDG baselines.

6.1 EVALUATION OF PSEUDO-DOMAIN GENERATION

We first evaluated various transformation techniques for pseudo-domain generation in combination
with different MDG algorithms on the VLCS dataset (Fang et al., 2013). In the experiment, we con-
sider a two-domain setting consisting of the source domain and one pseudo-domain. To assess the
effectiveness of each combination, we measure the accuracy gains from the ERM baseline (Guyon
et al., 1991). Figure 3 shows a heatmap visualization of these results. IPMix, RandConv, and Triv-
ialAugment show positive accuracy gains with most MDG algorithms, suggesting their effectiveness
as pseudo-domain generation techniques. In contrast, CutMix leads to performance degradation in
most cases. Notably, MLDG (Li et al., 2018a) shows performance deterioration across all transfor-
mations, suggesting its incompatibility with our pseudo-domain approach. The negative results with
MLDG suggest that not all MDG algorithms are suitable for pseudo-domain settings, possibly due
to their assumptions about domain characteristics.

6.2 ANALYSIS OF PSEUDO-DOMAIN COMBINATIONS

We evaluated two different pseudo-domain combinations with various MDG algorithms. The first
combination consists of three domains, Org+IM+IM, while the second combination includes six do-
mains, Org+ST+ED+CG+IM+IM. We compare these combinations using three learning algorithms:
ERM, RIDG (Chen et al., 2023), and SD (Pezeshki et al., 2021). Table 1 presents the results. The
combination of SD with Org+IM+IM achieves the highest accuracy of 55.9%, surpassing the best
SDG baseline, IPMix (55.2%). Interestingly, while the addition of style-based transformations (ST,
ED, and CG) leads to significant improvements on the PACS dataset, its effectiveness is limited
on other datasets. Evaluating methods solely on PACS might lead to the development of tech-
niques that excel only on style-based domain shifts while failing to generalize to other types of

5
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Figure 3: Accuracy gains over the ERM baseline without pseudo-domain across different trans-
formation techniques (y-axis) and MDG algorithms (x-axis) on the VLCS dataset. Green and red
colors indicate performance improvements and degradation, respectively. Values represent accuracy
differences from ERM without pseudo-domains.

distribution shifts. This observation emphasizes the importance of diverse evaluation protocols, in-
cluding multiple datasets with different domain shifts. While specialized techniques like style-based
transformations are highly effective for specific scenarios, they should be complemented by more
general-purpose approaches for broader applicability.

Additionally, to investigate the effectiveness of our PMDG framework across different architec-
tures, we conducted experiments using Vision Transformer (ViT) as the backbone network. Ta-
ble 1 presents the results. The combination of SD with pseudo-domains Org+ST+ED+CG+IM+IM
achieves the highest accuracy of 62.0%, surpassing the best SDG baseline (60.5%). Style-based
transformations that enhance shape features appear to be more effective with ViT (Li et al., 2020;
Tuli et al., 2021), suggesting that the choice of pseudo-domain generation techniques should con-
sider the underlying architectural characteristics of the backbone network.

6.3 CORRELATION WITH MDG PERFORMANCE

To understand which MDG algorithms are most suitable for PMDG, we investigated whether the op-
timal choice of MDG algorithms differs between MDG and PMDG settings, as the training domains
in these settings are fundamentally different (real domains vs. pseudo-domains). For simplicity, we
used Org+IM as our pseudo-domain configuration. Figure 4 visualizes the relationship between al-
gorithm performance in MDG and PMDG settings. The results show a positive correlation between
MDG and PMDG accuracy. This correlation has two important implications. First, it suggests that
MDG algorithms that perform well in traditional multi-domain settings are also well-suited for our
pseudo-domain approach. Second, it suggests that the PMDG framework could enhance the practi-
cal utility of MDG algorithms by enabling their application to single-domain problems.

6.4 QUALITY ASSESSMENT: PMDG VS. MDG

We conducted a comparison between PMDG and conventional MDG approaches under controlled
data conditions to assess whether artificially generated pseudo-domains can serve as effective sub-
stitutes for naturally occurring domain variations. To ensure a fair comparison, we set the total
number of training samples equal in both settings. Given n samples from a single source domain
in the PMDG setting, we constructed an MDG training set by collecting n/3 samples from each
of three distinct domains, maintaining the same total size n. These source domain samples were
transformed using our Org+IM+IM pseudo-domain generation method in the PMDG setting, while
the MDG setting used the original samples directly. Both approaches used SD as the base algorithm

6
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Table 1: Accuracy comparison on four datasets using different combinations of algorithms and
pseudo-domains. Upper/lower tables show ResNet50/ViT results, respectively. Org denotes the
original domain without transformation, IM represents pseudo-domains generated by IPMix, ST
by StyleTransfer, ED by EdgeDetection, and CG by CartoonGAN. † indicates exclusion of domain-
specific transformations during training: ST is excluded when testing on Art domain, CG for Cartoon
domain, and ED for Sketch domain. “Avg” represents the mean accuracy across all datasets. In each
table, the upper part shows SDG baseline results and the lower part presents PMDG results. Bold
and underlined numbers denote the first and second highest accuracy, respectively.

Algorithm Pseudo-domain VLCS PACS OfficeHome TerraIncognita Avg

ERM – 60.6 ± 1.3 56.3 ± 0.5 53.4 ± 0.1 32.2 ± 0.7 50.6
Mixup – 64.3 ± 1.2 55.9 ± 0.8 54.5 ± 0.3 32.7 ± 0.5 51.8
SagNet – 62.0 ± 0.3 52.2 ± 0.4 51.5 ± 0.3 32.6 ± 0.7 49.6
RSC – 65.0 ± 0.9 56.1 ± 1.3 52.5 ± 0.3 33.3 ± 0.2 51.7
AugMix – 61.8 ± 0.5 57.8 ± 0.4 54.6 ± 0.3 32.1 ± 0.3 51.6
CutMix – 61.8 ± 0.3 54.7 ± 1.0 53.9 ± 0.1 33.0 ± 1.1 50.8
IPMix – 64.6 ± 1.0 65.9 ± 0.3 55.6 ± 0.2 34.9 ± 0.7 55.2
RandAugment – 58.6 ± 0.8 58.9 ± 1.0 53.9 ± 0.2 33.2 ± 0.5 51.1
RandConv – 62.1 ± 0.1 62.8 ± 0.7 53.2 ± 0.3 34.7 ± 0.3 53.2
TrivialAugment – 61.1 ± 1.1 59.9 ± 1.5 54.2 ± 0.2 36.2 ± 0.2 52.8

ERM Org+IM+IM 64.6 ± 1.5 63.4 ± 1.3 55.1 ± 0.4 36.6 ± 0.9 54.9
ERM Org+ST+ED+CG+IM+IM† 64.9 ± 1.1 69.9 ± 0.5 55.4 ± 0.1 31.1 ± 0.6 55.3
RIDG Org+IM+IM 63.4 ± 1.6 64.8 ± 0.3 55.4 ± 0.5 37.2 ± 0.2 55.2
RIDG Org+ST+ED+CG+IM+IM† 61.7 ± 0.0 71.8 ± 0.4 55.2 ± 0.2 31.7 ± 0.4 55.1
SD Org+IM+IM 65.6 ± 1.2 64.1 ± 1.0 56.7 ± 0.2 37.1 ± 0.7 55.9
SD Org+ST+ED+CG+IM+IM† 61.4 ± 0.3 69.7 ± 0.4 55.6 ± 0.2 30.5 ± 0.9 54.3

Algorithm Pseudo-domain VLCS PACS OfficeHome TerraIncognita Avg

ERM – 64.5 ± 0.8 73.7 ± 0.5 66.7 ± 0.4 32.1 ± 0.8 59.3
IPMix – 65.8 ± 1.0 76.3 ± 1.0 66.2 ± 0.3 33.9 ± 0.1 60.5

ERM Org+IM+IM 67.8 ± 0.1 74.5 ± 1.2 67.3 ± 0.2 33.7 ± 0.2 60.8
ERM Org+ST+ED+CG+IM+IM† 66.4 ± 0.6 79.6 ± 0.3 66.8 ± 0.1 31.3 ± 0.4 61.0
RIDG Org+IM+IM 67.6 ± 0.3 76.1 ± 0.8 68.1 ± 0.4 35.7 ± 0.7 61.9
RIDG Org+ST+ED+CG+IM+IM† 64.4 ± 0.3 80.8 ± 0.3 67.9 ± 0.2 32.0 ± 0.5 61.3
SD Org+IM+IM 67.5 ± 1.8 76.7 ± 0.6 68.4 ± 0.1 34.3 ± 0.3 61.7
SD Org+ST+ED+CG+IM+IM† 66.4 ± 0.7 81.3 ± 0.3 68.6 ± 0.1 31.7 ± 0.8 62.0

for domain generalization. The experimental results shown in Figure 5 reveal several intriguing pat-
terns. Overall, MDG with actual multi-domain data demonstrates superior performance compared
to PMDG. However, this performance gap narrows as the number of training samples increases.
More notably, when evaluating on specific test domains (C and S), PMDG actually outperforms
MDG in scenarios with larger training datasets. This performance inversion suggests that pseudo-
domain generation becomes increasingly effective with more training data, potentially due to the
model’s enhanced ability to learn meaningful domain transformations from a richer source dataset.
These findings have significant implications for domain generalization research. The convergence
and occasional superiority of PMDG performance with larger datasets indicate that synthetic domain
generation could serve as a viable, and sometimes preferable, alternative to costly multi-domain data
collection. This is particularly relevant for scenarios where collecting large-scale multi-domain data
is impractical or resource-intensive. Moreover, the domain-specific nature of PMDG’s advantages
suggests that our artificial domain transformations might capture certain aspects of domain varia-
tion, particularly well for specific target domains. This finding implies that with further refinement
of pseudo-domain generation techniques and sufficient training data, PMDG could offer a more
scalable and cost-effective approach to domain generalization while maintaining or even exceeding
the performance of traditional MDG methods.

6.5 EVALUATION ON IMAGENET

In our previous experiments, we established the effectiveness of combining MDG algorithms with
pseudo-domains. We then investigated whether this insight could benefit existing SDG research on
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Table 2: Accuracy comparison of IPMix and our method on the ImageNet (IN) dataset and its
variants. “Avg” represents the mean accuracy across all test datasets, and “OOD Avg” denotes the
mean accuracy on out-of-distribution test datasets.

Method IN IN-C IN-R IN-A IN-C IN-Sketch IN-V2 Stylized-IN Avg OOD Avg

IPMix 77.71 51.01 42.67 4.27 52.11 31.07 65.61 11.54 42.00 36.90
Ours 77.31 51.18 43.78 6.13 49.71 31.24 65.91 12.44 42.21 37.20

large-scale datasets. Specifically, we evaluated our approach on ImageNet, a standard benchmark in
SDG research that offers various distribution shifts through its variants (Russakovsky et al., 2015;
Hendrycks et al., 2021b; Hendrycks & Dietterich, 2019; Mintun et al., 2021; Hendrycks et al., 2021a;
Wang et al., 2019; Recht et al., 2019; Geirhos et al., 2018). We utilized SD as the MDG algorithm
with pseudo-domains Org+IM+IM, comparing it against the baseline SDG method IPMix. The
selection of IPMix as our baseline is particularly relevant as it represents a state-of-the-art SDG
approach. The results, presented in Table 2, demonstrate the broad applicability of our findings. Our
method achieves better average accuracy across out-of-distribution variants than the IPMix baseline,
showing improved generalization performance. These results offer several important implications
for the SDG research community. First, they validate that insights from MDG can indeed enhance
existing SDG methods, even on large-scale datasets. Second, the performance improvements across
multiple distribution shifts suggest that our approach can effectively capture robust features. Finally,
these findings open new possibilities for advancing SDG research by incorporating established MDG
techniques, potentially bridging the gap between these separate research directions.

7 DISCUSSION

Based on our experimental results, we present several key insights that have important implica-
tions for future research in domain generalization. Through our findings, we aim to bridge the gap
between SDG and MDG research.

Incorporating MDG Advances into SDG Research. We revealed a positive correlation between
algorithm performance in MDG and PMDG settings. Furthermore, the combination of SD algorithm
with pseudo-domains Org+IM+IM achieved the highest performance, surpassing SDG baselines.
These results demonstrate that leveraging established MDG algorithms through our PMDG frame-
work can enhance SDG performance. The successful application of MDG algorithms in the SDG
setting suggests that the traditional separation between these fields may have unnecessarily lim-
ited SDG research progress. PMDG framework provides a practical testbed for MDG algorithms,
bridging the gap between MDG advances and their practical application in SDG scenarios.

8
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Reconsidering the Role of SDG Research. Our experimental results revealed two important find-
ings. First, pseudo-domains can sometimes outperform actual multi-domains when sufficient train-
ing data is available, and MDG algorithms work effectively as learning algorithms in the SDG
setting. These findings suggest that the quality of pseudo-domain generation may have a greater
impact on generalization performance than the development of new learning algorithms, as exist-
ing MDG algorithms already provide strong learning capabilities. Furthermore, our comparison
between MDG and PMDG under equal data conditions revealed that the performance gap between
them diminishes as training data increases, with PMDG even showing superiority in some cases.
This observation challenges the conventional assumption that real multi-domain data is always
preferable and suggests that with sufficient data, well-designed pseudo-domain generation might
be more effective than collecting actual multi-domain datasets. Consequently, we argue that future
SDG research should prioritize the development of better pseudo-domain generation techniques
rather than creating new learning algorithms in isolation from MDG advances. This focus shift
could yield substantial performance improvements.

Future Directions. A key direction for future research is the theoretical analysis of when and
why pseudo-domains can substitute for actual domains. This analysis could provide insights into
the fundamental principles of domain generalization and guide the development of more effective
pseudo-domain generation techniques. The success of our PMDG framework demonstrates that the
artificial boundary between SDG and MDG research has been limiting progress in both fields. By
bridging these traditionally separate areas, we suggest that future advances in domain generaliza-
tion may come from their synergistic combination: utilizing sophisticated MDG algorithms while
focusing SDG research efforts on improving pseudo-domain generation techniques.

8 LIMITATION

A key limitation of our current PMDG framework is its underlying assumption that all transformed
data represents distributions distinct from the source data distribution. This limitation becomes par-
ticularly problematic when dealing with varying transformation intensities, as weakly transformed
data may remain substantially similar to the source distribution. Consequently, treating such trans-
formed data as distinct domains could lead to suboptimal performance by artificially emphasizing
minor variations that do not contribute to meaningful domain generalization. While addressing this
limitation would require extensive theoretical analysis and empirical validation, a potential solu-
tion would be to quantitatively assess the relationship between source and transformed distributions.
Such analysis, although computationally intensive, could provide a more principled foundation for
pseudo-domain generation and potentially lead to more effective domain generalization strategies.

9 CONCLUSION

We proposed the PMDG framework to bridge the gap between SDG and MDG research. Through
extensive experiments, we demonstrated that incorporating MDG algorithms into the SDG set-
ting via pseudo-domain generation can enhance generalization performance. We obtained several
important findings from our experiments. First, MDG algorithms can be effectively utilized in
the SDG setting through our PMDG framework, achieving state-of-the-art performance. Second,
when sufficient training data are available, pseudo-domains can serve as effective substitutes for ac-
tual multi-source domains, suggesting that future SDG research should focus on developing better
pseudo-domain generation techniques rather than new training algorithms. Third, the effectiveness
of pseudo-domain generation techniques can vary with network architectures, as demonstrated by
our experiments. Our work also reveals important considerations for domain generalization re-
search. The dataset-specific effectiveness of certain pseudo-domain combinations (e.g., style-based
transformations for PACS) highlights the importance of evaluating methods across diverse distri-
bution shifts. These findings open new directions for future research, particularly in understanding
the theoretical relationship between pseudo-domains and actual domains. By providing a bridge
between SDG and MDG research, our work suggests that future advances in domain generalization
may come from their synergistic combination rather than treating them as separate fields.

9
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A DETAILS OF EXPERIMENTAL SETUP

A.1 DATASETS

Our primary evaluation uses four standard domain generalization datasets: PACS (Li et al., 2017),
VLCS (Fang et al., 2013), OfficeHome (Venkateswara et al., 2017), and TerraIncognita (Beery et al.,
2018).

A.2 SDG BASELINES

We compare our method against standard SDG baselines: ERM (Guyon et al., 1991), Mixup (Zhang
et al., 2018), SagNet (Nam et al., 2021), RSC (Huang et al., 2020), AugMix (Hendrycks et al.,
2020), CutMix (Yun et al., 2019), IPMix (Huang et al., 2023), RandAugment (Cubuk et al., 2020),
RandConv (Xu et al., 2021) and TrivialAugment (Müller & Hutter, 2021). These baselines represent
the current state-of-the-art approaches in single-domain generalization.

A.3 MDG ALGORITHMS

We utilize the MDG algorithms implemented in DomainBed with their default hyperparameters.
Specifically, we evaluate our approach with algorithms ARM (Zhang et al., 2021), CDANN (Li
et al., 2018c), CORAL (Sun & Saenko, 2016), DANN (Ganin et al., 2016), EQRM (Eastwood et al.,
2022), GroupDRO (Sagawa et al., 2020), IRM (Arjovsky et al., 2019), MLDG (Li et al., 2018a),
MMD (Li et al., 2018b), MTL (Blanchard et al., 2021), RIDG (Chen et al., 2023), SD (Pezeshki
et al., 2021), SelfReg (Kim et al., 2021) and VREx (Krueger et al., 2021).

B EXTENDED ANALYSIS OF PSEUDO-DOMAIN COMBINATIONS

While the main paper focuses on two specific pseudo-domain combinations, here we present a com-
prehensive evaluation of various combinations to better understand their effectiveness. We evaluated
these combinations using ERM and SD as the MDG algorithms, as they demonstrated strong per-
formance in our main experiments. Table 3 presents the results of this extended analysis. The
experimental results revealed several important insights about pseudo-domain combinations. First,
not all combinations lead to improved performance, with some degrading accuracy compared to us-
ing no pseudo-domains. This negative effect is particularly pronounced when incorporating CutMix
into the combinations, suggesting that certain transformations may interfere with the model’s ability
to learn robust features. Second, we found that applying IPMix multiple times consistently outper-
forms combinations of different data augmentation techniques. This suggests that the quality and
consistency of the pseudo-domain generation technique may be more important than the diversity of
transformation types. Third, while style-based transformations alone show moderate effectiveness,
their combination with IPMix leads to further improvements in performance. This complementary
effect indicates that style-based transformations and IPMix capture different aspects of domain vari-
ation, making their combination particularly effective for domain generalization.

C ADDITIONAL RESULTS OF QUALITY ASSESSMENT

While the main paper presents our data efficiency analysis on the VLCS dataset, we conducted
similar experiments on PACS, OfficeHome, and TerraIncognita datasets. Following the same ex-
perimental setup, we evaluated both MDG and PMDG settings under equal training data conditions.
Given n samples from a single source domain in the PMDG setting, we constructed an MDG training
set by collecting n/3 samples from each of three distinct domains, maintaining the same total size
n. The PMDG setting used Org+IM+IM pseudo-domains, while the MDG setting used the original
samples directly. Both approaches used SD as the MDG algorithm for domain generalization.

Figures 6, 7, and 8 show the results for the PACS, OfficeHome, and TerraIncognita datasets, respec-
tively. The experimental results revealed that MDG performance generally improves proportionally
with the increase in training data size across all datasets, suggesting that MDG approaches can ef-
fectively leverage larger amounts of diverse training data. Similar to our findings on the VLCS
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Table 3: Accuracy comparison of different pseudo-domain combinations on four datasets. “Avg”
represents the mean accuracy across all datasets. In each table, the upper part shows SDG baseline
results and the lower part presents PMDG results. Org denotes the original domain without transfor-
mation, IM represents pseudo-domains generated by IPMix, AM by AugMix, MU by Mixup, CM by
CutMix, RC by RandConv, ST by StyleTransfer, ED by EdgeDetection, and CG by CartoonGAN. †
indicates exclusion of domain-specific transformations during training: ST is excluded when testing
on Art domain, CG for Cartoon domain, and ED for Sketch domain.

Algorithm Pseudo-domain VLCS PACS OfficeHome TerraIncognita Avg
ERM – 60.6 ± 1.3 56.3 ± 0.5 53.4 ± 0.1 32.2 ± 0.7 50.6
Mixup – 64.3 ± 1.2 55.9 ± 0.8 54.5 ± 0.3 32.7 ± 0.5 51.8
SagNet – 62.0 ± 0.3 52.2 ± 0.4 51.5 ± 0.3 32.6 ± 0.7 49.6
RSC – 65.0 ± 0.9 56.1 ± 1.3 52.5 ± 0.3 33.3 ± 0.2 51.7
AugMix – 61.8 ± 0.5 57.8 ± 0.4 54.6 ± 0.3 32.1 ± 0.3 51.6
CutMix – 61.8 ± 0.3 54.7 ± 1.0 53.9 ± 0.1 33.0 ± 1.1 50.8
IPMix – 64.6 ± 1.0 65.9 ± 0.3 55.6 ± 0.2 34.9 ± 0.7 55.2
RandAugment – 58.6 ± 0.8 58.9 ± 1.0 53.9 ± 0.2 33.2 ± 0.5 51.1
RandConv – 62.1 ± 0.1 62.8 ± 0.7 53.2 ± 0.3 34.7 ± 0.3 53.2
TrivialAugment – 61.1 ± 1.1 59.9 ± 1.5 54.2 ± 0.2 36.2 ± 0.2 52.8

ERM Org+AM+MU+CM 59.0 ± 0.6 51.6 ± 0.6 51.8 ± 0.2 34.9 ± 0.2 49.4
ERM Org+IM+IM 64.6 ± 1.5 63.4 ± 1.3 55.1 ± 0.4 36.6 ± 0.9 54.9
ERM Org+IM+RC 65.0 ± 0.5 61.3 ± 0.6 55.9 ± 0.3 33.8 ± 0.9 54.0
ERM Org+ST+ED+CT† 60.2 ± 0.7 59.7 55.3 28.2 ± 0.7 50.9
ERM Org+ST+ED+CG+IM+IM† 64.9 ± 1.1 69.9 ± 0.5 55.4 ± 0.1 31.1 ± 0.6 55.3
SD AM+IM 63.8 ± 0.6 63.5 ± 1.5 55.5 ± 0.3 37.5 ± 0.6 55.1
SD MU+IM 62.2 ± 0.6 54.1 ± 1.0 54.7 ± 0.2 36.8 ± 0.7 51.9
SD Org+AM+IM 65.4 ± 1.2 62.1 ± 0.5 56.3 ± 0.4 37.0 ± 0.2 55.2
SD Org+AM+MU 62.0 ± 1.0 57.1 ± 0.9 54.3 ± 0.3 37.3 ± 1.1 52.7
SD Org+AM+MU+CM 60.9 ± 0.9 54.5 ± 0.7 52.4 ± 0.4 35.4 ± 0.5 50.8
SD Org+AM+MU+CM+IM 62.0 ± 0.3 55.3 ± 0.4 53.8 ± 0.9 34.7 ± 1.1 51.5
SD Org+MU+IM 65.1 ± 1.1 58.9 ± 0.6 55.0 ± 0.2 38.7 ± 0.9 54.4
SD Org+IM+RC 63.7 ± 0.7 63.1 ± 0.7 56.6 ± 0.2 36.8 ± 0.5 55.1
SD Org+IM 62.8 ± 1.3 62.3 ± 0.5 56.3 ± 0.1 37.2 ± 1.3 54.7
SD Org+IM+IM 65.6 ± 1.2 64.1 ± 1.0 56.7 ± 0.2 37.1 ± 0.7 55.9
SD Org+IM+IM+IM 66.0 ± 1.1 61.0 ± 0.6 56.8 ± 0.1 37.4 ± 0.1 55.3
SD Org+ST+ED+CT† 61.3 ± 1.0 60.5 56.1 30.0 ± 0.4 52.0
SD Org+ST+ED+CG+IM+IM† 61.4 ± 0.3 69.7 ± 0.4 55.6 ± 0.2 30.5 ± 0.9 54.3
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Figure 6: Comparison of accuracy between MDG and PMDG settings on the PACS dataset under
equal training data conditions. The x-axis shows the total number of training samples, while the
y-axis shows the accuracy. Blue and orange lines represent MDG and PMDG settings, respectively.
Each subplot corresponds to a different test domain: Cartoon (top-left), Sketch (bottom-left), Photo
(top-right), and Art Painting (bottom-right).

dataset, PMDG occasionally outperforms MDG under specific conditions. The effectiveness of
PMDG varies significantly depending on both source and test domain combinations.
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Figure 7: Comparison of accuracy between MDG and PMDG settings on the OfficeHome dataset un-
der equal training data conditions. The x-axis shows the total number of training samples, while the
y-axis shows the accuracy. Blue and orange lines represent MDG and PMDG settings, respectively.
Each subplot corresponds to a different test domain: Clipart (top-left), Real-World (bottom-left),
Product (top-right), and Art (bottom-right).
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Figure 8: Comparison of accuracy between MDG and PMDG settings on the TerraIncognita dataset
under equal training data conditions. The x-axis shows the total number of training samples, while
the y-axis shows the accuracy. Blue and orange lines represent MDG and PMDG settings, respec-
tively. Each subplot corresponds to a different test domain: L38 (top-left), L46 (bottom-left), L43
(top-right), and L100 (bottom-right).

D ADDITIONAL VISUALIZATION RESULTS

We present more visualization results in Figure 9, including a comprehensive comparison of various
data augmentation and transformation techniques. The figure shows the visual effects of different ap-
proaches: No Data Augmentation as a baseline, Default Data Augmentation as a standard practice on
DomainBed, and ten different transformation techniques including AugMix, CartoonGAN, CutMix,
Edge Detection, IPMix, MixUp, RandAugment, RandConv, Style Transfer, and TrivialAugment.
These visualizations provide insights into how each technique modifies the input images, offering a
clearer understanding of their distinctive characteristics and potential impact on model training.

E THE USE OF LARGE LANGUAGE MODELS

We used LLMs to assist with the translation of technical content and to improve the clarity and read-
ability of written sections. This included refining grammatical structures and enhancing sentence
flow.
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(a) No Data Augmentation (b) Default Data Augmentation

(c) AugMix (d) CartoonGAN

(e) CutMix (f) Edge Detection
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(g) IPMix (h) MixUp

(i) RandAugment (j) RandConv

(k) Style Transfer (l) TrivialAugment

Figure 9: Comparison of Various Image Transformation Techniques. Default Data Augmentation
refers to the standard data augmentation settings, while No Data Augmentation indicates the case
where no data augmentation was applied.
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