

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PSEUDO MULTI-SOURCE DOMAIN GENERALIZATION: BRIDGING THE GAP BETWEEN SINGLE AND MULTI- SOURCE DOMAIN GENERALIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep learning models often struggle to maintain performance when deployed on data distributions different from their training data, particularly in real-world applications where environmental conditions frequently change. While multi-source domain generalization (MDG) has shown promise in addressing this challenge by leveraging multiple source domains during training, its practical application is limited by the significant costs and difficulties associated with creating multi-domain datasets. To address this limitation, we propose pseudo multi-source domain generalization (PMDG), a novel framework that enables the application of sophisticated MDG algorithms in a more practical single-source domain generalization setting. PMDG generates multiple pseudo-domains from a single source domain through style transfer and data augmentation techniques, creating a synthetic multi-domain dataset that can be used with MDG algorithms. Through extensive experiments with PseudoDomainBed, our modified version of the DomainBed benchmark, we analyze the effectiveness of PMDG across multiple datasets and architectures. Our analysis reveals several key findings, including a positive correlation between MDG and PMDG performance and the potential of pseudo-domains to match or exceed actual multi-domain performance with sufficient data. These comprehensive empirical results provide valuable insights for future research in domain generalization.

1 INTRODUCTION

Deep learning models have achieved remarkable success across various domains. However, their performance often deteriorates significantly when tested on data distributions different from their training data. This challenge is particularly prevalent in outdoor applications such as autonomous driving and smart cities, where environmental factors like weather conditions and lighting variations can substantially alter the input distribution. Therefore, developing robust deep learning models that maintain their performance on unseen distributions is crucial for real-world applications.

Domain generalization (DG) has emerged as a promising approach to address this challenge. DG techniques can be broadly categorized into two settings: single-source domain generalization (SDG), which uses data from a single source domain, and multi-source domain generalization (MDG), which leverages data from multiple source domains. While most existing research focuses on the MDG setting using multi-domain datasets (*e.g.*, PACS dataset (Li et al., 2017) with Photo, Art, Cartoon, and Sketch domains), creating such datasets is often impractical due to high collection and annotation costs. This limitation significantly hinders the practical application of MDG algorithms.

To bridge this gap, we propose pseudo multi-source domain generalization (PMDG), a novel framework that enables the application of sophisticated MDG algorithms in a more practical SDG setting. Our approach generates multiple pseudo-domains from a single source domain, treating them as distinct domains to create a synthetic multi-domain dataset. We investigate two approaches for effective pseudo-domain generation, style transformation, and data augmentation. For style transformation, inspired by the PACS dataset, we employ AdaIN Style Transfer (Huang & Belongie, 2017; Geirhos et al., 2018), CartoonGAN (Chen et al., 2018), and Edge Detection (Soria et al., 2020; 2023) to gen-

erate Art-style, Cartoon-style, and Sketch-style images. For data augmentation, we utilize various augmentation methods. An overview of PMDG is illustrated in Figure 1.

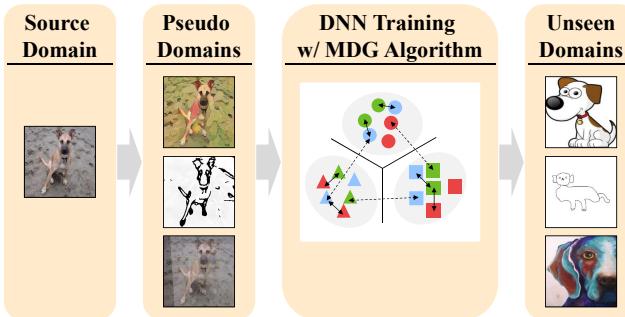


Figure 1: Overview of PMDG framework. PMDG applies multiple transformations to training samples to generate pseudo-domains. The DNN is then trained using an MDG algorithm on these pseudo-domains to be robust against unknown domains.

To evaluate PMDG, we create PseudoDomainBed, a modified version of the popular MDG benchmark DomainBed (Gulrajani & Lopez-Paz, 2020), adapted for the SDG setting. Through extensive experiments on multiple datasets and architectures (ResNet50 (He et al., 2016) and ViT (Dosovitskiy et al., 2021; Touvron et al., 2021)), we demonstrate that PMDG achieves superior performance compared to existing SDG baselines. Our analysis reveals key findings, including a positive correlation between MDG and PMDG performance, the potential of pseudo-domains to match or exceed actual multi-domain performance, and

architecture-specific insights for pseudo-domain generation.

Our main contributions are as follows:

- We propose PMDG, a novel framework that bridges the gap between MDG and SDG, enabling sophisticated MDG algorithms in a practical SDG setting.
- We introduce PseudoDomainBed, a modified version of DomainBed with publicly available code. PseudoDomainBed facilitates easy utilization of MDG algorithms implemented in DomainBed and enables their evaluation in the SDG setting through pseudo-domains.
- Extensive experiments demonstrate that PMDG outperforms existing SDG methods and provide valuable insights to motivate future domain generalization research.

2 RELATED WORK

2.1 MULTI-SOURCE DOMAIN GENERALIZATION (MDG)

Most domain generalization research operates under the MDG paradigm, which assumes access to training data from multiple domains with shared label space. MDG approaches aim to learn domain-invariant information to improve generalization to unseen domains. Researchers have proposed various approaches, including learning domain-invariant features (Ganin et al., 2016; Li et al., 2018b; Sun & Saenko, 2016; Arjovsky et al., 2019; Motiian et al., 2017), regularization techniques (Sagawa et al., 2020; Huang et al., 2020; Krueger et al., 2021; Kim et al., 2021; Zhang et al., 2021; Shi et al., 2022; Chen et al., 2023; Pezeshki et al., 2021; Cha et al., 2021), data augmentation (Yan et al., 2020; Nam et al., 2021; Huang et al., 2020; Carlucci et al., 2019), self-supervised learning (Carlucci et al., 2019; Li et al., 2021; Kim et al., 2021), causal perspectives (Arjovsky et al., 2019; Krueger et al., 2021), meta-learning (Li et al., 2018a), and architectural innovations (Li et al., 2023).

While these approaches have shown promising results, their practical applicability has been limited by the requirement of multi-domain training data. Our proposed PMDG framework addresses this limitation by enabling MDG algorithms to operate effectively in a practical SDG setting.

2.2 SINGLE-SOURCE DOMAIN GENERALIZATION (SDG)

SDG research focuses on achieving domain generalization using training data from a single domain, which better reflects real-world scenarios. This approach is particularly relevant given that many widely-used computer vision datasets (*e.g.*, ImageNet (Russakovsky et al., 2015)) consist of data from a single domain. Current SDG approaches can be broadly categorized into three groups: learning algorithms, domain expansion methods, and data augmentation techniques. Learning al-

108 gorithms (Huang et al., 2020; Nam et al., 2021; Pezeshki et al., 2021) aim to prevent overfitting
 109 to source domain-specific information by introducing additional training objectives. Domain ex-
 110 pansion methods systematically generate novel domains through various approaches: domain gen-
 111 erator (Wang et al., 2021b; Li et al., 2021), uncertainty-guided generation (Qiao & Peng, 2021),
 112 optimal transport (Zhou et al., 2020), and adversarial data augmentation (Qiao et al., 2020; Volpi
 113 et al., 2018; Zhao et al., 2020). Data augmentation methods (Hendrycks et al., 2020; Huang et al.,
 114 2023; Hendrycks et al., 2022; Wang et al., 2021a; Vaish et al., 2024; Xu et al., 2021; Choi et al.,
 115 2023; Na et al., 2021; Kang et al., 2022; Zhou et al., 2021) focus on increasing the diversity of
 116 training data through various transformations, often with specialized training procedures.

117 While domain expansion methods offer sophisticated domain generation techniques, they often re-
 118 quire complex adversarial attacks or specialized architectures that can be unstable and computa-
 119 tionally intensive. In contrast, data augmentation methods provide a more straightforward and efficient
 120 approach to creating pseudo-domains, thus better suited for benchmarking MDG algorithms.

121 We treat augmented data as samples from different domains and utilize data augmentation techniques
 122 for pseudo-domain generation. Since identifying effective transformations and their combinations
 123 for pseudo-domain generation is non-trivial, we conducted empirical studies to address these ques-
 124 tions. Our results demonstrate that pseudo-domains can serve as a practical testbed for the rich
 125 collection of MDG algorithms, suggesting that future research efforts should focus on developing
 126 effective pseudo-domain generation strategies rather than new training algorithms.

128 3 SDG PROBLEM SETTING

130 Our research follows the SDG problem setting. In SDG, we aim to learn a model that can generalize
 131 to unknown target domains using only a single source domain. Let $D^S = \{(x_i, y_i)\}_{i=1}^n$ be a source
 132 domain dataset, where $x_i \in \mathcal{X}$ represents input data, $y_i \in \mathcal{Y}$ represents labels, and (x_i, y_i) follows
 133 the source domain distribution $P^S(X, Y)$. We consider a set of unknown target domains $\mathcal{T} =$
 134 $\{T_1, T_2, \dots, T_k\}$, where each target domain T_j has a different distribution from the source domain:

$$P^{T_j}(X, Y) \neq P^S(X, Y). \quad (1)$$

137 The SDG objective is to learn $f_\theta : \mathcal{X} \rightarrow \mathcal{Y}$ minimizing expected risk across target domains:

$$f_\theta^* = \arg \min_{f_\theta} \mathbb{E}_{T_j \in \mathcal{T}} [\mathbb{E}_{(x, y) \sim P^{T_j}} [L(f_\theta(x), y)]], \quad (2)$$

140 where $L : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ is a loss function.

143 4 PROPOSED FRAMEWORK

145 We propose pseudo multi-source domain generalization (PMDG), a novel framework that enables
 146 the application of MDG algorithms to single-source datasets by generating pseudo multi-domain
 147 datasets through various transformations. Algorithm 1 details its implementation.

149 **Algorithm 1** Training a DNN with PMDG

```

1: Input: Training dataset  $D^S = \{(x_i, y_i)\}_{i=1}^n$  ,
  Number of epochs  $E$ , Batch size  $B$ , Transformations  $\mathcal{O} = \{O_1, O_2, \dots, O_N\}$ 
2: Initialize model parameters  $\theta$ 
3: for epoch  $e = 1$  to  $E$  do
4:   Shuffle the training dataset  $D^S$ 
5:   for each mini-batch  $\{(x_b, y_b)\}_{b=1}^B$  in  $D^S$  do
6:     Generate pseudo-domains:  $\{\tilde{x}_b^k = O_k(x_b)\}_{k=1}^K$  for each image in mini-batch
7:     Obtain predictions:  $\{\tilde{y}_b^k = f_\theta(\tilde{x}_b^k)\}_{k=1}^K$  for each pseudo-domains
8:     Compute MDG loss:  $L^{\text{MDG}}$  using algorithm-specific objectives
9:     Update model parameters  $\theta \leftarrow \theta - \eta \nabla_\theta L^{\text{MDG}}$ 
10:  end for
11: end for
12: Output: Trained model parameters  $\theta$ 

```

162
163
164
165
166
167
168
169
170
171
172
173
174 Figure 2: Visualization of transformations applied to dog images from the PACS dataset.
175
176177 4.1 PSEUDO-DOMAIN GENERATION
178179 Identifying effective methods for generating pseudo-domains remains a crucial open challenge. We
180 introduce and evaluate two approaches, both independently and in combination, style transformation
181 and data augmentation. Visual examples are presented in Figure 2.182 **Style Transformation.** Inspired by the PACS dataset, we propose three transformations to recreate
183 its constituent domains. The first transformation is AdaIN style transfer (Huang & Belongie, 2017;
184 Geirhos et al., 2018), a technique that preserves image content (shape) while modifying style, used
185 for creating art-style images. The second is CartoonGAN (Chen et al., 2018), a GAN-based approach
186 for transforming images into cartoon-style representations. The third is Edge Detection (So-
187 ria et al., 2020; 2023), a method for extracting image contours used to generate sketch-style images.188 **Data Augmentation.** We employ various data augmentation techniques, including mixing-based
189 methods such as MixUp (Zhang et al., 2018) and CutMix (Yun et al., 2019), advanced augmentation
190 strategies including RandAugment (Cubuk et al., 2020) and TrivialAugment (Müller & Hutter,
191 2021), and robustness-focused augmentations comprising AugMix (Hendrycks et al., 2020), IP-
192 Mix (Huang et al., 2023), and RandConv (Xu et al., 2021). Although some augmentation techniques
193 have associated loss functions, we omit them for simplicity in this study.194 **Transformation Selection.** Given the limited understanding of optimal transformation count and
195 inter-transformation interactions, we take an empirical approach. We select K transformations (with
196 replacement) from a predefined set of transformation operations to construct the transformation set
197 $\mathcal{O} = \{O_1, O_2, \dots, O_K\}$, where each O represents an individual transformation operation.198 **Transformation Application.** We generate pseudo multi-domain data using the transformation set
199 \mathcal{O} . Specifically, for an input mini-batch $B = (x_i, y_i)_{i=1}^b$, we apply each transformation in the set to
200 obtain K pseudo multi-domain mini-batches $\{B_1, \dots, B_K\}$:

201
202
$$B_k = O_k(B), \quad k = 1, \dots, K. \quad (3)$$

203
204

205 4.2 TRAINING WITH MDG ALGORITHM
206207 We train the model f_θ using an MDG algorithm on the K pseudo multi-domain mini-batches, where
208 our framework is algorithm-agnostic and can accommodate any MDG algorithm.209 5 EXPERIMENTAL SETUP
210211 We evaluated our approach using standard domain generalization datasets. Since model selection
212 significantly impacts performance evaluation in domain generalization, we ensure fair comparison
213 by modifying DomainBed (Gulrajani & Lopez-Paz, 2020), the standard MDG benchmark, to accom-
214 modate the SDG setting. We call our modified benchmark PseudoDomainBed, which implements
215 our pseudo-domain generation approach. Implementation details are in the appendix.

216
217

5.1 IMPLEMENTATION DETAILS OF PSEUDODOMAINBED

218
219
220
221
222
223
224
225
226
227

Following the original implementation, we maintain consistent training configurations with DomainBed, including learning rate, batch size, and other hyperparameters. We use ResNet50 as our backbone network, maintaining the batch normalization layers (Ioffe & Szegedy, 2015) as per common practice in single-domain settings. For model selection, we employ training-domain validation sets, which has shown the most stable performance in MDG settings. Our pseudo-domain transformations are implemented as data augmentations applied at the mini-batch level, using default hyperparameters from their respective papers. These transformations are applied after the default data augmentation pipeline of DomainBed. Notably, while the original DomainBed applies data augmentation to validation sets, we omit this in PseudoDomainBed to avoid distorting the evaluation of generalization to unknown distributions.

228
229
230
231
232
233
234
235
236
237
238
239
240
241

Implementing various transformation techniques in a unified framework presents challenges due to their different operating levels. To address this, we carefully designed the implementation architecture of PseudoDomainBed to handle different types of transformations consistently. Image transformations in our framework can be categorized into two levels based on their processing stage. The first category is dataset-level transformations, which operate on raw images before converting them to tensors. Transformations such as RandAugment fall into this category, where augmentations are applied directly to image data. The second category is mini-batch-level transformations, which operate on normalized tensors during the training process. For example, MixUp belongs to this category as it combines multiple normalized image tensors. To handle these different transformation types uniformly, we implemented a standardized interface for pseudo-domain generation algorithms. Each algorithm is required to implement both dataset-level and mini-batch-level transformation methods, even if only one is actually used. This design choice provides a consistent API for users to employ any transformation technique without considering its implementation level. It also enables flexible integration of new transformation methods by implementing the standard interface.

242
243

6 RESULTS

244
245
246

We report the mean and standard error over three trials for each PseudoDomainBed experiment, demonstrating that PMDG outperforms SDG baselines.

247
248

6.1 EVALUATION OF PSEUDO-DOMAIN GENERATION

249
250
251
252
253
254
255
256
257
258
259

We first evaluated various transformation techniques for pseudo-domain generation in combination with different MDG algorithms on the VLCS dataset (Fang et al., 2013). In the experiment, we consider a two-domain setting consisting of the source domain and one pseudo-domain. To assess the effectiveness of each combination, we measure the accuracy gains from the ERM baseline (Guyon et al., 1991). Figure 3 shows a heatmap visualization of these results. IPMix, RandConv, and TrivialAugment show positive accuracy gains with most MDG algorithms, suggesting their effectiveness as pseudo-domain generation techniques. In contrast, CutMix leads to performance degradation in most cases. Notably, MLDG (Li et al., 2018a) shows performance deterioration across all transformations, suggesting its incompatibility with our pseudo-domain approach. The negative results with MLDG suggest that not all MDG algorithms are suitable for pseudo-domain settings, possibly due to their assumptions about domain characteristics.

260
261

6.2 ANALYSIS OF PSEUDO-DOMAIN COMBINATIONS

262
263
264
265
266
267
268
269

We evaluated two different pseudo-domain combinations with various MDG algorithms. The first combination consists of three domains, Org+IM+IM, while the second combination includes six domains, Org+ST+ED+CG+IM+IM. We compare these combinations using three learning algorithms: ERM, RIDG (Chen et al., 2023), and SD (Pezeshki et al., 2021). Table 1 presents the results. The combination of SD with Org+IM+IM achieves the highest accuracy of 55.9%, surpassing the best SDG baseline, IPMix (55.2%). Interestingly, while the addition of style-based transformations (ST, ED, and CG) leads to significant improvements on the PACS dataset, its effectiveness is limited on other datasets. Evaluating methods solely on PACS might lead to the development of techniques that excel only on style-based domain shifts while failing to generalize to other types of

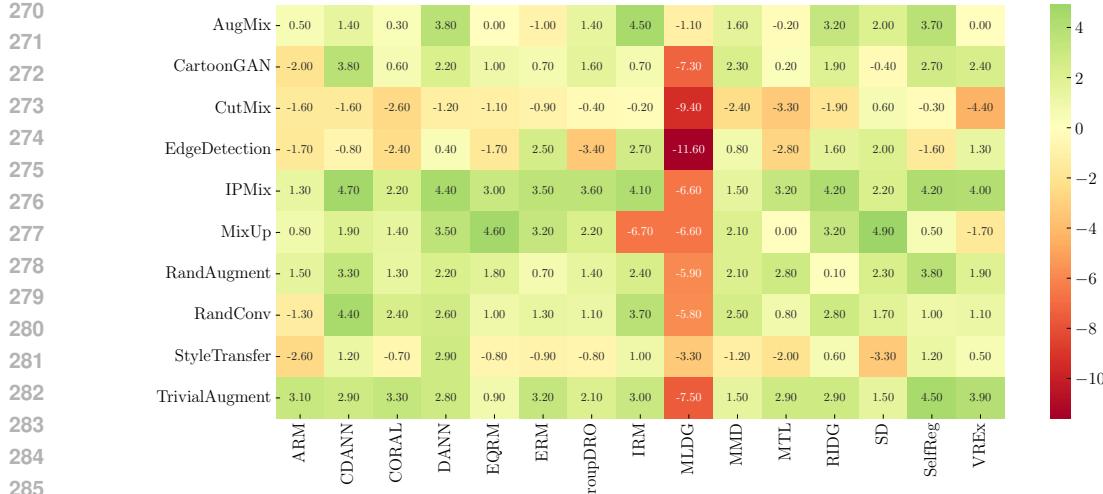


Figure 3: Accuracy gains over the ERM baseline without pseudo-domain across different transformation techniques (y-axis) and MDG algorithms (x-axis) on the VLCS dataset. Green and red colors indicate performance improvements and degradation, respectively. Values represent accuracy differences from ERM without pseudo-domains.

distribution shifts. This observation emphasizes the importance of diverse evaluation protocols, including multiple datasets with different domain shifts. While specialized techniques like style-based transformations are highly effective for specific scenarios, they should be complemented by more general-purpose approaches for broader applicability.

Additionally, to investigate the effectiveness of our PMDG framework across different architectures, we conducted experiments using Vision Transformer (ViT) as the backbone network. Table 1 presents the results. The combination of SD with pseudo-domains Org+ST+ED+CG+IM+IM achieves the highest accuracy of 62.0%, surpassing the best SDG baseline (60.5%). Style-based transformations that enhance shape features appear to be more effective with ViT (Li et al., 2020; Tuli et al., 2021), suggesting that the choice of pseudo-domain generation techniques should consider the underlying architectural characteristics of the backbone network.

6.3 CORRELATION WITH MDG PERFORMANCE

To understand which MDG algorithms are most suitable for PMDG, we investigated whether the optimal choice of MDG algorithms differs between MDG and PMDG settings, as the training domains in these settings are fundamentally different (real domains vs. pseudo-domains). For simplicity, we used Org+IM as our pseudo-domain configuration. Figure 4 visualizes the relationship between algorithm performance in MDG and PMDG settings. The results show a positive correlation between MDG and PMDG accuracy. This correlation has two important implications. First, it suggests that MDG algorithms that perform well in traditional multi-domain settings are also well-suited for our pseudo-domain approach. Second, it suggests that the PMDG framework could enhance the practical utility of MDG algorithms by enabling their application to single-domain problems.

6.4 QUALITY ASSESSMENT: PMDG vs. MDG

We conducted a comparison between PMDG and conventional MDG approaches under controlled data conditions to assess whether artificially generated pseudo-domains can serve as effective substitutes for naturally occurring domain variations. To ensure a fair comparison, we set the total number of training samples equal in both settings. Given n samples from a single source domain in the PMDG setting, we constructed an MDG training set by collecting $n/3$ samples from each of three distinct domains, maintaining the same total size n . These source domain samples were transformed using our Org+IM+IM pseudo-domain generation method in the PMDG setting, while the MDG setting used the original samples directly. Both approaches used SD as the base algorithm

324
 325 Table 1: Accuracy comparison on four datasets using different combinations of algorithms and
 326 pseudo-domains. Upper/lower tables show ResNet50/ViT results, respectively. Org denotes the
 327 original domain without transformation, IM represents pseudo-domains generated by IPMix, ST
 328 by StyleTransfer, ED by EdgeDetection, and CG by CartoonGAN. \dagger indicates exclusion of domain-
 329 specific transformations during training: ST is excluded when testing on Art domain, CG for Cartoon
 330 domain, and ED for Sketch domain. “Avg” represents the mean accuracy across all datasets. In each
 331 table, the upper part shows SDG baseline results and the lower part presents PMDG results. **Bold**
 332 and underlined numbers denote the first and second highest accuracy, respectively.

Algorithm	Pseudo-domain	VLCS	PACS	OfficeHome	TerraIncognita	Avg
ERM	–	60.6 ± 1.3	56.3 ± 0.5	53.4 ± 0.1	32.2 ± 0.7	50.6
Mixup	–	64.3 ± 1.2	55.9 ± 0.8	54.5 ± 0.3	32.7 ± 0.5	51.8
SagNet	–	62.0 ± 0.3	52.2 ± 0.4	51.5 ± 0.3	32.6 ± 0.7	49.6
RSC	–	65.0 ± 0.9	56.1 ± 1.3	52.5 ± 0.3	33.3 ± 0.2	51.7
AugMix	–	61.8 ± 0.5	57.8 ± 0.4	54.6 ± 0.3	32.1 ± 0.3	51.6
CutMix	–	61.8 ± 0.3	54.7 ± 1.0	53.9 ± 0.1	33.0 ± 1.1	50.8
IPMix	–	64.6 ± 1.0	65.9 ± 0.3	55.6 ± 0.2	34.9 ± 0.7	55.2
RandAugment	–	58.6 ± 0.8	58.9 ± 1.0	53.9 ± 0.2	33.2 ± 0.5	51.1
RandConv	–	62.1 ± 0.1	62.8 ± 0.7	53.2 ± 0.3	34.7 ± 0.3	53.2
TrivialAugment	–	61.1 ± 1.1	59.9 ± 1.5	54.2 ± 0.2	36.2 ± 0.2	52.8
ERM	Org+IM+IM	64.6 ± 1.5	63.4 ± 1.3	55.1 ± 0.4	<u>36.6 ± 0.9</u>	54.9
ERM	Org+ST+ED+CG+IM+IM \dagger	64.9 ± 1.1	69.9 ± 0.5	55.4 ± 0.1	31.1 ± 0.6	<u>55.3</u>
RIDG	Org+IM+IM	63.4 ± 1.6	64.8 ± 0.3	55.4 ± 0.5	37.2 ± 0.2	55.2
RIDG	Org+ST+ED+CG+IM+IM \dagger	61.7 ± 0.0	71.8 ± 0.4	55.2 ± 0.2	31.7 ± 0.4	55.1
SD	Org+IM+IM	65.6 ± 1.2	64.1 ± 1.0	56.7 ± 0.2	37.1 ± 0.7	55.9
SD	Org+ST+ED+CG+IM+IM \dagger	61.4 ± 0.3	<u>69.7 ± 0.4</u>	<u>55.6 ± 0.2</u>	30.5 ± 0.9	54.3
Algorithm	Pseudo-domain	VLCS	PACS	OfficeHome	TerraIncognita	Avg
ERM	–	64.5 ± 0.8	73.7 ± 0.5	66.7 ± 0.4	32.1 ± 0.8	59.3
IPMix	–	65.8 ± 1.0	76.3 ± 1.0	66.2 ± 0.3	33.9 ± 0.1	60.5
ERM	Org+IM+IM	67.8 ± 0.1	74.5 ± 1.2	67.3 ± 0.2	33.7 ± 0.2	60.8
ERM	Org+ST+ED+CG+IM+IM \dagger	66.4 ± 0.6	79.6 ± 0.3	66.8 ± 0.1	31.3 ± 0.4	61.0
RIDG	Org+IM+IM	67.6 ± 0.3	76.1 ± 0.8	68.1 ± 0.4	35.7 ± 0.7	61.9
RIDG	Org+ST+ED+CG+IM+IM \dagger	64.4 ± 0.3	<u>80.8 ± 0.3</u>	67.9 ± 0.2	32.0 ± 0.5	61.3
SD	Org+IM+IM	67.5 ± 1.8	76.7 ± 0.6	<u>68.4 ± 0.1</u>	<u>34.3 ± 0.3</u>	61.7
SD	Org+ST+ED+CG+IM+IM \dagger	66.4 ± 0.7	81.3 ± 0.3	68.6 ± 0.1	31.7 ± 0.8	62.0

356
 357 for domain generalization. The experimental results shown in Figure 5 reveal several intriguing patterns. Overall, MDG with actual multi-domain data demonstrates superior performance compared to PMDG. However, this performance gap narrows as the number of training samples increases. More notably, when evaluating on specific test domains (C and S), PMDG actually outperforms MDG in scenarios with larger training datasets. This performance inversion suggests that pseudo-domain generation becomes increasingly effective with more training data, potentially due to the model’s enhanced ability to learn meaningful domain transformations from a richer source dataset. These findings have significant implications for domain generalization research. The convergence and occasional superiority of PMDG performance with larger datasets indicate that synthetic domain generation could serve as a viable, and sometimes preferable, alternative to costly multi-domain data collection. This is particularly relevant for scenarios where collecting large-scale multi-domain data is impractical or resource-intensive. Moreover, the domain-specific nature of PMDG’s advantages suggests that our artificial domain transformations might capture certain aspects of domain variation, particularly well for specific target domains. This finding implies that with further refinement of pseudo-domain generation techniques and sufficient training data, PMDG could offer a more scalable and cost-effective approach to domain generalization while maintaining or even exceeding the performance of traditional MDG methods.

374 6.5 EVALUATION ON IMAGENET

375 In our previous experiments, we established the effectiveness of combining MDG algorithms with
 376 pseudo-domains. We then investigated whether this insight could benefit existing SDG research on

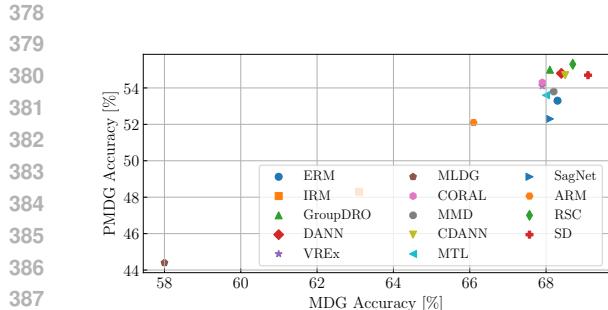


Figure 4: Accuracy comparison of MDG algorithms across MDG and PMDG settings. Each point represents a different MDG algorithm. Accuracy represents averages across PACS, VLCS, OfficeHome (Venkateswara et al., 2017), and TerraIncognita (Beery et al., 2018) datasets.

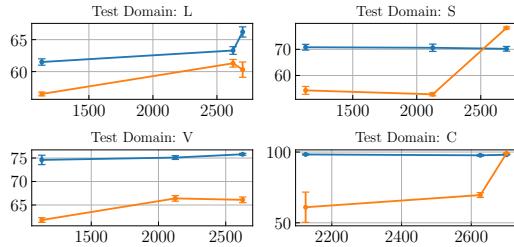


Figure 5: Comparison of accuracy between MDG and PMDG settings on the VLCS dataset under equal training data conditions. The x-axis shows the total number of training samples, while the y-axis shows the accuracy. Blue and orange lines represent MDG and PMDG settings, respectively. Each subplot corresponds to a different test domain: LabelMe (top-left), VOC2007 (bottom-left), SUN09 (top-right), and Caltech101 (bottom-right).

Table 2: Accuracy comparison of IPMix and our method on the ImageNet (IN) dataset and its variants. “Avg” represents the mean accuracy across all test datasets, and “OOD Avg” denotes the mean accuracy on out-of-distribution test datasets.

Method	IN	IN-C	IN-R	IN-A	IN- \bar{C}	IN-Sketch	IN-V2	Stylized-IN	Avg	OOD Avg
IPMix	77.71	51.01	42.67	4.27	52.11	31.07	65.61	11.54	42.00	36.90
Ours	77.31	51.18	43.78	6.13	49.71	31.24	65.91	12.44	42.21	37.20

large-scale datasets. Specifically, we evaluated our approach on ImageNet, a standard benchmark in SDG research that offers various distribution shifts through its variants (Russakovsky et al., 2015; Hendrycks et al., 2021b; Hendrycks & Dietterich, 2019; Mintun et al., 2021; Hendrycks et al., 2021a; Wang et al., 2019; Recht et al., 2019; Geirhos et al., 2018). We utilized SD as the MDG algorithm with pseudo-domains Org+IM+IM, comparing it against the baseline SDG method IPMix. The selection of IPMix as our baseline is particularly relevant as it represents a state-of-the-art SDG approach. The results, presented in Table 2, demonstrate the broad applicability of our findings. Our method achieves better average accuracy across out-of-distribution variants than the IPMix baseline, showing improved generalization performance. These results offer several important implications for the SDG research community. First, they validate that insights from MDG can indeed enhance existing SDG methods, even on large-scale datasets. Second, the performance improvements across multiple distribution shifts suggest that our approach can effectively capture robust features. Finally, these findings open new possibilities for advancing SDG research by incorporating established MDG techniques, potentially bridging the gap between these separate research directions.

7 DISCUSSION

Based on our experimental results, we present several key insights that have important implications for future research in domain generalization. Through our findings, we aim to bridge the gap between SDG and MDG research.

Incorporating MDG Advances into SDG Research. We revealed a positive correlation between algorithm performance in MDG and PMDG settings. Furthermore, the combination of SD algorithm with pseudo-domains Org+IM+IM achieved the highest performance, surpassing SDG baselines. These results demonstrate that leveraging established MDG algorithms through our PMDG framework can enhance SDG performance. The successful application of MDG algorithms in the SDG setting suggests that the traditional separation between these fields may have unnecessarily limited SDG research progress. PMDG framework provides a practical testbed for MDG algorithms, bridging the gap between MDG advances and their practical application in SDG scenarios.

432 **Reconsidering the Role of SDG Research.** Our experimental results revealed two important findings.
 433 First, pseudo-domains can sometimes outperform actual multi-domains when sufficient training
 434 data is available, and MDG algorithms work effectively as learning algorithms in the SDG
 435 setting. These findings suggest that the quality of pseudo-domain generation may have a greater
 436 impact on generalization performance than the development of new learning algorithms, as existing
 437 MDG algorithms already provide strong learning capabilities. Furthermore, our comparison
 438 between MDG and PMDG under equal data conditions revealed that the performance gap between
 439 them diminishes as training data increases, with PMDG even showing superiority in some cases.
 440 This observation challenges the conventional assumption that real multi-domain data is always
 441 preferable and suggests that with sufficient data, well-designed pseudo-domain generation might
 442 be more effective than collecting actual multi-domain datasets. Consequently, we argue that future
 443 SDG research should prioritize the development of better pseudo-domain generation techniques
 444 rather than creating new learning algorithms in isolation from MDG advances. This focus shift
 445 could yield substantial performance improvements.
 446

447 **Future Directions.** A key direction for future research is the theoretical analysis of when and
 448 why pseudo-domains can substitute for actual domains. This analysis could provide insights into
 449 the fundamental principles of domain generalization and guide the development of more effective
 450 pseudo-domain generation techniques. The success of our PMDG framework demonstrates that the
 451 artificial boundary between SDG and MDG research has been limiting progress in both fields. By
 452 bridging these traditionally separate areas, we suggest that future advances in domain generalization
 453 may come from their synergistic combination: utilizing sophisticated MDG algorithms while
 454 focusing SDG research efforts on improving pseudo-domain generation techniques.
 455

456 8 LIMITATION

457 A key limitation of our current PMDG framework is its underlying assumption that all transformed
 458 data represents distributions distinct from the source data distribution. This limitation becomes par-
 459 ticularly problematic when dealing with varying transformation intensities, as weakly transformed
 460 data may remain substantially similar to the source distribution. Consequently, treating such trans-
 461 formed data as distinct domains could lead to suboptimal performance by artificially emphasizing
 462 minor variations that do not contribute to meaningful domain generalization. While addressing this
 463 limitation would require extensive theoretical analysis and empirical validation, a potential solu-
 464 tion would be to quantitatively assess the relationship between source and transformed distributions.
 465 Such analysis, although computationally intensive, could provide a more principled foundation for
 466 pseudo-domain generation and potentially lead to more effective domain generalization strategies.
 467

468 9 CONCLUSION

469 We proposed the PMDG framework to bridge the gap between SDG and MDG research. Through
 470 extensive experiments, we demonstrated that incorporating MDG algorithms into the SDG set-
 471 ting via pseudo-domain generation can enhance generalization performance. We obtained several
 472 important findings from our experiments. First, MDG algorithms can be effectively utilized in
 473 the SDG setting through our PMDG framework, achieving state-of-the-art performance. Second,
 474 when sufficient training data are available, pseudo-domains can serve as effective substitutes for ac-
 475 tual multi-source domains, suggesting that future SDG research should focus on developing better
 476 pseudo-domain generation techniques rather than new training algorithms. Third, the effectiveness
 477 of pseudo-domain generation techniques can vary with network architectures, as demonstrated by
 478 our experiments. Our work also reveals important considerations for domain generalization re-
 479 search. The dataset-specific effectiveness of certain pseudo-domain combinations (*e.g.*, style-based
 480 transformations for PACS) highlights the importance of evaluating methods across diverse distri-
 481 bution shifts. These findings open new directions for future research, particularly in understanding
 482 the theoretical relationship between pseudo-domains and actual domains. By providing a bridge
 483 between SDG and MDG research, our work suggests that future advances in domain generalization
 484 may come from their synergistic combination rather than treating them as separate fields.
 485

486 REFERENCES
487

488 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
489 *arXiv preprint arXiv:1907.02893*, 2019.

490 Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In *European Con-*
491 *ference on Computer Vision (ECCV)*, 2018.

492

493 Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. Domain
494 generalization by marginal transfer learning. *Journal of machine learning research (JMLR)*, 2021.

495 Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi. Do-
496 main generalization by solving jigsaw puzzles. In *IEEE/CVF Conference on Computer Vision*
497 and *Pattern Recognition (CVPR)*, 2019.

498

499 Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
500 Sungrae Park. Swad: Domain generalization by seeking flat minima. In *Advances in Neural*
501 *Information Processing Systems (NeurIPS)*, 2021.

502 Liang Chen, Yong Zhang, Yibing Song, Anton van den Hengel, and Lingqiao Liu. Domain gen-
503 eralization via rationale invariance. In *IEEE/CVF International Conference on Computer Vision*
504 (*ICCV*), 2023.

505

506 Yang Chen, Yu-Kun Lai, and Yong-Jin Liu. Cartoongan: Generative adversarial networks for photo
507 cartoonization. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
508 2018.

509 Seokeon Choi, Debasmit Das, Sungja Choi, Seunghan Yang, Hyunsin Park, and Sungrack Yun.
510 Progressive random convolutions for single domain generalization. In *IEEE/CVF Conference on*
511 *Computer Vision and Pattern Recognition (CVPR)*, 2023.

512

513 Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
514 data augmentation with a reduced search space. In *Proceedings of the IEEE/CVF conference on*
515 *computer vision and pattern recognition workshops*, 2020.

516 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
517 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
518 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
519 scale. In *International Conference on Learning Representations (ICLR)*, 2021.

520

521 Cian Eastwood, Alexander Robey, Shashank Singh, Julius Von Kügelgen, Hamed Hassani, George J
522 Pappas, and Bernhard Schölkopf. Probable domain generalization via quantile risk minimization.
523 *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

524 Chen Fang, Ye Xu, and Daniel N. Rockmore. Unbiased metric learning: On the utilization of
525 multiple datasets and web images for softening bias. In *IEEE/CVF International Conference on*
526 *Computer Vision (ICCV)*, 2013.

527

528 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
529 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
530 *Journal of machine learning research (JMLR)*, 2016.

531

532 Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
533 Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias
534 improves accuracy and robustness. In *International Conference on Learning Representations*
(*ICLR*), 2018.

535

536 Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In *International*
537 *Conference on Learning Representations (ICLR)*, 2020.

538

539 Isabelle Guyon, Vladimir Vapnik, Bernhard Boser, Leon Bottou, and Sara A Solla. Structural risk
minimization for character recognition. *Advances in Neural Information Processing Systems*
(*NeurIPS*), 1991.

540 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
 541 In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.
 542

543 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
 544 ruptions and perturbations. In *International Conference on Learning Representations (ICLR)*,
 545 2019.

546 Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
 547 narayanan. AugMix: A simple data processing method to improve robustness and uncertainty. In
 548 *International Conference on Learning Representations (ICLR)*, 2020.

549 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 550 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 551 analysis of out-of-distribution generalization. In *IEEE/CVF International Conference on Com-
 552 puter Vision (ICCV)*, 2021a.

553 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversar-
 554 ial examples. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 555 2021b.

556 Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang, Bo Li, Dawn Song, and Jacob Stein-
 557 hardt. Pixmix: Dreamlike pictures comprehensively improve safety measures. In *IEEE/CVF
 558 Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022.

559 Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
 560 ization. In *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2017.

561 Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-challenging improves cross-domain
 562 generalization. In *European Conference on Computer Vision (ECCV)*, 2020.

563 Zhenglin Huang, Xiaoan Bao, Na Zhang, Qingqi Zhang, Xiao Tu, Biao Wu, and Xi Yang. Ipmix:
 564 Label-preserving data augmentation method for training robust classifiers. *Advances in Neural
 565 Information Processing Systems (NeurIPS)*, 2023.

566 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 567 reducing internal covariate shift. In *International conference on machine learning (ICML)*, 2015.

568 Juwon Kang, Sohyun Lee, Namyup Kim, and Suha Kwak. Style neophile: Constantly seeking novel
 569 styles for domain generalization. In *IEEE/CVF Conference on Computer Vision and Pattern
 570 Recognition (CVPR)*, 2022.

571 Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee. Selfreg: Self-
 572 supervised contrastive regularization for domain generalization. In *IEEE/CVF International Con-
 573 ference on Computer Vision (ICCV)*, 2021.

574 David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 575 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
 576 lation (rex). In *International Conference on Machine Learning (ICML)*, 2021.

577 Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei
 578 Liu. Sparse mixture-of-experts are domain generalizable learners. In *International Conference
 579 on Learning Representations (ICLR)*, 2023.

580 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
 581 generalization. In *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2017.

582 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning
 583 for domain generalization. In *Proceedings of the AAAI Conference on Artificial Intelligence
 584 (AAAI)*, 2018a.

585 Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adversarial
 586 feature learning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 587 2018b.

594 Lei Li, Ke Gao, Juan Cao, Ziyao Huang, Yepeng Weng, Xiaoyue Mi, Zhengze Yu, Xiaoya Li,
 595 and Boyang Xia. Progressive domain expansion network for single domain generalization. In
 596 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.

597

598 Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao.
 599 Deep domain generalization via conditional invariant adversarial networks. In *European Confer-
 600 ence on Computer Vision (ECCV)*, 2018c.

601 Yingwei Li, Qihang Yu, Mingxing Tan, Jieru Mei, Peng Tang, Wei Shen, Alan Yuille, et al. Shape-
 602 texture debiased neural network training. In *International Conference on Learning Representa-
 603 tions (ICLR)*, 2020.

604

605 Eric Mintun, Alexander Kirillov, and Saining Xie. On interaction between augmentations and cor-
 606 ruptions in natural corruption robustness. *Advances in Neural Information Processing Systems
 607 (NeurIPS)*, 2021.

608

609 Saeid Motian, Marco Piccirilli, Donald A Adjeroh, and Gianfranco Doretto. Unified deep super-
 610 vised domain adaptation and generalization. In *IEEE/CVF International Conference on Computer
 611 Vision (ICCV)*, 2017.

612

613 Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmen-
 614 tation. In *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2021.

615

616 Jaemin Na, Heechul Jung, Hyung Jin Chang, and Wonjun Hwang. Fixbi: Bridging domain spaces
 617 for unsupervised domain adaptation. In *IEEE/CVF Conference on Computer Vision and Pattern
 618 Recognition (CVPR)*, 2021.

619

620 Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing do-
 621 main gap by reducing style bias. In *IEEE/CVF Conference on Computer Vision and Pattern
 622 Recognition (CVPR)*, 2021.

623

624 Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guil-
 625 laume Lajoie. Gradient starvation: A learning proclivity in neural networks. *Advances in Neural
 626 Information Processing Systems (NeurIPS)*, 2021.

627

628 Fengchun Qiao and Xi Peng. Uncertainty-guided model generalization to unseen domains. In
 629 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.

630

631 Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generalization. In
 632 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12556–12565,
 633 2020.

634

635 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 636 generalize to imagenet? In *International Conference on Machine Learning (ICML)*, 2019.

637

638 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 639 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
 640 recognition challenge. *International journal of computer vision (IJCV)*, 2015.

641

642 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 643 neural networks. In *International Conference on Learning Representations (ICLR)*, 2020.

644

645 Yuge Shi, Jeffrey Seely, Philip Torr, Siddharth N, Awni Hannun, Nicolas Usunier, and Gabriel
 646 Synnaeve. Gradient matching for domain generalization. In *International Conference on Learning
 647 Representations (ICLR)*, 2022.

648

649 X. Soria, E. Riba, and A. Sappa. Dense extreme inception network: Towards a robust cnn model for
 650 edge detection. In *IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*,
 651 2020.

652

653 Xavier Soria, Angel Sappa, Patricio Humanante, and Arash Akbarinia. Dense extreme inception
 654 network for edge detection. *Pattern Recognition*, 2023.

648 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation.
 649 In *Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8–10 and*
 650 *15–16, 2016, Proceedings, Part III 14, 2016*.

651 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 652 Hervé Jegou. Training data-efficient image transformers & distillation through attention. In
 653 *International Conference on Machine Learning (ICML)*, 2021.

654 Shikhar Tuli, Ishita Dasgupta, Erin Grant, and Thomas L Griffiths. Are convolutional neural net-
 655 works or transformers more like human vision? In *43rd Annual Meeting of the Cognitive Science*
 656 *Society: Comparative Cognition: Animal Minds, CogSci 2021*, 2021.

657 Puru Vaish, Shunxin Wang, and Nicola Strisciuglio. Fourier-basis functions to bridge augmentation
 658 gap: Rethinking frequency augmentation in image classification. In *IEEE/CVF Conference on*
 659 *Computer Vision and Pattern Recognition (CVPR)*, 2024.

660 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 661 hashing network for unsupervised domain adaptation. In *IEEE/CVF Conference on Computer*
 662 *Vision and Pattern Recognition (CVPR)*, 2017.

663 Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
 664 Savarese. Generalizing to unseen domains via adversarial data augmentation. *Advances in Neural*
 665 *Information Processing Systems (NeurIPS)*, 2018.

666 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
 667 tions by penalizing local predictive power. In *Advances in Neural Information Processing Systems*
 668 (*NeurIPS*), 2019.

669 Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, and Zhangyang
 670 Wang. Augmax: Adversarial composition of random augmentations for robust training. In *Ad-*
 671 *vances in Neural Information Processing Systems (NeurIPS)*, 2021a.

672 Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and Mahsa Baktashmotagh. Learning to diversify
 673 for single domain generalization. In *IEEE/CVF International Conference on Computer Vision*
 674 (*ICCV*), 2021b.

675 Zhenlin Xu, Deyi Liu, Junlin Yang, Colin Raffel, and Marc Niethammer. Robust and generalizable
 676 visual representation learning via random convolutions. In *International Conference on Learning*
 677 *Representations (ICLR)*, 2021.

678 Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain
 679 adaptation with mixup training. *arXiv preprint arXiv:2001.00677*, 2020.

680 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 681 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *IEEE/CVF*
 682 *International Conference on Computer Vision (ICCV)*, 2019.

683 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 684 risk minimization. In *International Conference on Learning Representations (ICLR)*, 2018.

685 Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea
 686 Finn. Adaptive risk minimization: Learning to adapt to domain shift. *Advances in Neural Infor-*
 687 *mation Processing Systems (NeurIPS)*, 2021.

688 Long Zhao, Ting Liu, Xi Peng, and Dimitris Metaxas. Maximum-entropy adversarial data augmen-
 689 tation for improved generalization and robustness. *Advances in Neural Information Processing*
 690 *Systems (NeurIPS)*, 2020.

691 Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to generate novel
 692 domains for domain generalization. In *European Conference on Computer Vision (ECCV)*, 2020.

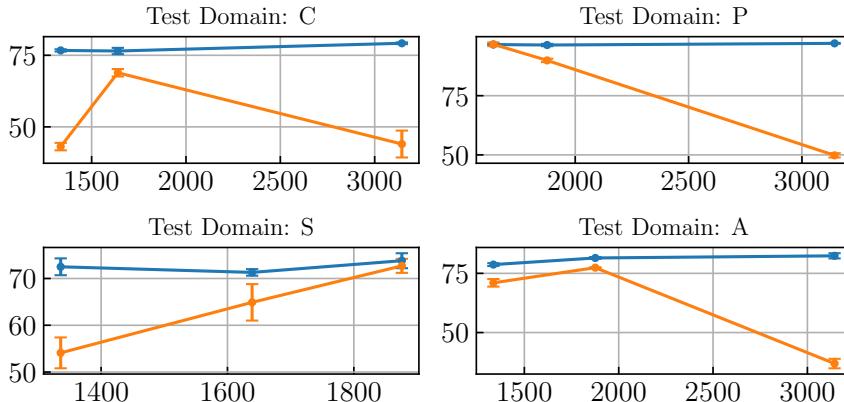
693 Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. In
 694 *International Conference on Learning Representations (ICLR)*, 2021.

695 701 In this Supplementary Material, we provide additional analysis for the PMDG.

702 A DETAILS OF EXPERIMENTAL SETUP
703704 A.1 DATASETS
705706 Our primary evaluation uses four standard domain generalization datasets: PACS (Li et al., 2017),
707 VLCS (Fang et al., 2013), OfficeHome (Venkateswara et al., 2017), and TerraIncognita (Beery et al.,
708 2018).710 A.2 SDG BASELINES
711712 We compare our method against standard SDG baselines: ERM (Guyon et al., 1991), Mixup (Zhang
713 et al., 2018), SagNet (Nam et al., 2021), RSC (Huang et al., 2020), AugMix (Hendrycks et al.,
714 2020), CutMix (Yun et al., 2019), IPMix (Huang et al., 2023), RandAugment (Cubuk et al., 2020),
715 RandConv (Xu et al., 2021) and TrivialAugment (Müller & Hutter, 2021). These baselines represent
716 the current state-of-the-art approaches in single-domain generalization.717 A.3 MDG ALGORITHMS
718719 We utilize the MDG algorithms implemented in DomainBed with their default hyperparameters.
720 Specifically, we evaluate our approach with algorithms ARM (Zhang et al., 2021), CDANN (Li
721 et al., 2018c), CORAL (Sun & Saenko, 2016), DANN (Ganin et al., 2016), EQRM (Eastwood et al.,
722 2022), GroupDRO (Sagawa et al., 2020), IRM (Arjovsky et al., 2019), MLDG (Li et al., 2018a),
723 MMD (Li et al., 2018b), MTL (Blanchard et al., 2021), RIDG (Chen et al., 2023), SD (Pezeshki
724 et al., 2021), SelfReg (Kim et al., 2021) and VREx (Krueger et al., 2021).726 B EXTENDED ANALYSIS OF PSEUDO-DOMAIN COMBINATIONS
727728 While the main paper focuses on two specific pseudo-domain combinations, here we present a com-
729 prehensive evaluation of various combinations to better understand their effectiveness. We evaluated
730 these combinations using ERM and SD as the MDG algorithms, as they demonstrated strong per-
731 formance in our main experiments. Table 3 presents the results of this extended analysis. The
732 experimental results revealed several important insights about pseudo-domain combinations. First,
733 not all combinations lead to improved performance, with some degrading accuracy compared to us-
734 ing no pseudo-domains. This negative effect is particularly pronounced when incorporating CutMix
735 into the combinations, suggesting that certain transformations may interfere with the model’s ability
736 to learn robust features. Second, we found that applying IPMix multiple times consistently outper-
737 forms combinations of different data augmentation techniques. This suggests that the quality and
738 consistency of the pseudo-domain generation technique may be more important than the diversity of
739 transformation types. Third, while style-based transformations alone show moderate effectiveness,
740 their combination with IPMix leads to further improvements in performance. This complementary
741 effect indicates that style-based transformations and IPMix capture different aspects of domain var-
742 iation, making their combination particularly effective for domain generalization.743 C ADDITIONAL RESULTS OF QUALITY ASSESSMENT
744745 While the main paper presents our data efficiency analysis on the VLCS dataset, we conducted
746 similar experiments on PACS, OfficeHome, and TerraIncognita datasets. Following the same ex-
747 perimental setup, we evaluated both MDG and PMDG settings under equal training data conditions.
748 Given n samples from a single source domain in the PMDG setting, we constructed an MDG training
749 set by collecting $n/3$ samples from each of three distinct domains, maintaining the same total size
750 n . The PMDG setting used Org+IM+IM pseudo-domains, while the MDG setting used the original
751 samples directly. Both approaches used SD as the MDG algorithm for domain generalization.752 Figures 6, 7, and 8 show the results for the PACS, OfficeHome, and TerraIncognita datasets, respec-
753 tively. The experimental results revealed that MDG performance generally improves proportionally
754 with the increase in training data size across all datasets, suggesting that MDG approaches can ef-
755 fectively leverage larger amounts of diverse training data. Similar to our findings on the VLCS

756 Table 3: Accuracy comparison of different pseudo-domain combinations on four datasets. “Avg”
 757 represents the mean accuracy across all datasets. In each table, the upper part shows SDG baseline
 758 results and the lower part presents PMDG results. Org denotes the original domain without transfor-
 759 mation, IM represents pseudo-domains generated by IPMix, AM by AugMix, MU by Mixup, CM by
 760 CutMix, RC by RandConv, ST by StyleTransfer, ED by EdgeDetection, and CG by CartoonGAN. \dagger
 761 indicates exclusion of domain-specific transformations during training: ST is excluded when testing
 762 on Art domain, CG for Cartoon domain, and ED for Sketch domain.

Algorithm	Pseudo-domain	VLCS	PACS	OfficeHome	TerraIncognita	Avg
ERM	–	60.6 ± 1.3	56.3 ± 0.5	53.4 ± 0.1	32.2 ± 0.7	50.6
Mixup	–	64.3 ± 1.2	55.9 ± 0.8	54.5 ± 0.3	32.7 ± 0.5	51.8
SagNet	–	62.0 ± 0.3	52.2 ± 0.4	51.5 ± 0.3	32.6 ± 0.7	49.6
RSC	–	65.0 ± 0.9	56.1 ± 1.3	52.5 ± 0.3	33.3 ± 0.2	51.7
AugMix	–	61.8 ± 0.5	57.8 ± 0.4	54.6 ± 0.3	32.1 ± 0.3	51.6
CutMix	–	61.8 ± 0.3	54.7 ± 1.0	53.9 ± 0.1	33.0 ± 1.1	50.8
IPMix	–	64.6 ± 1.0	65.9 ± 0.3	55.6 ± 0.2	34.9 ± 0.7	55.2
RandAugment	–	58.6 ± 0.8	58.9 ± 1.0	53.9 ± 0.2	33.2 ± 0.5	51.1
RandConv	–	62.1 ± 0.1	62.8 ± 0.7	53.2 ± 0.3	34.7 ± 0.3	53.2
TrivialAugment	–	61.1 ± 1.1	59.9 ± 1.5	54.2 ± 0.2	36.2 ± 0.2	52.8
ERM	Org+AM+MU+CM	59.0 ± 0.6	51.6 ± 0.6	51.8 ± 0.2	34.9 ± 0.2	49.4
ERM	Org+IM+IM	64.6 ± 1.5	63.4 ± 1.3	55.1 ± 0.4	36.6 ± 0.9	54.9
ERM	Org+IM+RC	65.0 ± 0.5	61.3 ± 0.6	55.9 ± 0.3	33.8 ± 0.9	54.0
ERM	Org+ST+ED+CT \dagger	60.2 ± 0.7	59.7	55.3	28.2 ± 0.7	50.9
ERM	Org+ST+ED+CG+IM+IM \dagger	64.9 ± 1.1	69.9 ± 0.5	55.4 ± 0.1	31.1 ± 0.6	55.3
SD	AM+IM	63.8 ± 0.6	63.5 ± 1.5	55.5 ± 0.3	37.5 ± 0.6	55.1
SD	MU+IM	62.2 ± 0.6	54.1 ± 1.0	54.7 ± 0.2	36.8 ± 0.7	51.9
SD	Org+AM+IM	65.4 ± 1.2	62.1 ± 0.5	56.3 ± 0.4	37.0 ± 0.2	55.2
SD	Org+AM+MU	62.0 ± 1.0	57.1 ± 0.9	54.3 ± 0.3	37.3 ± 1.1	52.7
SD	Org+AM+MU+CM	60.9 ± 0.9	54.5 ± 0.7	52.4 ± 0.4	35.4 ± 0.5	50.8
SD	Org+AM+MU+CM+IM	62.0 ± 0.3	55.3 ± 0.4	53.8 ± 0.9	34.7 ± 1.1	51.5
SD	Org+MU+IM	65.1 ± 1.1	58.9 ± 0.6	55.0 ± 0.2	38.7 ± 0.9	54.4
SD	Org+IM+RC	63.7 ± 0.7	63.1 ± 0.7	56.6 ± 0.2	36.8 ± 0.5	55.1
SD	Org+IM	62.8 ± 1.3	62.3 ± 0.5	56.3 ± 0.1	37.2 ± 1.3	54.7
SD	Org+IM+IM	65.6 ± 1.2	64.1 ± 1.0	56.7 ± 0.2	37.1 ± 0.7	55.9
SD	Org+IM+IM+IM	66.0 ± 1.1	61.0 ± 0.6	56.8 ± 0.1	37.4 ± 0.1	55.3
SD	Org+ST+ED+CT \dagger	61.3 ± 1.0	60.5	56.1	30.0 ± 0.4	52.0
SD	Org+ST+ED+CG+IM+IM \dagger	61.4 ± 0.3	69.7 ± 0.4	55.6 ± 0.2	30.5 ± 0.9	54.3



801 Figure 6: Comparison of accuracy between MDG and PMDG settings on the PACS dataset under
 802 equal training data conditions. The x-axis shows the total number of training samples, while the
 803 y-axis shows the accuracy. Blue and orange lines represent MDG and PMDG settings, respectively.
 804 Each subplot corresponds to a different test domain: Cartoon (top-left), Sketch (bottom-left), Photo
 805 (top-right), and Art Painting (bottom-right).

806 dataset, PMDG occasionally outperforms MDG under specific conditions. The effectiveness of
 807 PMDG varies significantly depending on both source and test domain combinations.



Figure 7: Comparison of accuracy between MDG and PMDG settings on the OfficeHome dataset under equal training data conditions. The x-axis shows the total number of training samples, while the y-axis shows the accuracy. Blue and orange lines represent MDG and PMDG settings, respectively. Each subplot corresponds to a different test domain: Clipart (top-left), Real-World (bottom-left), Product (top-right), and Art (bottom-right).

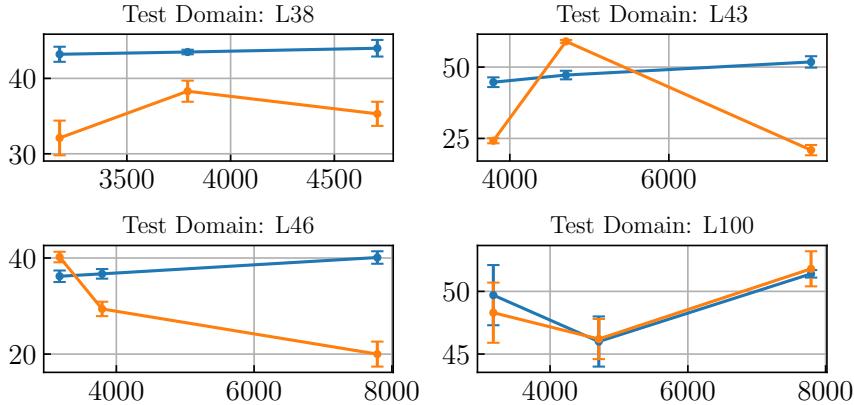


Figure 8: Comparison of accuracy between MDG and PMDG settings on the TerraIncognita dataset under equal training data conditions. The x-axis shows the total number of training samples, while the y-axis shows the accuracy. Blue and orange lines represent MDG and PMDG settings, respectively. Each subplot corresponds to a different test domain: L38 (top-left), L46 (bottom-left), L43 (top-right), and L100 (bottom-right).

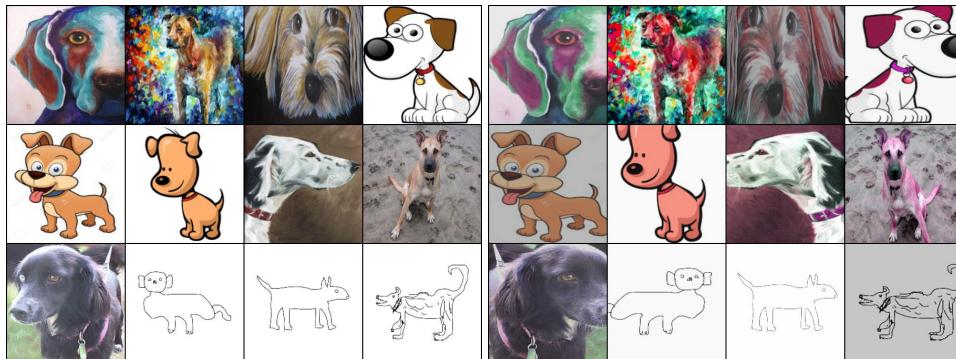
D ADDITIONAL VISUALIZATION RESULTS

We present more visualization results in Figure 9, including a comprehensive comparison of various data augmentation and transformation techniques. The figure shows the visual effects of different approaches: No Data Augmentation as a baseline, Default Data Augmentation as a standard practice on DomainBed, and ten different transformation techniques including AugMix, CartoonGAN, CutMix, Edge Detection, IPMix, MixUp, RandAugment, RandConv, Style Transfer, and TrivialAugment. These visualizations provide insights into how each technique modifies the input images, offering a clearer understanding of their distinctive characteristics and potential impact on model training.

E THE USE OF LARGE LANGUAGE MODELS

We used LLMs to assist with the translation of technical content and to improve the clarity and readability of written sections. This included refining grammatical structures and enhancing sentence flow.

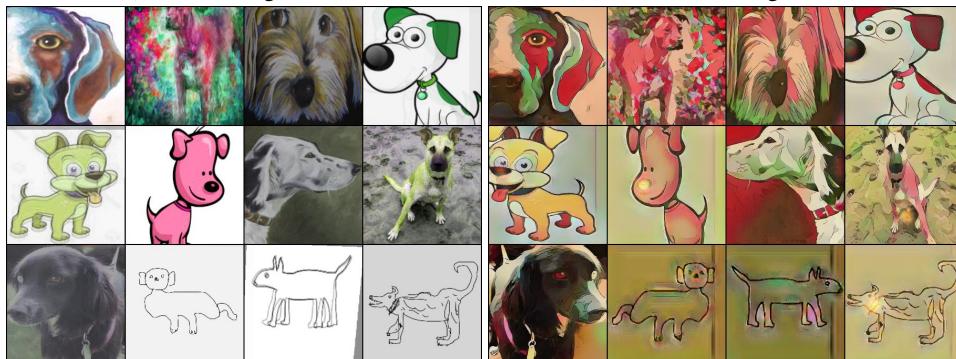
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883



(a) No Data Augmentation

(b) Default Data Augmentation

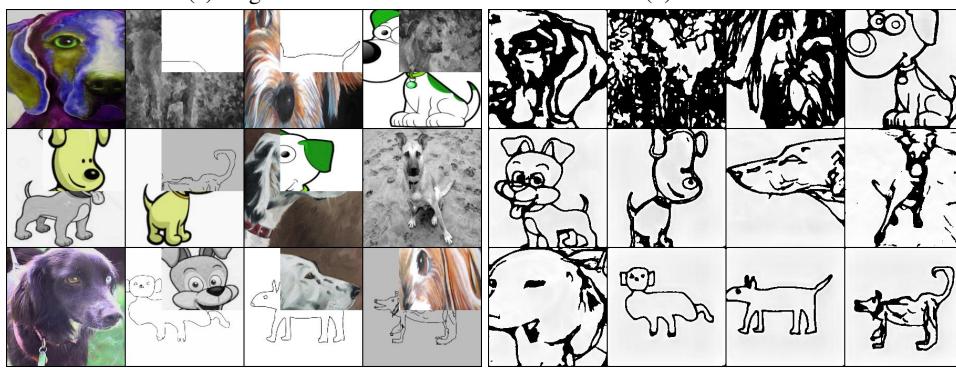
884
885
886
887
888
889
890
891
892
893
894
895
896



(c) AugMix

(d) CartoonGAN

897
898
899
900
901
902
903
904
905
906
907
908

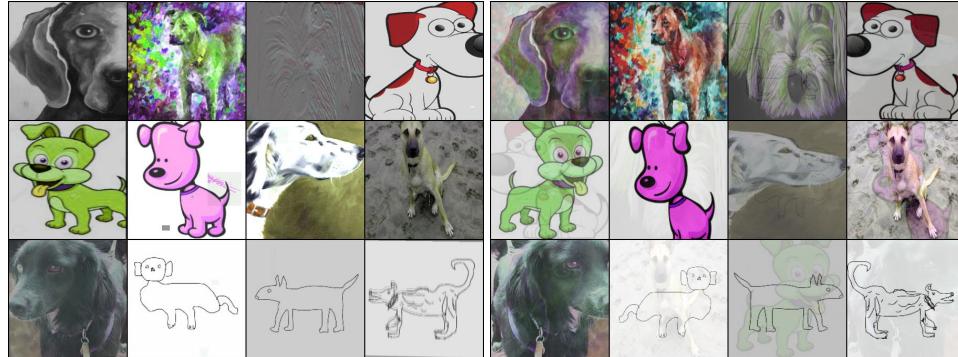


(e) CutMix

(f) Edge Detection

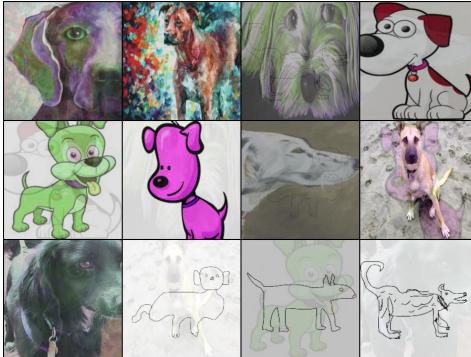
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924



(g) IPMix

925
926
927
928
929
930
931
932
933
934
935

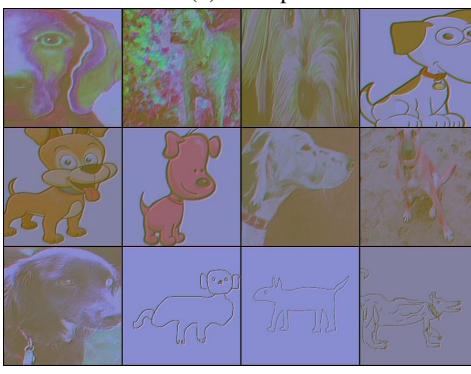


(h) MixUp

936
937
938
939
940
941
942
943
944
945
946
947
948

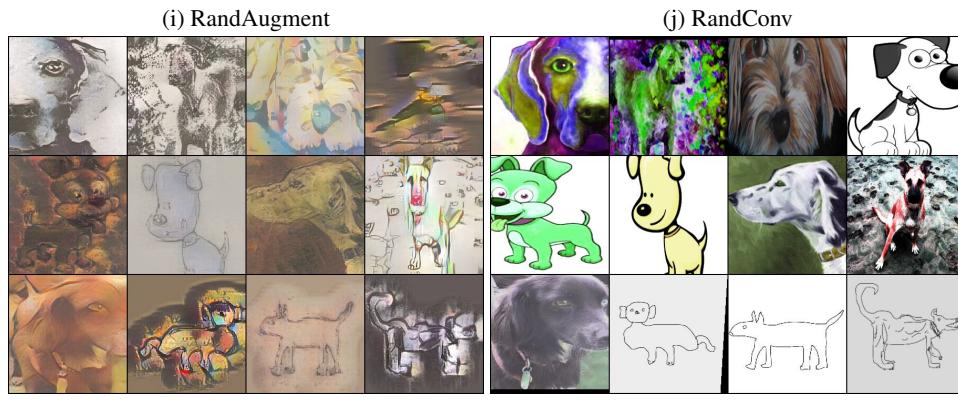
(i) RandAugment

949
950
951
952
953
954
955
956
957
958
959
960



(j) RandConv

961
962
963
964
965
966
967
968
969
970
971



(k) Style Transfer

(l) TrivialAugment

Figure 9: Comparison of Various Image Transformation Techniques. Default Data Augmentation refers to the standard data augmentation settings, while No Data Augmentation indicates the case where no data augmentation was applied.