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ABSTRACT

In multivariate long-term time series forecasting, the success of self-attention
is commonly attributed to the attention matrix that encodes token interactions.
In this paper, we provide evidence that challenges this view. Through exten-
sive experiments on three classic and three latest Transformer models, we find
that dot-product attention can be replaced by element-wise operations without
token interaction, such as the addition and Hadamard product, while maintain-
ing or even improving accuracy. This motivates our central hypothesis: the
effectiveness of self-attention in this task arises not from the dynamic atten-
tion matrix, but from the multi-branch feature extraction enabled by the par-
allel Query, Key, and Value projections and their fusion. To validate this hy-
pothesis, we construct a minimalist multi-branch MLP that isolates the ‘multi-
branch mapping with element-wise operation’ structure from the Transformer
and show that it achieves competitive performance. Our findings indicate that
the source of performance in self-attention is often misinterpreted, as its ac-
tual advantage stems from the architectural principle of multi-branch mapping
and fusion, rather than the attention matrix. Anonymous code is available at:
https://anonymous.4open.science/r/Attention-01F4/

1 INTRODUCTION

Multivariate long-term time series forecasting (MLTSF) is a fundamental problem across critical do-
mains such as energy management Hussein & Awad (2024), economic forecasting Li et al. (2024),
and meteorology Chen et al. (2023). In recent years, Transformer-based models, driven by their core
self-attention (SA) mechanism, have become the standard benchmark in this field. From PatchTST
and iTransformer to the latest state-of-the-art (SOTA) models, they have achieved a dominant po-
sition in major benchmarks. These models are widely believed to owe their success to the self-
attention mechanism, specifically the dynamic computation of token-to-token dependencies via the
attention matrix.

However, is the attention matrix really the key as we believe? Our central claim in this paper is
straightforward: the source of effectiveness for self-attention in multivariate long-term time series
forecasting may be profoundly misunderstood. Through extensive ablation studies, we demonstrate
that the primary contributor to the performance is not the attention matrix, but rather the inherent
multi-branch feature extraction architecture that projects inputs into the parallel Query, Key, and
Value (QKV) matrices and fusion. Our research reveals that replacing its dynamic token-interacting
calculation with simple element-wise operations, such as the Hadamard product and addition, results
in no significant loss in accuracy, and in many cases, even leads to improvements.

To substantiate our claim, we conduct systematic ablation studies on three classic and three latest
Transformer models. They are based on vanilla self-attention, which can eliminate the interference
of human factors in the ablation studies. We first reproduce the baseline performance of these mod-
els, then show that our simplified versions, which replace the dynamic token-interacting calculation
with simple element-wise operations, can achieve comparable or even better results. Finally, we
construct a purpose-built multi-branch MLP model that retains only the QKV mapping and simple
element-wise operations, proving it is sufficient on its own to achieve competitive performance.
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To be clear, our goal is not to entirely dismiss the immense success of Transformers or SA in other
domains, such as natural language processing. In contrast, we aim to precisely analyze the role
of this powerful mechanism in multivariate long-term time series forecasting. We hope to reveal
the true drivers of its success, thereby helping the research community avoid an uncritical pursuit
of increasingly complex attention variants and pointing the way toward genuinely efficient model
design.

Our contributions can be summarized as follows.

• Through extensive experiments on six classic and latest models, we provide strong evidence
that the attention matrix is not essential for MLTSF. We show it can be replaced by simple
element-wise operations while maintaining or even improving performance.

• Based on this finding, we propose a core hypothesis that the source of self-attention’s ef-
fectiveness has been misattributed. We argue the true driver is not the attention matrix, but
the inherent multi-branch mapping and fusion architecture that projects inputs into Q, K,
and V representations.

• We validate this hypothesis by constructing a purpose-built multi-branch MLP that iso-
lates this principle. The competitive performance of this minimalist model proves that the
architecture is sufficient on its own, providing decisive evidence for our hypothesis.

2 RELATED WORK

This section builds a focused narrative around the use and understanding of attention mechanisms in
MLTSF, identifying the consensus, emerging alternatives, and the specific gap our work fills. Unlike
standard literature reviews, our goal is not to list methods but to sharpen the reader’s understanding
of what has been believed, what has been questioned, and what has been left unexplored.

2.1 SELF-ATTENTION AS THE CORNERSTONE OF MLTSF

The recent dominance of Transformer-based architectures in MLTSF is rooted in the assumption
that the attention matrixformed via matrix multiplication between Query and Key, is believed to
be essential for modeling long-range dependencies. The attention matrix computes the correlation
between tokens. Different Transformer variants adopt diverse tokenization strategies: (i) Time-
token attention: Informer, Autoformer, FEDformer group all variable values at each time step into
a token. (ii) Patch-token attention: PatchTST Nie et al. (2022) slices each univariate series into
patches, treating each as a token. (iii) Variate-token attention: iTransformer Liu et al. (2023) treats
each variable as a token to model cross-variable dependencies. (iii) Hybrid attention: TimePFN
Taga et al. (2025), ICTSP Lu et al. (2025), Leddam Yu et al. (2024), and other methods Huang
et al. (2024); Xue et al. (2023); Chen et al. (2024); Zhang & Yan (2023); Wang et al. (2024a; 2025)
combine time and variate tokens. Despite their diversity, these models converge on the belief that
performance gains come from the dynamic token interaction enabled by the attention matrix.

2.2 THE RISE OF SIMPLER ALTERNATIVES

The success of attention-free models like DLinear Zeng et al. (2023), PatchMLP Tang & Zhang
(2025), and FITS Xu et al. (2024) has prompted a reassessment. These models, though devoid of any
attention mechanism, perform competitively across benchmarks. CATS Kim et al. (2024) explored
the effectiveness of the self-attention mechanism by removing it entirely. However, they do not
attempt to dissect which parts of the attention module contribute most, nor whether certain internal
architectural motifs, like the QKV projections with fusion, may carry predictive value independently.

2.3 REVISITING THE ARCHITECTURE: MULTI-BRANCH FEATURE EXTRACTION

Every self-attention block begins with projecting the input into three independent branches: Query,
Key, and Value. While these branches are usually seen as precursors to attention computation, they
also constitute a fixed multi-branch architecture that performs feature extraction. This structure is
present in all Transformer variants but has received no attention as a potential source of effectiveness
on its own.
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This motivates our central question: in MLTSF, does the performance of self-attention stem from the
dynamic attention matrix, or from the upstream QKV projection? Our study is the first to isolate and
examine this architectural divide, offering a new lens for interpreting the success of Transformer-
based forecasting models.

3 EXPERIMENTAL SETUP

To systematically evaluate the true role of the attention matrix in the self-attention mechanism for
MLTSF, we design a series of rigorous experiments. This chapter details the baseline models we
select, the structural ablation methods we propose, the specialized model used for hypothesis vali-
dation, and the datasets and evaluation criteria employed in our study. All experimental settings for
the ablation studies are completely consistent with the corresponding baselines. The experimental
settings of MB-MLP are consistent with the well-known baseline ’PatchTST’ to eliminate human
interference. The specific implementation details are in the Appendix A.3.

3.1 BASELINES

We select 6 representative and publicly available Transformer models in the MLTSF domain as
baselines. These models cover different application paradigms of vanilla self-attention, allowing for
a broad validation of our findings’ universality. They are divided into two groups:

CLASSIC FOUNDATIONAL MODELS

• Informer-like Model Zhou et al. (2021): Represents the classic time-token paradigm. Our
implementation is based on the Informer architecture, but utilizes the vanilla self-attention
mechanism to serve as a foundational baseline.

• PatchTST Nie et al. (2022): Employs the patch-token paradigm, treating subsequences of
each variable as tokens, and is one of the current top-performing baselines.

• iTransformer Liu et al. (2023): Utilizes the variate-token paradigm, treating the entire
sequence of each variable as a token to capture inter-variable dependencies. We do not
target the temporal dependency paradigm but instead explore various forms of self-attention
paradigms.

LATEST MODELS

• TimePFN (AAAI 25) Taga et al. (2025), ICTSP (ICLR 25) Lu et al. (2025), Leddam
(ICML 24) Yu et al. (2024): Represents the latest models published in 2025 and 2024 that
employ vanilla self-attention with hybrid paradigm, often combining time- and variate-
dimension tokenization. Since there are very few recently published SOTA models that
apply vanilla self-attention (most are modified self-attention or cross-attention), we care-
fully select the above 3 most suitable ones as baselines.

In reproducing these models, we strictly adhere to the hyperparameters and training settings recom-
mended in their original papers and official codebases to ensure a fair comparison. Since TimePFN
Taga et al. (2025) only provides the ckpt for inference, we conduct experiments in the form of in-
ference. In addition, as ICTSP Lu et al. (2025) only provides the scripts for the ETT dataset, we
can only report the results of ETT. Due to the extremely high time cost of Leddam Yu et al. (2024),
for large-scale Traffic and Electricity datasets, we can only conduct experiments and report at a
prediction step length of 96.

3.2 PROPOSED STRUCTURAL ABLATIONS

As shown in Figure 1, to isolate and examine the respective contributions of the QKV multi-branch
mapping and the subsequent attention matrix calculation, we propose two structural ablation modi-
fications to the core SA module of all the aforementioned reference models. Our goal is to replace
the core matrix multiplication for attention matrix with simpler, element-wise operations.

3
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Figure 1: A schematic of our proposed structural ablation methods. The red circle represents the
matrix operation to be ablated. Specifically, (a), (b), and (c) within the red box respectively represent
matrix multiplication, Hadamard product, and addition. For ease of understanding, we take iTrans-
former baseline as an example to label the shape of the tensor. In practice, the settings of different
baselines should be followed.

• Standard Self-Attention (Baseline 1): The original SA calculation, that is,
Attention(Q,K,V) = Softmax(QK⊤

√
dk

)V.

• Sparse Self-Attention (Baseline 2): We also test the sparse self-attention mechanism (Pro-
bAttention) to verify the universality of our findings.

• Attention-to-Hadamard (Ablation 1): We replace the matrix multiplication of the two
baselines with the Hadamard product (element-wise multiplication). For example, the cal-
culation for baseline 1 becomes Attention(Q,K,V) = Softmax(Q⊙K√

dk
)⊙ V .

• Attention-to-Addition (Ablation 2): We replace the matrix multiplication of the two base-
lines with element-wise addition. For example, the calculation for baseline 1 becomes
Attention(Q,K,V) = Softmax(Q+K√

dk
) + V .

The subtlety of these modifications is that they fully preserve the ”multi-branch” characteristic of
the model, where the input is projected into three independent, trainable branches (Q, K, V), but
completely remove the dynamic, token-interaction-dependent attention weight matrix, which is con-
sidered the soul of SA. It should be noted that each row of the ablated attention matrix represents
the internal information of each token rather than interactive information, so Softmax will not intro-
duce interactions between tokens. If the model’s performance remains stable after these changes, it
provides strong evidence for our core hypothesis.

3.3 VALIDATION MODEL: MB-MLP
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Figure 2: A schematic of our proposed minimalist validation model named Multi-Branch MLP (MB-
MLP). It only retains the core that we want to validate, namely multi-branch feature extraction and
fusion. For ease of understanding, we take iTransformer baseline as an example to label the shape
of the tensor. In practice, the settings of different baselines should be followed.

To further validate our core hypothesis, that model performance primarily stems from the QKV
multi-branch mapping architecture, we design and build a minimalist validation model named Multi-
Branch MLP (MB-MLP), shown in Figure 2. It completely adopts the hyperparameters of the base-
line ‘PatchTST’ without any adjustment or optimization to eliminate the influence of hyperparame-
ters.

MB-MLP is intended to completely isolate and strip down to the core components we believe are
truly effective, away from the complex Transformer architecture. Its workflow is as follows:
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1. Tokenization: We follow the tokenization paradigm of the baselines; for example, when
comparing with the Informer-like model, follow its time-token paradigm. Therefore, the
shape of the tokenization result is the same as that of the baselines.

2. Multi-Branch Mapping: Like standard SA, the tokenization result is projected into Q, K,
and V representations through three independent linear layers in parallel. The shape of Q,
K, and V is the same as that of the baselines.

3. Simple Fusion: We use the same element-wise operations, Hadamard product, as in our
ablation studies to fuse the features of Q, K, and V.

4. Non-linear Activation Function: We conduct an ablation on the Softmax in SA, verifying
the effectiveness of non-linear activation (detailed results are in the Appendix). Therefore,
MB-MLP needs to retain it and apply GELU to introduce nonlinearity to the product of Q
and K. The shape of the obtained output matrix is the same as that of the baselines.

5. Prediction Head: We follow the settings of the baselines, that is, applying a linear layer
as the prediction head to obtain the output multivariate series.

If this minimalist model can achieve near performance to vanilla SA models, such as PatchTST Nie
et al. (2022) and iTransformer Liu et al. (2023), it would provide decisive evidence for the argument
that the QKV multi-branch mapping and fusion is the key source of self-attention, rather than the
attention matrix.

3.4 DATASETS AND EVALUATION METRICS

Table 1: Benchmark datasets employed in baselines’ papers.
Datasets Traffic Electricity Solar Weather ETTh1 ETTh2 ETTm1 ETTm2
Variates 862 321 137 21 7 7 7 7

Timesteps 17544 26304 52560 52696 17420 17420 69680 69680
Granularity 1hour 1hour 10min 10min 1hour 1hour 5min 5min

To maintain consistency with each baseline model, we use the datasets from their respective papers.
The consolidated benchmark datasets are as follows: Traffic, Electricity, Solar, Weather, ETTh1,
ETTh2, ETTm1, ETTm2. Their statistics are shown in Table 1 and details are in the Appendix A.2.

In MLTSF, we represent the input multiple time series as x ∈ RM×L, where M is the num-
ber of variate and L is the size of look-back window. For each single series of i-th variate
x(i) = (x

(i)
1 , . . . , x

(i)
L ) ∈ R1×L, where i = 1, ...,M , the goal is to forecast T future values

y(i) = (x
(i)
L+1, . . . , x

(i)
L+T ) ∈ R1×T . We represent the multivariate prediction result as y ∈ RM×T .

Following baseline models, we use the Mean Squared Error (MSE) and Mean Absolute Error
(MAE) as metrics to evaluate the predictive performance of the models. The prediction horizons
are {96, 192, 336, 720}.

4 RESULTS AND ANALYSIS

In this section, we provide the details of our comprehensive evaluation. Specifically, we ask the fol-
lowing research questions: (RQ1) Is the attention matrix really the key to self-attention in MLTSF?
(RQ2) Does the performance of self-attention primarily stem from its multi-branch feature mapping
architecture? (RQ3) Is the attention matrix worth the computational cost?

4.1 RQ1: IS THE ATTENTION MATRIX REALLY THE KEY TO SELF-ATTENTION IN MLTSF?

To answer this question, we conduct a series of structural ablation studies on 6 baseline models.
We first present a global visual comparison (average error across four prediction horizon), with the
criterion being whether the compared error curves have an overall deviation, as shown in Figure
3. Except for two significant deviation points, all other error curves almost overlap, indicating that
removing the dynamic attention matrix has no significant impact. Moreover, in some intervals, the
error curves of the ablation schemes (red and green) are even below the baseline, further validating
the conclusion. Then, we explain the ablation study of each baseline one by one as follows. We

5
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(a1)Informer-SA-MSE (a2)Informer-SA-MAE (a3)Informer-PSA-MSE (a4)Informer-PSA-MAE

(b1)PatchTST-SA-MSE (b2)PatchTST-SA-MAE (b3)PatchTST-PSA-MSE (b4)PatchTST-PSA-MAE

(c1)iTransformer-SA-MSE (c2)iTransformer-SA-MAE (c3)iTransformer-PSA-MSE (c4)iTransformer-PSA-MAE

(d1)ICTSP-SA-MSE (d2)ICTSP-SA-MAE (e1)Leddam-SA-MSE (e2)Leddam-SA-MAE

(f1)TimePFN-SA-MSE (f2)TimePFN-SA-MAE

(f): TimePFN baseline

(a): Informer-like baseline

(b): PatchTST baseline

(c): iTransformer baseline

(d): ICTSP baseline

(e): Leddam baseline

PSA: ProbSparse Self-AttentionSA: Standard Self-Attention

Figure 3: Visualization display of the ablation study. From a global perspective, the lines of the
baseline and the ablation scheme are close together, indicating that removing the dynamic attention
matrix has no significant impact. The figure shows the average error for 4 prediction horizons, the
complete results of baseline (a) to (f) are in the Appendix from Table 3 to Table 8, respectively.

calculate the win rate, which represents the proportion of cases where the error of the ablation
scheme is less than or equal to that of the baseline.

Analysis on the time-token paradigm. We first compare two simple element-wise operations
against the Standard Self-Attention (SA). As shown in Figures 3 (a1) and (a2), in terms of over-
all average performance, the Hadamard version leads to a 2.59% decrease in MSE and a 1.71%
decrease in MAE. The addition version yields even greater improvements, with a 3.68% decrease
in MSE and a 2.08% decrease in MAE. Across all the 70 individual test cases with 4 prediction
horizons, the Hadamard ablation performs better in 44 cases (62.86%), while the addition ablation
wins in 47 cases (67.14%).

A similar trend is observed when ablating the more efficient ProbSparse Self-Attention (PSA), as
shown in Figures 3 (a3) and (a4). The Hadamard version is superior in 58 out of 70 cases (82.86%)
and also slightly improves the overall average performance. The addition version, while winning
in just over half the cases (39/70, 55.71%), maintains a performance level highly comparable to the
PSA baseline, with only a negligible 0.27% increase in MAE. Detailed quantitative results with 4
prediction horizons are in Table 3 of the Appendix.

For the Informer-like model, both dense and sparse matrix multiplications can be effectively repli-
cated and often surpassed by simpler element-wise operations.

Analysis on patch-token paradigm. Compared to SA, as shown in Figures 3 (b1) and (b2), we
observe a high degree of performance preservation. The impact on overall average performance
is minimal: the Hadamard version shows a mere 1.16% increase in MSE and a 0.69% increase in
MAE, while the addition version shows a 0.81% increase in MSE and a 0.54% increase in MAE. This
marginal performance change (<1.2%) indicates that removing the matrix multiplication module,
widely considered the soul of SA, has almost no substantive impact on the predictive power of the
model.

This phenomenon is even more pronounced against the PSA baseline, as shown in Figures 3 (b3)
and (b4). Across 58 valid test cases with 4 prediction horizons, while the win rates for the simpli-
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fied versions are not high, the overall average performance shows 0.00% change in MAE for both
ablations, with MSE fluctuations contained within ±0.2%. This demonstrates that replacing PSA
with simple element-wise operations preserves performance almost perfectly. Detailed quantitative
results with 4 prediction horizons are in Table 4 of the Appendix.

PatchTST results provide compelling evidence that complex matrix multiplication, standard or
sparse, is not the source of its strong performance. Performance is almost entirely maintained after
removing this core computational block.

Analysis on variate-token paradigm. Against SA, Hadamard and addition ablations achieve win
rates of 62.50% and 52.50% across all 80 individual test cases with 4 prediction horizons, respec-
tively. Interestingly, despite the high win rates, overall average performance is very close to the
SA baseline, with error fluctuations contained within 1.6%, as shown in Figures 3 (c1) and (c2).
Against PSA, we observe an overwhelming advantage for the simplified methods: the win rates for
Hadamard and addition soar to 77.50% and 83.75% across all 80 individual test cases with 4 predic-
tion horizons, respectively. Their overall average performance is also superior to the PSA baseline,
with varying degrees of reduction in both MSE and MAE, as shown in Figures 3 (c3) and (c4).
Detailed quantitative results with 4 prediction horizons are in Table 5 of the Appendix.

The iTransformer results reinforce our core thesis. Simple operations demonstrate comparable or su-
perior performance in terms of both win rate and average metrics, indicating that complex attention
calculations are equally unnecessary in the variate-dimension attention paradigm.

Analysis on mixed paradigm ‘ICTSP’. To test the robustness of our findings on the latest genera-
tion of models, we first examine ICTSP, a representative hybrid paradigm model. The results present
a more complex but ultimately supportive picture.

At first glance, the win rate suggests our thesis holds: across 40 valid test cases with 4 predic-
tion horizons, the Hadamard ablation achieves a lower or equal error in 24 cases (60.00%). This
demonstrates that even in this modern architecture, the simple element-wise operation is competi-
tive or superior in a majority of scenarios. However, the overall average performance tells a different
story, with the ablation’s MSE significantly increasing by 21.04% and MAE increasing by 7.62%,
as shown in Figures 3 (d1) and (d2). A deeper look reveals this is due to a ‘catastrophic failure’ on
the ETTm1 dataset’s long-horizon tasks, where the error amplified dramatically. On other datasets
like ETTh1, the Hadamard version was clearly superior. This suggests that while our core thesis
that matrix multiplication is not the primary performance driver holds, its role may shift to that of a
stabilizer in certain contexts. Detailed quantitative results with 4 prediction horizons are in Table 6
of the Appendix.

Analysis on mixed paradigm ‘Leddam’. Continuing our investigation into hybrid paradigms,
we conduct ablation studies on the Leddam model. The results from this model provide a strong
counterpoint to the robustness concerns raised by ICTSP and reinforce our thesis.

Across all 54 valid test cases with 4 prediction horizons, the Hadamard ablation achieves a lower
or equal error in 38 cases, a high 70.37% win rate. This decisive majority indicates a clear advan-
tage for the simpler mechanism within this architecture. Unlike with ICTSP, this superiority is also
reflected in overall average performance, as shown in Figures 3 (e1) and (e2). The simplified ver-
sion is comparable to the baseline, with MSE and MAE improving by a slight 0.23% and 0.22%,
respectively. This confirms that our findings remain valid on the latest models, proving that ma-
trix multiplication is not the key performance driver. Detailed quantitative results with 4 prediction
horizons are in Table 7 of the Appendix.

Analysis on mixed paradigm ‘TimePFN’. Since TimePFN only has open-sourced pretrained
checkpoints instead of full training scripts, all our ablation experiments are conducted in inference
mode. This means our element-wise operation modules are not trained at all but directly replace the
corresponding parts in the original, fully trained model. This creates a stringent test of whether the
architectural structure alone is sufficient.

As shown in Figure 3 (f1) and (f2), across 16 test cases, the Hadamard ablation wins in 5 cases
(31.25%), while the addition version wins in 7 cases (43.75%). Detailed quantitative results are
in Table 8 of the Appendix. While these win rates are below 50%, they must be interpreted in
the context of the experiment: these simple, untrained operations are competing with a fully trained,
complex module. The fact that they can remain competitive and even win in a significant minority of
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cases is a highly unusual and compelling result. It suggests that the learned parameters of the matrix
multiplication are less important than the simple act of fusing the Q and K branches. Therefore, it
provides one of the strongest pieces of evidence for our core thesis.

4.2 RQ2: DOES THE PERFORMANCE OF SELF-ATTENTION PRIMARILY STEM FROM
MULTI-BRANCH FEATURE MAPPING AND FUSION?

(a)PatchTST-MSE (b)PatchTST-MAE (c)iTransformer-MSE (d)iTransformer-MAE

Figure 4: Visualization display of the comparison between MB-MLP and two well-known essential
paradigms. From a global perspective, the lines of the baseline and the MB-MLP are very close,
which confirms our hypothesis. The figure shows the average error for 4 prediction horizons, the
complete results with 4 prediction horizons are in the Appendix Table 9.

Our findings in RQ1 indicate that the dynamic attention matrix calculation is not the key to perfor-
mance. This naturally leads to the next question: if the performance does not originate from the
attention calculation, where does it come from? We hypothesize that the foundation of the perfor-
mance primarily stems from the long-overlooked multi-branch feature mapping and simple fusion
architecture that precedes the attention calculation. Other components, we posit, provide auxiliary
performance gains on top of this foundation.

To validate this core hypothesis, we construct a minimalist Multi-Branch MLP (MB-MLP) model,
as illustrated in Figure 2. This model completely strips away the complex components of a Trans-
former, such as FFN, retaining only what we consider the core structure: ‘QKV multi-branch map-
ping + simple fusion’. We test the performance of the MB-MLP according to the 3 essential to-
kenization paradigms, comparing it against the corresponding full Transformer models. As long
as the MB-MLP can approach, without having to surpass, the performance of the baselines, our
hypothesis can be confirmed.

Validation on the patch-token paradigm. On the patch-token paradigm, MB-MLP (Pat) (red line),
as shown in Figure 4 (a) and (b), successfully reproduces the main body of PatchTST’s accuracy. It
should be emphasized that the performance of MB-MLP (Pat) only needs to be close to, rather than
surpass, the baseline to verify our hypothesis. Specifically, the overall average MSE and MAE for
the MB-MLP increase by 4.38% and 3.12%, respectively. However, this result must be interpreted
in the context of the vast difference in model complexity. The MB-MLP removes all attention
calculations, layer normalizations, and residual connections from PatchTST, resulting in a significant
simplification of its overhead (time and memory are reduced by about 89% and 88% respectively)
and computational flow. In this context, a performance gap of only 3-4% is strong evidence for our
core hypothesis: the QKV multi-branch mapping structure successfully captures the vast majority
of the PatchTST model’s predictive power. In other words, a multi-branch feature fusion MLP with
minimal overhead is already capable of achieving over 95% of the Transformer’s core accuracy.
Complete quantitative results with 4 prediction horizons are in the Appendix Table 9.

Validation on the variate-token paradigm. Figure 4 (c) and (d) prove that MB-MLP (iTr) can
reproduce the main body of iTransformer’s accuracy at a minimal performance cost with an input
length of 336. We observe that the overall average MSE and MAE for the MB-MLP increase by
0.38% and 2.07%, respectively. Its performance is almost on par with the baseline, which fully
verifies our hypothesis. Complete quantitative results with 4 prediction horizons are in the Appendix
Table 9.

Validation on the time-token paradigm. MB-MLP (Inf) achieves a performance highly compa-
rable to the full Informer model. In terms of overall average performance, the two are remarkably
close: MB-MLP reduces 1.57% MSE and 0.37% MAE. This high degree of consistency in overall
performance, combined with its wins in a majority of individual cases, clearly demonstrates that
removing most of the Transformer’s complex components does not substantially impact the model’s
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Figure 5: This ablation study focuses on the number of branches, with the purpose of validating the
hypothesis rather than comparing performance. The substantial global fluctuations provide evidence
that multi-branch feature mapping and fusion play a central role.

core predictive capability. Complete quantitative results with 4 prediction horizons are in the Ap-
pendix Table 9.

Ablation Study on Branches Number. To further validate the hypothesis, we conduct an ablation
study on the number of branches in MB-MLP, ranging from 1 to 6. The specific implementation
details are in the Appendix A.3. If a component were unimportant, varying it would not lead to
substantial performance changes. However, Figure 5 shows that all metrics across datasets fluctuate
markedly with the number of branches, strongly confirming that multi-branch feature mapping and
fusion are the key factors, thereby supporting the hypothesis.

4.3 RQ3: IS THE ATTENTION MATRIX WORTH THE COMPUTATIONAL COST?

Table 2: Overhead comparison between attention matrix and Hadamard product matrix based on
3 essential paradigms on the largest-scaled dataset Traffic. Red represents the best results. The
attention matrix incurs higher computational overhead but yields only marginal performance gains.

Horizon Metric / Model Informer Hadamard PatchTST Hadamard iTransformer Hadamard
Time (s/epoch) 44.172 45.621 125.640 63.862 50.800 26.75796 Memory (GB) 3.328 2.408 36.576 26.240 6.064 2.992
Time (s/epoch) 47.422 48.339 127.352 65.549 51.920 27.799192 Memory (GB) 3.364 2.440 36.582 26.460 6.072 3.022
Time (s/epoch) 52.812 58.194 130.900 68.553 53.136 29.825336 Memory (GB) 3.438 2.592 36.614 26.492 6.456 3.116
Time (s/epoch) 62.845 61.755 139.331 78.196 58.620 36.067720 Memory (GB) 3.760 3.088 37.224 26.544 6.504 3.380

Our findings from RQ1 and RQ2 raise a practical question: is it worthwhile to retain the non-
essential yet computationally expensive attention matrix? The answer, based on our analysis, is no.
As shown in Table 2, the attention matrix reduces average training time by only 3.11% compared to
the Hadamard matrix in the Informer-like paradigm, but incurs higher overhead in all other cases.
Specifically, across the three paradigms from left to right, the attention matrix is 3.11% faster and
consumes 31.93% more memory, 89.46% slower and 39.02% more memory, and 78.07% slower
and 100.61% more memory, respectively.

5 CONCLUSION

This paper systematically investigates the true role of attention matrix in multivariate long-term time
series forecasting through extensive ablations on 6 classic and latest Transformer-based models. Our
results consistently show that the dynamic attention matrix is significantly overestimated and can be
replaced by simple element-wise operations without significant performance loss. We validate our
core hypothesis with a minimalist multi-branch MLP, proving the performance foundation is the
front-end QKV multi-branch mapping and fusion architecture. These findings suggest the com-
munity has misunderstood the source of success in attention models, opening a new direction for
simpler and more efficient forecasting architectures.

9
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6 REPRODUCIBILITY STATEMENT

For novel models or algorithms, a link to an anonymous source code is provided at the abstract sec-
tion; For the datasets used in the experiments, a detailed description is provided in the Appendix A.2.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We employed a Large Language Model as a general-purpose writing assistant. Specifically, it was
used for language refinement, content polishing, and occasionally for suggesting alternative phras-
ings to improve readability and clarity.

A.2 DATASETS

Following baselines, we employ their real-world benchmark datasets for evaluation. All these
datasets can be obtained from Wu et al. (2021); Liu et al. (2023); Wang et al. (2024b). Accord-
ing to FreTS Yi et al. (2024), the details of these datasets are as follows:

Traffic1: This dataset records hourly traffic flow data for 963 freeway lanes in San Francisco. It
supports long-term forecasting using 862 lanes. The data collection began on January 1, 2015, with
an hourly sampling interval.

Electricity2: This dataset captures electricity consumption patterns of 370 clients for short-term
forecasting and 321 clients for long-term predictions. The data spans from January 1, 2011, with a
15-minute sampling interval.

Solar3: This dataset consists of solar power measurements collected by the National Renewable
Energy Laboratory. It includes data points from various power plants in Florida, comprising 593
records, spanning from January 1, 2006, to December 31, 2016, with an hourly sampling interval.

1https://pems.dot.ca.gov/
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://www.nrel.gov/grid/solar-power-data.html
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ETT4: This dataset includes four subsets (ETTh1, ETTh2, ETTm1, and ETTm2). It measurements
from two distinct electric transformers, labeled ETTh1 and ETTm1, representing different temporal
resolutions (hourly and 15-minute intervals, respectively). These datasets serve as benchmarks for
long-term forecasting.

A.3 IMPLEMENTATION DETAILS

For the 6 baselines, our ablation experiments fully follow the implementation details of their open-
source code, including hyperparameters and so on. The baseline ‘Informer-like’ is constructed by
following the original paradigm, with the aim of excluding potential effects introduced by the inef-
fective decoder component in Informer.

In Figure 1 and 2, D is embedding dimension.

In the MB-MLP (iTr) of RQ2, the input sequence length is set to 336 because 96, which is set by its
baseline, i.e., iTransformer, is not applicable. Specifically, we find that the MB-MLP (iTr) exhibits
a positive sensitivity to the input sequence length. In preliminary experiments, the model performed
poorly with a shorter input length of 96. However, when we increased the input length to 336,
its performance improved significantly. This phenomenon suggests that our minimalist MB-MLP
model is not only effective but that its multi-branch feature mapping structure can efficiently encode
information from longer input sequences to serve long-term forecasting.

To investigate the optimal number of mapping branches applicable to varying scenarios, we per-
formed an ablation study on the MB-MLP model under the PatchTST framework. Specifically, the
number of branches was adjusted from 1 to 6, with evaluations conducted across 7 datasets under a
96-step prediction horizon. Nonlinear activation function is removed to construct a model that tests
only the hypothesized conditions, excluding other sensitive factors.

A.4 RESULTS AND ANALYSIS

4https://github.com/zhouhaoyi/ETDataset
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Table 3: Ablation results of the time-token paradigm, where ‘SA’, ‘Hadam Prod’, ‘Addition’, and
‘PSA’ represent the self-attention, Hadamard product, addition, and sparse self-attention, respec-
tively. Every three adjacent ones form a group of ablation experiments. The Hadamard product and
addition have lower MSE and MAE than the attention mechanisms in more cases.

Informer-likeModels SA Hadam Prod Addition PSA Hadam Prod Addition
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.614 0.350 0.634 0.372 0.648 0.390 0.622 0.360 0.627 0.363 0.648 0.390
192 0.618 0.352 0.605 0.370 0.601 0.386 0.615 0.382 0.611 0.381 0.601 0.386
336 0.637 0.358 0.639 0.377 0.640 0.385 0.624 0.373 0.624 0.374 0.640 0.385
720 0.636 0.367 0.658 0.377 0.663 0.393 0.671 0.385 0.672 0.386 0.663 0.393

Traffic

AVG 0.626 0.357 0.634 0.374 0.638 0.389 0.633 0.375 0.634 0.376 0.638 0.389
96 0.214 0.319 0.210 0.314 0.209 0.313 0.181 0.288 0.181 0.288 0.209 0.313
192 0.273 0.369 0.208 0.314 0.220 0.323 0.205 0.310 0.201 0.306 0.220 0.323
336 0.228 0.332 0.224 0.332 0.229 0.335 0.199 0.309 0.197 0.307 0.229 0.335
720 0.220 0.323 0.228 0.333 0.241 0.344 0.217 0.319 0.213 0.316 0.241 0.344

Electricity

AVG 0.234 0.336 0.218 0.323 0.225 0.329 0.201 0.307 0.198 0.304 0.225 0.329
96 0.180 0.238 0.170 0.225 0.168 0.223 0.169 0.229 0.168 0.229 0.168 0.223
192 0.217 0.268 0.212 0.261 0.211 0.260 0.212 0.266 0.211 0.265 0.211 0.260
336 0.270 0.305 0.263 0.298 0.263 0.299 0.265 0.304 0.263 0.303 0.263 0.299
720 0.351 0.362 0.324 0.342 0.327 0.343 0.354 0.362 0.351 0.361 0.327 0.343

Weather

AVG 0.255 0.293 0.242 0.282 0.242 0.281 0.250 0.290 0.248 0.290 0.242 0.281
96 0.395 0.421 0.473 0.476 0.394 0.420 0.410 0.426 0.410 0.426 0.394 0.420
192 0.423 0.437 0.428 0.439 0.430 0.439 0.430 0.434 0.430 0.434 0.430 0.439
336 0.444 0.451 0.446 0.449 0.442 0.446 0.456 0.459 0.457 0.459 0.443 0.446
720 0.483 0.487 0.497 0.498 0.491 0.493 0.505 0.498 0.494 0.495 0.491 0.493

ETTh1

AVG 0.436 0.449 0.461 0.466 0.439 0.450 0.450 0.454 0.448 0.454 0.440 0.450
96 0.382 0.412 0.383 0.413 0.377 0.407 0.361 0.395 0.361 0.394 0.377 0.407
192 0.405 0.435 0.427 0.433 0.407 0.424 0.392 0.431 0.391 0.430 0.407 0.424
336 0.380 0.425 0.377 0.421 0.372 0.420 0.359 0.412 0.358 0.411 0.371 0.420
720 0.419 0.446 0.439 0.454 0.445 0.456 0.439 0.457 0.437 0.455 0.445 0.456

ETTh2

AVG 0.397 0.430 0.407 0.430 0.400 0.427 0.388 0.424 0.387 0.423 0.400 0.427
96 0.399 0.425 0.323 0.374 0.319 0.368 0.349 0.387 0.339 0.381 0.319 0.368
192 0.422 0.439 0.372 0.402 0.363 0.394 0.403 0.418 0.388 0.409 0.363 0.394
336 0.448 0.455 0.404 0.421 0.401 0.417 0.417 0.428 0.439 0.441 0.401 0.417
720 0.526 0.509 0.526 0.504 0.489 0.472 0.510 0.490 0.502 0.485 0.489 0.472

ETTm1

AVG 0.449 0.457 0.406 0.425 0.393 0.413 0.420 0.431 0.417 0.429 0.393 0.413
96 0.239 0.307 0.220 0.298 0.217 0.298 0.199 0.283 0.196 0.280 0.217 0.298
192 0.319 0.354 0.259 0.324 0.261 0.322 0.277 0.333 0.276 0.334 0.261 0.322
336 0.341 0.380 0.322 0.361 0.324 0.364 0.331 0.374 0.327 0.370 0.324 0.364
720 0.485 0.453 0.415 0.416 0.419 0.419 0.413 0.417 0.414 0.417 0.419 0.419

ETTm2

AVG 0.346 0.374 0.304 0.350 0.305 0.351 0.305 0.352 0.303 0.350 0.305 0.351
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Table 4: Ablation results of the patch-token paradigm. Hadamard product and addition can maintain
the accuracy of the attention mechanism. Due to the excessive computational overhead (over 400
s/epoch) of long-sequence forecasting on the large-scale Traffic and Electricity datasets, we were
unable to obtain results for all prediction horizons.

PatchTSTModels SA Hadam Prod Addition PSA Hadam Prod Addition
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.361 0.247 0.382 0.261 0.381 0.259 0.364 0.249 0.374 0.256 0.366 0.250
192 0.380 0.255 0.394 0.265 0.395 0.265 0.382 0.257 0.391 0.262 0.386 0.259
336 0.393 0.263 0.406 0.271 0.407 0.271 - - - - - -
720 0.432 0.286 0.440 0.291 0.441 0.292 - - - - - -

Traffic

AVG 0.392 0.263 0.406 0.272 0.406 0.272 - - - - - -
96 0.130 0.222 0.134 0.228 0.134 0.228 0.130 0.223 0.130 0.224 0.130 0.224

192 0.148 0.240 0.149 0.242 0.149 0.243 0.147 0.239 0.147 0.240 0.147 0.240
336 0.165 0.259 0.166 0.261 0.165 0.260 0.164 0.258 - - - -
720 0.210 0.298 0.210 0.299 0.204 0.294 0.200 0.289 - - - -

Electricity

AVG 0.163 0.255 0.165 0.258 0.163 0.256 0.160 0.252 - - - -
96 0.156 0.205 0.157 0.206 0.157 0.204 0.149 0.197 0.149 0.196 0.148 0.195

192 0.195 0.242 0.201 0.246 0.202 0.244 0.192 0.238 0.192 0.239 0.191 0.239
336 0.250 0.284 0.250 0.284 0.251 0.283 0.244 0.278 0.244 0.279 0.243 0.280
720 0.320 0.335 0.325 0.336 0.320 0.333 0.319 0.334 0.317 0.331 0.317 0.332

Weather

AVG 0.230 0.267 0.233 0.268 0.233 0.266 0.226 0.262 0.226 0.261 0.225 0.262
96 0.382 0.405 0.384 0.407 0.385 0.409 0.391 0.408 0.393 0.409 0.391 0.408

192 0.414 0.421 0.414 0.421 0.415 0.422 0.423 0.424 0.424 0.425 0.423 0.423
336 0.431 0.435 0.427 0.429 0.427 0.430 0.433 0.434 0.433 0.435 0.433 0.434
720 0.449 0.466 0.441 0.457 0.445 0.460 0.483 0.484 0.484 0.485 0.484 0.485

ETTh1

AVG 0.419 0.432 0.417 0.429 0.418 0.430 0.433 0.438 0.434 0.439 0.433 0.438
96 0.274 0.336 0.276 0.337 0.275 0.336 0.291 0.345 0.291 0.345 0.292 0.346

192 0.339 0.379 0.339 0.379 0.338 0.379 0.358 0.389 0.360 0.391 0.359 0.389
336 0.331 0.381 0.331 0.385 0.329 0.384 0.342 0.389 0.343 0.390 0.343 0.390
720 0.379 0.421 0.381 0.423 0.378 0.421 0.398 0.437 0.398 0.437 0.399 0.437

ETTh2

AVG 0.331 0.379 0.332 0.381 0.330 0.380 0.347 0.390 0.348 0.391 0.348 0.391
96 0.292 0.343 0.304 0.350 0.292 0.347 0.293 0.347 0.293 0.345 0.288 0.342

192 0.331 0.369 0.344 0.377 0.332 0.371 0.337 0.378 0.335 0.374 0.333 0.373
336 0.365 0.392 0.368 0.394 0.365 0.393 0.374 0.404 0.366 0.397 0.363 0.393
720 0.419 0.425 0.415 0.424 0.410 0.420 0.430 0.438 0.429 0.437 0.431 0.439

ETTm1

AVG 0.352 0.382 0.358 0.386 0.350 0.383 0.359 0.392 0.356 0.388 0.354 0.387
96 0.165 0.255 0.164 0.253 0.164 0.254 0.172 0.262 0.175 0.264 0.174 0.265

192 0.220 0.292 0.222 0.293 0.222 0.293 0.233 0.305 0.238 0.304 0.234 0.306
336 0.278 0.329 0.279 0.330 0.279 0.330 0.285 0.336 0.292 0.347 0.294 0.348
720 0.367 0.385 0.372 0.389 0.377 0.396 0.377 0.402 0.377 0.401 0.378 0.402

ETTm2

AVG 0.258 0.315 0.259 0.316 0.261 0.318 0.267 0.326 0.271 0.329 0.270 0.330
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Table 5: Ablation results of the variate-token paradigm. The Hadamard product and addition have
lower MSE and MAE than the attention mechanisms in more cases.

iTransformerModels SA Hadam Prod Addition PSA Hadam Prod Addition
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.392 0.269 0.428 0.277 0.436 0.280 0.400 0.270 0.400 0.270 0.400 0.270
192 0.414 0.278 0.441 0.282 0.448 0.284 0.422 0.279 0.422 0.279 0.422 0.279
336 0.424 0.283 0.455 0.288 0.462 0.291 0.438 0.286 0.438 0.286 0.438 0.286
720 0.458 0.300 0.488 0.308 0.494 0.310 0.470 0.304 0.470 0.304 0.470 0.304

Traffic

AVG 0.422 0.283 0.453 0.289 0.460 0.291 0.433 0.285 0.433 0.285 0.433 0.285
96 0.148 0.240 0.164 0.249 0.166 0.251 0.144 0.237 0.144 0.237 0.144 0.237

192 0.168 0.259 0.173 0.258 0.175 0.260 0.159 0.250 0.160 0.250 0.160 0.250
336 0.178 0.271 0.189 0.275 0.192 0.277 0.174 0.267 0.175 0.267 0.175 0.266
720 0.211 0.301 0.228 0.309 0.232 0.311 0.210 0.303 0.208 0.300 0.208 0.300

Electricity

AVG 0.176 0.268 0.189 0.273 0.191 0.275 0.172 0.264 0.172 0.264 0.172 0.263
96 0.176 0.216 0.178 0.216 0.181 0.220 0.159 0.204 0.163 0.208 0.163 0.207

192 0.225 0.257 0.225 0.257 0.229 0.260 0.209 0.249 0.212 0.252 0.212 0.252
336 0.281 0.299 0.280 0.296 0.284 0.299 0.268 0.293 0.269 0.294 0.271 0.295
720 0.358 0.350 0.357 0.346 0.361 0.350 0.352 0.348 0.350 0.349 0.353 0.350

Weather

AVG 0.260 0.281 0.260 0.279 0.264 0.282 0.247 0.274 0.249 0.276 0.250 0.276
96 0.387 0.405 0.381 0.397 0.381 0.397 0.391 0.407 0.387 0.403 0.386 0.403

192 0.441 0.436 0.430 0.426 0.433 0.427 0.446 0.438 0.441 0.433 0.441 0.434
336 0.491 0.462 0.470 0.447 0.479 0.452 0.495 0.462 0.492 0.460 0.493 0.461
720 0.509 0.494 0.487 0.479 0.490 0.481 0.620 0.554 0.526 0.501 0.529 0.502

ETTh1

AVG 0.457 0.449 0.442 0.437 0.446 0.439 0.488 0.465 0.462 0.449 0.462 0.450
96 0.301 0.350 0.295 0.347 0.293 0.345 0.297 0.348 0.294 0.347 0.294 0.346

192 0.380 0.399 0.375 0.396 0.374 0.394 0.379 0.399 0.375 0.398 0.376 0.398
336 0.424 0.432 0.417 0.430 0.417 0.430 0.424 0.435 0.423 0.436 0.423 0.435
720 0.430 0.447 0.426 0.444 0.424 0.444 0.438 0.451 0.438 0.453 0.437 0.451

ETTh2

AVG 0.384 0.407 0.378 0.404 0.377 0.403 0.385 0.408 0.383 0.409 0.383 0.408
96 0.342 0.377 0.325 0.364 0.331 0.366 0.339 0.372 0.339 0.372 0.340 0.372

192 0.383 0.396 0.369 0.385 0.373 0.385 0.375 0.390 0.372 0.388 0.372 0.389
336 0.418 0.418 0.404 0.407 0.407 0.406 0.413 0.415 0.409 0.411 0.410 0.412
720 0.487 0.457 0.467 0.441 0.469 0.441 0.489 0.456 0.476 0.448 0.476 0.448

ETTm1

AVG 0.408 0.412 0.391 0.399 0.395 0.400 0.404 0.408 0.399 0.405 0.400 0.405
96 0.186 0.272 0.178 0.260 0.181 0.266 0.181 0.266 0.179 0.264 0.179 0.264

192 0.253 0.314 0.245 0.304 0.246 0.307 0.249 0.309 0.245 0.307 0.245 0.307
336 0.316 0.351 0.306 0.344 0.309 0.347 0.310 0.349 0.311 0.349 0.310 0.349
720 0.414 0.407 0.404 0.400 0.407 0.402 0.415 0.407 0.411 0.405 0.411 0.405

ETTm2

AVG 0.292 0.336 0.283 0.327 0.286 0.331 0.289 0.333 0.287 0.331 0.286 0.331
96 0.205 0.236 0.221 0.254 0.226 0.261 0.199 0.237 0.199 0.238 0.198 0.237

192 0.238 0.262 0.251 0.273 0.256 0.280 0.232 0.263 0.233 0.264 0.232 0.263
336 0.250 0.274 0.271 0.285 0.275 0.291 0.248 0.276 0.248 0.276 0.248 0.276
720 0.251 0.276 0.268 0.284 0.272 0.289 0.251 0.278 0.251 0.278 0.251 0.278

Solar

AVG 0.236 0.262 0.253 0.274 0.257 0.280 0.233 0.264 0.233 0.264 0.232 0.264

Table 6: Ablation results of the latest model ‘ICTSP’ with mixed paradigm. The Hadamard product
have lower MSE and MAE than the attention mechanisms in more cases. As its official implementa-
tion only provides training scripts for the ETT datasets, our experiments are confined to this scope.

Models ETTh1 ETTh2 ETTm1 ETTm2
MSE MAE MSE MAE MSE MAE MSE MAE

SA

96 0.375 0.400 0.277 0.335 0.315 0.355 0.163 0.252
192 0.404 0.415 0.340 0.376 0.352 0.380 0.219 0.291
336 0.434 0.441 0.403 0.435 0.371 0.388 0.273 0.325
720 0.437 0.460 0.396 0.431 0.431 0.421 0.361 0.382

AVG 0.413 0.429 0.354 0.394 0.367 0.386 0.254 0.313

Hadamard
Product

96 0.373 0.399 0.278 0.336 0.310 0.351 0.165 0.254
192 0.406 0.417 0.332 0.376 0.503 0.455 0.219 0.291
336 0.428 0.430 0.378 0.408 0.658 0.525 0.271 0.325
720 0.430 0.449 0.396 0.431 1.210 0.721 0.363 0.382

AVG 0.409 0.424 0.346 0.388 0.670 0.513 0.255 0.313
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Table 7: Ablation results of the latest model ‘Leddam’ with mixed paradigm. The Hadamard product
have lower MSE and MAE than the attention mechanisms in more cases. Due to the high cost
of Leddam, on large-scale datasets Traffic and Electricity, we only measured a 96-step prediction
horizon.

Models Traffic Electricity Weather ETTh1 ETTh2 ETTm1 ETTm2
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

SA

96 0.440 0.283 0.141 0.234 0.157 0.202 0.377 0.394 0.292 0.343 0.319 0.359 0.176 0.257
192 - - - - 0.207 0.249 0.424 0.422 0.367 0.389 0.371 0.384 0.243 0.303
336 - - - - 0.265 0.293 0.459 0.442 0.412 0.424 0.398 0.404 0.303 0.341
720 - - - - 0.343 0.343 0.464 0.460 0.419 0.438 0.461 0.443 0.400 0.398

AVG - - - - 0.243 0.272 0.431 0.430 0.373 0.399 0.387 0.398 0.281 0.325

Hadmard
Product

96 0.466 0.278 0.150 0.240 0.164 0.209 0.378 0.393 0.291 0.340 0.317 0.356 0.175 0.256
192 - - - - 0.210 0.251 0.423 0.422 0.368 0.389 0.362 0.380 0.240 0.301
336 - - - - 0.266 0.292 0.457 0.441 0.414 0.425 0.393 0.403 0.302 0.338
720 - - - - 0.347 0.346 0.462 0.460 0.419 0.437 0.458 0.443 0.395 0.394

AVG - - - - 0.247 0.275 0.430 0.429 0.373 0.398 0.383 0.396 0.278 0.322

Table 8: Ablation results of the latest model ‘TimePFN’ with mixed paradigm. Since the model
only has open-sourced pretrained checkpoints with 96-step prediction horizon instead of full training
scripts, all our ablation experiments are conducted in inference mode. The Hadamard product and
addition maintained the main accuracy of attention without training.

TimePFNModels SA Hadam Prod Addition
Metric MSE MAE MSE MAE MSE MAE
Traffic 1.108 0.613 1.088 0.597 1.043 0.620

Electricity 0.315 0.384 0.310 0.378 0.399 0.473
Weather 0.210 0.255 0.224 0.265 0.203 0.253
ETTh1 0.453 0.440 0.493 0.457 0.472 0.452
ETTh2 0.329 0.363 0.337 0.366 0.323 0.362
ETTm1 0.638 0.513 0.663 0.512 0.688 0.533
ETTm2 0.212 0.291 0.223 0.300 0.216 0.297

Solar 0.941 0.731 1.404 0.880 0.884 0.700
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Table 9: Comparison results between MB-MLP and 3 essential paradigms. It maintains the main
accuracy of self-attention.

Models MB-MLP (Inf) Informer MB-MLP (Pat) PatchTST MB-MLP (iTr) iTransformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.595 0.348 0.614 0.350 0.387 0.266 0.361 0.247 0.403 0.289 0.356 0.258
192 0.604 0.362 0.618 0.352 0.401 0.271 0.380 0.255 0.428 0.304 0.375 0.268
336 0.624 0.368 0.637 0.358 0.413 0.277 0.393 0.263 0.441 0.310 0.388 0.274
720 0.636 0.378 0.636 0.367 0.443 0.295 0.432 0.286 0.468 0.324 0.421 0.289

Traffic

AVG 0.615 0.364 0.626 0.357 0.411 0.277 0.392 0.263 0.435 0.307 0.385 0.272
96 0.214 0.322 0.214 0.319 0.135 0.230 0.130 0.222 0.142 0.240 0.133 0.228

192 0.220 0.325 0.273 0.369 0.150 0.244 0.148 0.240 0.160 0.256 0.153 0.248
336 0.232 0.338 0.228 0.332 0.166 0.261 0.165 0.259 0.176 0.273 0.173 0.268
720 0.262 0.362 0.220 0.323 0.205 0.294 0.210 0.298 0.215 0.304 0.208 0.302

Electricity

AVG 0.232 0.337 0.234 0.336 0.164 0.257 0.163 0.255 0.173 0.268 0.167 0.262
96 0.182 0.239 0.180 0.238 0.163 0.212 0.156 0.205 0.153 0.203 0.163 0.211

192 0.231 0.277 0.217 0.268 0.207 0.252 0.195 0.242 0.198 0.245 0.207 0.251
336 0.271 0.307 0.270 0.305 0.256 0.290 0.250 0.284 0.249 0.285 0.256 0.291
720 0.347 0.359 0.351 0.362 0.324 0.338 0.320 0.335 0.323 0.337 0.326 0.337

Weather

AVG 0.258 0.296 0.255 0.293 0.237 0.273 0.230 0.267 0.231 0.268 0.238 0.273
96 0.468 0.465 0.395 0.421 0.406 0.427 0.382 0.405 0.520 0.488 0.405 0.419

192 0.447 0.462 0.423 0.437 0.442 0.445 0.414 0.421 0.561 0.509 0.454 0.450
336 0.469 0.471 0.444 0.451 0.459 0.453 0.431 0.435 0.548 0.511 0.472 0.466
720 0.524 0.510 0.483 0.487 0.515 0.503 0.449 0.466 0.556 0.529 0.549 0.530

ETTh1

AVG 0.477 0.477 0.436 0.449 0.456 0.457 0.419 0.432 0.546 0.509 0.470 0.466
96 0.369 0.407 0.382 0.412 0.293 0.351 0.274 0.336 0.341 0.387 0.307 0.363

192 0.411 0.439 0.405 0.435 0.352 0.388 0.339 0.379 0.392 0.419 0.390 0.412
336 0.390 0.431 0.380 0.425 0.336 0.387 0.331 0.381 0.374 0.416 0.419 0.433
720 0.422 0.453 0.419 0.446 0.382 0.424 0.379 0.421 0.416 0.444 0.417 0.444

ETTh2

AVG 0.398 0.432 0.397 0.430 0.341 0.387 0.331 0.379 0.381 0.416 0.383 0.413
96 0.342 0.388 0.399 0.425 0.312 0.353 0.292 0.343 0.303 0.354 0.306 0.360

192 0.374 0.405 0.422 0.439 0.348 0.378 0.331 0.369 0.342 0.378 0.345 0.382
336 0.419 0.432 0.448 0.455 0.377 0.397 0.365 0.392 0.374 0.398 0.378 0.402
720 0.495 0.470 0.526 0.509 0.424 0.428 0.419 0.425 0.435 0.431 0.444 0.440

ETTm1

AVG 0.408 0.424 0.449 0.457 0.365 0.389 0.352 0.382 0.363 0.390 0.368 0.396
96 0.219 0.298 0.239 0.307 0.175 0.266 0.165 0.255 0.185 0.265 0.172 0.265

192 0.287 0.341 0.319 0.354 0.230 0.302 0.220 0.292 0.253 0.311 0.249 0.314
336 0.313 0.360 0.341 0.380 0.286 0.338 0.278 0.329 0.301 0.344 0.294 0.345
720 0.428 0.426 0.485 0.453 0.369 0.390 0.367 0.385 0.376 0.391 0.375 0.394

ETTm2

AVG 0.312 0.356 0.346 0.374 0.265 0.324 0.258 0.315 0.279 0.328 0.273 0.330
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