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Abstract

Recently, retrieval augmentation and tool aug-001
mentation have demonstrated a remarkable ca-002
pability to expand the internal memory bound-003
aries of language models (LMs) by providing004
external context. However, internal memory005
and external context inevitably clash, leading to006
knowledge conflicts within LMs. In this paper,007
we aim to interpret the mechanism of knowl-008
edge conflicts through the lens of information009
flow, and then mitigate conflicts by precise in-010
terventions at the pivotal point. We find there011
are some attention heads with opposite effects012
in the later layers, where memory heads can013
recall knowledge from internal memory, and014
context heads can retrieve knowledge from ex-015
ternal context. Moreover, we reveal that the piv-016
otal point at which knowledge conflicts emerge017
in LMs is the integration of inconsistent infor-018
mation flows by memory heads and context019
heads. Inspired by the insights, we propose a020
novel method called Pruning Head via PatH021
PatcHing (PH3), which can efficiently mitigate022
knowledge conflicts by pruning conflicting at-023
tention heads without updating model parame-024
ters. PH3 can flexibly control eight LMs to use025
internal memory (↑ 44.0%) or external context026
(↑ 38.5%). Moreover, PH3 can also improve027
the performance of LMs on open-domain QA028
tasks. We also conduct extensive experiments029
to demonstrate the cross-model, cross-relation,030
and cross-format generalization of our method.031

1 Introduction032

Language models (LMs) (Brown et al., 2020; Tou-033

vron et al., 2023; OpenAI, 2023) have memorized034

a substantial amount of factual knowledge during035

pre-training, and stored the knowledge within their036

parameters as internal memory (i.e., parametric037

knowledge) (Meng et al., 2022). During the infer-038

ence phase, LMs rely on their internal memory to039

understand and generate text. However, the internal040

memory may be limited or outdated, making LMs041

prone to producing factually incorrect content.042

To alleviate the problem, one promising solu- 043

tion is to employ additional retrievers or tools to 044

augment LMs by providing external context (i.e., 045

non-parametric knowledge). Nevertheless, inter- 046

nal memory and external context can often con- 047

tradict each other, which is known as knowledge 048

conflicts (Longpre et al., 2021; Chen et al., 2022; 049

Xie et al., 2023; Yu et al., 2023). Recent works have 050

mainly investigated the behavior and preference of 051

LMs, attempting to determine whether these mod- 052

els are more inclined towards internal memory or 053

external context when faced with knowledge con- 054

flicts. However, there is a limited understanding 055

of the underlying mechanism of knowledge con- 056

flicts. Insights into the mechanism will facilitate 057

precise interventions at the pivotal point to mitigate 058

knowledge conflicts, which can not only empower 059

LMs to more reliably adhere to internal memory 060

(e.g., ignoring misleading external context) but also 061

enhance faithfulness in generating text based on ex- 062

ternal context (e.g., correcting outdated memory). 063

In this paper, we reveal that the pivotal point 064

at which knowledge conflicts emerge in LMs is 065

the integration of inconsistent information flows by 066

various attention heads in later layers. To investi- 067

gate this, we consider a simple factual recall task 068

(i.e., subject attribute prediction) inspired by the 069

work of Yu et al. (2023). As illustrated in Figure 070

1, given the question (i.e., “What is the capital of 071

France?”) and the conflicting external context (i.e., 072

“The capital of France is Rome.”), the model can 073

either use internal memory (i.e., “Paris”) or exter- 074

nal context (i.e., “Rome”) to predict the subject’s 075

attribute. Following this, we present a set of “top- 076

down” analyses to locate the pivotal point where 077

conflicts emerge and to identify the model compo- 078

nents that are significant in knowledge conflicts, 079

which primarily involves the following three steps: 080

Step 1: We start by answering the first ques- 081

tion “What function do model components serve 082

in knowledge conflicts?”. We knock out the acti- 083
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Figure 1: An illustration of the mechanism of knowledge conflicts in LMs: (1) Enriching the semantic information
of context subject and context attribute; (2) Propagating question information to the last token through MHAs; (3)
Extracting attribute information through memory attention heads and context attention heads at later layers.

vations to examine the functionality of multi-head084

attention (MHA) blocks and feed-forward network085

(FFN) blocks. We find that FFNs enrich the seman-086

tic information of input elements in early layers,087

while MHAs play an important role in passing in-088

formation to the last token in later layers; Step 2:089

Based on this, the second question naturally arises,090

namely “When and where do MHAs pass informa-091

tion to the last token?”. We investigate the MHAs092

by knocking out the attention weights from the last093

token to other input elements. Results reveal that094

the question information is first propagated to the095

last token, and then the last token extracts attribute096

information from the subject and the attribute in097

the context; Step 3: Inspired by this, we aim to098

answer the final question “How do MHAs extract099

attribute information under knowledge conflicts?”.100

We find that some attention heads in late MHAs101

play opposite roles, where memory heads can re-102

call attributes from internal memory, and context103

heads can retrieve attributes from external context.104

According to our findings, the mechanism by which105

LMs use both internal memory and external context106

can be summarized as three stages in Figure 1: (1)107

Enriching semantic information; (2) Propagating108

question information; and (3) Extracting attribute109

information, where knowledge conflicts arise at110

the third stage, due to the inconsistent information111

flows between memory heads and context heads.112

Inspired by our insights into knowledge conflicts,113

we propose a minimally-invasive control method114

called Pruning Head via PatH PatcHing (PH3),115

which can efficiently mitigate knowledge conflicts116

by intervening on attention heads without updating117

model parameters. First, we use the path patching118

(Goldowsky-Dill et al., 2023; Wang et al., 2023a)119

technique to localize important memory heads and 120

context heads. Our method can avoid the noise in- 121

terference of other heads, enabling a more accurate 122

calculation of the importance score for the target 123

head. Then, we perform structured pruning on 124

those negative attention heads to mitigate conflicts. 125

In this way, our method can flexibly control LMs 126

to use internal memory or external context. Experi- 127

mental results on the World Capital dataset show 128

that our method can not only reliably and consis- 129

tently increase the average internal memory usage 130

rate of eight LMs by 44.0% (from 49.7% to 93.7%) 131

but also increase the external context usage rate by 132

38.5% (from 50.3% to 88.8%). PH3 also enables 133

LMs to generate answers more faithfully according 134

to retrieved passages in open-domain QA tasks. We 135

conduct extensive experiments to demonstrate the 136

cross-model (e.g., from GPT series to LLaMA2 se- 137

ries), cross-relation (e.g., from World Capital to 138

Official Language), and cross-format (e.g., from 139

triple format to document format) generalization. 140

Our contributions are summarized as follows: 141

• We perform an exploration into the mecha- 142

nism of interpreting knowledge conflicts, and 143

reveal that memory heads and context heads 144

at later layers can cause knowledge conflicts 145

when inconsistent information flows merge. 146

• We propose a novel method called Pruning 147

Head via PatH PatcHing (PH3), which can ef- 148

ficiently mitigate knowledge conflicts by prun- 149

ing those conflicting attention heads. 150

• We demonstrate that our PH3 can flexibly con- 151

trol LMs to use internal memory (↑ 44.0%) or 152

external context (↑ 38.5%). We also prove the 153

cross-model, cross-relation, and cross-format 154

generalization ability of our method. 155
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2 Background156

In this work, we mainly focus on the autoregressive157

transformer-based language models. Given a se-158

quence of input tokens x = [x1, · · · , xN ], the LM159

G first embeds each token xi into a vector x0
i ∈ Rd160

using an embedding matrix E ∈ R|V|×d, over a161

vocabulary V . The input embeddings are processed162

by L transformer layers. Each layer consists of an163

MHA and an FFN. Formally, the hidden state xℓ
i of164

token xi at layer ℓ is calculated as:165

xℓ
i = xℓ−1

i + aℓi +mℓ
i , (1)166

where aℓi and mℓ
i are the outputs from the MHA167

block and the FFN block in the ℓ-th layer. Then,168

the vocabulary head ϕ(·) and the softmax function169

σ(·) predict the output probability:170

pL
i = σ

(
ϕ
(
xL
i

))
. (2)171

MHA. A MHA block consists of M attention172

heads, which are capable of aggregating global in-173

formation from the hidden states (Halawi et al.,174

2023; Wang et al., 2023b). An individual attention175

head h in layer ℓ consists of three learnable ma-176

trices, Wℓ,h
Q ,Wℓ,h

K ,Wℓ,h
V ∈ Rd× d

M . Formally, for177

the input Xℓ−1 =
[
xℓ−1
1 , · · · ,xℓ−1

N

]
in layer ℓ:178

Aℓ =
[
Hℓ,1; · · · ;Hℓ,M

]
Wℓ

o, (3)179

Hℓ,h = sℓ,hXℓ−1Wℓ,j
V , (4)180

sℓ,h = σ


(
Xℓ−1Wℓ,h

Q

)(
Xℓ−1Wℓ,h

K

)T

√
d/M

 (5)181

where Aℓ =
[
aℓ1, · · · ,aℓN

]
is the MHA block’s182

output. Wℓ,h
O ∈ Rd×d is a learnable output matrix.183

FFN. A FFN block can work as a key-value mem-184

ory to store factual knowledge (Geva et al., 2021),185

enriching the hidden states of token i:186

mℓ
i = f

((
xℓ−1
i + aℓi

)
Wℓ

1

)
Wℓ

2. (6)187

3 Experimental Setup188

3.1 Tasks189

In this paper, we conduct controlled experiments190

to construct knowledge conflicts, wherein the inter-191

nal memory is factual while the external context is192

counterfactual. To avoid the LM being influenced193

by other irrelevant factors (i.e., reasoning ability), 194

we adopt a simple factual recall task (Geva et al., 195

2023), which requires predicting the corresponding 196

attribute am based on the given subject s and rela- 197

tion r. Building on previous work (Yu et al., 2023), 198

we use the World Capital dataset to interpret this 199

problem in §4, where the LM needs to predict the 200

capital city of the country based on the question q: 201

Q: What is the capital of {s}? A: 202

We retain those questions that the LM can correctly 203

predict the factual attributes am based on internal 204

memory, then provide the counterfactual attributes 205

ac in the external context c to construct conflicts: 206

The capital of {s} is {ac}. {q} 207

To mitigate knowledge conflicts, we further con- 208

struct three datasets for verifying the generaliza- 209

tion of our method in §5, including the Official 210

Language, Country, and Continent datasets. We 211

also generate a more complex World Capital D 212

dataset based on the World Capital dataset, us- 213

ing gpt-3.5-turbo to rewrite the external context 214

from triplet form into document form. More details 215

about these datasets are shown in Appendix B. 216

3.2 Models 217

We analyze two GPT-series LMs: GPT-2 XL (Rad- 218

ford et al., 2019) and GPT-J (Wang and Komat- 219

suzaki, 2021) in §4. Additionally, we also validate 220

the effectiveness of our method on six LMs: OPT- 221

1.3B, OPT-2.7B (Zhang et al., 2022), Pythia-6.9B, 222

Pythia-12B (Biderman et al., 2023), LLaMA2-7B 223

and LLaMA2-13B (Touvron et al., 2023) in §5. 224

4 Interpreting Knowledge Conflicts 225

We utilize a “top-down” analysis approach to lo- 226

cate the pivotal point where conflicts emerge and 227

to identify the model components that are signifi- 228

cant in knowledge conflicts. We start by examining 229

the functionality of model components by knocking 230

out activations, and reveal that MHAs in the middle 231

and late layers play a crucial role in passing infor- 232

mation to the last token (§4.1). Then, we further 233

investigate MHAs by knocking out the attention 234

weights. We find the question information is first 235

passed to the last token, then the last token extracts 236

information from the subject and the attribute in 237

the context (§4.2). Last, we discover that some 238

attention heads in later MHAs play opposite roles 239

in conflicts, where memory heads can recall knowl- 240

edge from internal memory, and context heads can 241

retrieve knowledge from external context (§4.3). 242
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(f) Extraction rate of external context.

Figure 2: Effect of model components (FFNs and MHAs) in GPT-2 XL on the final prediction probability. Figures
2a and 2b (Figures 2d and 2e) show the effect of different model components and input elements when the model
predicts based on internal memory (external context). The deeper color indicates the greater the impact of knocking
out this part on the original prediction probability. Figure 2c (Figure 2f) shows the effect of MHAs and FFNs on the
last token’s attribute extraction rate when the model predicts based on internal memory (external context).

4.1 Examining Component Functionality243

We start by exploring the functionality of model244

components (including FFNs and MHAs across245

various layers) in knowledge conflicts.246

Experiment 1: Knocking Out Component. We247

examine which component in the transformer layer248

is critical for the attribute prediction by knocking249

out activations. Then, we divide the input into six250

elements for analysis: context subject sc, context251

relation rc, context attribute ac, question subject252

sq, question relation rq, and the last token xN . To253

measure the impact on the final prediction results,254

we zero-out the updates to the specified input ele-255

ment from the MHA and FFN blocks within each256

layer. For example, to intervene in the update of257

the ℓ-th MHA (FFN) to the input element sc, we set258

aℓ
′
i = 0 (mℓ′

i = 0) for i in the token range of sc and259

ℓ′ = max (1, ℓ−W/2) , · · · ,min (L, ℓ+W/2),260

where W denotes the window size. We define the261

effect of a model component as the change in the262

original prediction probability after knocking it out.263

Results. Figure 2 illustrates the effect of model264

components (FFNs and MHAs) in GPT-2 XL with265

the window size W = 5. Our observation reveals266

that destroying the FFN blocks in the early layers267

has a significant effect on the prediction probability268

while destroying the FFN blocks at the late layers269

shows minimal or no impact (Figures 2a and 2d).270

Moreover, the MHA blocks at the middle and late271

layers are crucial for the last token (Figures 2b and272

2e). A possible explanation of the model’s behav- 273

ior on the factual recall task is that the early FFNs 274

first enrich the semantic information of input ele- 275

ments, and then the enriched semantic information 276

about attributes is extracted to the last token via 277

late MHAs, where knowledge conflicts may arise at 278

the later stage. To verify this hypothesis, we will 279

examine the attribute extraction function of MHAs. 280

Experiment 2: Extracting Attributes via MHAs. 281

We adopt the extraction rate (Geva et al., 2023) to 282

examine the attribute extraction function of MHAs. 283

We apply the early exit (Schuster et al., 2021; Geva 284

et al., 2022) to project the MHA update aℓN for the 285

last token xN over the vocabulary. Then we check 286

whether the top token tℓ of each update aligns with 287

the attribute t∗ predicted at the final layer L: 288

t∗ = argmax
(
pL
N

)
, (7) 289

tℓ = argmax
(
σ
(
ϕ
(
aℓN

)))
. (8) 290

We consider that the MHA correctly performs at- 291

tribute extraction when t∗ = tℓ. For comparison, 292

we also examine the extraction rate of FFNs. 293

Results. As illustrated in Figures 2c and 2f, it is 294

evident that the attribute extraction rate of MHAs 295

significantly exceeds that of FFNs. Moreover, at- 296

tribute extraction mainly takes place at the 24-48 297

layers. Results for GPT-J show similar trends in 298

Appendix C. The above findings motivate us to 299

conduct an in-depth study on the information flows 300

of MHAs from input elements to the last token. 301
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Figure 3: Relative change in the prediction probability when blocking the information flow from the input elements
to the last token. Figures 3a and 3b only provide conflicting context. Figure 3c provides both supporting and
conflicting context to internal memory, C1 denotes the supporting context, and C2 denotes the conflicting context.

4.2 Tracing Information Flow302

The analysis presented above confirms that the last303

token extracts attribute information for prediction304

through MHA blocks. Following this, we explore305

the order and importance of the information flow306

from the various elements to the last token.307

Experiment 3: Blocking Information Flow. We308

localize the information propagation from the input309

elements (including sc, rc, ac, sq and rq) to the310

last token by knocking out attention edges between311

them. For example, to block the information flow312

from the input element sc to the last token xN in the313

layer ℓ, we set the attention weight sℓ,h [N, i] = 0314

for i in the token range of sc, h = 1, · · · ,M , and315

ℓ′ = max (1, ℓ−W/2) , · · · ,min (L, ℓ+W/2).316

In this way, we can restrict the last token from317

attending to the target element. If blocking the318

information propagation between them has a signif-319

icant impact on the original prediction probability,320

this indicates that it is a crucial information flow.321

Results. Figure 3 illustrates the information flow322

in GPT-2 XL with the window size W = 9. We can323

observe that in the early to middle layers, blocking324

the attention to the question relation leads to a de-325

crease in the prediction probability. Similarly, in326

the subsequent layers, blocking the attention to the327

question subject also results in a decrease in the328

prediction probability. This suggests that the criti-329

cal relation and subject information in the question330

are sequentially transmitted to the last token.331

Then, in the middle to late layers, blocking the332

attention to the context subject and context attribute333

has the opposite effect on the final prediction prob-334

ability. Taking Figure 3a as an example (when the335

model predicts the attribute based on internal mem-336

ory), blocking the attention to the context attribute337

can improve the prediction probability, however,338

blocking the attention to the context subject can re-339

duce the prediction probability. This suggests that 340

the last token can extract the internal knowledge 341

from the context subject, and extract the external 342

knowledge from the context attribute. In addition, 343

the last token also extracts a certain degree of inter- 344

nal knowledge from the question subject. Results 345

for GPT-J show consistent trends in Appendix C. 346

Overall, this shows that there are two specific 347

stages in the process of information flow passing to 348

the last token: (1) the question information is first 349

passed to the last token; (2) the last token extracts 350

or copies the attribute from the context subject or 351

the context attribute. In the later stage, knowledge 352

conflicts arise during the process of merging incon- 353

sistent information flows from MHAs. 354

Experiment 4: Extending to Conflicts between 355

Contexts. We extend our analysis to a more com- 356

plex scenario in which the model is presented with 357

both supporting context and conflicting context rel- 358

ative to internal memory. Supporting context and 359

conflicting context contain am and ac respectively: 360

C1: The capital of {s} is {am}.
C2: The capital of {s} is {ac}. {q} 361

We find that GPT-2 XL prefers to choose attributes 362

consistent with internal memory 97.6% of the time. 363

Hence, we only analyze the cases where the model 364

makes predictions based on its internal memory. 365

Results. As illustrated in Figure 3c, we can ob- 366

serve that the question information is first passed to 367

the last token in the first stage, which is consistent 368

with the trend of a single conflicting context. In the 369

second stage, a notable distinction is that the model 370

no longer extracts the memory attribute from the 371

subject; instead, it opts for a more straightforward 372

approach of copying the memory attribute from 373

the context. The above findings indicate that there 374

exists a mechanism within MHAs capable of distin- 375

guishing and selecting between internal knowledge 376
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Figure 4: Memory heads and context heads in GPT-2 XL. Figure 4a shows the important score heatmap for
predicting based on internal memory. Figure 4b shows the important score heatmap for predicting based on external
context. Figure 4c illustrates the memory and context attribute extraction rate of different attention heads.

and external knowledge. This motivates us to con-377

duct further analysis of MHAs.378

4.3 Looking Deeper into Attention Heads379

Attention heads serve as the fundamental compo-380

nent of an MHA block. For example, GPT-2 XL381

contains a total of 1,200 attention heads. This mo-382

tivates us to conduct an investigation into the role383

of attention heads in handling knowledge conflicts.384

Experiment 5: Discovering Important Heads.385

To discover the attention heads that are crucial for386

predicting memory attributes or context attributes,387

we compute the gradient-based importance score388

(Michel et al., 2019; Bansal et al., 2023) for each389

head. Given a dataset D with a set of inputs x and390

outputs y, the importance score of an attention head391

h captures the expected sensitivity of the model to392

h and is computed as follows:393

I l,h(D) = E(x,y)

∣∣∣∣Hl,hT ∂L(y | x)
∂Hl,h

∣∣∣∣ , (9)394

where L(·) is the loss function of conditional au-395

toregressive generation. The proxy score of head h396

for predicting internal memory is calculated as:397

Sl,h
m (Dm,D′

m) = I l,h(Dm)− I l,h(D′
m), (10)398

where (x, am) ∈ Dm denotes the original outputs399

are memory attributes, (x, ac) ∈ D′
m denotes re-400

placing the original outputs with context attributes.401

In this way, we can also calculate the proxy score402

of head h for predicting external context as:403

Sl,h
c (Dc,D′

c) = I l,h(Dc)− I l,h(D′
c). (11)404

We compute the proxy score of each head across405

different layers to discover important heads.406

Results. As shown in Figure 4a (Figure 4b), the 407

deeper color of the red square indicates a more 408

significant contribution from this attention head to 409

the model’s predictions based on internal memory 410

(external context). We can observe that there are a 411

specific number of attention heads within middle- 412

to-late layers that play opposite roles in predicting 413

attributes. Accordingly, we refer to those heads that 414

contribute to the prediction of memory attributes as 415

memory heads, and those that facilitate predicting 416

context attributes as context heads. Therefore, we 417

claim that they may serve in a mutually exclusive 418

capacity during knowledge conflicts. The heatmaps 419

of GPT-J are provided in the Appendix C. 420

Experiment 6: Extracting Specific Attributes 421

via Heads. We further analyze the two types 422

of heads discovered above to verify their role in 423

knowledge conflicts. We rank the attention heads in 424

descending order based on their importance scores, 425

Sl,h
m for memory and Sl,h

c for context, subsequently 426

identifying the top-5% of heads as memory heads 427

and context heads, respectively. For comparison, 428

we also randomly choose an additional 5% of the 429

attention heads as other heads. Then, we examine 430

their memory extraction rate when tℓ = am, and 431

context extraction rate when tℓ = ac. 432

Results. As shown in Figure 4c, memory heads 433

and context heads are responsible for extracting dif- 434

ferent attribute information to the last token with a 435

significant difference between memory and context 436

extraction rates. Therefore, we discern that the piv- 437

otal point at which knowledge conflicts emerge in 438

LMs is the integration of inconsistent information 439

flows by memory heads and context heads. 440
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5 Mitigating Knowledge Conflicts441

Building on the above insights, we propose a novel442

method called Pruning Head via PatH PatcHing443

(PH3) to efficiently mitigate knowledge conflicts444

by intervening on attention heads without the need445

to update model parameters (§5.1). Then, we con-446

duct extensive experiments to show that our method447

can flexibly control LMs to use internal memory or448

external context (§5.2). Moreover, we analyze the449

generalization capability of our method (§5.3).450

5.1 Method451

Our method consists of two stages, first identifying452

the important heads through path patching, then453

intervening on these heads via structured pruning.454

Localizing Memory Heads and Context Heads455

via Path Patching. When we use the gradient-456

based method in §4.3 to estimate the importance457

score of the target head h, it is subject to interfer-458

ence from other heads. The calculated gradients459

may not fully reflect the contribution of the target460

head, but rather a mixture of the influences from461

other heads. Therefore, we adopt the path patch-462

ing technique (Goldowsky-Dill et al., 2023; Wang463

et al., 2023a) to analyze the causal relationship be-464

tween the head h and the output attribute (including465

am and ac) in conflicts. To calculate the important466

score Sℓ,h
c of the target head h, our path patching467

method consists of three steps shown in Figure 14:468

1. Run on the original input x ∈ Dc to record469

the original activations of all heads;470

2. Run on the corrupted input �x to record the471

corrupted activations of all heads, where�x is:472

The capital of {s} is ⟨unk⟩. {q}473

where ⟨unk⟩ is the special token;474

3. Run on the original input x, while keeping475

all the heads frozen to their activations on x,476

except for the target head h whose activation477

is set on�x. Then measure the important score478

as the change of output logits.479

The important score Sℓ,h
c of head h is computed as:480

Sl,h
c (Dc) = E(x)[(Px(ac)− Px(am))

−
(
P
�x
(ac)− P

�x
(am)

)
].

(12)481

We adopt similar steps to calculate the importance482

score Sℓ,h
m of the target head h for memory attribute483

prediction in Appendix D. We also provide the484

importance score heatmaps of memory and context485

heads for various models in Appendix E, and our486

method can clearly distinguish between them.487

Pruning Attention Heads to Mitigate Knowledge 488

Conflicts. By ranking all the attention heads in 489

ascending order based on the importance score Sl,h
c 490

(Sl,h
m ), we can prune the top-k% attention heads 491

that negatively impact the model’s capability to 492

predict context (memory) attributes, thereby en- 493

hancing the model’s ability to utilize external con- 494

text (internal memory). To prune a head h in layer 495

ℓ in practice, we set Hℓ,h to be the zero matrix. 496

5.2 Experiment 497

Setups. We evaluate our method on five datasets, 498

including World Capital, World Capital D, 499

Official Language, Country, and Continent. 500

To verify the generalization of PH3, we only calcu- 501

late the importance scores of the attention heads on 502

the World Capital dataset, and then directly eval- 503

uate PH3 on other datasets. We also select 1,000 504

test samples from an open-domain QA dataset NQ 505

(Kwiatkowski et al., 2019), providing the LM with 506

the top-5 retrieved passages, and ensuring that at 507

least one relevant passage is among them. We vali- 508

date the effectiveness of PH3 on eight LMs. 509

Metrics. We use the internal memory usage rate 510

RM = fm
fm+fc+fo

and the external context usage 511

rate RC = fc
fm+fc+fo

to assess how effectively 512

the method controls the reliance of LMs on either 513

internal memory or external context, where fm is 514

the frequency of relying on internal memory, fc is 515

the frequency of relying on external context, and 516

fo is the frequency of other answers. For the open- 517

domain QA task, we use Recall to evaluate whether 518

the model can provide correct answers based on the 519

retrieved passages following Adlakha et al. (2023). 520

Baselines. We compare with the following base- 521

lines: (1) Prompt: We instruct the LM to gener- 522

ate answers based on internal memory or external 523

context through specific prompts; (2) CAD: Shi 524

et al. (2023) leverage contrastive decoding (Li et al., 525

2023b) to encourage the LM to attend to its con- 526

text during generation; (3) Gradient: We replace 527

our path patching method with the gradient-based 528

method to discover the attention heads. We select 529

the optimal pruning rate k on the development set 530

for both Gradient and PH3. More details about 531

hyperparameter settings are in Appendix B.2. 532

Results. Table 1 shows the results of GPT-2 XL, 533

GPT-J and LLaMA2-7B, and more results of other 534

models are in Table 2. Throughout our experiments, 535

we note the following key observations: 536
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World World Official
Capital Capital D Language

Country ContinentModel Method
RM RC RM RC RM RC RM RC RM RC

Base 59.2 40.8 47.2 52.8 42.2 57.8 37.2 62.8 41.5 58.5
Prompt 12.5 81.2 21.3 71.2 20.3 74.4 24.5 75.5 16.2 43.4
Gradient 72.4 9.8 78.6 10.5 41.5 40.5 39.1 60.2 42.7 46.6↑ Memory
PH3 (Ours) 97.9 0.6 93.3 2.5 74.4 9.8 50.9 36.3 53.1 38.1
Prompt 9.3 87.5 18.9 75.2 17.1 80.7 18.5 81.4 25.5 58.3
CAD 25.0 65.6 12.5 63.6 9.1 80.5 27.2 72.5 22.9 60.4
Gradient 44.4 49.0 28.0 58.7 29.6 59.5 36.4 63.4 18.4 51.5
PH3 (Ours) 27.5 68.9 7.7 91.3 20.7 74.8 22.7 75.7 27.7 66.7

GPT-2 XL

↑ Context

+ Prompt 3.6 95.1 5.2 94.4 9.6 88.7 12.6 86.0 20.9 63.8

Base 37.5 62.5 43.1 56.9 41.5 58.5 54.0 46.0 43.2 56.8
Prompt 29.8 67.1 31.6 62.1 23.1 69.1 22.4 77.6 12.5 86.0
Gradient 67.9 8.3 67.6 6.7 39.4 53.4 54.4 45.5 57.2 30.0↑ Memory
PH3 (Ours) 93.3 1.6 76.5 10.8 63.3 25.3 58.9 40.5 75.1 17.6
Prompt 31.9 64.5 15.8 76.4 16.2 70.6 17.9 82.1 7.2 91.4
CAD 2.5 89.9 13.4 68.2 4.7 89.9 17.0 81.8 13.0 80.3
Gradient 6.1 88.3 7.9 67.8 5.7 76.4 29.2 70.5 36.8 60.7
PH3 (Ours) 0.2 99.3 0.1 98.4 2.3 90.6 9.5 86.7 8.0 64.9

GPT-J

↑ Context

+ Prompt 0.1 99.5 0.2 97.8 2.0 81.9 1.4 98.6 1.4 90.9

Base 46.3 53.7 95.5 4.0 18.8 80.3 52.9 46.8 30.9 69.1
Prompt 36.0 63.2 96.0 3.7 40.0 59.1 68.2 31.6 77.4 22.6
Gradient 81.0 5.8 95.1 1.6 50.1 47.4 60.0 38.0 64.5 24.5↑ Memory
PH3 (Ours) 98.1 1.2 98.0 1.3 73.7 17.8 76.9 20.6 90.5 8.8
Prompt 3.2 96.6 92.4 2.2 25.5 73.8 58.2 41.5 19.2 80.3
CAD 1.4 95.5 29.1 70.6 0.0 100.0 13.6 86.1 0.2 98.2
Gradient 23.6 63.2 40.1 58.8 25.7 74.6 17.6 82.2 27.1 72.9
PH3 (Ours) 1.6 97.4 19.1 73.4 0.1 99.9 5.2 94.7 0.5 99.4

LLaMA2-7B

↑ Context

+ Prompt 0.4 98.8 10.6 85.3 0.0 100.0 2.8 97.0 0.0 100.0

Table 1: Experimental results of GPT-2 XL, GPT-J and LLaMA2-7B on five datasets. Bolds denote the best results.

(1) PH3 significantly outperforms other base-537

lines. Experimental results show that PH3 can538

not only increase the average internal memory us-539

age rate of eight LMs by 44.0%, but also increase540

the average external context usage rate by 38.5%.541

When PH3 is combined with Prompt, it can more542

effectively control the LMs to use external context.543

(2) As shown in Table 3, PH3 can also achieve an544

average 6.2% Recall improvement on open-domain545

QA tasks. By pruning a small number of negative546

context heads, PH3 can make LMs generate an-547

swers more faithfully based on retrieved passages.548

(3) Although Prompt and CAD can effectively549

increase the external context usage rate, there are550

limitations. CAD cannot directly enhance internal551

memory, and Prompt may even have the opposite552

effect. In contrast, our method offers a viable solu-553

tion to enhance the internal memory usage rate.554

5.3 Analysis555

We conduct a thorough analysis of the generaliza-556

tion ability of PH3. For cross-model generalization,557

PH3 is effective across a wide range of models.558

This shows that our method is not limited to small559

models, but can also be adopted on relatively large560

models, including the popular LLaMA2 series. For561

cross-relation generalization, by intervening on the562

attention heads discovered on World Capital, our563

method can also well resolve knowledge conflicts 564

on other relation types. This indicates that PH3 565

does not identify attention heads specific to a cer- 566

tain type of relation. Instead, it identifies universal 567

memory and context heads. For cross-format gen- 568

eralization, PH3 can transfer well from triple-form 569

context to document-form context. This indicates 570

that our method does not merely remember the rela- 571

tive positions of elements in context, but is capable 572

of understanding the external context. Compared 573

to the Gradient, our method has demonstrated su- 574

perior generalizability. We also analyze the impact 575

of the number of pruning heads in Appendix G. 576

6 Conclusion 577

In this paper, we perform an exploration into the 578

mechanism of interpreting knowledge conflicts and 579

reveal that memory and context heads in later lay- 580

ers can cause knowledge conflicts when merging 581

inconsistent information flows. Based on our in- 582

sights, we propose a novel method called Pruning 583

Head via PatH PatcHing (PH3), which can miti- 584

gate knowledge conflicts by pruning those conflict- 585

ing attention heads. We prove that PH3 can flexi- 586

bly control LMs to use internal memory or exter- 587

nal context. We also demonstrate the cross-model, 588

cross-relation, and cross-format generalization. 589

8



Limitations590

For further study, we conclude some limitations of591

our work as follows:592

• Similar to previous works on mechanism in-593

terpretability that adopt tasks such as antonym594

generation (Todd et al., 2023), fact recall595

(Meng et al., 2022; Geva et al., 2023), arith-596

metic operation (Hanna et al., 2023; Stolfo597

et al., 2023), and text classification (Bansal598

et al., 2023; Wang et al., 2023b), our work also599

selects a relatively simpler task to interpret the600

mechanism behind knowledge conflicts. Sim-601

ple tasks enable us to better control variables602

and minimize external distractions. In the fu-603

ture, we plan to extend our analysis to more604

complex and realistic scenarios, such as where605

irrelevant information is present within the ex-606

ternal context, or where the model needs to607

reason with both internal and external knowl-608

edge.609

• Although our research has delved into the at-610

tention heads in LMs, there may be more ba-611

sic elements involved in knowledge conflicts.612

Furthermore, the memory and context heads613

we have discovered may not only be respon-614

sible for extracting knowledge from internal615

memory or external context. These heads may616

also have other functions, such as helping the617

model capture global dependencies of input618

texts. By pruning these heads, the original ca-619

pabilities of the model may be affected. There-620

fore, we will further explore mitigating knowl-621

edge conflicts through more subtle interven-622

tion methods.623

In summary, the mechanism behind knowledge624

conflicts remains a largely unexplored area, and we625

hope our work can offer some useful insights for626

further research.627

Ethics Statement628

To enhance the reproducibility of our research, we629

will make all source code and datasets publicly630

available upon the acceptance of this paper. Our631

work focuses on uncovering the mechanisms be-632

hind knowledge conflicts in LM, thereby better633

controlling the model in retrieval augmentation and634

tool augmentation. Through effective intervention,635

our method can make the LM more controllable636

and trustworthy. On the one hand, it can prevent637

prompt injections from attacking the model, and638

on the other hand, it can correct the biased knowl-639

edge that the model learned during pre-training. 640

Nonetheless, the impact of head pruning on the 641

model’s original capabilities remains unexplored. 642

These factors should be taken into careful consider- 643

ation for future research. 644
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A Related Work914

A.1 Investigating Knowledge Conflict915

Previous research (Longpre et al., 2021; Chen et al.,916

2022; Yu et al., 2023; Xie et al., 2023; Wang et al.,917

2023c; Neeman et al., 2023) on knowledge con-918

flicts primarily seek to answer the question: do919

language models prefer internal memory or exter-920

nal context? Yu et al. (2023) find that language921

models are more inclined to internal memory as922

the frequency of a fact in the pre-training corpus923

increases. Xie et al. (2023) demonstrate that large924

language models (LLMs) are highly receptive to925

external conflicting evidence. They also reveal926

that when both supportive and contradictory evi-927

dence to their internal memory are present, LLMs928

show a strong confirmation bias and tend to cling929

to their parametric memory. The above observed930

phenomena contribute to a better understanding931

of knowledge conflicts. However, the underlying932

mechanism of knowledge conflicts remains unclear.933

We observe that knowledge conflicts arise when the934

late attention heads integrate different information935

flows from internal memory and external context.936

A.2 Resolving Knowledge Conflict937

Existing work (Shi et al., 2023; Zhou et al., 2023;938

Li et al., 2023a; Yu et al., 2023; Qian et al., 2023)939

has conducted preliminary exploration into the mit-940

igation of knowledge conflicts. Shi et al. (2023)941

propose a simple method to encourage the LM to942

attend to the external context via contrastive decod-943

ing (Li et al., 2023b). Yu et al. (2023) use head944

attribution to identify individual attention heads945

that either promote the memorized answer or the946

in-context answer, then scale the value vector of947

these heads to increase the rate of the in-context an-948

swers. Our work is inspired by their exploration of949

attention heads, and we propose further analysis to950

improve understanding of the way knowledge con-951

flicts are formed. Furthermore, while most existing952

methods (Shi et al., 2023; Yu et al., 2023) primarily953

focus on improving the model’s faithfulness to the954

context, enabling the model to adhere to its internal955

memory remains a challenging task.956

A.3 Mechanistic Interpretability957

Recently, there has been a growing interest in958

the mechanistic interpretability (Cammarata et al.,959

2020; Elhage et al., 2021) of parametric knowledge960

in LMs, with efforts focusing on reverse engineer-961

ing the computational processes of model parame-962

ters. Dai et al. (2022) use a knowledge attribution 963

method (Hao et al., 2021) to identify the knowledge 964

neurons in FFNs. Meng et al. (2022) reveal that 965

FFNs at a range of middle layers can recall facts by 966

using the causal mediation analysis method (Vig 967

et al., 2020). Geva et al. (2023) find that knowledge 968

extraction is typically done via attention heads. Be- 969

sides, there are some works investigating LMs in 970

mathematical reasoning (Hanna et al., 2023; Stolfo 971

et al., 2023) and in-context learning (Hendel et al., 972

2023; Olsson et al., 2022; Bansal et al., 2023). Be- 973

sides, there are some studies (Yang et al., 2023; 974

Sakarvadia et al., 2023a,b; Zhang and Nanda, 2024) 975

focused on interpreting attention heads in LMs. 976

Our work is highly inspired by previous wisdom in 977

mechanistic interpretability, focusing on interpret- 978

ing and mitigating knowledge conflicts in LMs. 979

B Implement Details 980

B.1 Datasets 981

We construct Official Language, Country, and 982

Continent datasets by sampling knowledge triples 983

from Wikidata. The Official Language dataset 984

requires the LM to predict the official language of 985

the given city or country: 986

The official language of {s} is {ac}.
Q: What is the official language of {s}? A: 987

The Country dataset requires the LM to predict the 988

country to which the given city belongs: 989

The city {s} is located in {ac}.
Q: Which country is the city {s} in ? A: 990

The Continent dataset requires the LM to predict 991

the continent on which the given country is located: 992

{s} is in the continent of {ac}.
Q: Which continent is {s} located in ? A: 993

We also generate a more complex World Capital 994

D dataset based on the World Capital dataset, us- 995

ing gpt-3.5-turbo to rewrite the external context 996

from triplet form into document form. 997

B.2 Hyperparameter Settings 998

Our implementation is based on HuggingFace’s 999

Transformers1, PyTorch2 and baukit3. For the 1000

Prompt method, we use the following prompt to 1001

enhance the internal memory: 1002

Please answer the question based on your
internal memory, ignoring the given context. 1003

1https://github.com/huggingface/transformers/
2https://github.com/pytorch/pytorch/
3https://github.com/davidbau/baukit/
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Figure 5: Effect of FFNs in GPT-J on internal memory.
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Figure 6: Effect of MHAs in GPT-J on internal memory.

and we use the following prompt to enhance the1004

external context:1005

Please answer the question based on the
given context, ignoring your internal memory.1006

For Gradient and PH3, we select the optimal prun-1007

ing rate k ∈ {1, 3, 5, 7, 9, 15} on the development1008

set with 200 samples. To mitigate knowledge con-1009

flicts, setting the pruning rate k of PH3 to 5 usually1010

achieves excellent results. For enhancing the open-1011

domain QA capabilities, we usually set the pruning1012

rate k of PH3 to 3. Details about the models used in1013

this paper are in Table 4. All experiments are con-1014

ducted with NVIDIA GeForce RTX A6000 GPUs.1015

C Additional Results for GPT-J1016

We provide here additional results for GPT-J. Fig-1017

ures 5 and 6 show the effect of FFNs and MHAs1018

on internal memory, and Figures 7 and 8 show the1019

effect of FFNs and MHAs on external context. Fig-1020

ures 9 and 10 illustrate the information flow in GPT-1021

J with the window size W = 9. Figure 11 shows1022

the information flow in GPT-J when providing both1023

supporting context and conflicting context relative1024

to internal memory. Figures 12 and 13 show the1025

gradient-based important scores of memory heads1026

and context heads in GPT-J.1027
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Figure 7: Effect of FFNs in GPT-J on external context.
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Figure 8: Effect of MHAs in GPT-J on external context.

D Method Details 1028

To calculate the important score Sℓ,h
m of the target 1029

head h, our path patching method consists of the 1030

following three steps: 1031

1. Run on the original input x ∈ Dm to record 1032

the original activations of all heads; 1033

2. Run on the corrupted input �x to record the 1034

corrupted activations of all heads, where�x is: 1035

The capital of ⟨unk⟩ is {ac}.
Q: What is the capital of ⟨unk⟩ ? A: 1036

where ⟨unk⟩ is the special token; 1037

3. Run on the original input x, while keeping 1038

all the heads frozen to their activations on x, 1039

except for the target head h whose activation 1040

is set on�x. Then measure the important score 1041

as the change of output logits. 1042

The important score Sℓ,h
m of head h is computed as: 1043

Sl,h
m (Dm) = E(x)[(Px(am)− Px(ac))

−
(
P
�x
(am)− P

�x
(ac)

)
].

(13) 1044

E Heatmaps of Attention Heads 1045

We calculate the important scores of memory heads 1046

and context heads via our path patching method, 1047

13
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Figure 9: Relative change in the GPT-J’s prediction
probability based on internal memory.
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Figure 10: Relative change in the GPT-J’s prediction
probability based on external context.

then provide the heatmaps for GPT-2 XL (Figures1048

15 and 16), GPT-J (Figures 17 and 18), OPT-1.3B1049

(Figures 19 and 20), OPT-2.7B (Figures 21 and1050

22), Pythia-6.9B (Figures 23 and 24), Pythia-12B1051

(Figures 25 and 26), LLaMA2-7B (Figures 27 and1052

28) and LLaMA2-13B (Figures 29 and 30). The1053

red squares indicate heads that have a significant1054

positive impact, while the blue squares represent1055

heads that have a negative effect.1056

F Additional Experimental Results1057

We report experimental results in Table 2 and 3.1058

G Number of Pruning Heads1059

As shown in Figures 31, 32, 33, 34, 35, 36, 37,1060

38, 39, 40, 41 and 42, we analyze the impact of1061

the number of pruning heads (sparsity ratio) on the1062

Gradient and PH3 methods.1063
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Figure 11: Relative change in the GPT-J’s prediction
probability based on internal memory when providing
both supporting context and conflicting context.
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Figure 12: Memory Heads of GPT-J.
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Figure 13: Context Heads of GPT-J.
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The capital of France is Rome. 

What is the capital of France? 

The capital of France is Rome. 

What is the capital of France? 

Original Input

Rome

𝜕ℒ  )

𝜕𝚮𝑙,𝑗( )
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Rome Original

Corrupted Input

Paris

Original Input

ℙ( Rome ) - ℙ(            )Paris Original Input

Corrupted Input

Original Head Activation

Corrupted Head Activation

FFN Activation

(1) Gradient-based method. (2) Path patching method (Ours).

(a) Original run. (c) Run with replacing activations.  (b) Corrupted run.

Gradient Flow

Freezing with Original Activation

Patching with Corrupted Activation

Rome Context Attribute (Original Prediction)

Memory AttributeParis

Patched Path

Figure 14: Illustration of gradient-based method and our path patching method.
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Figure 15: Memory Heads of GPT-2 XL.
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Figure 16: Context Heads of GPT-2 XL.
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Figure 17: Memory Heads of GPT-J.
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Figure 18: Context Heads of GPT-J.
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Figure 19: Memory Heads of OPT-1.3B.
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Figure 20: Context Heads of OPT-1.3B.
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Figure 21: Memory Heads of OPT-2.7B.
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Figure 22: Context Heads of OPT-2.7B.
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Figure 23: Memory Heads of Pythia-6.9B.
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Figure 24: Context Heads of Pythia-6.9B.
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Figure 25: Memory Heads of Pythia-12B.
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Figure 26: Context Heads of Pythia-12B.
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Figure 27: Memory Heads of LLaMA2-7B.
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Figure 28: Context Heads of LLaMA2-7B.
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Figure 29: Memory Heads of LLaMA2-13B.
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Figure 30: Context Heads of LLaMA2-13B.
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Figure 31: Impact of GPT-2 XL’s sparsity ratio on im-
proving internal memory usage rate.
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Figure 32: Impact of GPT-2 XL’s sparsity ratio on im-
proving external context usage rate.
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Figure 33: Impact of GPT-J’s sparsity ratio on improv-
ing internal memory usage rate.
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Figure 34: Impact of GPT-J’s sparsity ratio on improv-
ing external context usage rate.
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Figure 35: Impact of OPT-2.7B’s sparsity ratio on im-
proving internal memory usage rate.
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Figure 36: Impact of OPT-2.7B’s sparsity ratio on im-
proving external context usage rate.
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Figure 37: Impact of Pythia-6.9B’s sparsity ratio on
improving internal memory usage rate.
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Figure 38: Impact of Pythia-6.9B’s sparsity ratio on
improving external context usage rate.
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Figure 39: Impact of LLaMA2-7B’s sparsity ratio on
improving internal memory usage rate.
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Figure 40: Impact of LLaMA2-7B’s sparsity ratio on
improving external context usage rate.
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Figure 41: Impact of LLaMA2-13B’s sparsity ratio on
improving internal memory usage rate.
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Figure 42: Impact of LLaMA2-13B’s sparsity ratio on
improving external context usage rate.
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World World Official
Capital Capital D Language

Country ContinentModel Method
RM RC RM RC RM RC RM RC RM RC

Base 40.5 59.5 36.3 63.7 20.3 79.7 26.8 73.2 19.2 80.8
Prompt 19.7 78.4 37.5 57.2 7.9 91.4 16.9 82.6 7.9 90.1
Gradient 82.7 12.2 56.4 21.2 37.1 50.4 38.0 61.1 20.5 55.9↑ Memory
PH3 (Ours) 95.0 0.2 87.2 1.9 70.3 16.6 47.7 49.1 43.4 51.7
Prompt 17.0 81.4 38.5 57.7 9.3 89.5 15.9 83.8 6.3 93.3
CAD 8.1 86.5 31.6 60.0 3.2 89.6 0.1 99.5 5.1 89.1
Gradient 22.9 73.7 35.7 63.8 12.4 82.5 16.3 82.9 17.6 80.2
PH3 (Ours) 0.2 97.0 7.9 69.6 12.8 84.1 4.0 85.4 1.6 44.1

OPT-1.3B

↑ Context

+ Prompt 0.4 99.2 10.8 68.8 9.3 88.3 2.4 92.5 2.5 92.1

Base 40.2 59.8 46.6 53.4 8.8 91.2 26.5 73.5 4.3 95.7
Prompt 17.7 80.3 24.2 71.6 3.4 96.3 12.7 87.2 1.6 98.1
Gradient 75.4 19.3 10.3 79.7 13.3 57.7 42.9 56.3 5.3 94.1↑ Memory
PH3 (Ours) 93.4 0.5 2.8 87.6 75.6 1.5 56.3 38.9 29.3 55.5
Prompt 4.7 94.9 11.1 86.9 3.2 96.3 13.2 86.5 0.7 99.0
CAD 10.8 72.2 28.8 46.3 2.7 87.5 9.0 89.1 0.5 99.0
Gradient 36.1 62.9 43.3 53.5 7.3 91.6 23.7 76.3 4.1 95.9
PH3 (Ours) 1.3 97.8 3.4 81.6 4.1 94.9 9.0 90.9 0.9 98.6

OPT-2.7B

↑ Context

+ Prompt 0.8 98.3 1.3 94.6 1.5 98.2 6.9 93.1 0.0 99.5

Base 53.3 46.6 74.8 25.2 49.7 50.3 41.3 58.7 39.1 60.9
Prompt 44.7 51.2 41.8 37.8 16.5 81.4 12.8 87.1 36.2 61.6
Gradient 56.5 35.8 72.8 22.4 56.7 36.3 37.9 62.1 40.1 58.9↑ Memory
PH3 (Ours) 90.2 6.7 88.4 10.2 71.5 11.1 41.8 57.3 66.0 31.0
Prompt 32.7 63.7 32.0 44.8 8.9 90.5 10.4 89.5 31.7 75.6
CAD 14.3 55.1 22.0 27.6 3.3 78.1 8.5 91.2 12.3 82.2
Gradient 41.4 53.7 61.8 35.6 48.2 51.3 34.3 65.6 41.7 53.0
PH3 (Ours) 6.7 81.7 34.4 30.0 16.4 70.0 3.4 96.3 3.3 94.5

Pythia-6.9B

↑ Context

+ Prompt 0.6 98.6 24.4 60.4 3.3 95.6 0.3 99.5 0.7 98.8

Base 59.7 40.3 64.6 35.4 34.3 65.7 35.0 65.0 43.0 57.0
Prompt 5.8 94.1 43.7 53.3 11.1 85.8 2.4 97.5 10.1 88.5
Gradient 62.9 27.7 63.1 30.2 39.3 37.5 46.2 53.3 42.1 56.9↑ Memory
PH3 (Ours) 95.0 0.6 82.4 2.2 69.9 6.9 57.1 35.9 70.1 9.6
Prompt 6.2 93.6 34.1 62.0 21.1 77.6 1.7 98.3 6.3 92.5
CAD 3.1 65.7 13.6 42.9 2.0 89.4 3.7 94.7 11.3 80.0
Gradient 59.3 19.6 33.3 25.0 21.3 54.6 28.5 71.3 40.2 52.1
PH3 (Ours) 18.6 76.1 56.9 33.3 10.9 80.4 16.9 76.7 26.9 67.9

Pythia-12B

↑ Context

+ Prompt 1.9 97.6 17.7 75.8 3.8 95.5 2.2 97.7 2.4 97.0

Base 60.6 39.4 74.6 25.0 1.6 98.4 26.2 73.7 5.6 93.3
Prompt 0.4 99.6 78.5 21.0 0.5 99.5 22.3 77.6 10.7 89.3
Gradient 77.7 10.0 89.9 9.5 26.1 68.3 48.1 51.4 30.7 49.0↑ Memory
PH3 (Ours) 86.3 12.5 91.5 8.1 71.2 11.6 47.7 51.6 11.9 45.4
Prompt 0.0 100.0 70.9 28.7 0.0 100.0 7.1 92.7 3.6 96.4
CAD 6.2 91.0 1.1 98.8 0.0 100.0 0.5 99.5 0.0 99.6
Gradient 46.3 33.9 74.1 25.4 16.5 83.3 20.2 79.5 3.6 96.4
PH3 (Ours) 6.2 92.1 24.1 75.9 1.3 98.7 5.6 94.4 0.4 99.6

LLaMA2-13B

↑ Context

+ Prompt 0.0 100.0 31.0 68.0 0.0 100.0 0.0 100.0 0.0 100.0

Table 2: Experimental results of OPT-1.3B, OPT-2.7B, Pythia-6.9B, Pythia-12B and LLaMA2-7B on five datasets.
Bolds denote the best results.
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Method GPT-2 XL GPT-J OPT-2.7B

Base 45.6 54.8 51.4
Prompt 47.6 57.4 54.1
CAD 44.5 55.0 50.2
Gradient 45.3 55.0 50.8

PH3 (k = 1) 47.1 57.5 53.5
PH3 (k = 3) 52.2 58.6 55.4

+ Prompt 54.0 59.6 56.7
PH3 (k = 5) 49.4 56.3 54.0

Table 3: Experimental results (Recall) of GPT-2 XL,
GPT-J and OPT-2.7B on the NQ dataset. Bolds denote
the best results.

Model #Layer L #Head M

GPT-2 XL 48 25
GPT-J 28 16
OPT-1.3B 24 32
OPT-2.7B 32 32
Pythia-6.9B 32 32
Pythia-12B 36 40
LLaMA2-7B 32 32
LLaMA2-13B 40 40

Table 4: Model details.
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