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Abstract

Joint-embedding self-supervised learning (SSL), the key paradigm for unsuper-
vised representation learning from visual data, learns from invariances between
semantically-related data pairs. We study the one-to-many mapping problem in
SSL, where each datum may be mapped to multiple valid targets. This arises when
data pairs come from naturally occurring generative processes, e.g., successive
video frames. We show that existing methods struggle to flexibly capture this con-
ditional uncertainty. As a remedy, we introduce a variational distribution that mod-
els this uncertainty in the latent space, and derive a lower bound on the pairwise
mutual information. We also propose a simpler variant of the same idea using spar-
sity regularization. Our model, AdaSSL, applies to both contrastive and predictive
SSL methods, and we empirically show its advantages on identifiability, general-
ization, fine-grained image understanding, and world modeling on videos.2

1 Introduction

Over the last decade, joint-embedding self-supervised learning (SSL) has become the dominant ap-
proach in representation learning from unlabeled visual data (Chen et al., 2020a; Zbontar et al., 2021;
Grill et al., 2020; Radford et al., 2021; Assran et al., 2023). The intuition behind SSL is to obtain
semantically-related data pairs, often called positive pairs, and encourage their representations to be
similar, with proper regularization to prevent the encoder collapsing to a constant function (Wang &
Isola, 2020; Garrido et al., 2023a; Zhuo et al., 2023).

Positive pairs are typically built with handcrafted augmentations (e.g., cropping, color jittering),
which perturb pixels while preserving semantics. Such augmentations cannot precisely mimic
changes in natural factors of variation that drive real-world distribution shifts (Ibrahim et al., 2023).
For instance, rotating an image moves the entire scene rather than a single object. Consequently,
augmentations may fail to induce the right invariances (Ibrahim et al., 2023, 2022; Bouchacourt
et al., 2021), discard fine-grained information (Chen et al., 2020a; Zhang et al., 2024), and require
modality-specific heuristics (Balestriero et al., 2023) and incur additional computation burden (Bor-
des et al., 2023), ultimately harming downstream performance.

One alternative is to exploit naturally-paired data—nearby video frames (Klindt et al., 2021; Bardes
et al., 2024; Sermanet et al., 2018), image–caption pairs (Radford et al., 2021), class labels (Khosla
et al., 2020), or embeddings from other models (Sobal et al., 2025; Feizi et al., 2024)—which better
reflect real-world variations. From the lens of causal representation learning (CRL) (Yao et al.,
2025; Reizinger et al., 2025), positive pairs (x,x+) are deterministically mapped from latent factors
sampled according to (z, z+) ∼ p(z)p(z+ | z). Unlike augmentations that operate in observation
space, natural positive pairs differ according to structured changes in latent factors of the data gener-
ating process (DGP). Modelling these latent changes often improves generalization (Ibrahim et al.,
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2022; Dittadi et al., 2021; Kaur et al., 2023) and visual understanding (Awal et al., 2024; Garrido
et al., 2025; Lippe et al., 2023).

Despite benefits, leveraging natural pairs for SSL remains challenging because they also induce
complex conditional distributions p(z+ | z). In world modeling (Ha & Schmidhuber, 2018b,a;
Hafner et al., 2025; Assran et al., 2025), the present state may lead to multiple plausible futures
(e.g., a car may turn left or right), making the conditional distribution inherently multimodal. For
image–caption pairs, caption details vary with image complexity, producing heteroscedastic noise.
SSL methods that fail to capture this uncertainty often discard information not shared between the
pair, leading to degraded performance (Chen et al., 2020a; Radford et al., 2021; Jing et al., 2022;
Yuksekgonul et al., 2023; Trusca et al., 2024; Zhang et al., 2024). We argue that leveraging the
structure of p(z+ | z) enables SSL to learn more generalizable features—a principle we call SSL
from structural invariance.

Building on recent advances that enable SSL models to learn p(z+ | z) that has constant, anisotropic
noise (Kügelgen et al., 2021; Zimmermann et al., 2021; Rusak et al., 2025), we provide a solution
to model unknown, potentially complex conditional distributions in SSL. We take inspiration from
joint-embedding predictive architectures (JEPAs) (LeCun, 2022; Garrido et al., 2024; Assran et al.,
2025), which use a latent variable that captures the uncertainty in predictions. In contrast to prior
work (Devillers & Lefort, 2023; Garrido et al., 2024; Ghaemi et al., 2024; Dangovski et al., 2022),
we do not assume access to this variable and infer it purely from the structure hidden in positive pairs.
For contrastive learning, we derive a tractable lower bound on the mutual information between the
paired views, and we empirically show our modification is compatible with non-contrastive methods.
We name our method Adaptive SSL (AdaSSL) as it adapts to different conditional distributions.

We evaluate AdaSSL in controlled settings with numerical data, natural images, and videos. On
numerical data, we show that existing SSL methods lack the ability to model non-trivial condition-
als, and AdaSSL achieves better performance both in- and out-of-distribution (OOD). On images,
AdaSSL consistently recovers fine-grained features better than baselines. On videos, AdaSSL cap-
tures stochastic object accelerations that baselines discard without sacrificing class accuracy.

2 Method

In this section, we describe the proposed method. We present preliminaries of SSL in §A and
derivations and technical details of our method in §B.

2.1 Data generating process

In CRL, representation learning is viewed as learning to invert the true DGP (Reizinger et al., 2025;
Zimmermann et al., 2021). In SSL, we assume a data pair x,x+ follows this generative process:

z ∼ p(z) , z+ | z ∼ p(z+ | z) , x = g(z) , x+ = g(z+) , (1)

where g : Z → X is an unknown mixing function that produces the observations x,x+ ∈ X based
on the latent factors z, z+ ∈ Rdz . The goal is to learn a function f : X → Rdf that encodes the data
into an embedding space Rdf such that we can predict a subset3 of the latent factors that are useful
for downstream tasks from f(x) with a simple function, e.g., an affine transformation. We denote
this subset of latent factors as “content factors” c := zI for I ⊆ [dz], and the other (less relevant)
factors as “style” factors s := z[dz ]\I following Kügelgen et al. (2021).

2.2 Modeling complex conditionals with a latent variable

To capture the complex conditional distributions p(x+ | x), a pushforward of p(z+ | z) through
g, we use a latent variable r to model information about x+ that cannot be solely predicted from
x. Learning a representation that maximally preserves the mutual information (MI) between paired
embeddings is useful for representation learning (Linsker, 1988; Tschannen et al., 2020; Oord et al.,
2018). It also provides a way to interpret the desiderata of r. Specifically, by the chain rule of MI,

I(x;x+) = I(x, r;x+)− I(r;x+ | x) . (2)
3Although full latent recovery is often the goal in theory, invariance to certain style factors in practice can

help generalization (Deng et al., 2022) and prevent shortcut solutions in SSL (Chen et al., 2020a).
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Intuitively, r should help x predict x+ without simply copying x+. This motivates the general form
of our objective:

LAdaSSL = LSSL((x, r),x
+) + βLReg(r) , (3)

where the SSL term is any standard SSL loss (e.g., LInfoNCE) that encourages r to aid prediction of
x+ while the regularizer penalizes r from becoming an unrestricted shortcut. The hyperparameter
β controls the strength of regularization per standard practice (Higgins et al., 2017; Locatello et al.,
2020). This objective matches the conceptual framework depicted in Fig. 13 of LeCun (2022).

2.3 AdaSSL

AdaSSL-V and a lower bound on I(x,x+). We first learn the posterior p(r | x,x+) with a
variational distribution qϕ(r | x,x+) (Kingma & Welling, 2014; Sohn et al., 2015). The joint
then becomes p̃(x,x+, r) := p(x,x+)q(r | x,x+). The informational-theoretical properties of
contrastive learning allow us to optimize a lower bound on I(x,x+)4:

LAdaSSL−V = LSSL

(
Eqϕψ1(x, r), ψ2(x

+)
)
+ βDKL(qϕ(r | x,x+)∥pθ(r | x)) . (4)

In practice, we parameterize qϕ and pθ using lightweight MLPs on top of the embeddings f(x) and
f(x+), modeling both as factorized Gaussians. ψ1(x, r) uses r ∼ qϕ to edit the embedding f(x)

with a linear or MLP editor t, and ψ2(x
+) = f(x+)

∥f(x+)∥2
. We call this method AdaSSL-V(variational).

AdaSSL-S and sparse modular edits. Natural transitions usually correspond to sparse changes in
the latent factors, an inductive bias widely adopted in the identifiability literature (Ahuja et al., 2022;
Klindt et al., 2021; Lippe et al., 2023). Therefore, we hypothesize that we can implement Eq. 3 by
predicting r and regularizing its sparsity. AdaSSL-S(parse) realizes this idea. Instead of learning
a variational posterior, we predict r deterministically from f(x) and f(x+): r = m(f(x), f(x+)),
where m is an MLP followed by tanh activation. We then regularize the sparsity of r:

LAdaSSL−S = LSSL

(
ψ1(x, r), ψ2(x

+)
)
+ β∥r∥0 , (5)

where the L0 penalty is made differentiable through the Gumbel-Sigmoid estimator similar to the
one used by Lachapelle et al. (2022); Brouillard et al. (2020). Inspired by Ibrahim et al. (2022); Hu
et al. (2022), we use a modular editing function t in ψ1.

Remark. AdaSSL-V and AdaSSL-S are applicable to any SSL method because they address the
limitation of the invariance part of their objectives. We refer readers to §B for further details.

3 Experiments

We evaluate AdaSSL on numerical data (§3.2), natural images (§3.3), and videos (§3.3) to test its
ability to learn generalizable features. Additionally, in §C, we show that our method performs full
latent recovery and disentanglement better than existing methods.

3.1 Overview of experimental protocol

Baselines. Our experiments in §3.2 and §3.3 focus on contrastive SSL. InfoNCE (Chen et al.,
2020a; Oord et al., 2018) and AnInfoNCE (Rusak et al., 2025) are the contrastive baselines that
account for isotropic and anisotropic noise in p(z+ | z), respectively (details in §A.1). AnInfoNCE
learns directional weights of the similarity function, Λ. For a fair comparison, we also use a learn-
able scalar weight λ for other methods in §3.2 and §3.3 and find it beneficial. Table 5 compares the
similarity functions across methods. For the video experiments in §3.3, we use BYOL (Grill et al.,
2020) as our base SSL method.
H-InfoNCE. In addition to existing baselines, we introduce H-InfoNCE, which extend AnIn-
foNCE to account for heteroscedastic noise by predicting Λx from f(x) with an affine function
(H-InfoNCEAffine) or an MLP (H-InfoNCEMLP); it replaces Λ in AnInfoNCE’s similarity function
with this conditional Λx. Additionally, H-InfoNCE uses another MLP predictor to predict f(x+)
from f(x), similar to predictive SSL, except for in Table 1, where we ensure E[z+ | z] = z.

4One can equivalently replace I(x;x+) with I(f(x); f(x+)), since our method operates on paired embed-
dings. For simplicity, we use the notation I(x;x+) throughout, but in practice our method aims to maximize
I(f(x); f(x+)) ≤ I(x;x+).
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Table 1: Linear regression R2 on unimodal p(z+ | z). All experiments share the same Σ and the mixing
function g for each trial. Although all models achieve good performance on the training set p(z), a flexible
model is crucial to achieving good OOD performance. Values below 0.7 are dimmed.

Var(c+ | c) Model MODEL SPACE: UNBOUNDED MODEL SPACE: HYPERSPHERE
p(z) N (0, 5 · I) N (0, 5 · I)OOD p(z) N (0, 5 · I) N (0, 5 · I)OOD

- Identity 0.7410 ± 0.0943 0.5103 ± 0.0374 0.1243 ± 0.0883 0.7410 ± 0.0943 0.5103 ± 0.0374 0.1243 ± 0.0883

0 InfoNCE 0.9912 ± 0.0051 0.9614 ± 0.0060 0.8924 ± 0.0590 0.8657 ± 0.1462 0.8004 ± 0.0764 0.2683 ± 0.2626

1 InfoNCE 0.9943 ± 0.0031 0.9731 ± 0.0070 0.9564 ± 0.0074 0.9785 ± 0.0178 0.9104 ± 0.0154 0.6944 ± 0.0657

H-InfoNCEAffine 0.9956 ± 0.0019 0.9736 ± 0.0080 0.9592 ± 0.0072 0.9953 ± 0.0021 0.9645 ± 0.0065 0.9154 ± 0.0100

Anisotropic
InfoNCE 0.9968 ± 0.0013 0.9764 ± 0.0055 0.9668 ± 0.0056 0.9509 ± 0.0358 0.7755 ± 0.1385 0.3523 ± 0.2323

AnInfoNCE 0.9962 ± 0.0019 0.9753 ± 0.0068 0.9627 ± 0.0088 0.9613 ± 0.0418 0.8403 ± 0.0299 0.4022 ± 0.2316

H-InfoNCEAffine 0.9963 ± 0.0019 0.9685 ± 0.0032 0.9510 ± 0.0023 0.9970 ± 0.0017 0.9537 ± 0.0149 0.9018 ± 0.0035

InfoNCE 0.8553 ± 0.0532 0.2664 ± 0.0984 -0.1891 ± 0.2545 0.7851 ± 0.0920 0.2690 ± 0.1024 0.0209 ± 0.1110

Heteroscedastic AnInfoNCE 0.8447 ± 0.0611 0.2745 ± 0.1052 -0.2277 ± 0.3284 0.7563 ± 0.1276 0.2563 ± 0.1092 0.0070 ± 0.1230

(affine+activation) H-InfoNCEAffine 0.9826 ± 0.0060 0.9482 ± 0.0165 0.8666 ± 0.0741 0.9426 ± 0.0222 0.6276 ± 0.1084 0.3106 ± 0.1218

H-InfoNCEMLP 0.9892 ± 0.0023 0.9610 ± 0.0098 0.9149 ± 0.0348 0.9856 ± 0.0075 0.9288 ± 0.0175 0.7633 ± 0.0576

Experimental setup. We use a five-layer MLP as f for the numerical experiments in §3.2, a
ResNet-18 encoder followed by a two-layer MLP projector for the image experiments in §3.3, and
a five-layer 3D CNN followed by a three-layer MLP projector for videos. Unless otherwise noted,
we train the model from scratch on the training set and perform model selection based on the perfor-
mance of an online affine probe on the validation set. For evaluation in §3.2, we follow Zimmermann
et al. (2021) by training an affine probe on top of the embeddings produced by the frozen f on the
training data. For evaluation in §3.3, we train an affine probe on both the embeddings and the output
of the frozen encoder, which we refer to as representations. We then evaluate the probes’ perfor-
mance on the test set following standard practice (Chen et al., 2020a; Grill et al., 2020). Additional
experimental details can be found in §G.

3.2 Numerical data

Table 2: Linear regression R2 on complex
p(c+ | c). All models normalize embeddings and
AdaSSL outperforms baselines.

Model p(z) N (0, 5 · I) N (0, 5 · I)OOD

InfoNCE 0.5210 ± 0.1611 0.5024 ± 0.0850 0.0395 ± 0.3141

AnInfoNCE 0.5446 ± 0.1745 0.5578 ± 0.1271 0.1652 ± 0.2261

H-InfoNCEMLP 0.8750 ± 0.0658 0.7784 ± 0.0915 0.5471 ± 0.2480

AdaSSL-V 0.8609 ± 0.0740 0.8656 ± 0.0195 0.6638 ± 0.0956

AdaSSL-S 0.9187 ± 0.0174 0.8472 ± 0.0292 0.6325 ± 0.0737

In this section, we study the effect of complexity
of the conditional variance in p(z+ | z). Specif-
ically, we sample correlated latents c ∼ N (0,Σ)
and sample c+ from different conditional distribu-
tions p(c+ | c). Style latents are sampled indepen-
dently: s, s+ ∼ N (0, I), yielding z = [c, s] and
z+ = [c+, s+]. A random invertible MLP param-
eterizing g (details in §G.2) maps these latents to
observations x, x+ via Eq. 1. We then train linear
regressors to predict c from f(x) = f(g([c, s])), where f is the frozen encoder trained on p(z).
We perform three types of evaluation: (a) train and evaluate the regressor on p(z), (b) train and
evaluate the regressor on N (0, 5 · I), and (c) train on p(z) and test on N (0, 5 · I) (denoted by
N (0, 5 · I)OOD in Table 1), where the latter two evaluate the representations’ robustness under dis-
tribution shifts. Following prior works (Zimmermann et al., 2021; Kügelgen et al., 2021), we vary
the latent space assumptions (unbounded or hypersphere) and model flexibility (InfoNCE, AnIn-
foNCE, or H-InfoNCE) by changing the similarity function.

Unimodal p(c+ | c). We first construct a unimodal conditional, where we expect H-InfoNCE
to suffice. We sample c+ following c+i | c ∼ N

(
c+i ; ci, σ(c)2i

)
, with σ(c) either 0, isotropic,

anisotropic, or heteroscedastic, where σ(·) is an affine function followed by softplus activation.

Table 1 leads to two main observations. First, models achieve high performance when both their
embedding space and model flexibility match the true conditional p(c+ | c); otherwise we see a
decrease in performance, which corroborates the findings of Zimmermann et al. (2021). Notably,
we see a clear performance drop with InfoNCE and AnInfoNCE with normalized embedding space.
H-InfoNCE improves the performance by a large margin; we explain this with Proposition F.1 and
show that heteroscedascity is almost unavoidable. Second, while latent correlations help all mod-
els perform well on in-distribution data p(z), only flexible models generalize OOD. Under het-
eroscedastic noise, the encoders learned with InfoNCE and AnInfoNCE fall short, even trailing the
identity function. Interestingly, when Var(c+ | c) = 0, generalization performance of InfoNCE is
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Table 3: Linear F1 scores on representations (encoder output) and embed-
dings (projector output) trained on CelebA, under weak or strong augmenta-
tions. AdaSSL+GT, a soft performance upper bound, uses the ground-truth
attribute difference as r. “ ” denotes “same as above”.

Model Pairing WEAK AUGMENTATION STRONG AUGMENTATION
Repr. Emb. Repr. Emb.

InfoNCE Standard 0.2698 ± 0.0030 0.1295 ± 0.0051 0.5965 ± 0.0004 0.5694 ± 0.0011

InfoNCE Natural 0.5473 ± 0.0027 0.3747 ± 0.0051 0.5784 ± 0.0008 0.4941 ± 0.0035

AnInfoNCE 0.5413 ± 0.0010 0.4249 ± 0.0032 0.5789 ± 0.0008 0.4987 ± 0.0033

AdaSSL-V 0.5784 ± 0.0025 0.4794 ± 0.0015 0.6014 ± 0.0008 0.5706 ± 0.0034

AdaSSL-S 0.5676 ± 0.0049 0.4581 ± 0.0016 0.5911 ± 0.0014 0.5654 ± 0.0007

AdaSSL+GT 0.6818 ± 0.0011 0.6840 ± 0.0019 0.6779 ± 0.0003 0.6832 ± 0.0011
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Figure 1: Performance of
representations on stochastic
Moving-MNIST. Marker size
indicates standard deviation.

weaker than the best models in each block, supporting our hypothesis that naturally varying pairs
help generalization.

Complex p(c+ | c). In this experiment, we design a DGP where p(c+ | c) is both multimodal and
heteroscedastic. We hypothesize that natural pairs usually differ sparsely in the latent factors, and
the differed factors are sometimes conditioned on a latent variable. Therefore, we randomly select
some dimensions of c+ and c to be shared, while the rest follow Gaussians conditioned on a latent
variable κ, i.e., ci, c+i | κ ∼ N

(
µ(κ)i, σ(κ)

2
i

)
. See §G.2 for details.

Table 2 shows that InfoNCE and AnInfoNCE are unable to recover latent factors on OOD data.
H-InfoNCE improves performance, and AdaSSL variants improve further. We visualize the learned
conditionals in §H.1, where AdaSSL best fits the ground truth, suggesting that its improvement
comes from more accurate conditional modeling.

3.3 Natural images and videos

Natural images. Although we do not have access to the ground-truth data generating factors of
natural images, we perform experiments on the CelebA dataset (Liu et al., 2015) which contains
celebrity images with annotated facial attributes. Beside using standard pairs that are augmented
versions of the same image, we obtain real-world natural pairs by matching different photos of the
same celebrity, which differ sparsely in their facial attributes (§G.4). We then train models on paired
images and evaluate with affine probes on 40 facial attributes of unseen identities, inducing a natural
distribution shift. Results in Table 3 show that standard pairing rely on strong augmentations to
work well. However, using natural pairs largely reduces the gap, and only AdaSSL-V consistently
improves upon the standard pairing baselines. This exposes InfoNCE’s weakness to complex con-
ditionals from natural pairs. We still observe a gap between AdaSSL and AdaSSL+GT, indicating
room for improvement in future work.

World modeling on videos. In sections above, we have shown AdaSSL models p(z+ | z) well.
Since modeling this transition distribution is central to world modeling on videos, we test AdaSSL
on it. We hypothesize that inability to model uncertainty drives the model to discard variant fac-
tors. We introduce uncertainty by injecting random changes in velocity between two segments of
Moving-MNIST (Srivastava et al., 2015; Drozdov et al., 2024), which are then used as positive pairs.
We use BYOL (Grill et al., 2020) as the SSL method for this experiment, whose predictions can con-
dition on a future segment (BYOL+Future) similar to Liu et al. (2025) or the ground-truth change
in velocity (BYOL+GT). Fig. 1 shows that AdaSSL captures both the invariant factor, digit, and the
variation factor, velocity, better than baselines. Ablation on AdaSSL-V shows its robustness to the
dimensionality of r under proper regularization. We include full results in Table 6 and details in §G.

4 Conclusion

In this work, we reveal the limitation of SSL methods when trained on naturally paired data and in-
troduce AdaSSL, which learns a latent variable that captures the uncertainty between pairs. Our
approach consistently outperforms existing methods across all benchmarks. We believe this is
a promising step in expanding the capability of SSL methods, leading to potentially fruitful ad-
vancements in learning generalizable representations, identifiability of high-dimensional images,
and world modeling with uncertainty.
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A Preliminaries

A.1 Preliminaries: contrastive SSL

Contrastive SSL methods assumes the content factors c to be roughly unperturbed under the condi-
tional law pZ+|Z , and use an objective that encourage f(x) and f(x+) to be similar. To prevent rep-
resentation collapse where f becomes a constant function, contrastive objectives use another term to
encourage the representations to have high entropy (Chen et al., 2020a; Zbontar et al., 2021; Bardes
et al., 2022; Wang & Isola, 2020). In this work, we focus on sample-contrastive methods based on
InfoNCE (Oord et al., 2018; Chen et al., 2020a), and observe the duality between dimension- and
sample-contrastive methods (Garrido et al., 2023a; Balestriero & LeCun, 2022).

The InfoNCE loss has the form:

LInfoNCE = E
{(xi,x

+
i )}K

i=1

iid∼p(x,x+)

 1

K

K∑
i=1

− log
es(xi,x

+
i )/τ

1
K

∑K
j=1 e

s(xi,x
+
j )/τ

 , (6)

where τ is a temperature parameter and s(·, ·) is a similarity function over pairs. Intuitively, InfoNCE
encourages the similarity function to assign a high score for positive pairs and a low score for pairs
that does not come from the true joint. The similarity function often adopts a simple form on the
normalized embeddings, i.e., s(x,y) = ψ(x)⊤ψ(y) where ψ(·) = f(·)

∥f(·)∥2
. The simplicity of the

similarity function allows features to be easily extracted from the embedding space because they are
used to discriminate between data points linearly during training (Tschannen et al., 2020).

It has been shown that when the marginal p(z+) is uniform, the similarity function implicitly models
the log conditional: s⋆(x,x+) ∝ log p(z+ | z) (Zimmermann et al., 2021). With a dot-product sim-
ilarity, the hypothesis class of p reduces to von Mises-Fisher (vMF) distributions, where τ controls
the concentration strength. Since vMF distribution does not account for anisotropic noise, Rusak
et al. (2025) introduces a diagonal matrix Λ that weighs the concentration along each dimension:
s(x,y) = −(ψ(x)− ψ(y))⊤Λ(ψ(x)− ψ(y)). Nevertheless, it remains unclear how to flexibly
model an arbitrary conditional distribution p(z+ | z) while keeping the similarity function
simple enough to allow efficient feature extraction.

A.2 Preliminaries: non-contrastive SSL

Non-contrastive (or predictive) SSL methods are appealing because they avoid the explicit regu-
larization to prevent representation collapse. Our work addresses the limitations of the invariance
component of the SSL objective, making it applicable to these methods as well. Typically, they
use asymmetric encoders: an online branch predicts target representations, with a stop-gradient on
the target (Grill et al., 2020; Chen & He, 2021). While empirically effective, the reason these de-
sign choices prevent collapse is not fully understood (Tian et al., 2021; Zhang et al., 2022; Zhuo
et al., 2023). We illustrate our findings with BYOL (Grill et al., 2020), the backbone of many recent
successful predictive methods (Guo et al., 2022; Assran et al., 2025):

LBYOL =
∥∥t(ψ(x))− ψEMA(x

+)
∥∥2
2
, (7)

where ψEMA is the exponential moving average of ψ and t(·) is an MLP predictor.

Because of the predictor, non-contrastive methods frame the problem as predictive learning more
explicitly than contrastive ones. Intuitively, the predictor accounts for cases where E[z+ | z] ̸= z;
but it remains unclear how it can capture complex conditionals p(z+ | z)—which may be
heteroscedastic or even multimodal—without conditioning on additional information.

B Method details

We now present our method, which addresses the aforementioned challenges by modeling uncer-
tainty with a latent variable model. In §2.2, we introduce our overall objective. We then discuss two
variants of AdaSSL in §B.2 and §B.3, which optimize this objective in distinct ways.
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Figure 2: Visual comparison of models. Boxes denote vectors and arrows denote functions. The
encoders may not use the same parameters; we use f to denote both for brevity. (a) Contrastive
SSL uses a symmetric architecture. (b) Predictive SSL uses a predictor to predict the embeddings of
one branch from the other, optionally with the help of some supervision r⋆ related to the difference
between the inputs. (c) Our method, AdaSSL, extends predictive SSL by modeling the latent variable
r in the highlighted part. (d) AdaSSL-V learns a variational distribution, qϕ(r | x,x+), and uses an
MLP as predictor. (e) AdaSSl-S regularizes the sparsity of r and uses a modular predictor.

B.1 Modeling complex conditionals with a latent variable

In Fig. 2, we visually compare our method to existing approaches. We use a latent variable r to
capture the uncertainty in complex conditional distributions p(x+ | x), a pushforward of p(z+ | z)
through g. The latent variable r should contain information about x+ that cannot be solely predicted
from x. For example, if x shows an object just before it passes behind a wall and x+ shows it after
reappearing, r may represent its acceleration while occluded.

Learning a representation that maximally preserves the mutual information (MI) between paired
embeddings is useful for representation learning (Linsker, 1988; Tschannen et al., 2020; Oord et al.,
2018). It also provides a way to interpret the desirable properties of r. Specifically, by the chain rule
of MI,

I(x;x+) = I(x, r;x+)− I(r;x+ | x) . (8)
Intuitively, r should help x predict x+ without simply copying x+. This motivates the general form
of our objective:

LAdaSSL = LSSL((x, r),x
+) + βLReg(r) , (9)

where the SSL term is any standard SSL loss (e.g., LInfoNCE) that encourages r to aid prediction of
x+ while the regularizer penalizes r from becoming an unrestricted shortcut. The hyperparameter
β controls the strength of regularization per standard practice (Higgins et al., 2017; Locatello et al.,
2020). This objective matches the conceptual framework depicted in Fig. 13 of LeCun (2022).

B.2 AdaSSL-V and a lower bound on I(x,x+)

We first learn the posterior p(r | x,x+) with a variational distribution qϕ(r | x,x+) (Kingma &
Welling, 2014; Sohn et al., 2015). The joint then becomes p̃(x,x+, r) := p(x,x+)q(r | x,x+).
The informational-theoretical properties of contrastive learning allow us to optimize a lower bound
on I(x,x+)5. Specifically, the first term in Eq. 8 is bounded by InfoNCE (Oord et al., 2018) by
treating (x, r) as a single variable:

Ip̃(x, r;x
+) ≥ −LInfoNCE = E

{(xi,x
+
i ,ri)}K

i=1

iid∼ p̃

 1

K

K∑
i=1

log
es(xi,x

+
i ,ri)/τ

1
K

∑K
j=1 e

s(xi,x
+
j ,ri)/τ

 . (10)

We derive a bound for the second term in §E:

−Ip̃(r;x+ | x) ≥ −LReg = −Ep(x,x+)

[
DKL(qϕ(r | x,x+)∥pθ(r | x))

]
. (11)

Thus, by introducing a latent posterior, we obtain a tractable lower bound on I(x;x+). In practice,
we parameterize qϕ and pθ using lightweight MLPs on top of the embeddings f(x) and f(x+),
modeling both as factorized Gaussians. Plugging the terms into Eq. 9, we get

LAdaSSL−V = LSSL

(
Eqϕψ1(x, r), ψ2(x

+)
)
+ βDKL(qϕ(r | x,x+)∥pθ(r | x)) . (12)

5One can equivalently replace I(x;x+) with I(f(x); f(x+)), since our method operates on paired embed-
dings. For simplicity, we use the notation I(x;x+) throughout, but in practice our method aims to maximize
I(f(x); f(x+)) ≤ I(x;x+).
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Table 4: Identifiability results on 3DIdent.
AdaSSL achieves the best disentanglement and
R2 scores. “ ” denotes “same as above”.

Model Pairing DCI disent. (↑) R2 (↑)

β-VAEβ=1 - 0.2076 ± 0.0243 0.6649 ± 0.0307

β-VAEβ=16 - 0.1883 ± 0.0191 0.6672 ± 0.0216

β-VAEβ=100 - 0.3352 ± 0.0468 0.6691 ± 0.0342

AdaGVAEβ=1 Natural 0.4098 ± 0.0413 0.6436 ± 0.0343

AdaGVAEβ=16 0.3800 ± 0.0131 0.6511 ± 0.0141

AdaGVAEβ=100 0.4582 ± 0.0154 0.6213 ± 0.0143

InfoNCE Standard 0.1447 ± 0.0032 0.3382 ± 0.0074

AnInfoNCE 0.1349 ± 0.0007 0.3704 ± 0.0113

InfoNCE Natural 0.1178 ± 0.0073 0.8184 ± 0.0047

AnInfoNCE 0.2772 ± 0.0184 0.8243 ± 0.0002

AdaSSL-VAdditive 0.4661 ± 0.0467 0.8857 ± 0.0012

AdaSSL-VLinear 0.2756 ± 0.0266 0.9331 ± 0.0077

AdaSSL-VMLP 0.1027 ± 0.0048 0.8948 ± 0.0017

AdaSSL-S 0.1777 ± 0.1009 0.9309 ± 0.0096

x 1-NN of  t (f(x), r̃)
Position

Spotlight

Hue

All

Sample

Figure 3: AdaSSL-V performs controllable re-
trieval. From the query image x, we sample
from different dimensions of the learned prior
pθ(r̃ | x) which correspond to interpretable
changes in the edited image t(f(x), r̃).

We call this variant of our method AdaSSL-V(variational).

Remark. Although AdaSSL-V is only theoretically justified for contrastive SSL, one can use a non-
constrastive SSL loss as well because they still encourage r to aid prediction of x+.

Similarity function. As discussed in §A.1, our goal is to have a similarity function that is flexible
yet simple. With r as a latent variable, we still use the dot-product similarity on embeddings:

s(x,x+, r) = ψ1(x, r)
⊤ψ2(x

+) , where ψ1(x, r) =
t(f(x), r)

∥t(f(x), r)∥2
, ψ2(x

+) =
f(x+)

∥f(x+)∥2
.

(13)
Specifically, we edit f(x) with the help of r and an editing function t(·, ·) such that it lies in the
vicinity of f(x+). For InfoNCE, we parameterize t with a linear projection or two-layer MLPs. For
BYOL, we directly use r as an additional input to its predictor.

B.3 AdaSSL-S and sparse modular edits

Natural transitions usually correspond to sparse changes in the latent factors, an inductive bias
widely adopted in the identifiability literature (Ahuja et al., 2022; Klindt et al., 2021; Lippe et al.,
2023). Therefore, we hypothesize that we can implement Eq. 9 by predicting r and regularizing its
sparsity. AdaSSL-S(parse) realizes this idea. Instead of learning a variational posterior, we predict
r deterministically from f(x) and f(x+): r = m(f(x), f(x+)), where m is an MLP followed by
tanh activation. We then regularize the sparsity of r:

LAdaSSL−S = LSSL

(
ψ1(x, r), ψ2(x

+)
)
+ β∥r∥0 , (14)

where the L0 penalty is made differentiable through the Gumbel-Sigmoid estimator similar to the
one used by Lachapelle et al. (2022); Brouillard et al. (2020).

Inspired by Ibrahim et al. (2022); Hu et al. (2022), we use a modular editing function t:

t(f(x), r) = f(x) +

dr∑
i=1

riti(f(x)) = f(x) +

dr∑
i=1

ri(BiAif(x) + bi) , (15)

where dr is the dimensionality of r. Each editing function ti(·) is an affine transformation parame-
terized by a rank-1 matrix BiAi and a scalar offset bi. This design is motivated by the assumption
that differences between the paired embeddings lie in a low-dimensional latent subspace, where
edits are applied.

Similarly to AdaSSL-V, AdaSSL-S is applicable to both contrastive and non-contrastive SSL.

C Causal representation learning

In this section, we show AdaSSL can be used to recover all data generating factors from natural
pairs on 3DIdent (Zimmermann et al., 2021), a dataset of realistically rendered images of a teapot
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varying in ten data generating factors such as position, spotlight, and hue. Following Locatello et al.
(2020), we generate natural pairs by first drawing two samples from the marginal latent distribution.
Then, each latent coordinate is replaced with some probability by the corresponding coordinate from
the other sample. We evaluate (a) disentanglement in the learned embeddings with the DCI disen-
tanglement score (Eastwood & Williams, 2018), and (b) identifiability up to affine transformations
with R2.

In this experiment, we focus on contrastive SSL, but also compare with classic disentanglement
methods, including β-VAE (Higgins et al., 2017) and AdaGVAE (Locatello et al., 2020). Table 4
shows that β-VAE and AdaGVAE fail to identify the latent factors, though AdaGVAE achieves
decent disentanglement. InfoNCE with augmentations performs worse, likely because augmentation
invariance conflicts with identifiability. SSL baselines using natural pairs achieve good identifiability
but yield more entangled latent factors. We hypothesize that AdaSSL’s regularization encourages
efficient encodings of r, akin to β-VAE (Higgins et al., 2017; Burgess et al., 2018). Since r is
modeled as factorized Gaussians, some disentanglement in r is expected. To verify this, we vary
the complexity of the editing function t (additive, linear, nonlinear), as shown in the subscripts in
Table 4. Indeed, simpler t leads to more disentagled embeddings while consistently outperforming
baselines on regression performance. In particular, AdaSSL-VLinear and AdaSSL-S, which both use
linear editing functions, achieve the highest identifiability.

To better understand the learned r, we visualize its effect by retrieving nearest neighbor of a query
image x after editing it with samples r̃ (Fig. 3). Given evidence of disentanglement, we expect sam-
pling specific latent dimensions to induce meaningful changes in the edited embeddings t(f(x), r̃).
Concretely, we sample r̃i ∼ pθ(ri | x) for i ∈ L ⊆ [dr] for some set of latent indices L, and fix all
others to their expectations. Fig. 3 shows results for three different L’s. We find that we can retrieve
objects that differ in position, spotlight, and color, while leaving most other factors unchanged,
though orientation remains entangled with other factors. Finally, when sampling from the full prior,
we retrieve images that differ sparsely in latent factors, consistent with the training DGP.

Together, these results highlight SSL as a promising path for CRL for its efficiency (no reconstruc-
tion) and demonstrated scalability to high-dimensional images.

D Related work

Self-supervised learning. SSL in the latent space has evolved from solving hand-crafted pretext
tasks (Noroozi & Favaro, 2016; Doersch et al., 2015; Dosovitskiy et al., 2014; Gidaris et al., 2018) to
learning semantic-preserving representations from invariance to augmentations (Oord et al., 2018;
Wu et al., 2018; Gutmann & Hyvärinen, 2010; Chen et al., 2020b; Caron et al., 2020; Wu et al.,
2018; He et al., 2020; Radford et al., 2021; Caron et al., 2021; Zbontar et al., 2021; Bardes et al.,
2022; Ermolov et al., 2021; Chen & He, 2021; Grill et al., 2020; Assran et al., 2023; Baevski et al.,
2022; Caron et al., 2020; He et al., 2016). Studies have also explored the relationship between in-
variant representations and variational inference (Bizeul et al., 2024; Sinha & Dieng, 2021). Beyond
invariance, equivariant representations preserve transformation information (Hinton et al., 2011). In
SSL, this is achieved by providing augmentation parameters to the predictor (Garrido et al., 2023b;
Ghaemi et al., 2024; Devillers & Lefort, 2023; Garrido et al., 2024; Park et al., 2022), or using
subspaces for different invariances (Xiao et al., 2021; Eastwood et al., 2023). However, these ap-
proaches are tied to chosen augmentations and break down when the sources of uncertainty are un-
known. Alternatively, one can exploit the invariance between observation pairs that are transformed
similarly (Shakerinava et al., 2022), or model transformation with Lie groups (Ibrahim et al., 2022);
the latter requires jointly optimizing the vanilla SSL loss and only learns a single factor of variation.
Lastly, Lavoie et al. (2024) reduce prediction uncertainty between image–caption pairs by condition-
ing visual representations on textual ones through a cross-attention mechanism, thereby improving
the feature diversity of contrastive vision–language models. Unlike prior work, our method does not
require transformation labels, handles multiple varying factors, and provides a simple, theoretically
justified objective that is compatible with standard SSL methods across diverse settings.

Causal representation learning. Much research examines recovering data-generating factors and
their causal relations (Hyvarinen & Morioka, 2016; Schölkopf et al., 2021; von Kügelgen et al.,
2023; Ahuja et al., 2023; Brehmer et al., 2022; Locatello et al., 2020; Lachapelle et al., 2022; Lippe
et al., 2023; Klindt et al., 2021; Ahuja et al., 2022; Lippe et al., 2022; Yao et al., 2025). While
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offering theoretical guarantees, these methods often rely on strong assumptions or probabilistic gen-
erative models, limiting scalability. SSL has been connected to CRL (Zimmermann et al., 2021;
Kügelgen et al., 2021; Rusak et al., 2025; Yao et al., 2024), where studies focus on identifying
the content factors that follow simple conditionals (§A.1). This work relaxes these assumptions
by allowing structured variation between paired latents and demonstrates strong performance on
weakly-supervised CRL, a step towards understanding and advancing SSL (Reizinger et al., 2025).

World modeling with SSL. Unlike image-based SSL that rely on augmentations, video world
models with SSL learn the transition dynamics of videos, often by predicting target frames given
some context (Sermanet et al., 2018; Feichtenhofer et al., 2021; Bardes et al., 2024; Assran et al.,
2025; Schwarzer et al., 2021; Guo et al., 2022). Through the process, the model learns useful rep-
resentations for downstream tasks such as video understanding. A key challenge is that uncertainty
grows with the temporal gap between positive pairs, forcing models to fix temporal resolution (Fe-
ichtenhofer et al., 2021; Bardes et al., 2024), which may limit their ability to learn features at dif-
ferent levels of abstractions (Zacks & Tversky, 2001) because the model can discard variant factors.
Introducing a latent variable r, as we do, can reduce the uncertainty and learn more diverse fea-
tures (§3.3). Finally, although we focus on improving SSL that does not require reconstruction, we
note there are successful approaches that predict in the observation space (Schmidt & Jiang, 2024;
Tong et al., 2022; Feichtenhofer et al., 2022; Jang et al., 2024; Bruce et al., 2024; Yang et al., 2024).

E Derivation of Eq. 11

− Ip̃(r;x
+ | x)

= −Ep̃

[
log

q(r | x,x+)

p̃(r | x)

]
= −Ep̃

[
log

q(r | x,x+)

p̃(r | x)
+ log p(r | x)− log p(r | x)

]
= −Ep̃

[
log

q(r | x,x+)

p(r | x)
+ log

p(r | x)
p̃(r | x)

]
= −Ep(x,x+)

[
DKL(q(r | x,x+)∥p(r | x))

]
+ Ep̃

[
log

p̃(r | x)
p(r | x)

]
= −Ep(x,x+)

[
DKL(q(r | x,x+)∥p(r | x))

]
+

∫ ∫ ∫
p(x)p(x+ | x)q(r | x,x+) log

p̃(r | x)
p(r | x)

drdx+dx

= −Ep(x,x+)

[
DKL(q(r | x,x+)∥p(r | x))

]
+

∫ ∫
p(x)

(∫
p(x+ | x)q(r | x,x+)dx+

)
log

p̃(r | x)
p(r | x)

drdx

= −Ep(x,x+)

[
DKL(q(r | x,x+)∥p(r | x))

]
+

∫ ∫
p(x)p̃(r | x) log p̃(r | x)

p(r | x)
drdx

= −Ep(x,x+)

[
DKL(q(r | x,x+)∥p(r | x))

]
+ Ep(x)p̃(r|x)

[
log

p̃(r | x)
p(r | x)

]
= −Ep(x,x+)

[
DKL(q(r | x,x+)∥p(r | x))

]
+ Ep(x)[DKL(p̃(r | x)∥p(r | x))]

≥ −Ep(x,x+)

[
DKL(q(r | x,x+)∥p(r | x))

]
.

F Theory

Lemma F.1. Let A ∈ Rm×n and let Σ ∈ Rn×n be symmetric positive definite. Then

range(AΣA⊤) = range(A).

Proof. For any x ∈ Rm, we have

x⊤(AΣA⊤)x = (A⊤x)⊤Σ(A⊤x).
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Since Σ is symmetric positive definite, the right-hand side is zero if and only if A⊤x = 0. Thus,

ker(AΣA⊤) = ker(A⊤).

Taking orthogonal complements yields

range(AΣA⊤) = range(A).

Remark. This is a standard linear algebra fact; we include it here for completeness.

Proposition F.1. Let Sk ⊂ Rk+1 denote the k-dimensional unit sphere. Let g : Rd → Rd′
be C1

diffeomorphic to its image, and let f : Rd′ → Sk be C1 almost everywhere. Define h := f ◦ g :
Rd → Sk. Assume further that the random vectors z, z+ ∈ Rd are sampled as

z ∼ pZ , z+ = z + ε, ε ∼ pε,

where pZ is not a point mass and ε is independent of z, E[ε] = 0, and Cov(ε) ≻ 0.

Suppose that for pZ-almost every z we have h(z) ∈ Sk and rankDh(z) = d. Write H = h(z) and
H+ = h(z+). Then the conditional law

pH+|H(h(z+) | h(z)),

is necessarily heteroscedastic: its conditional variance depends on h(z) for pZ-almost every z.

Proposition F.1 shows that heteroscedasticity between paired embeddings emerges from the geo-
metric mismatch between the embedding space and the ground-truth latent space, regardless of the
encoding function or embedding dimensionality. Here, we explicitly show the case of projecting
from unbounded latent space Rdz to normalized embedding space Sdf and discuss the reverse sce-
nario in Proposition F.2. Consequently, common similarity functions such as the dot product fail to
capture this conditional variance, since they aggregate the variability uniformly across all embedding
directions and data pairs. We show this empirically in §3.2.

Proof. Fix z where h is C1 and rankDh(z) = d. For σ > 0 small, define z+ = z+σεwith ε ∼ pε.
A first-order Taylor expansion and the delta method give

h(z + σε) = h(z) +Dh(z)σε+ o(σ),

which implies
Cov[h(z + σε) | z] = σ2Dh(z)ΣDh(z)⊤ + o(σ2).

If the conditional covariance were homoscedastic at leading order, there exists a fixed positive
semidefinite matrix C such that

Dh(z)ΣDh(z)⊤ ≡ C for pZ-almost every z.

Let W := range(C). By Lemma F.1 and Σ ≻ 0 we have

range
(
Dh(z)

)
= range

(
Dh(z)ΣDh(z)⊤

)
= range(C) =W,

so range(Dh(z)) ≡W is the same d-dimensional subspace for pZ-almost every z. Because h(z) ∈
Sk we have ∥h(z)∥2 ≡ 1, so differentiating yields

h(z)⊤Dh(z) = 0,

i.e. range(Dh(z)) ⊂ h(z)⊥. Since range(Dh(z)) =W for almost every z, we obtain W ⊂ h(z)⊥

almost everywhere, hence h(z) ∈W⊥ for almost every z.

Pick any nonzero w ∈ W . Then w⊤h(z) = 0 for almost every z, and differentiating gives
w⊤Dh(z) = 0 for almost every z, i.e. w ⊥ range(Dh(z)) = W . Thus W ⊂ W⊥, which forces
W = {0}. This contradicts rankDh(z) = d > 0. Therefore the hypothesis that Dh(z)ΣDh(z)⊤ is
constant in z is false, so the leading-order conditional covariance must depend on z for pZ-almost
every z.
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Remark. The above argument establishes heteroscedasticity at leading order in the noise scale σ,
which rigorously shows that the conditional covariance depends on z for sufficiently small σ. For
larger σ, higher-order terms in the Taylor expansion of h become significant and the exact condi-
tional covariance may be more complicated; nevertheless, the local Jacobian Dh(z) still transforms
the noise differently at different points, so the conditional variance remains intuitively location-
dependent, even if no simple closed-form expression exists.
Proposition F.2 (Tangent-space variant of Proposition F.1). Let Sk ⊂ Rk+1 denote the k-
dimensional unit sphere, and U ⊂ Sk an open set. Let g : Sk → Sk′

be C1 diffeomorphic to
its image, and let f : Sk′ → Rd be C1 almost everywhere. Define h := f ◦ g : U → Rd. We assume
that h is nondegenerate, i.e., h(U) is not contained in any proper affine subspace of its intrinsic
dimension. Suppose that for almost every z ∈ U , the derivative Dh(z) : TzSk → Rd has full rank,
i.e. rankDh(z) = k. Assume further that the conditional distribution of z+ ∈ Sk given z is locally
Gaussian in the tangent space

p(z+ | z) ∝ exp
(
− (z+ − z)⊤Λ(z+ − z)

)
,

with a constant positive definite diagonal matrix Λ.

Define H = h(z) and H+ = h(z+). Then for generic nondegenerate C1 maps h, the conditional
law

pH+|H(h(z+) | h(z)),
is heteroscedastic for almost every z ∈ U .

Proof. We construct z+ by a small Gaussian step in Rk+1 and normalization:

z+ =
z + ε

∥z + ε∥
, ε ∼ N (0,Λ−1).

A first-order approximation for small ε gives

z+ − z = Pzε+O(∥ε∥2),
where Pz = I−zz⊤ is the projector to the tangent space, and the pushforward density on the sphere
matches

p(z+ | z) ∝ exp
(
− (z+ − z)⊤Λ(z+ − z)

)
up to higher-order terms.

Fix z ∈ U where h is C1 and rankDh(z) has full rank. A Euclidean Taylor expansion gives

h(z+) = h(z) +Dh(z)(z+ − z) +O(∥z+ − z∥2).
Substituting z+ − z ≈ Pzε

h(z+) = h(z) +Dh(z)Pzε+R(z),

where R(z) collects higher-order terms, and the leading-order conditional covariance is

Cov(h(z+) | z) = Dh(z)Σtan
z Dh(z)⊤ +R(z), Σtan

z = PzΛ
−1Pz,

with R(z) continuous and symmetric.

Suppose that Cov(h(z+) | z) were constant across z ∈ U . With Σtan
z ≻ 0, the range of the leading

term range(Dh(z)Σtan
z Dh(z)⊤) = range(Dh(z)) would have to be the same subspace W ⊂ Rd

for almost every z ∈ U .

For any differentiable curve z(t) ⊂ U through points where Dh(z(t)) has full rank, we can write
d

dt
h(z(t)) = Dh(z(t))ż(t) ∈W

Integrating along all such curves in U gives

h(U) ⊂ h(z0) +W,

for some base point z0. This would imply that the image h(U) is contained in a fixed affine subspace
W ⊂ Rd, contradicting the nondegeneracy assumption on h. Therefore, a constant pushforward
covriance can only occur in the trivial case of no noise (Σtan

z = 0, or Λ−1 = 0) or in a highly
specific algebraic cancellation between Dh(z) and Σtan

z . For generic nondegenerate C1 maps h and
almost every z ∈ U , the conditional covariance is therefore heteroscedastic.
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Remark. This is analogous to Proposition F.1, but with domain and codomain swapped; the argument
relies on the Jacobian of the map and the local Gaussian structure in the tangent space.

Proposition F.3 (Extension of Proposition F.1). Let g : Rd → Rd′
be a C2 with a local diffeomor-

phism and f : Rd′ → M be C2 almost everywhere. Define h := f ◦ g : Rd → M where M is
a Riemannian manifold with strictly positive sectional curvature on a nonempty open set. Assume
further that the random vectors z, z+ ∈ Rd are sampled as

z ∼ pZ , z+ = z + ε, ε ∼ pε,

where pZ is not a point mass and ε is independent of z, E[ε] = 0, and Cov(ε) ≻ 0.

Suppose that for pZ-almost every z we have h(z) ∈ M and rankDh(z) = d. Write H = h(z) and
H+ = h(z+). Then the conditional law

pH+|H(h(z+) | h(z)),

is necessarily heteroscedastic: its conditional variance depends on h(z) for pZ-almost every z.

Proof. Following the same reasoning as in Theorem F.1, homoscedasticity at leading order would
require a constant positive semidefinite matrix C such that

Dh(z)ΣDh(z)⊤ ≡ C for pZ-almost every z.

Since Σ ≻ 0, the above condition is equivalent to requiring that

⟨u, v⟩Σ := u⊤Σv = ⟨Dh(z)u,Dh(z)v⟩Rk+1 ∀u, v ∈ Rd, for a.e. z

i.e., h is a local Riemannian isometry from the flat space (Rd, ⟨·, ·⟩Σ) to the positively curved
manifold (M, gM). However, local isometries preserve sectional curvature (Gauss’ Theorema
Egregium), so no such local isometry from an open subset of Rd to an open subset of M exists.
Hence, the homoscedasticity condition cannot hold.

Therefore, for all sufficiently small σ > 0, the conditional covariance

Cov[h(z + σε) | z] = σ2Dh(z)ΣDh(z)⊤ + o(σ2)

depends on z, and the conditional distribution of h(z+) given h(z) is necessarily heteroscedastic for
pZ-almost every z.

G Implementation details

G.1 Leveraging an additional view

For both AdaSSL-V and AdaSSL-S, we expect the model to learn what explains the differences in
the paired views in r. However, if our goal is to encode c and learn a representation invariant to
s (§2.1), we might not want to encode s and should prioritize learning c. For example, invariance to
certain style factors is crucial for generalization (Deng et al., 2022) and preventing shortcut solutions
in SSL (Chen et al., 2020a).

One way to ensure r learns the right directions is to use a surrogate view x++—whose relationship
with x in the underlying content factors c and c++ mimic that between x+ and x—to replace x+. In
other words, AdaSSL-V uses r sampled from qϕ(r | f(x), f(x++)) and AdaSSL-S uses r predicted
by m(f(x), f(x++)). These additional views are usually easy to obtain, e.g., by augmentations.
We describe the x++ that we use in each experiment below.

It is crucial to note that our method does not depend on the presence of the additional view. When we
want to learn all the data generating factors, i.e., when c = z, we do not use additional views (§C).

G.2 Numerical experiments in §3.2

In the numerical experiments, most of our setup follows prior work (Kügelgen et al., 2021; Zimmer-
mann et al., 2021). We list the similarity functions used by the models in Table 5.
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Table 5: Similarity functions used by different models, where ψ(·) = f(·)
∥f(·)∥2

if the model assumes a
normalized latent space, in which case InfoNCE and AdaSSL’s similarity functions are equivalent to
a dot product; otherwise ψ(·) = f(·). The same applies to ψ1 and ψ2, whose subscripts are used to
indicate the asymmetry of H-InfoNCE and AdaSSL. Note that in Table 1, H-InfoNCE has ψ1 = ψ2

because E[c+ | c] = c.

Model s(x,y)

InfoNCE −λ(ψ(x)− ψ(y))⊤(ψ(x)− ψ(y))
AnInfoNCE −(ψ(x)− ψ(y))⊤Λ(ψ(x)− ψ(y))
H-InfoNCE −(ψ1(x)− ψ2(y))

⊤Λx(ψ1(x)− ψ2(y))
AdaSSL −λ(ψ1(x, r̂)− ψ2(y))

⊤(ψ1(x, r̂)− ψ2(y))

Complex p(c+ | c), formally stated.

κ ∼ N (0,Σ) , ci | κ ∼ N (µ(κ)i, σ(κ)
2
i ) , (16)

ιi | κ ∼ Bern(π(κ)i) , c+i | ιi, ci,κ ∼
{
δ(c+i = ci), ιi = 0

N
(
µ(κ)i, σ(κ)

2
i

)
, ιi = 1

. (17)

Data. We set nc = ns = 5 and sample Σ ∼ W−1(nc + 2, I). For anisotropic
noise, we sample σ(c)2i ∼ InvGamma(2, 1). For heteroscedastic noise, we set σ(c)2 =

softplus
(
Wσc+ softplus−1(1)

)
. For complex p(c+ | c), we use µ(κ) = W⊤

µ κ + b, σ(κ)2 =

softplus
(
Wσκ+ softplus−1(1)

)
, and πi(κ) = Sigmoid

(
κi

Σii
− 1

)
. We sample each element of

Wµ, Wσ , and b from N (0, 1). We parameterize gMLP as a three-layer MLP with LeakyReLU ac-
tivation (negative slope 0.2) with the same number of units in all layers. We ensure invertibility by
using L2-normalized weight matrices that has the lowest condition number among 25 000 uniformly
sampled candidates. We use x++ = gMLP([c

+, s++]) where c+ is the same content factor as in x+

and s++ ∼ N (0, I).

Architecture. For the encoder f , we use an MLP with four hidden layers of dimensionality 10n
where n = nc+ns is the input dimension. For models that applyL2 normalization to the outputs, we
set the output dimensionality to n+1 to accommodate for the missing degree of freedom; otherwise
we set it to n. For H-InfoNCEAffine, we use an affine layer followed by softplus activation to
predict Λx. For H-InfoNCEMLP, we use an MLP with three hidden layers of size 10n followed by
softplus activation to predict Λx and an MLP of the same size to predict ϕ1(x) in Table 2. For
AdaSSL, we set dr = 5. We use MLPs with two hidden layers of dimension 64 to parameterize qϕ,
pθ, and m and use a linear t for AdaSSL-V. All MLPs except the encoder use a BatchNorm layer
followed by LeakyReLU with the default negative slope (0.01) after each hidden layer.

Hyperparameters. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with learning rate
5 × 10−4 and weight decay 10−4 on the parameters except biases. We use a batch size of 2048.
For the experiments on complex p(c+ | c), we apply the loss symmetrically similar to Chen et al.
(2020a) because the sampling process of c and c+ is symmetric. We train the models for 200 000
steps and observe convergence. For AdaSSL-V, we linearly warmup β from 0 to 0.5 for 1000 steps
to prevent early KL instabilities. We keep β = 1 fixed throughout training for AdaSSL-S. For the
unimodal p(c+ | c) experiments, we set τ = E[σ2

i (c)] = 1 except when the variance is fixed to 0,
in which case we set τ = 0.1. For the complex p(c+ | c) experiments, we set τ = 0.1.

Evaluation. We perform evaluation by training a linear regressor on top of the frozen representa-
tions on 100 000 unseen data samples and evaluate it on another 100 000 samples.

Hardware. Each trial of this experiment required approximately 15-20 hours to run, using eight
CPU cores, 4 GB of system memory, and an MIG-partitioned slice of an NVIDIA H100 GPU
providing roughly a quarter of the GPU’s compute capacity and 20 GB of GPU memory.
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G.3 CRL experiments in §C

Data. 3DIdent contains 250 000 training images in Dtrain and 25 000 test images in Dtest, which
we use for CRL experiments. We sample latent pairs (z, z+) following

z ∼ p(z) , z̃ ∼ p(z̃) , ιi ∼ Bern(0.2) , z+i = zi if ιi = 0 else z+i = z̃i for i ∈ [dz] . (18)

Since 3DIdent is a finite dataset, after obtaining a latent pair, we find their nearest neighbor in the
training set with FAISS (Douze et al., 2024) and use the correspondingly rendered observations as
inputs following the original authors (Zimmermann et al., 2021). AdaSSL does not use an additional
view in this experiment.

Data augmentations. For standard pairs, we use the same set of strong augmentations used for
CelebA. For natural pairs, we do not perform augmentations. We resize the images to 128 × 128
resolution.

Architecture. We use a ResNet-18 encoder followed by a two layer MLP projector with hidden
size of 128 and output size of 16, and ReLU activation without BatchNorm as f . For AdaSSL, we
set dr = 16. We use MLPs with two hidden layers of dimension 128 to parameterize qϕ, pθ, and
m. These MLPs use a BatchNorm layer followed by ReLU activation after each hidden layer. As
discussed in §C, we ablate the parameterization of t for AdaSSL-V; the MLP parameterization has a
hidden layer of dimensionality 128 with BatchNorm followed by ReLU activations. The VAE-based
methods use a ResNet-18 decoder that mirror the encoder.

Hyperparameters. We use the AdamW optimizer with learning rate 10−4, weight decay 10−5 on
non-bias parameters, and a batch size of 256. For contrastive learning, we calculate the loss symmet-
rically following standard practice (Chen et al., 2020a). We train all models for 150 000 steps and
observe convergence on Dtrain. All SSL methods use a normalized embedding space, use τ = 0.05,
and do not learn λ in this experiment. For AdaSSL-V, we perform linear warmup of β from 0 to 0.5
for 10 000 steps to prevent early KL instabilities. For AdaSSL-S, we fix β = 0.5. For AdaGVAE,
we search within the authors’ recommended set of β’s, [1, 2, 4, 8, 16], but find β = 100 to give the
best disentanglement.

Evaluation. We perform evaluation on Dtest with the frozen embeddings and ground-truth latent
factors with linear regression and the DCI disentanglement score. We normalize the embeddings for
the SSL based models such that they align with the training objective, similar to Zimmermann et al.
(2021). We use the posterior mean as the embeddings for VAE-based models and do not normalize
them. For the DCI disentanglement score, we use the weights of Lasso regressors as the relative
importance matrix.

Hardware. Each trial of this experiment required approximately 15-20 hours to run, using eight
CPU cores, 32 GB of system memory, and an MIG-partitioned slice of an NVIDIA H100 GPU
providing roughly three-eighths of the GPU’s compute capacity and 40 GB of GPU memory.

G.4 Natural image experiments in §3.3

Data. We split the CelebA dataset into Dtrain, Dval, and Dtest following an 8-1-1 ratio; this gives
us 161 908 training images, 20 346 images in the validation set and 20 345 images in the test set. To
create a natural distribution shift, we sample celebrity identity such that the people in Dtrain does not
appear in Dval ∪Dtest. This gives us 8142 celebrities in Dtrain and 2035 celebrities in Dval ∪Dtest.
To construct a structured positive pair, we randomly sample two images of the same person. This
results in 1 850 918 possible positive pairs. Data pairs examples are visualized in Fig. 4 and the
distribution of the number of differed attributes between pairs are shown in Fig. 5, confirming that
attributes differ sparsely between positive pairs. During training, we augment the sampled pair using
data augmentations and obtain x and x+. We use another augmented view of x+ as x++. This is
helpful because our goal is not to learn the low-level style factors, but instead the semantic content
factors that differ structurally between x+ and x. The standard pairing process still use augmented
versions of the same image as positive pairs.
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Figure 4: Visualization of images paired by identity from the CelebA dataset.
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Figure 5: Distribution of the number of
differed attributes between pairs of im-
ages of the same identity.

Data augmentations. We investigate the effect of both
strong and weak augmentations. For strong augmenta-
tions, we apply the standard set of augmentations used
in SSL studies (Chen et al., 2020a; Grill et al., 2020).
We use RandomHorizontalFlip with 0.5 probability,
then RandomResizedCrop with crops of size within
[8%, 100%] of the original image and aspect ratio within
[0.75, 1.33], which are then resized to 64 × 64. Next,
with probability 0.8, we randomly apply ColorJitter
where the brightness, contrast, saturation and hue of
the image are shifted by a uniformly random offset.
We use parameters 0.4, 0.4, 0.2, 0.1, respectively. Fi-
nally, we apply RandomGrayScale with probability 0.2,
GaussianBlur with probability 0.5, and Solarization
with probability 0.2. For weak augmentations, we only
apply RandomHorizontalFlip with probability of 0.5
and RandomResizedCrop with crops of size within [80%, 100%] of the original image and aspect
ratio within [0.9, 1.1]. Notice that this cropping operation is significantly weaker than the one used
for strong augmentations.

Architecture. We use a ResNet-18 encoder (He et al., 2016) followed by a two layer MLP projec-
tor with hidden size of 1024 and output size of 128, and ReLU activation without BatchNorm as f
similar to Chen et al. (2020a). For AdaSSL, we set dr = 20. We use MLPs with one hidden layer of
dimension 1024 to parameterize qϕ, pθ, and m. We use an MLP with one hidden layer of dimension
512 to parameterize t for AdaSSL-V; this MLP does not have a bias term in the output layer, similar
to the predictor in BYOL (Grill et al., 2020). These MLPs use a BatchNorm layer followed by ReLU
activation after each hidden layer.

Hyperparameters. We use the AdamW optimizer with learning rate 2 × 10−4 and weight decay
10−4 on the parameters except biases. We use a batch size of 512. For contrastive learning, we
calculate the loss symmetrically following standard practice (Chen et al., 2020a). We train the
models for 80 000 steps and observe convergence on Dval. All models use a normalized embedding
space and use τ = 0.1. For AdaSSL-V, we perform linear warmup of β from 0 to 0.1 for 10 000
steps to prevent early KL instabilities. For AdaSSL-S, we fix β = 0.5.

Evaluation. Following standard practice, we train a linear classifier with the
BinaryCrossEntropy loss for each attribute on top of the frozen representations and em-
beddings on Dtrain until convergence and evaluate it on Dtest. We use the F1 score of the minority
class as the evaluation metric because the attributes are highly imbalanced. To do that, we compute
the F1 score for each attribute then report the mean score over attributes.
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Hardware. Each trial of this experiment required approximately 15-20 hours to run, using 12 CPU
cores, 24 GB of system memory, and an NVIDIA L40S GPU with 48 GB of GPU memory.

G.5 Video experiments in §3.3

Data. We construct a custom dataset similar to Moving-MNIST (Srivastava et al., 2015; Drozdov
et al., 2024), where nine-frame videos are generated stochastically on the fly from sample images
in MNIST. For a given image, we first create a black 64 × 64 canvas. Afterwards, we resize the
original 28 × 28 image to 16 × 16 and place it on the canvas after uniformly sampling its initial
center coordinates from [8, 16]. In frames 1-3, the digit moves from this center based on a velocity
in the horizontal direction, denoted by vx,1:3, and in the vertical direction, denoted by vy,1:3. We
sample these initial velocities uniformly from [0, v0] where v0 = 3. Then, with an equal probability,
we sample one direction and change its velocity by adding a Gaussian noise proportional to the
initial velocity (i.e., heteroscedastic):

ι ∼ Bern(0.5) ,

{
vx,4:9 ∼ N

(
vx,1:3,

2
3vx,1:3

)
, vy,4:9 = vy,1:3 , ι = 0

vy,4:9 ∼ N
(
vy,1:3,

2
3vy,1:3

)
, vx,4:9 = vx,1:3 , ι = 1

. (19)

This makes the new velocity in frame 4-9 within (−v0, 3v0) with high probability. Generated video
samples are shown in Figure 6. We refer to this as Setting A.

In Setting B, we let ι depend on the digit input. Concretely, we use equally spaced bins between 0.1
and 0.9 for the ten digits:

ιk ∼ Bern(pk) , where pk = 0.1 + k · 0.9− 0.1

10− 1
, k = 0, . . . , 9 . (20)

This means the distribution of the direction of acceleration varies for different digits.

We partition each sampled video into three-frame segments and use them as x, x+, and x++ (§G.1).
The model predicts f(x+) from f(x) (and optionally f(x++) by AdaSSL and BYOL+Future). The
goal is to capture both the digit class and the velocity in the three-frame video representations. We
partition the 60 000 MNIST images into 50 000 training images and 10 000 validation images and
use each set for generating training and validation videos on the fly. Note that we always sample the
velocities online, and the model observes different videos in every epoch.

Architecture. The encoder f consists of a 3D convolutional encoder, followed by an MLP projec-
tor. The 3D convolutional encoder consists of five convolutional layers with [32, 64, 128, 128, 256]
channels with BatchNorm and ReLU activations after each layer. The first two and the last layer
have spatial-only kernels of dimensions [1, 3, 3] and the third and fourth layers have temporal con-
volutions with kernels of dimensions [3, 1, 1]. The encoder outputs are average-pooled on the spatial
dimensions and then flattened across the temporal dimension resulting in a 768-dimensional repre-
sentation. The representations are passed to an MLP projector with two hidden layers of size 1024,
each followed by BatchNorm and ReLU activations. The output embeddings have a dimensionality
of 128, and are batch-normalized. The projector is followed by an MLP predictor h with two hid-
den layers of dimensionality 1024 with BatchNorm and ReLU activations after each hidden layer.
The predictor output does not use BatchNorm or ReLU. For AdaSSL-V, we use a two-dimensional
r, which is concatenated to f(x) as the predictor input. We use MLPs with one hidden layer of
dimensionality 1024 to parameterize qϕ, pθ, and m. These MLPs use a BatchNorm layer followed
by ReLU activation after each hidden layer. For BYOL+Future, we concatenate the projector embed-
dings f(x) and f(x++) and use it as the predictor input. BYOL+GT predicts f(x+) from f(x) and
r⋆, the ground-truth difference between the velocities of x and x+. We experiment with concatenat-
ing r⋆ directly with f(x) or passing it through a learnable linear embedding before concatenation,
and find that using an embedding layer slightly improves performance.

Hyperparameters. For all methods, we train the model for 75 000 steps with the AdamW optimizer
using a batch size of 128. We use an initial learning rate of 10−4 and decay it following a cosine
schedule, following Grill et al. (2020). We use a constant weight decay of 10−4. For the EMA
momentum, we use a constant decay rate of 0.996. In BYOL+GT, we learn an affine projection
to create an embedding for r⋆ of dimensionality 32. For all AdaSSL models, we use a constant
regularization coefficient β, and in our default setting, dr = 2 and β = 0.001.
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Figure 6: Random samples (nine-frame video sequences) from the stochastic Moving-MNIST
dataset. For each example, the first three frames (context) are shown on the left. Then, three differ-
ent future trajectories of the next six frames (targets) are randomly sampled according to Eq. 19 and
visualized to the right of the initial three-frame segment. The third frame is overlaid on all canvases
for reference. The motion uncertainty arises from random velocity changes along spatial directions.

Table 6: Performance of linear probes trained on frozen representations and embeddings on stochas-
tic Moving-MNIST. Evaluation is performed on the online branch of BYOL.

Model
SETTING A SETTING B

Representations Embeddings Representations Embeddings
Acc. [%] Velocity [R2] Acc. [%] Velocity [R2] Acc. [%] Velocity [R2] Acc. [%] Velocity [R2]

BYOL 90.42 ± 0.94 0.8753 ± 0.0044 87.09 ± 2.41 0.1079 ± 0.0061 91.00 ± 1.07 0.8810 ± 0.0057 88.61 ± 1.79 0.1486 ± 0.0303

BYOL+Future 88.31 ± 1.14 0.9005 ± 0.0063 78.68 ± 0.55 0.5890 ± 0.0242 88.33 ± 1.09 0.8996 ± 0.0059 78.99 ± 0.45 0.6041 ± 0.0186

BYOL+GT 93.09 ± 0.24 0.8814 ± 0.0078 88.95 ± 0.56 -0.0038 ± 0.0060 93.55 ± 0.50 0.8884 ± 0.0062 87.99 ± 0.36 -0.0028 ± 0.0045

AdaSSL-Vβ=0 94.18 ± 0.51 0.8951 ± 0.0066 90.54 ± 0.54 0.2867 ± 0.0184 94.17 ± 0.19 0.8961 ± 0.0028 90.34 ± 0.66 0.2875 ± 0.0219

AdaSSL-V 93.83 ± 0.22 0.9168 ± 0.0015 91.28 ± 0.43 0.8695 ± 0.0185 94.31 ± 0.48 0.9188 ± 0.0006 92.32 ± 0.73 0.8594 ± 0.0035

AdaSSL-S 91.89 ± 0.74 0.9121 ± 0.0028 86.00 ± 0.33 0.8901 ± 0.0247 91.95 ± 0.53 0.9121 ± 0.0032 85.53 ± 1.90 0.8750 ± 0.0121

Evaluation. To perform evaluation, we train linear probes with CrossEntropy (for digit clas-
sification) and MSE (for velocity regression) losses on top of the frozen video representations and
embeddings of the online branch on Dtrain until convergence. We then report the digit prediction
accuracy and velocity decoding R2 scores on a fixed video test set generated from the 10 000 test
images of MNIST.

Hardware. Each trial of this experiment required approximately 6-8 hours to run, using six CPU
cores, 32 GB of system memory, and an NVIDIA H100 GPU with 80 GB of GPU memory.

H Additional results

H.1 Density

To understand why AdaSSL outperforms baselines in Table 2, we visualize the aggregated marginal
distribution of z+ implied by the learned predictor, Ez[pmodel(z

+ | z)], using Monte-Carlo estimates
from true pairs p(z, z+) (Fig. 7). For InfoNCE, we first encode the input x = g(z) and then
learn a projection from the embedding space to the ground-truth latent space by training a linear
regressor from f(g(z)) to z+. For H-InfoNCE, we pass f(g(z)) through the predictor and project
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Figure 7: Aggregated marginal distributions Ez[pmodel(z
+ | z)] across latent dimension pairs. In-

foNCE produces collapsed densities and H-InfoNCE partially recovers variability, while AdaSSL-V
aligns closely with the ground truth. The improvement is most evident in columns two and three,
where AdaSSL-V captures both spread and orientation while baselines do not.
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Figure 8: Image retrieval results on 3DIdent. Top left: query image. Bottom left: five nearest
neighbors on the embeddings. Right: controllable retrieval by AdaSSL-V.

the predicted representations. For AdaSSL-V, we sample from the learned prior r̃ ∼ pθ(r | x)
and use r̃ to edit the embeddings with t(f(x), r̃) and project the edited embeddings. InfoNCE
embeddings produce overly concentrated densities, indicating their inability to accurately capture
complex conditional uncertainties. H-InfoNCE partially corrects this, while AdaSSL best fits the
ground-truth distribution, suggesting that its improvement arises from more accurate modeling of
the conditional uncertainty.

H.2 Retrieval

In Fig. 8 (left), we perform standard retrieval to accompany our analysis in §C. We retrieve the five
nearest neighbors of the query image in the embedding space. We observe that both AdaSSL and
the baselines are able to retrieve visually similar images. There are still some wrong retrievals in
color and spotlight, and rotation is especially hard to learn for all methods.

H.3 Stochastic Moving-MNIST

We provide full evaluation results on stochastic Moving-MNIST in Table 6. These results further
demonstrate AdaSSL’s effectiveness in achieving strong performance in both digit recognition and
velocity decoding. Our results and ablations in the main text in Fig. 1 uses Setting A because we do
not find significant difference between the results.
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