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Abstract

Ensuring high-quality, representative, and secure datasets is crucial for compliance
with emerging regulatory frameworks, such as the European AI Act. In this paper,
we survey five data-centric challenges: inherent data quality, application-specific
data suitability, data sufficiency, dataset variability, and data security, and link
each to both established and emerging methods and research. We then propose
a workflow that aligns best practices from machine learning (ML) research with
regulatory requirements, showing how each step can be operationalized to meet
the “relevant, representative, error-free” criteria. Our analysis highlights key
opportunities for regulators to refine their mandates and for ML researchers to
conduct follow-up research.

1 Introduction

High-risk AI systems depend critically on training data that is “relevant, representative, error-free, and
complete” (European AI Act Art. 10 (3)). Yet, practitioners often satisfy these mandates with coarse
governance checklists and simple metrics (e.g., label-error rate, missing-value fraction), leaving
a gap between regulatory intent and technical practice. Concurrently, AI research has produced
methods such as data attribution that can directly address legal requirements but remain underused in
compliance workflows. In this paper, we bridge that gap by:

1. Proposing a regulation-aligned taxonomy of five ML data challenges (inherent data quality;
application-specific data suitability; sufficiency; variability; and security),

2. Mapping established and emerging methods to this taxonomy, and

3. Sketching an exemplary workflow for “regulatable ML.” Our analysis highlights underuti-
lized areas, especially data attribution and valuation, that can address all five challenges and
provide strong motivation for follow-up research.

2 Related Work

Data quality in ML encompasses regulatory requirements, documentation, quantitative metrics, and
other methodologies. We review major contributions in each area and highlight gaps.

Regulatory Frameworks The European AI Act [18] mandates that training, validation, and test
sets be “relevant, representative, error-free, and complete” (Art. 10 (3)), but leaves the technical
implementation open. These criteria are further detailed in standards, such as those from the ISO/IEC
JTC 1/SC 42 committee for AI. Most notably ISO/IEC 5259 [35] specifies 24 data-quality metrics
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for analytics and ML. ISO/IEC 5259 organizes these metrics along two dimensions (inherent and
context-dependent data quality) and operationalizes the notions of relevance, representativeness,
accuracy, and completeness, albeit at a relatively high level of abstraction. Definitions of each metric
are provided in Appendix C.

Data Documentation and Transparency Standardized documentation frameworks, such as Data
Cards [65] and Datasheets for Datasets [26], record a dataset’s origin, composition, labeling process,
and limitations. While these efforts support regulatory compliance by improving transparency, they
do not engage directly with legal mandates or prescribe quantitative metrics for quality.

Data Quality Metrics Surveys on data quality metrics [95, 11, 55, 29, 64] collate measures,
often aligned with ISO/IEC 5259, that quantify dimensions such as completeness, consistency,
and timeliness. Although taxonomies vary, a common dichotomy separates inherent and context-
dependent dimensions. Few works explicitly tie metric selection to regulatory requirements, leaving
a gap between theoretical measures and compliance.

Data-Centric AI Summaries and Recommendations Jakubik et al. [36] distinguish between
dataset extension (collection) and refinement (quality improvement), illustrating commercial tooling
for each. Zha et al. [90] organize the data lifecycle into training-data development, inference-data
development, and maintenance, providing resources and tools. Hammoudeh and Lowd [34] survey
methods for training-data influence with a technical focus, and Yu et al. [89] review dataset distillation
techniques, highlighting applications in continual and federated learning, privacy, and robustness.
Practitioner-oriented recommendations by Lones [48], Orr and Crawford [61], and Zhao et al. [94]
advocate for dataset diversification, rigorous quality checks, and transparent documentation. However,
all these works do not consider regulatory criteria explicitly.

2.1 Generative AI and its Impact

Generative AI (GenAI) can both improve existing data practices for ML and be influenced by the data
itself, potentially exacerbating existing challenges. GenAI can enhance data practices by augmenting
scarce datasets (e.g., rare disease cases), improving fairness (e.g., by generating diverse synthetic
profiles), and simulating variability (e.g., edge cases for autonomous systems) [50, 5]. However, this
can also introduce artifacts, amplify biases, or degrade performance by erasing real-world distribution
nuances, leading to errors and outputs that undermine safety in applications like finance or healthcare
[73, 8]. Additionally, GenAI’s reliance on vast, often opaque pretraining corpora raises ethical and
legal concerns [88, 49].

Due to the immense impact of GenAI, regulators have felt the necessity to separately regulate it,
resulting in specific rules for General Purpose AI, which includes GenAI. For such systems, the AI
Act [18] additionally requires documented training sources (Art. 53(d)) and copyright compliance
policies (Art. 53(c)).

2.2 Interim Conclusion

While prior work addresses legal mandates, documentation standards, metrics, and methodologies,
these threads remain largely siloed. Moreover, the rapid emergence of GenAI both amplifies these
challenges, by introducing novel data-generation and usage patterns, while it depends critically on
data quality itself. In the next section, we introduce key terminology to bridge this gap.

3 Taxonomy of ML Data Challenges

Both ML research and regulatory texts use varied, and often opaque, terminology to describe
data challenges, even when discussing the same issues. For example, the EU AI Act speaks of
completeness, which can refer both to domain coverage and to the completeness of feature sets.
Similarly, terms like appropriateness and representativeness appear interchangeably across studies to
describe a dataset’s fitness for its intended use case.

To eliminate this ambiguity, we propose a unified taxonomy of five categories: INHERENT DATA
QUALITY, APPLICATION-SPECIFIC DATA SUITABILITY, DATA SUFFICIENCY, DATA VARIABILITY,
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CHALLENGE EXAMPLES

INHERENT DQ Annotation errors; duplicate records; missing values; ambiguous labels
SUITABILITY Mismatched distributions; class imbalance; inappropriate train/test splits
SUFFICIENCY Insufficient data; excessive data leading to high cost or privacy concerns
VARIABILITY Temporal drift; evolving user behavior or data-collection methods
SECURITY Data breaches; unauthorized access or modifications; data poisoning

Table 1: Taxonomy of data challenges in ML, with examples.

and DATA SECURITY. Table 1 summarizes each category with examples. Where existing terms are
precise and unambiguous, we adopt them; otherwise, we introduce new labels to ensure clarity.

Inherent Data Quality Inherent data quality encompasses all metrics that can be computed with
respect to the available data without any further knowledge. Key challenges include ensuring
label and annotation accuracy, identifying and correcting noise and errors such as incorrect values,
inconsistencies, and duplicate data [59, 10]. These issues can degrade model accuracy, skew the
training process, and inflate dataset size.

Relationship to other sources: ISO/IEC 5259 [35] defines inherent data quality similarly. GDPR
Article 5(1)(d) requires that personal data be accurate, and the AI Act (Art. 10) mandates error-free
datasets.

Application-Specific Data Suitability Application-specific data suitability refers to the degree
to which a dataset aligns with the specific conditions of its intended deployment environment.
Challenges include when training data diverges from operational reality, for example, through biased
sampling that creates class imbalances [12, 54] or through data-splits that fail to mirror the true input
distribution. Such mismatches rest on assumptions about real-world conditions.

Relationship to other sources: The AI Act (Art. 10) emphasizes that datasets must be representative.
Other works use terms like “appropriateness” to capture similar concerns.

Data Sufficiency Data sufficiency addresses whether a dataset contains an adequate, but not
excessive, amount of information. Too little data can hamper model generalization, especially for rare
events or classes; too much data can raise costs, latency, and privacy risks. Furthermore, acquiring
and labeling data often entails significant expense. Techniques like transfer learning [96], and active
learning [74] maximize data utility.

Relationship to other sources: GDPR Article 5(1)(c) mandates the principle of “data minimization,”
requiring that personal data be “adequate, relevant and limited to what is necessary” for the purposes
for which they are processed. By analogy, the EU AI Act mandates that training, validation, and
testing datasets be “relevant” to the AI system’s intended use.

Data Variability Data variability describes changes in data over time, such as evolving user
behaviors, shifting environments, or updated collection methods, causing drift between training and
real-world data. Static models may fail in dynamic settings, reducing reliability. Drift detection [6]
and adaptive methods address this.

Relationship to other sources: AI Act Article 15 requires monitoring for high-risk systems to address
drift [18]. GDPR Article 5(1)(d) mandates that personal data must be kept up-to-date to maintain its
relevance and integrity [17].

Data Security AI systems are prone to both classical security aspects related to data access and
novel attack schemes such as data poisoning [80] or membership inference attacks [75]. Classical
privacy concerns involve safeguarding sensitive information from unauthorized access and ensuring
compliance with regulations such as GDPR [17]. Security, on the other hand, focuses on protecting
data from breaches, malicious attacks, and unauthorized modifications. Encryption, secure data
storage, and access controls are measures to maintain data integrity and security. From the ML side,
techniques like data anonymization [56], differential privacy [4] and measures against data poisoning
[80] can help protect individual privacy while maintaining data utility.
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INHERENT SUITABILITY SUFFICIENCY VARIABILITY SECURITY

Data Validation ✓
Drift Detection ✓
Feature Selection ✓ ✓ ✓
Active Learning ✓ ✓
Core-Sets ✓ ✓
Data Augmentation ✓ ✓ ✓
Syntehtic Data ✓ ✓ ✓ ✓ ✓
Data Difficulty ✓ ✓
Data Distillation ✓ ✓
Memorization ✓ ✓ ✓
Explainable AI ✓ ✓ ✓ ✓
Data Attribution ✓ ✓ ✓ ✓ ✓
Sample Size ✓ ✓ ✓

Table 2: Data Challenges and corresponding methods and research areas. The top methods are more
established whereas the bottom ones require more research.

Relationship to other sources: Regulatory frameworks (e.g., AI Act Art. 15; GDPR Art. 32) prescribe
technical and organizational measures to safeguard data integrity and confidentiality. In ML literature,
this area is often termed privacy-preserving ML.

4 Methodology

The aim of this paper is to map emerging and established research efforts onto our five data challenges.
To this end, we conducted a structured literature review. First, we queried Google Scholar, arXiv, and
the proceedings of major AI/ML venues (e.g., NeurIPS, AAAI, DMLR) for studies on data-centric
practices and regulatory requirements. Second, we extracted methods catalogued in recent surveys
and overviews [48, 90, 36] and designated these as established. Finally, we identified methods from
our search that were not covered in those summaries, labeled them as emerging, and mapped every
method to our taxonomy of data challenges.

5 Mapping Established Methods to Regulatory Needs

We now show how common techniques address regulatory requirements. Table 2 (top) summarizes
the mapping. For each method, we illustrate opportunities to address the identified data quality issues.
We also discuss potential challenges associated with implementing these methods in practice.

Data Validation Techniques and Metrics Data validation aims to ensure that training datasets are
accurate, consistent, and free of errors. Statistical techniques can detect and correct label mistakes
[59, 60], while tools like TensorFlow Data Validation (TFDV) flag anomalies and generate descriptive
statistics [10]. Beyond error detection, several works introduce quantitative metrics for data quality.
For instance, Mitchell et al. [55] review measures such as Euclidean distance and Kullback–Leibler
divergence, and Zhao et al. [93] analyze over 100 machine learning datasets to propose a framework
for evaluating reliability, validity, and diversity. Other studies examine dimensions such as accuracy,
completeness, consistency, and timeliness. We provide a comprehensive comparison of these metrics
in Appendix C [31, 95, 11].

Opportunities: Data validation techniques play a crucial role in detecting irregularities within datasets,
which can significantly impact model performance [59]. By identifying and correcting these errors,
data validation enhances dataset accuracy and reliability, ultimately leading to improved model
performance and increased trustworthiness. This addresses INHERENT data quality.

Challenges: One critical challenge in data validation is distinguishing between errors and edge cases,
particularly when automatic corrections are applied. Automatically fixing errors can inadvertently
alter data instances that were originally correct or overlook complex errors that require human
judgment.
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Drift Detection Drift Detection refers to the recognition of shifts between the data a model was
trained on and real-world data. Identifying such drifts can be achieved by tracking performance
changes over time or, from a data perspective, by comparing the distribution of the training data to
that of the real-world data [28].

Opportunities: Drift detection directly addresses data VARIABILITY by identifying shifts in live data.
This information can be utilized to take various actions, such as stopping the model, triggering a
fail-safe mode, or requiring human intervention to reassess or retrain the model.

Challenges: Although drift detection is crucial, implementing it effectively can be challenging.
Identifying the right metrics for detecting drift and establishing thresholds for action can be complex.

Feature Selection Feature Selection has been well addressed in the literature [78]. Jakubik et al.
[36] summarize it as one of the two major components of data-centric AI. They distinguish between
methods aimed at improving feature quality, which include removing irrelevant features, and methods
for creating or acquiring new relevant features.

Opportunities: Feature selection can reduce the size of the dataset while also enhancing its represen-
tativity. It addresses both INHERENT data quality and SUITABILITY; removing unnecessary features
increases the inherent value of the data, while certain features may only be essential for specific tasks,
thereby improving the contextual relevance of the dataset. Furthermore, the choice of features may
present SECURITY issues, as they might reveal sensitive information.

Challenges: Although feature selection improves efficiency and relevance, it can also introduce or
amplify biases.

Active Learning Active Learning aims to optimize model performance under a fixed annotation
budget by iteratively selecting the most informative examples for labeling. Given a small labeled
set D and a large unlabeled pool U , the algorithm may query an oracle (e.g., a human annotator) for
up to b labels. Active Learning strategies often focus on those unlabeled instances with the highest
predictive uncertainty [74].

Opportunities: Active learning efficiently utilizes labeling resources by focusing on the most informa-
tive data instances, thereby addressing the challenge of SUFFICIENCY. Furthermore, active learning
supports the selection of the most relevant and diverse data instances for a specific task, enhancing
the representativity of the dataset for that application. This, in turn, addresses SUITABILITY, ensuring
that the model is trained on data that accurately reflects the target domain.

Challenges: Implementing active learning can be computationally intensive, as it requires iterative
model training and evaluation. Additionally, the effectiveness of active learning heavily depends on
the choice of the query strategy, which may not be universally optimal for all types of data and tasks.

Core-Sets Core-Sets are small subset S ⊆ D of a full dataset D such that the learning algorithm
achieves similar performance when trained on this subset as it would on the entire dataset [20]. A
popular method for finding core-sets is the use of clustering techniques, where representative samples
are selected based on their distances to cluster centroids.

Opportunities: Core-sets significantly reduce the volume of data required for training without compro-
mising model performance. This is particularly beneficial for large datasets, as it minimizes storage
and computational needs while retaining the essential characteristics of the data. By ensuring that
the dataset remains manageable and efficient, core-sets address the challenge of data SUFFICIENCY.
Conversely, if a smaller dataset can achieve similar performance to a larger one, the smaller dataset
should be favored.The data size can be considered an INHERENT property.

Challenges: Core-sets might not capture all the nuances of the original data, particularly in scenarios
where rare events or minority classes are important. This limitation can lead to reduced performance
in applications where such events are critical.

Data Augmentation Data Augmentation methods enhance the quality and diversity of training
data by artificially increasing the size of datasets. Techniques like Synthetic Minority Over-sampling
Technique (SMOTE) [12] can be effective in addressing data representativity issues, particularly class
imbalances.
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Opportunities: Data augmentation techniques contribute to creating a more diverse and representative
dataset. By artificially increasing the data size, these methods effectively address class imbalances
and enhance the model’s generalizability, leading to improved performance and fairness. While data
augmentation primarily addresses data SUFFICIENCY, it can also improve SUITABILITY for specific
tasks and may provide partial defenses against overfitting and model vulnerability to SECURITY
breaches by diversifying the training data.

Challenges: A recent article titled The Good, the Bad, and the Ugly Sides of Data Augmentation
summarizes the challenges well [46]. Artificially modified or balanced data may not represent
real-world scenarios, potentially introducing noise or artifacts that could negatively affect model
performance [16].

Synthetic Data Synthetic Data refers to the creation of artificial data for ML. This approach is
particularly advantageous in scenarios where data collection is difficult, expensive, or where privacy
concerns are significant [5, 50]. Typically, techniques such as Generative Adversarial Networks
(GANs) or stable diffusion are employed to generate this data.

Opportunities: Synthetic data enables the generation of large, diverse datasets without collecting
sensitive real-world samples, thereby reducing cost and time while safeguarding privacy and ensuring
regulatory compliance. By filling gaps, e.g., underrepresented classes or rare scenarios, and simulating
varied conditions, it addresses INHERENT data quality, SUITABILITY and VARIABILITY, and mitigates
SECURITY risks tied to real data.

Challenges: Generating synthetic data can be challenging, especially for images, because it often
requires training large models like GANs [30] or diffusion models [68]. Additionally, synthetic data
can introduce another layer of bias and a content gap [85]. Obtaining performance comparable to or
superior to real data remains a significant hurdle in many applications [5].

6 Mapping Emerging Methods to Regulatory Needs

Next, we map emerging directions onto our taxonomy. We classify a method as “emerging” if it
was identified in our review but is not yet covered by existing surveys. Table 2 (bottom) provides an
overview of these methods and the primary data challenges they address.

6.1 Data Difficulty

Meding et al. [53] describe dichotomous data difficulty and show that many datasets, such as
ImageNet, suffer from imbalanced data difficulty. There are many data instances in the test set
that are never classified correctly (called impossible) and many that are always classified correctly
(called trivial). They show that models can be better compared on the remaining instances. A similar
conclusion can be drawn for label errors. Northcutt et al. [59] show that larger models tend to be
favored on datasets with label errors, while smaller models might actually outperform them when
evaluated on a dataset without errors.

Opportunities: Understanding dichotomous data difficulty enhances the precision of model per-
formance evaluation. Performance across these distinct samples could be assessed specifically,
potentially through extending labels with metadata that indicates the difficulty level of individual
samples. This approach could also help identify areas of the dataset that are underrepresented. If
certain concepts that tend to be more difficult can be identified, it may suggest the need for gathering
additional training data. Thus, this understanding can serve as both an INHERENT data quality metric
and a means to address data SUFFICIENCY.

Challenges: The practicability across diverse domains requires additional empirical study.

6.2 Data Distillation

Data Distillation is a relatively new field in ML, first introduced by Wang et al. [86]. Conceptually
related to core-sets, the goal of data distillation is to condense a large dataset into a smaller one that
maintains similar performance. The key distinction is that distilled data consists of synthetic images,
which are often not recognizable by humans. A popular method for creating these synthetic images is
gradient matching [92].
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Opportunities: Similar to core-sets and synthetic data, data distillation can reduce the required dataset
size, thereby addressing the data SUFFICIENCY issue. Furthermore, as Yu et al. [89] point out, it can
also contribute to resolving privacy, security, and robustness challenges, thus addressing SECURITY
challenges.

Challenges: Although data distillation holds significant potential and has been evaluated on real-world
examples, such as medical data [45], its practical applications, particularly in meeting regulatory
demands, remain underexplored.

6.3 Memorization

Memorization occurs when a model heavily relies on unique training instances to make predictions.
For example, in a facial recognition dataset, a single image of a person with a distinctive tattoo may be
memorized, improving accuracy for that individual but risking privacy through membership inference
attacks [87]. Feldman [21] defines a training instance as unique if its removal reduces the model’s
ability to classify it correctly. Estimating memorization involves training models with and without
the instance, though efficient methods exist [21, 38]. Jiang et al. [38] further use memorization as
a measure to categorize the structure of a dataset and show that mislabeled instances are harder to
memorize.

Opportunities: Memorization scores identify underrepresented regions and label errors, and, addition-
ally, have proven useful in data pruning [77], thereby addressing data SUFFICIENCY and INHERENT
data quality. They also flag privacy risks, enhancing SECURITY.

Challenges: A primary issue is the difficulty of translating memorization scores into actionable data
collection strategies. Memorization scores identify unique training samples critical for generalization
but do not inherently specify what additional data to collect.

6.4 Explainable AI

Several works explore how explainable artificial intelligence (XAI) can be used as a tool for improving
ML models. While early works have demonstrated that XAI techniques, such as saliency maps,
provide insight into the inner functionality of ML models [67, 51], several recent works address
the question of how useful this is for debugging ML models [1, 2, 3, 13, 19, 47, 71, 57, 23, 40, 69],
the certification of AI systems [25], and for building trust among users [62, 81, 82, 91, 52, 41,
72]. Although these works primarily focus on model debugging, practical recommendations often
address data issues. A well-known example is provided by Ribeiro et al. [67], where the AI model
recognizes wolves based on the presence of snow in the background rather than the animal’s features.
Consequently, the training data has to be extended with more images of wolves without snow. This
highlights how current research on XAI can be leveraged to address data quality challenges in ML.

Opportunities: XAI can serve as a tool for identifying biases and inconsistencies within datasets [70].
By understanding the model’s decision-making process, data scientists can pinpoint problematic areas
in the dataset and take corrective actions, such as collecting more representative data or rebalancing
the dataset. This approach addresses both INHERENT data quality and SUITABILITY and serves as an
indicator of data SUFFICIENCY. Furthermore, it could reveal SECURITY issues by indicating whether
the model has learned to replicate specific data instances and even reduce liability risks [24].

Challenges: Interpreting the explanations provided by XAI tools can be difficult, requiring expertise
to ensure that the correct actions are taken based on the insights provided, often, the obtained insights
are opaque [25, 24]. There is also the risk of automation bias, which may lead to overlooking other
important aspects of model performance and data quality. Finally, although the application of XAI
for data seems straightforward, it is underrepresented in practice [25]. This underrepresentation is
further underscored by its absence in existing literature reviews, indicating that its implementation is
more complex than it might appear.

6.5 Data Attribution

Data Attribution can be interpreted as data-centric XAI method. It comprises two closely related
tasks: instance-level attribution and data valuation. In instance-level attribution, each test instance
j is linked back to every training instance i by computing an influence score Mi,j . A high positive
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score indicates that removing sample i would likely cause instance j to be misclassified, whereas
a high negative score means that sample i itself contributes to j’s misclassification. The full set of
scores forms an attribution matrix M ∈ Rn×m; since this matrix can grow very large, practitioners
typically display only the top five positive and top five negative influencers. Efficient algorithms such
as TRAK [63] achieve this without retraining the model for every training–test pair.

Data valuation assigns each training example i a single scalar value vi that reflects its overall impact
on model performance. The value of instance i can be interpreted as the average attribution score
vi =

∑m
k=0 Mi,k. Although data values can be computed from an attribution matrix, e.g., created

by TRAK, it is currently more common to rely on sampling-based methods. Ghorbani and Zou
[27] apply the Shapley value from cooperative game theory to data valuation. In recent years, many
methods have been introduced to speed up the computation of data values, most of which aim to find
better and faster approximations for the Shapley value [84, 43, 44, 37, 76].

Opportunities: In theory, data attribution and valuation can address the full spectrum of data-
quality challenges. By discarding low-value examples, they enable the detection of label errors
and the removal of noisy data, thereby improving INHERENT data quality. Selecting high-value
samples tailored to specific domains or environmental conditions further supports domain transfer and
enhances SUITABILITY and VARIABILITY. Efficient training-set reduction by eliminating low-value
data also contributes to DATA SUFFICIENCY by ensuring that only the most informative samples are
retained. More recently, data valuation has been adopted in data marketplaces, where prospective
buyers estimate and acquire valuable datasets without direct access to the raw content [79], thus
further addressing DATA SUFFICIENCY. Finally, high-value instances tend to be unique or rare, which
can expose models to privacy vulnerabilities and underscore critical SECURITY considerations.

Challenges: Despite the rapid growth of XAI research, data attribution remains underexplored and is
not yet widely adopted by practitioners [58]. Although data valuation is often cited as a tool for dataset
understanding [90], its concrete benefits, limitations, and implications for representativeness are rarely
analyzed. The complex dependencies between training and test instances make raw attribution values
hard to interpret, deriving actionable security recommendations from a ranked list of influencers is
nontrivial (see Fig. 1 of the Appendix).

6.6 Sample-size Estimation

Determining appropriate sample sizes for both test and training sets is crucial for reliable model
evaluation and efficient data collection.

Several theoretical approaches have been proposed for test-set sizing. Guyon [33] suggest that the
optimal fraction r reserved for validation (or test) should scale inversely with the square root of the
number of model parameters |θ|: r = 1√

|θ|
.

An alternative formulation asks what absolute number of test samples n is needed to estimate error
rates with statistical significance. Guyon et al. [32] gives the rule of thumb n ≈ 100

p , where p is the
expected error rate of the best recognizer (e.g., a human). Additional formulations are discussed in
Appendix D.

When test sets are small, high variance in performance estimates can undermine confidence.
Bouthillier et al. [9] recommend running multiple evaluation trials to stabilize metrics in this case.
Although the standard deviation is high with small test sets, repeated runs can compensate this when
gathering more data is infeasible (see Figure 2 of the Appendix for an example).

For training-set sizing, simple heuristics (e.g. the “one-in-ten” rule of ten examples per parameter)
lack solid justification. A more informative approach is to plot model performance against the fraction
of training data, which typically exhibits logarithmic gains [22, 83]. Early additions yield large
improvements, while returns diminish beyond a certain point (e.g., performance surpasses 90% at
50% of data, with less than a 5% gain from doubling in Appendix B).

Opportunities: Determining the appropriate test-set size ensures that performance estimates are
both statistically sound and reflective of real-world conditions, thereby addressing SUITABILITY.
Estimating the amount of training data helps avoid unnecessary collection and annotation costs,
addressing data SUFFICIENCY. Finally, the total dataset size constitutes an INHERENT quality
attribute of the data.
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Challenges: In domains with scarce or costly data, gathering an ideal number of samples may simply
be infeasible. Even when test or training sets are sufficiently large, models can still pick up spurious
correlations. Moreover, despite foundational work on sample-size estimation predating the 2000s,
systematic and widely adopted estimation methods seem underutilized in practice today.

7 An Exemplary Workflow for Regulated ML

So far, we have positioned both established and emerging data-centric methods in our taxonomy and
highlighted promising research directions. We now propose an exemplary, five-step workflow as a
provisional blueprint for developing a fully “regulatable” ML process:

1. Define Objectives & Scope
(a) Enumerate use-case requirements and edge cases.
(b) Document data obligations (e.g., privacy, fairness, robustness).
(c) Record acceptance criteria.

2. Plan Acquisition & Splits

(a) Derive the required test-set size (e.g. n ≈ 100/p for error rate p or r = 1/
√
|θ| for

model complexity θ).
(b) Collect roughly 5n samples and stratify into train (3n), test (n), and holdout (n) subsets.

3. Validate Inherent Quality & Document
(a) Run automated checks (e.g. CleanLab for label noise).
(b) Produce a Data Card recording provenance, quality metrics, and any corrections

applied.
4. Advanced Assessment & Remediation

(a) On the holdout set, perform drift detection, data-difficulty analysis, and attribu-
tion/valuation studies (cf. Sec. 6).

(b) Identify coverage gaps and remediate via targeted relabeling, augmentation, synthetic
data generation, or dataset distillation.

5. Final Audit & Continuous Monitoring
(a) Merge the holdout data back into training, finalize all documentation, and archive an

audit trail.
(b) In production, deploy drift-and-bias monitors and schedule periodic revalidation to

ensure ongoing compliance.

8 Summary, Limitations & Future Work

In this paper, we introduced a regulation-aligned taxonomy of five ML data challenges, systematically
mapped both established and emerging data-centric methods to these challenges, and sketched a
five-step workflow for “regulatable ML”. While these methods offer powerful techniques to enhance
the quality, safety, and regulatory compliance of AI systems, they require further empirical validation
and integration into practical toolchains and workflows.

Looking ahead, researchers can refine and validate these methods in real-world settings, closing the
gap between theoretical promise and operational impact. Regulators, where technically feasible, can
explore incorporating elements of this framework into emerging AI oversight regimes. Notably, data
attribution and valuation, despite their unique ability to tackle all five identified challenges, remain
underutilized in both industry and policy. This offers potential for follow-up work, motivating new
tools, benchmarks, and standards.
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Appendix

A Data Attribution Example

Test Sample Positive Influence

Negative Influence

Figure 1: Example of data attributions computed with TRAK. The leftmost image is the test sample
(a cat). Above it are the five training images with the highest positive influence: adding them to
the training set increases the model’s confidence in correctly classifying the test image. Below are
the five images with the strongest negative influence: their presence tends to reduce classification
confidence. Some attributions can be counterintuitive (e.g. a dog image showing positive influence
on the cat sample), highlighting challenges in interpreting influence scores.
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B Removing Train and Test Data
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Figure 2: Blue: Test accuracy and deviation (y-axis) when training 10 models on full training data
with increasing test size (x-axis). Red: Test performance and deviation (y-axis) with increasing size
of training data (x-axis) on full test set.
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C Data Quality Metrics from Research

Table 3: Examples of different data measurements from [55].

DISTANCE DENSITY DIVERSITY TENDENCY ASSOCIATION

Physical Sci-
ences

Length Mass-per-
volume

Biodiversity Mean, Median,
Mode

Correlation

General
Data
Measures

Euclidean Dis-
tance

Data Density Gini Diversity Burstiness

Cosine Similar-
ity

KNN Density Vendi Score

Earth Mover’s
Distance

Kullback-
Leibler Diver-
gence

Modality-
Specific
Data
Measures

Word Mover’s
Distance (lan-
guage)

Information
Density (lan-
guage)

Text Diversity
(language)

Perplexity
(language)

Pointwise Mutual
Information

Levenshtein
Distance (lan-
guage)

Idea Density
(language)

Lexical Diver-
sity (language)

Fit to Zipf’s Law
(language)

Inception Dis-
tance (vision)

The Incep-
tion score
(vision)

Image Diversity
(vision)

Subset Diver-
sity (vision)
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Table 4: Data Quality dimensions, metrics, descriptions, and examples from [95].

DIMENSION METRICS DESCRIPTION EXAMPLES

Intrinsic Correctness A record in a dataset is free of errors. Before starting a mailing campaign, the correctness of the
attributes “postal code" shall be evaluated, and even small
deviations shall be penalized because a deviation of only 1%
(the postal codes 80000 and 79200) hinders the delivery of a
mailing.

Data is correctly labeled if it is a labeled
record.

In the medical domain, an informal phrase of ‘’lack of feeling"
should be labeled as “numbness".

Duplication Measures if the same instances repeat in
the dataset, especially in both the training
and test datasets.

If a record in a medical concept training dataset is “Hunger
– don’t want to eat", and there is exactly the same record in
a test dataset, then the record is considered as an overlapped
record in the two datasets.

Trustworthiness Defines how factual the source that pro-
vides the information is. It can be sub-
jectively evaluated, such as indicating the
level on a scale, or the data can go through
fact-check algorithms.

For a medical concept dataset, it should be obtained directly
from the hospital’s system, which undergoes regular data qual-
ity checks and is maintained according to industry standards.

Contextual Class imbal-
ance

Evaluates if the distribution of examples
across the known classes is biased or
skewed.

Most of the contemporary works on class imbalance fall into
the imbalance ratios ranging from 1:4 up to 1:100. The imbal-
ance ratio may range from 1:1000 up to 1:5000 for extreme
class imbalance problems.

Completeness A complete dataset should include as few
missing values as possible.

A medical insurance dataset must include a customer’s birth-
date, otherwise the medical consumption forecast model per-
formance will be hindered.

ComprehensivenessA dataset contains all representative sam-
ples from the population.

In a medical text classification task, the training dataset should
contain sufficient labeled medical texts covering all the condi-
tions, symptoms, and treatments.

Unbiasedness Refers to whether the data used for ML
training has a distribution bias or histori-
cal bias.

Photo recognition software does not recognize the facial ex-
pressions of ethnic minorities, or electronic soap dispensers
that do not respond to darker skin tones because the training
image datasets have an insufficient representation of some
geographic regions.

Variety Requires each validation dataset and
the test dataset to contain a significant
amount of new data compared to the cor-
responding training dataset.

The percentage of the overlapped data between a
test/validation dataset and its corresponding training dataset
should be as low as possible, such as less than 10%.

Representational Conformity Measures how much the data conforms to
the conventions for capturing information
in a certain manner, including machine-
readable data structures and formats for
capturing specific attributes.

In a text classification task, a dataset of textual documents is
labeled with sentiment (positive, negative, neutral). The labels
should be encoded following a standardized set of categories,
and all data processing, such as removing punctuation, con-
verting text to lowercase, and tokenizing sentences, should be
made to the whole dataset.

Consistency Requires data to be presented in the same
format and to be compatible with previ-
ous data.

In an image classification task, if one dataset uses pixel values
in the range [0, 255], while another dataset scales pixel values
to the range [0, 1], this will cause inconsistency in model
training and predictions.

Accessibility Sufficiency High data sufficiency ensures that data is
readily accessible with defined user per-
missions for access and modifications.

In a healthcare ML application for diagnosing diseases from
medical images, user entitlements are managed through strict
access controls, allowing only authorized medical profession-
als and data scientists to access the images.
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Table 5: Mapping of EU AI Act (Art. 10) dataset quality requirements to ISO/IEC 5259 [35]
definitions.

METRIC DESCRIPTION CATEGORY

Accuracy The degree to which data correctly describes the “real
world” object or event.

Inherent

Completeness The extent to which data has no missing values. Inherent

Relevance The extent to which data is applicable and useful for the
intended purpose.

Inherent

Representativeness The degree to which data accurately reflects the broader
population or phenomenon.

Inherent
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Table 6: Recommendations for Reliability and Validity from Zhao et al. [93].

TOPIC RECOMMENDATION DESCRIPTION

Reliability Inter-annotator
agreement

An established method for assessing reliability, particularly in crowdsourcing, is
through inter-annotator agreement. This method often entails multiple annotators
labeling an instance, with the final label determined by a majority vote. Another
method to gauge inter-annotator reliability is by employing statistical measures
of agreement. We find that some text datasets provide quantitative metrics to
quantify inter-annotator agreement, such as Fleiss‘s κ or Cohen‘s κ. While
consensus methods are employed in both text and image datasets, quantitative
metrics for inter-annotator agreement are reported exclusively in text datasets.
We recommend that image dataset curators also incorporate these statistical
measures when evaluating crowdsourced labels.

Test-retest
reliability

Another approach that dataset collectors can adopt is the test-retest method.
In education, this method involves administering the same test twice over a
period, with consistent results indicating reliability. This principle is particularly
relevant when assessing the reliability of collection methods like web scraping.
For instance, curators can reapply the same methodology to recollect instances,
validating whether the recollected dataset maintains the same diversity properties.
Nonetheless, a lack of reliability from these tests does not necessarily imply
that the collection methodology inadequately captures diversity. Changes in the
underlying data distribution over time can influence the results. For example,
when evaluating linguistic diversity using data scraped from Reddit, major
societal events, such as elections, can unexpectedly alter the distribution. Even in
such cases, measuring test-retest reliability remains valuable for gaining insights
into potential shifts in data distributions.

Validity Convergent validity:
Cross-dataset
generalization

Commonly employed to evaluate "dataset bias," cross-dataset generalization
enables researchers to compare datasets. By utilizing existing datasets with
similar structures (e.g., label taxonomy, modality) and constructs of diversity,
collectors can train on their dataset and test on existing datasets or vice versa,
comparing relevant metrics such as accuracy. Model performance can also be
assessed against standard train-test splits from the same dataset. If the models
perform similarly in both cross-dataset and same-dataset scenarios, it suggests
that the datasets have similar distributions for the target variable, indicating cor-
related constructs of diversity. Model performance can also be assessed against
standard train-test splits from the same dataset. If the models perform similarly
in both cross-dataset and same-dataset scenarios, it suggests that the datasets
have similar distributions for the target variable, indicating correlated constructs
of diversity. However, a constraint of employing cross-dataset generalization is
the necessity for congruent taxonomies (for the target variable) and comparable
distributions across datasets.

Convergent validity:
Comparing existing
diversity metrics

Dataset collectors can leverage established metrics for measuring data diversity.
For instance, the Vendi Score, drawing inspiration from ecology and quantum
statistical mechanics, has been introduced as a measure of diversity within image
and text dataset categories. Curators can demonstrate how their collection process
aligns with such recognized diversity metrics. Given that diversity metrics
depend on the embedding space employed, datasets should be benchmarked
across a multiplicity of spaces optimized for the definition of diversity selected
by the dataset curators.

Discriminant
validity

Discriminant validity assesses whether measurements for theoretically unrelated
constructs yield unrelated results. Consider the initial Visual Question Answer
(VQA) dataset, which aimed to collect diverse and interesting questions and
answers, encompassing question types such as “What is ...”, “How many ...”,
and “Do you see a ...”. If diversity is defined by the types of questions asked, it
should have no relation to other factors, such as gender distribution.
Prior works identified language biases in how questions and answers are for-
mulated in the VQA dataset. For instance, based on the dataset construction,
a model predicting “Yes” whenever the question begins with “Do you see a
...” can achieve high accuracy without considering the image in question. This
suggests potential low discriminant validity for the given measure, highlighting
the importance of applying discriminant validity to mitigate construction biases
during dataset creation.
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D Suggested Split Rations for Train-Test Splits

Regarding split ratios, several works attempt to find theoretical justifications for optimal splits.
Recently, Dubbs [15] derived ideal splits for linear regression models and independent Gaussian
distributions. Guyon [33] suggest that the fraction of patterns reserved for the validation set should
be inversely proportional to the square root of the number of free adjustable parameters. Let |θ| be
the number of adjustable parameters in the model, then the optimal test ratio r is given by:

r =
1√
|θ|

.

A similar formula is suggested by Joseph [39]. Instead of the free parameters of the model, they
suggest using the number of parameters in a linear regression model that explains the data well. Let
|β| be the number of parameters in such a linear regression model, then the optimal ratio r is given
by:

r =
1√

|β|+ 1
.

Another approach is to reverse the question and ask what size test set gives good error rate estimates
[32]. Guyon et al. [32] propose various formulas for this. The simplest form suggests that the number
of test samples n should be approximately:

n ≈ 100

p

where p is the expected error rate of the best recognizer, i.e., a human. This approach is related to
sample size estimation based on statistical significance, commonly used in medical and psychological
research. For example, to evaluate the effect of medication against a certain disease and the target is
an error margin of ϵ with a confidence level of σ = 0.99, the necessary sample size n is given by:

n ≈ z20.99 × p(1− p)

ϵ2
.

Here, p is the a-priori known occurrence rate of the disease, and z0.99 is the value for the selected
confidence interval derived from the normal distribution. This method can also be applied to ML and
has been discussed in several works from the medical domain [7, 14, 66, 42]. In the context of ML,
the interpretation could be as follows: if a model is trained to predict the disease with a randomly
drawn test set of size n, there is a 99% confidence that the real-world model performance is within
1% of the error rate on the test set (for ϵ = 0.01 and σ = 0.99).
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