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Abstract

Ensuring high-quality, representative, and secure datasets is critical for compliance1

with emerging regulatory frameworks such as the EU AI Act (Art. 10). In this paper,2

we survey five key data-centric challenges: intrinsic and context-dependent data3

quality, availability, variability, and security, and link each challenge to established4

and emerging methods and research. We then propose a workflow that integrates5

best practices from machine learning research with regulatory requirements, illus-6

trating how each step can be operationalized to meet the “relevant, representative,7

error-free” criteria. Our analysis highlights opportunities for regulators to refine8

their mandates by incorporating advances in ML research.9

1 Introduction10

High-risk AI systems depend critically on training data that is “relevant, representative, error-free,11

and complete” (EU AI Act Art. 10). Yet, practitioners often satisfy these mandates with coarse12

governance checklists and simple metrics (e.g. label-error rate, missing-value fraction), leaving a13

wide gulf between regulatory intent and technical practice. Concurrently, AI research has produced14

methods such as noisy label detection, core-sets, data attribution, and valuation that can directly15

address legal requirements but remain underused in compliance workflows. In this paper, we bridge16

this gap by (i) proposing a regulation-aligned taxonomy of five challenges in ML data (inherent data17

quality, context-dependent data quality, availability, variability and security); (ii) mapping established18

and emerging research and methods to this taxonomy; (iii) sketching an exemplary workflow for19

regulatable ML. Our analysis highlights opportunities for regulators and practitioners to narrow the20

gap between policy and practice by leveraging recent advances in data-centric ML.21

2 Related Work22

Data quality in machine learning encompasses regulatory requirements, documentation, quantitative23

metrics, and other methodologies. We review major contributions in each area and highlight gaps.24

Regulatory Frameworks The EU AI Act [18] mandates that training, validation, and test sets be25

“relevant, representative, error-free, and complete” (Art. 10(3)), but leaves the technical implementa-26

tion open. These criteria are further detailed in standards, such as those from the ISO/IEC JTC 1/SC27

42 committee for AI. Most notably ISO/IEC 5259 [33], specifies 24 data-quality metrics for analytics28

and machine learning. ISO/IEC 5259 organizes these metrics along two dimensions (inherent quality29

and context-dependent quality) and operationalizes the notions of relevance, representativeness,30

accuracy, and completeness, albeit at a relatively high level of abstraction. Detailed definitions of31

each metric are provided in Appendix C.32
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Challenge Focus Regulatory Source
Inherent Data Quality Accuracy, label errors, duplicates AI Act 10; GDPR5(1)(d)
Context-Dependent Quality Bias, imbalance, feature relevance AI Act 10
Data Availability Sufficiency, edge cases, labeling budget GDPR Art. 5(1)(c); 15
Data Variability Distribution shift, drift detection AI Act 72; GDPR 5(1)(d)
Data Security Privacy, poisoning, breach protection AI Act 15; GDPR 32

Table 1: Regulation-aligned taxonomy of ML data challenges.

Data Documentation and Transparency Standardized documentation frameworks, such as Data33

Cards [56] and Datasheets for Datasets [24], record a dataset’s origin, composition, labeling process,34

and limitations. While these efforts support regulatory compliance by improving transparency, they35

do not engage directly with legal mandates or prescribe quantitative metrics for quality.36

Data Quality Metrics Surveys on data quality metrics [78, 10, 48, 27, 55] collate measures,37

often aligned with ISO/IEC 5259, that quantify dimensions such as completeness, consistency,38

and timeliness. Although taxonomies vary, a common dichotomy separates inherent and context-39

dependent dimensions. Few works explicitly tie metric selection to regulatory requirements, leaving40

a gap between theoretical measures and compliance.41

Data-Centric AI Summaries and Recommendations Jakubik et al. [34] distinguish between42

dataset extension (collection) and refinement (quality improvement), illustrating commercial tooling43

for each. Zha et al. [74] organize the data lifecycle into training-data development, inference-data44

development, and maintenance, providing resources and tools but omitting deeper treatment of45

emerging topics like data valuation (Section 6.6). Hammoudeh and Lowd [32] survey methods for46

training-data influence (e.g., poisoning, backdoor attacks, data reduction) with a technical focus47

but limited practical guidance, and Yu et al. [73] review dataset distillation techniques, highlighting48

applications in continual and federated learning, privacy, and robustness. Practitioner-oriented49

recommendations by Lones [43], Orr and Crawford [53], and Zhao et al. [77] advocate for dataset50

diversification, rigorous quality checks, and transparent documentation. However, these standards51

rarely provide explicit mappings to regulatory criteria or concrete metrics, leaving practitioners to52

interpret abstract requirements without clear technical guidance.53

2.1 Interim Conclusion54

While prior work addresses legal mandates, documentation standards, metric surveys, and data-centric55

methodologies, these threads remain largely siloed rather than integrated into a unified compliance56

framework. In the next section, we introduce key terminology and an analytical lens to bridge this57

gap.58

3 Taxonomy of ML Data Challenges59

Scientific literature and regulatory frameworks use varied terminology for ML data challenges. In60

this work we use the terms: inherent data quality, context-dependent data quality, data availability,61

data variability, and data security to broadly categorize data problems. Table 1 summarizes these,62

with examples and regulatory references.63

Inherent Data Quality Inherent data quality encompasses all metrics that can be computed with64

respect to the available data without any further knowledge. Key challenges include ensuring65

label and annotation accuracy, identifying and correcting noise and errors such as incorrect values,66

inconsistencies, and duplicate data [51, 9]. These issues can degrade model accuracy, skew the67

training process, and inflate dataset size.68

Relationship to Regulation GDPR Article 5(1)(d) mandates data accuracy [17]. The AI Act Article69

10 requires error-free datasets [18].70
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Context-Dependent Data Quality Context-dependent data quality involves properties requiring71

external assumptions about the deployment environment. Challenges include class imbalances72

causing biased outcomes [11], bias/fairness issues perpetuating societal inequities [47], improper73

data splits leading to overfitting, and irrelevant features reducing model relevance. Each of these74

issues rests on implicit assumptions about real-world conditions and thus undermines true dataset75

representativeness.76

Relationship to Regulation AI Act Article 10 mandates relevant, representative datasets [18].77

Data Availability Data availability addresses collecting sufficient data and ensuring safe access.78

Challenges include limited data due to labeling costs, class imbalances, or privacy constraints, and79

excessive data causing storage/processing issues [12]. Techniques like transfer learning [79], and80

active learning [60] maximize data utility.81

Relationship to Regulation GDPR Article 5(1)(c) mandates data minimization, limiting collection to82

necessary data [17]. Article 15 grants individuals the right to access their personal data, impacting83

availability.84

Data Variability Data variability describes changes in data over time, such as evolving user85

behaviors, shifting environments, or updated collection methods, causing drift between training and86

real-world data. Static models may fail in dynamic settings, reducing reliability. Drift detection [6]87

and adaptive methods address this.88

Relationship to Regulation AI Act Article 72 requires post-market monitoring for high-risk systems89

[18]. GDPR Article 5(1)(d) mandates that personal data must be kept up-to-date to maintain its90

relevance and integrity [17].91

Data Security AI systems are prone to both classical security aspects related to data access and92

novel attack schemes such as data poisoning [66] or membership inference attacks [61]. Classical93

privacy concerns involve safeguarding sensitive information from unauthorized access and ensuring94

compliance with regulations such as GDPR [17]. Security, on the other hand, focuses on protecting95

data from breaches, malicious attacks, and unauthorized modifications. Encryption, secure data96

storage, and access controls are measures to maintain data integrity and security. From the machine97

learning (ML) side, techniques like data anonymization [49], differential privacy [4] and measures98

against data poisoning [66] can help protect individual privacy while maintaining data utility.99

Relationship to Regulation AI Act Article 15 mandates robustness and cybersecurity for high-risk100

systems [18]. GDPR Article 32 requires secure processing [17].101

4 Methodology102

The aim of this paper is to map emerging and established research efforts onto these dimensions. To103

this end, we conducted a structured literature review. First, we queried Google Scholar, arXiv, and ma-104

jor AI/ML conference proceedings for studies on data-centric practices and regulatory requirements,105

supplementing these results with recommendations generated by large-language models. Second, we106

extracted methods catalogued in foundational surveys and overviews [43, 74, 34] and designated them107

as established. Finally, we identified additional techniques absent from these summaries, labeled108

them as emerging, and mapped every method to our taxonomy of data challenges.109

5 Mapping Established Methods to Regulatory Needs110

We now show how common techniques directly address regulatory requirements. Table 2 (top)111

summarizes the mapping, followed by brief explanations. For each method, we illustrate opportunities112

to address the identified data quality issues. We also discuss potential challenges associated with113

implementing these methods in practice.114

5.1 Data Validation Techniques and Metrics115

Data validation ensures that training datasets are accurate and error-free. Statistical techniques can116

detect and correct label mistakes [51, 52], while tools like TensorFlow Data Validation (TFDV) flag117
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INHERENT CONTEXT AVAILABILITY VARIABILITY SECURITY

Data Validation ✓

Drift Detection ✓

Feature Selection ✓ ✓ ✓

Active Learning ✓ ✓

Core-Sets ✓ ✓

Data Augmentation ✓ ✓ ✓

Syntehtic Data ✓ ✓ ✓ ✓ ✓

Data Difficulty ✓ ✓

Data Distillation ✓ ✓

Memorization ✓ ✓ ✓

Explainable AI ✓ ✓ ✓ ✓

Data Attribution ✓ ✓ ✓

Data Valuation ✓ ✓ ✓ ✓

Sample Size ✓ ✓ ✓

Table 2: Data Challenges and corresponding methods and research areas. The top methods are more
established whereas the bottom ones require more research.

anomalies and produce descriptive statistics [9]. Beyond error detection, several works introduce118

metrics for data quality. Mitchell et al. [48] reviews measures, e.g. Euclidean distance, KL-divergence,119

but without prescribing thresholds [48], and Zhao et al. [76] analyze over 100 ML datasets to propose120

a framework for evaluating reliability, validity, and diversity. Other studies examine dimensions121

such as accuracy, completeness, and timeliness in line with ISO 5259; see Appendix C for a detailed122

comparison [29, 78, 10].123

Opportunities: Data validation techniques play a crucial role in detecting irregularities within124

datasets, which can significantly impact model performance [51]. By identifying and correcting125

these errors, data validation enhances dataset accuracy and reliability, ultimately leading to improved126

model performance and increased trustworthiness. This directly addresses INHERENT data quality127

challenges.128

Challenges: One critical challenge in data validation is distinguishing between errors and edge cases,129

particularly when automatic corrections are applied. For instance, balancing distributions may not130

always be desirable [64]. Automatically fixing errors can inadvertently alter data instances that were131

originally correct or overlook complex errors that require human judgment.132

5.2 Drift Detection133

Drift detection refers to the recognition of shifts between the data a model was trained on and134

real-world data. Identifying such drifts can be achieved by tracking performance changes over time135

or, from a data perspective, by comparing the distribution of the training data to that of the real-world136

data [26].137

Opportunities: Drift detection directly addresses data VARIABILITY by identifying shifts in live data.138

This information can be utilized to take various actions, such as stopping the model, triggering a139

fail-safe mode, or requiring human intervention to reassess or retrain the model.140

Challenges: Although drift detection is crucial, implementing it effectively can be challenging.141

Identifying the right metrics for detecting drift and establishing thresholds for action can be complex.142

5.3 Feature Selection143

Feature Selection is an important aspect of machine learning and has been well addressed in the144

literature [65]. Jakubik et al. [34] summarize it as one of the two major components of data-centric145
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AI. They distinguish between methods aimed at improving feature quality, which include removing146

irrelevant features, and methods for creating or acquiring new relevant features.147

Opportunities: Feature selection can reduce the size of the dataset while also enhancing its represen-148

tativity. It addresses both INHERENT and CONTEXT-DEPENDENT data quality; removing unnecessary149

features increases the inherent value of the data, while certain features may only be essential for150

specific tasks, thereby improving the contextual relevance of the dataset. Furthermore, the choice of151

features may present SECURITY issues, as they might reveal sensitive information.152

Challenges: While feature selection is vital, it can be challenging to determine which features are153

truly irrelevant or redundant. Additionally, the process may require domain expertise to ensure that154

important features relevant to specific tasks are not inadvertently discarded. This balance is necessary155

to maintain the overall predictive power of the model.156

5.4 Active Learning157

In active learning, the algorithm has access to a small labeled dataset D and a large unlabeled dataset158

U . The algorithm can query an oracle (e.g., a human labeler) for labels up to a certain budget b. The159

objective is to optimize model performance within the constraints of this budget [60]. A common160

method for achieving this is by selecting data instances with high predictive uncertainty.161

Opportunities: Active learning efficiently utilizes labeling resources by focusing on the most informa-162

tive data instances, thereby addressing the challenge of AVAILABILITY. Furthermore, active learning163

supports the selection of the most relevant and diverse data instances for a specific task, enhancing164

the representativity of the dataset for that application. This, in turn, addresses CONTEXT-DEPENDENT165

data quality, ensuring that the model is trained on data that accurately reflects the target domain.166

Challenges: Implementing active learning can be computationally intensive, as it requires iterative167

model training and evaluation. Additionally, the effectiveness of active learning heavily depends168

on the choice of the query strategy, which may not be universally optimal for all types of data and169

tasks. Moreover, the need for an oracle to provide labels can introduce delays and inconsistencies,170

especially if human labelers are used.171

5.5 Core-Sets172

A core-set is a small subset S ⊆ D of a full dataset D such that the learning algorithm achieves173

similar performance when trained on this subset as it would on the entire dataset [20]. A popular174

method for finding core-sets is the use of clustering techniques, where representative samples are175

selected based on their distances to cluster centroids.176

Opportunities: Core-sets significantly reduce the volume of data required for training without compro-177

mising model performance. This is particularly beneficial for large datasets, as it minimizes storage178

and computational needs while retaining the essential characteristics of the data. By ensuring that179

the dataset remains manageable and efficient, core-sets address the challenge of data AVAILABILITY.180

Conversely, if a smaller dataset can achieve similar performance to a larger one, the smaller dataset181

should be favored.The data size can be considered an INHERENT property.182

Challenges: Identifying an optimal core-set can be both challenging and computationally expensive,183

especially for complex datasets. The process often involves sophisticated algorithms and heuristics,184

which may not be straightforward to implement. Furthermore, core-sets might not capture all the185

nuances of the original data, particularly in scenarios where rare events or minority classes are186

important. This limitation can lead to reduced performance in applications where such events are187

critical, underscoring the need for careful consideration when employing core-sets.188

5.6 Data Augmentation189

Data augmentation methods enhance the quality and diversity of training data by artificially increasing190

the size of datasets. Techniques like Synthetic Minority Over-sampling Technique (SMOTE) [11]191

can be effective in addressing data representativity issues, particularly class imbalances.192

Opportunities: Data augmentation techniques contribute to creating a more diverse and representative193

dataset. By artificially increasing the data size, these methods effectively address class imbalances and194
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enhance the model’s generalizability, leading to improved performance and fairness. While data aug-195

mentation primarily addresses data AVAILABILITY, it can also improve CONTEXT-DEPENDENT data196

quality for specific tasks and may provide partial defenses against overfitting and model vulnerability197

to SECURITY breaches by diversifying the training data.198

Challenges: A recent article titled The Good, the Bad, and the Ugly Sides of Data Augmentation199

summarizes the challenges well [42]. Artificially modified or balanced data may not represent200

real-world scenarios, potentially introducing noise or artifacts that could negatively affect model201

performance [16]. Additionally, the effectiveness of different augmentation techniques varies greatly202

depending on the specific dataset and task, necessitating careful experimentation and tuning.203

5.7 Synthetic Data204

Synthetic data refers to the creation of artificial data for machine learning. This approach is particularly205

advantageous in scenarios where data collection is difficult, expensive, or where privacy concerns are206

significant [5, 44]. Typically, techniques such as Generative Adversarial Networks (GANs) or stable207

diffusion are employed to generate this data.208

Opportunities: Synthetic data enables the generation of large, diverse datasets without collecting209

sensitive real-world samples, thereby reducing cost and time while safeguarding privacy and ensuring210

regulatory compliance. By filling gaps, e.g. underrepresented classes or rare scenarios, and simulating211

varied conditions, it boosts model robustness (addressing INHERENT and CONTEXT-DEPENDENT212

data quality, and VARIABILITY) and mitigates SECURITY risks tied to real data.213

Challenges: Generating synthetic data can be challenging, especially for images, because it often214

requires training large models like GANs [28] or diffusion models [59]. Additionally, synthetic data215

can introduce another layer of bias and a content gap [70]. Obtaining performance comparable to or216

superior to real data remains a significant hurdle in many applications [5].217

6 Mapping Emerging Methods to Regulatory Needs218

Next, we map emerging directions onto our taxonomy. We classify a method as “emerging” if it219

was identified in our review but is not yet covered by existing surveys. Table 2 (bottom) provides an220

overview of these methods and the primary data challenges they address.221

6.1 Data Difficulty222

Meding et al. [46] describe dichotomous data difficulty and show that many datasets, such as223

ImageNet, suffer from imbalanced data difficulty. There are many data instances in the test set224

that are never classified correctly (called impossible) and many that are always classified correctly225

(called trivial). They show that models can be better compared on the remaining instances. A similar226

conclusion can be drawn for label errors. Northcutt et al. [51] show that larger models tend to be227

favored on datasets with label errors, while smaller models might actually outperform them when228

evaluated on a dataset without errors.229

Opportunities: Understanding dichotomous data difficulty enhances the precision of model per-230

formance evaluation. Performance across these distinct samples should be assessed specifically,231

potentially through extending labels with metadata that indicates the difficulty level of individual232

samples. This approach could also help identify areas of the dataset that are underrepresented. If233

certain concepts that tend to be more difficult can be identified, it may suggest the need for gathering234

additional training data. Thus, this understanding can serve as both an INHERENT data quality metric235

and a means to address data AVAILABILITY.236

Challenges: Addressing dichotomous data difficulty necessitates training multiple models, which can237

be computationally intensive. Moreover, while it may function as a data quality metric, its validation238

outside of academic settings remains uncertain and requires further investigation.239

6.2 Data Distillation240

Data Distillation is a relatively new field in machine learning, first introduced by Wang et al. [71].241

Conceptually related to core-sets, the goal of data distillation is to condense a large dataset into a242
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smaller one that maintains similar performance. The key distinction is that distilled data consists of243

synthetic images, which are often not recognizable by humans. A popular method for creating these244

synthetic images is gradient matching [75].245

Opportunities: Similar to core-sets and synthetic data, data distillation can reduce the required dataset246

size, thereby addressing the data AVAILABILITY issue. Furthermore, as Yu et al. [73] point out, it can247

also contribute to resolving privacy, security, and robustness challenges, thus addressing SECURITY248

challenges.249

Challenges: Although data distillation holds significant potential and has been evaluated on real-world250

examples, such as medical data [41], its practical applications, particularly in meeting regulatory251

demands, remain underexplored.252

6.3 Memorization253

Memorization occurs when a model heavily relies on unique training instances to make predictions,254

akin to a student memorizing a rare fact for an exam. For example, in a facial recognition dataset, a255

single image of a person with a distinctive tattoo may be memorized, improving accuracy for that256

individual but risking privacy through membership inference attacks [72]. Feldman [21] defines a257

training instance as unique if its removal reduces the model’s ability to classify it correctly. Estimating258

memorization involves training models with and without the instance, though efficient methods exist259

[21, 36]. Jiang et al. [36] further use memorization as a measure to categorize the structure of a260

dataset and show that mislabeled instances are harder to memorize.261

Opportunities: Memorization scores identify underrepresented regions (e.g., rare faces) and label262

errors, addressing data AVAILABILITY and INHERENT data quality. They also flag privacy risks,263

enhancing SECURITY. Additionally, memorization has proven useful in data pruning [63].264

Challenges: A primary issue is the difficulty of translating memorization scores into actionable data265

collection strategies. Memorization scores identify unique training samples critical for generalization266

but do not inherently specify what additional data to collect.267

6.4 Explainable AI268

Explainable AI (XAI) techniques aim to make machine learning models transparent by revealing269

which inputs drive predictions. Early methods such as LIME [58] and SHAP [45] highlight influential270

features or regions in individual samples. Recent work evaluates XAI’s role in debugging models271

[2, 1], detecting bias [13, 19], certifying AI systems [23], and building user trust [67, 68]. Crucially,272

XAI can uncover data issues, for example, Ribeiro et al. showed that a wolf detector was focusing on273

snowy backgrounds rather than the animal itself, leading to targeted data augmentation [58].274

Opportunities: XAI pinpoints spurious correlations and gaps in data coverage, guiding selective275

data collection or relabeling to improve both INHERENT and CONTEXT-DEPENDENT data quality.276

By exposing underrepresented scenarios, it addresses AVAILABILITY concerns, and by revealing277

memorized examples, it highlights potential privacy and SECURITY risks [22].278

Challenges: Interpretations generated by XAI methods are often ambiguous or misleading, requiring279

expert judgment to translate insights into actionable data-quality improvements [3, 23]. Overreliance280

on these explanations can introduce automation bias, and there is a lack of standardized, scalable281

workflows for applying XAI to data-quality assurance. Practical adoption of XAI-driven remains282

rare, underscoring its status as an emerging method.283

6.5 Data Attribution284

Data attribution traces a model’s predictions back to specific training samples. For each test prediction,285

it assigns scores to training samples based on their influence [32]. A high attribution value may286

indicate that removing sample i from the training set would likely result in j being misclassified.287

Conversely, a low (or negative) value implies that the presence of i contributes to the misclassification288

of j. Thus, data attribution can be interpreted as a matrix M , where rows represent training instances289

and columns test instances. Since such a matrix can become very large and interpretation challenging,290

it is common to display the top five samples with the highest positive influence and the top five291
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with the highest negative influence (see Figure 1 of the Appendix). Tools like TRAK [54] make the292

computation efficient by reducing the number of models that need to be retrained.293

Opportunities: Data attribution detects label errors, data leakage, and underrepresented classes,294

addressing INHERENT and CONTEXT-DEPENDENT quality issues. It also highlights privacy risks,295

thereby addressing SECURITY concerns. Typically, mislabeled training samples show strong negative296

influence, while test instances with few positive influencers reveal underrepresented regions and297

potential security vulnerabilities.298

Challenges: While the applicability of XAI has been widely discussed in ML research, data attribution299

remains underexplored and is not well known among researchers [50]. Although the applications300

mentioned seem plausible, they have not been systematically analyzed. Furthermore, interpreting the301

attribution scores can be challenging due to the complexity of the relationships between training and302

test samples.303

6.6 Data Valuation304

Data valuation is closely related to data attribution. In data valuation, each training instance i is305

assigned a scalar value vi, indicating its influence on the model performance. The value of instance306

i can be interpreted as the average attribution score vi =
∑m

k=0 Mi,k, where M is the attribution307

matrix from Section 6.5. Although data values can be computed from an attribution matrix, e.g.,308

created by TRAK, it is currently more common to rely on sampling-based methods. Ghorbani and309

Zou [25] apply the Shapley value from cooperative game theory to data valuation. In recent years,310

many methods have been introduced to speed up the computation of data values, most of which aim311

to find better and faster approximations for the Shapley value [69, 39, 40, 35, 62].312

Opportunities: By assigning each training example a value that reflects its impact on model perfor-313

mance, data valuation enables targeted dataset pruning, removing low-value or noisy samples to314

boost INHERENT data quality, and supports domain transfer by selecting high-value instances for315

context-specific tasks, thereby improving CONTEXT-DEPENDENT quality. It also underpins emerging316

data marketplaces by quantifying availability without exposing raw data, and highlights unique,317

high-value examples that may pose privacy or SECURITY risks.318

Challenges: While data valuation addresses numerous challenges, more specialized methods often319

exist, and the computational costs are high. Efficiently calculating Shapley values, especially for320

large datasets, remains difficult.321

6.7 Sample-size Estimation322

Determining appropriate sample sizes for both test and training sets is crucial for reliable model323

evaluation and efficient data collection.324

Several theoretical approaches have been proposed for test-set sizing. Guyon [31] suggest that the325

optimal fraction r reserved for validation (or test) should scale inversely with the square root of the326

number of model parameters |θ|: r = 1√
|θ|
.327

An alternative formulation asks what absolute number of test samples n is needed to estimate error328

rates with statistical significance. Guyon et al. [30] gives the rule of thumb n ≈ 100
p , where p is the329

expected error rate of the best recognizer (e.g., a human). Additional formulations are discussed in330

Appendix D.331

When test sets are small, high variance in performance estimates can undermine confidence.332

Bouthillier et al. [8] recommend running multiple evaluation trials, varying data order, initialization,333

etc., to stabilize metrics. Although the standard deviation decreases with larger sets, repeated runs can334

compensate when gathering more data is infeasible (see Figure 2 of the Appendix for an example).335

For training-set sizing, simple heuristics (e.g. the “one-in-ten” rule of ten examples per parameter)336

lack solid justification. Instead, practitioners often plot learning curves, model performance versus337

fraction of training data, which typically exhibit logarithmic gains (Figueroa et al. 2012; Viering et al.338

2021). Early additions yield large improvements, while returns diminish beyond a certain point (e.g.,339

performance surpasses 90% at 50% of data, with less than a 5% gain from doubling in Appendix B).340
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Opportunities: Determining the appropriate test-set size ensures that performance estimates are both341

statistically sound and reflective of real-world conditions, thereby addressing CONTEXT-DEPENDENT342

quality. Estimating the amount of training data helps avoid unnecessary collection and annotation343

costs, addressing data AVAILABILITY. Finally, the total dataset size constitutes an INHERENT quality344

attribute of the data.345

Challenges: In domains with scarce or costly data, gathering an ideal number of samples may simply346

be infeasible. Even when test or training sets are sufficiently large, models can still pick up spurious347

correlations. Finally, despite regulatory calls such as EU AI Act Art. 10, systematic and widely348

adopted methods for sample-size estimation remain underrepresented in practice.349

7 An Exemplary Workflow for Regulated ML350

Below we outline a concise five-step process that operationalizes the methods from before. A full351

treatment is beyond this paper’s scope, but this sketch shows how established and emerging methods352

can fit into a practical pipeline.353

1. Define Objectives & Scope Work with domain/compliance experts to enumerate use-case354

edge cases and data obligations and document the outcomes.355

2. Plan Acquisition & Splits Estimate test-set size (e.g. n ≈ 100/p or r = 1/
√

|θ|), collect356

roughly 5n samples, and stratify into train (3n), test (n), and holdout (n) sets.357

3. Validate Inherent Quality & Document Run automated checks (e.g. CleanLab for label358

errors, schema validation). Generate a Data Card recording provenance, quality metrics, and359

corrections.360

4. Advanced Assessment & Remediation On the holdout set, apply drift detection and361

memorization/attribution analyses (Sec. 6) to find coverage gaps. Remediate via targeted362

re-labeling, augmentation, synthetic data, or distillation.363

5. Final Audit & Continuous Monitoring Merge the holdout back into training, finalize364

documentation, and archive an audit trail. Deploy live drift monitors and schedule periodic365

re-validation to maintain ongoing compliance.366

8 Discussion & Outlook367

In this paper, we introduced a regulation-aligned taxonomy of five ML data challenges, systematically368

mapped both established and emerging data-centric methods to these challenges, and sketched a369

five-step workflow for “regulatable ML.” While these methods offer powerful techniques to enhance370

the quality, safety, and regulatory compliance of AI systems, they require further empirical validation371

and integration into practical toolchains and workflows. Future work should focus on validating these372

approaches in real-world settings and embedding them into end-to-end compliance processes. Finally,373

closer collaboration between regulators and the ML research community will be essential to refine374

regulatory mandates and accelerate the adoption of data-centric best practices.375
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Appendix600

601

A Data Attribution Example602

Test Sample Positive Influence

Negative Influence

Figure 1: Example of data attributions computed with TRAK. The leftmost image is the test sample
(a cat). Above it are the five training images with the highest positive influence: adding them to
the training set increases the model’s confidence in correctly classifying the test image. Below are
the five images with the strongest negative influence: their presence tends to reduce classification
confidence. Some attributions can be counterintuitive (e.g. a dog image showing positive influence
on the cat sample), highlighting challenges in interpreting influence scores.
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B Removing Train and Test Data603
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Figure 2: Blue: Test accuracy and deviation (y-axis) when training 10 models on full training data
with increasing test size (x-axis). Red: Test performance and deviation (y-axis) with increasing size
of training data (x-axis) on full test set.
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C Data Quality Metrics from Research604

Table 3: Examples of different data measurements from [48].

DISTANCE DENSITY DIVERSITY TENDENCY ASSOCIATION

Physical Sci-
ences

Length Mass-per-
volume

Biodiversity Mean, Median,
Mode

Correlation

General
Data
Measures

Euclidean Dis-
tance

Data Density Gini Diversity Burstiness

Cosine Similar-
ity

KNN Density Vendi Score

Earth Mover’s
Distance

Kullback-
Leibler Diver-
gence

Modality-
Specific
Data
Measures

Word Mover’s
Distance (lan-
guage)

Information
Density (lan-
guage)

Text Diversity
(language)

Perplexity
(language)

Pointwise Mutual
Information

Levenshtein
Distance (lan-
guage)

Idea Density
(language)

Lexical Diver-
sity (language)

Fit to Zipf’s Law
(language)

Inception Dis-
tance (vision)

The Incep-
tion score
(vision)

Image Diversity
(vision)

Subset Diver-
sity (vision)
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Table 4: Data Quality dimensions, metrics, descriptions, and examples from [78].

DIMENSION METRICS DESCRIPTION EXAMPLES

Intrinsic Correctness A record in a dataset is free of errors. Before starting a mailing campaign, the correctness of the
attributes “postal code" shall be evaluated, and even small
deviations shall be penalized because a deviation of only 1%
(the postal codes 80000 and 79200) hinders the delivery of a
mailing.

Data is correctly labeled if it is a labeled
record.

In the medical domain, an informal phrase of ‘’lack of feeling"
should be labeled as “numbness".

Duplication Measures if the same instances repeat in
the dataset, especially in both the training
and test datasets.

If a record in a medical concept training dataset is “Hunger
– don’t want to eat", and there is exactly the same record in
a test dataset, then the record is considered as an overlapped
record in the two datasets.

Trustworthiness Defines how factual the source that pro-
vides the information is. It can be sub-
jectively evaluated, such as indicating the
level on a scale, or the data can go through
fact-check algorithms.

For a medical concept dataset, it should be obtained directly
from the hospital’s system, which undergoes regular data qual-
ity checks and is maintained according to industry standards.

Contextual Class imbal-
ance

Evaluates if the distribution of examples
across the known classes is biased or
skewed.

Most of the contemporary works on class imbalance fall into
the imbalance ratios ranging from 1:4 up to 1:100. The imbal-
ance ratio may range from 1:1000 up to 1:5000 for extreme
class imbalance problems.

Completeness A complete dataset should include as few
missing values as possible.

A medical insurance dataset must include a customer’s birth-
date, otherwise the medical consumption forecast model per-
formance will be hindered.

ComprehensivenessA dataset contains all representative sam-
ples from the population.

In a medical text classification task, the training dataset should
contain sufficient labeled medical texts covering all the condi-
tions, symptoms, and treatments.

Unbiasedness Refers to whether the data used for ma-
chine learning training has a distribution
bias or historical bias.

Photo recognition software does not recognize the facial ex-
pressions of ethnic minorities, or electronic soap dispensers
that do not respond to darker skin tones because the training
image datasets have an insufficient representation of some
geographic regions.

Variety Requires each validation dataset and
the test dataset to contain a significant
amount of new data compared to the cor-
responding training dataset.

The percentage of the overlapped data between a
test/validation dataset and its corresponding training dataset
should be as low as possible, such as less than 10%.

Representational Conformity Measures how much the data conforms to
the conventions for capturing information
in a certain manner, including machine-
readable data structures and formats for
capturing specific attributes.

In a text classification task, a dataset of textual documents is
labeled with sentiment (positive, negative, neutral). The labels
should be encoded following a standardized set of categories,
and all data processing, such as removing punctuation, con-
verting text to lowercase, and tokenizing sentences, should be
made to the whole dataset.

Consistency Requires data to be presented in the same
format and to be compatible with previ-
ous data.

In an image classification task, if one dataset uses pixel values
in the range [0, 255], while another dataset scales pixel values
to the range [0, 1], this will cause inconsistency in model
training and predictions.

Accessibility Availability High data availability ensures that data is
readily accessible with defined user per-
missions for access and modifications.

In a healthcare ML application for diagnosing diseases from
medical images, user entitlements are managed through strict
access controls, allowing only authorized medical profession-
als and data scientists to access the images.
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Table 5: Data Quality Metrics from ISO/IEC 5259 [33]. The standard distinguishes between inherent
and system-dependent data quality metrics. Inherent metrics assess the intrinsic properties of the
data itself, such as accuracy, completeness, and consistency. System-dependent metrics evaluate the
data’s quality within the context of its use in a specific system and involve availability, portability, and
recoverability. A few metrics belong to both categories. Descriptions are generated with ChatGPT.

METRIC DESCRIPTION CATEGORY

Accuracy The degree to which data correctly describes the "real world"
object or event.

Inherent

Completeness The extent to which data has no missing values. Inherent

Consistency Ensuring data is consistent and not contradictory across different
datasets and systems.

Inherent

Credibility The degree to which data is trustworthy and believable, often
based on its source.

Inherent

Currentness How up-to-date data is, depending on the intended use. Inherent

Accessibility The ease with which data can be accessed and retrieved. Both

Compliance Adherence to relevant standards, policies, and regulations. Both

Confidentiality Not provided in the standard. Both

Efficiency The extent to which data provides the expected level of perfor-
mance.

Both

Precision The level of detail and exactness of the data (e.g., decimal places
in numerical values).

Both

Traceability Not provided in the standard. Both

Understandability The ease with which data can be comprehended and used by
stakeholders.

Both

Availability Not provided in the standard. System-
Dependent

Portability The ease with which data can be transferred and used across
different systems.

System-
Dependent

Recoverability Not provided in the standard. System-
Dependent

Auditability Part of data that has undergone an audit or is available for it. NA

Identifiability The capability to identify personally identifiable information in
the dataset.

NA

Effectiveness The degree to which data contributes to achieving the desired
outcome or objective.

NA

Balance Ensuring that the dataset is evenly distributed and representative
of various groups.

NA

Diversity The difference between the samples in the dataset. NA

Relevance The extent to which data is applicable and useful for the intended
purpose.

NA

Representativeness The degree to which data accurately reflects the broader popula-
tion or phenomenon.

NA

Similarity The extent to which data instances are similar to each other in
terms of specified criteria.

NA

Timeliness The latency between when the data is used and when it is avail-
able.

NA
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Table 6: Recommendations for Reliability and Validity from Zhao et al. [76].

TOPIC RECOMMENDATIONDESCRIPTION

Reliability Inter-annotator
agreement

An established method for assessing reliability, particularly in crowdsourcing, is through
inter-annotator agreement. This method often entails multiple annotators labeling an
instance, with the final label determined by a majority vote. Another method to gauge
inter-annotator reliability is by employing statistical measures of agreement. We find that
some text datasets provide quantitative metrics to quantify inter-annotator agreement,
such as Fleiss‘s κ or Cohen‘s κ. While consensus methods are employed in both text
and image datasets, quantitative metrics for inter-annotator agreement are reported
exclusively in text datasets. We recommend that image dataset curators also incorporate
these statistical measures when evaluating crowdsourced labels.

Test-retest
reliability

Another approach that dataset collectors can adopt is the test-retest method. In education,
this method involves administering the same test twice over a period, with consistent
results indicating reliability. This principle is particularly relevant when assessing the
reliability of collection methods like web scraping. For instance, curators can reapply
the same methodology to recollect instances, validating whether the recollected dataset
maintains the same diversity properties. Nonetheless, a lack of reliability from these
tests does not necessarily imply that the collection methodology inadequately captures
diversity. Changes in the underlying data distribution over time can influence the results.
For example, when evaluating linguistic diversity using data scraped from Reddit, major
societal events, such as elections, can unexpectedly alter the distribution. Even in such
cases, measuring test-retest reliability remains valuable for gaining insights into potential
shifts in data distributions.

Validity Convergent va-
lidity:
Cross-dataset
generalization

Commonly employed to evaluate "dataset bias," cross-dataset generalization enables
researchers to compare datasets. By utilizing existing datasets with similar structures
(e.g., label taxonomy, modality) and constructs of diversity, collectors can train on their
dataset and test on existing datasets or vice versa, comparing relevant metrics such as
accuracy. Model performance can also be assessed against standard train-test splits from
the same dataset. If the models perform similarly in both cross-dataset and same-dataset
scenarios, it suggests that the datasets have similar distributions for the target variable,
indicating correlated constructs of diversity. Model performance can also be assessed
against standard train-test splits from the same dataset. If the models perform similarly
in both cross-dataset and same-dataset scenarios, it suggests that the datasets have similar
distributions for the target variable, indicating correlated constructs of diversity. However,
a constraint of employing cross-dataset generalization is the necessity for congruent
taxonomies (for the target variable) and comparable distributions across datasets.

Convergent
validity:
Comparing
existing
diversity met-
rics

Dataset collectors can leverage established metrics for measuring data diversity. For
instance, the Vendi Score, drawing inspiration from ecology and quantum statistical
mechanics, has been introduced as a measure of diversity within image and text dataset
categories. Curators can demonstrate how their collection process aligns with such
recognized diversity metrics. Given that diversity metrics depend on the embedding space
employed, datasets should be benchmarked across a multiplicity of spaces optimized for
the definition of diversity selected by the dataset curators.

Discriminant
validity

Discriminant validity assesses whether measurements for theoretically unrelated con-
structs yield unrelated results. Consider the initial Visual Question Answer (VQA)
dataset, which aimed to collect diverse and interesting questions and answers, encom-
passing question types such as “What is ...”, “How many ...”, and “Do you see a ...”. If
diversity is defined by the types of questions asked, it should have no relation to other
factors, such as gender distribution.
Prior works identified language biases in how questions and answers are formulated in
the VQA dataset. For instance, based on the dataset construction, a model predicting
“Yes” whenever the question begins with “Do you see a ...” can achieve high accuracy
without considering the image in question. This suggests potential low discriminant
validity for the given measure, highlighting the importance of applying discriminant
validity to mitigate construction biases during dataset creation.
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D Suggested Split Rations for Train-Test Splits605

Regarding split ratios, several works attempt to find theoretical justifications for optimal splits.606

Recently, Dubbs [15] derived ideal splits for linear regression models and independent Gaussian607

distributions. Guyon [31] suggest that the fraction of patterns reserved for the validation set should608

be inversely proportional to the square root of the number of free adjustable parameters. Let |θ| be609

the number of adjustable parameters in the model, then the optimal test ratio r is given by:610

r =
1√
|θ|

.

A similar formula is suggested by Joseph [37]. Instead of the free parameters of the model, they611

suggest using the number of parameters in a linear regression model that explains the data well. Let612

|β| be the number of parameters in such a linear regression model, then the optimal ratio r is given613

by:614

r =
1√

|β|+ 1
.

Another approach is to reverse the question and ask what size test set gives good error rate estimates615

[30]. Guyon et al. [30] propose various formulas for this. The simplest form suggests that the number616

of test samples n should be approximately:617

n ≈ 100

p

where p is the expected error rate of the best recognizer, i.e., a human. This approach is related to618

sample size estimation based on statistical significance, commonly used in medical and psychological619

research. For example, to evaluate the effect of medication against a certain disease and the target is620

an error margin of ϵ with a confidence level of σ = 0.99, the necessary sample size n is given by:621

n ≈ z20.99 × p(1− p)

ϵ2
.

Here, p is the a-priori known occurrence rate of the disease, and z0.99 is the value for the selected622

confidence interval derived from the normal distribution. This method can also be applied to machine623

learning and has been discussed in several works from the medical domain [7, 14, 57, 38]. In the624

context of ML, the interpretation could be as follows: if a model is trained to predict the disease with625

a randomly drawn test set of size n, there is a 99% confidence that the real-world model performance626

is within 1% of the error rate on the test set (for ϵ = 0.01 and σ = 0.99).627
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