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Abstract

Ensuring high-quality, representative, and secure datasets is critical for compliance
with emerging regulatory frameworks such as the EU Al Act (Art. 10). In this paper,
we survey five key data-centric challenges: intrinsic and context-dependent data
quality, availability, variability, and security, and link each challenge to established
and emerging methods and research. We then propose a workflow that integrates
best practices from machine learning research with regulatory requirements, illus-
trating how each step can be operationalized to meet the “relevant, representative,
error-free” criteria. Our analysis highlights opportunities for regulators to refine
their mandates by incorporating advances in ML research.

1 Introduction

High-risk Al systems depend critically on training data that is “relevant, representative, error-free,
and complete” (EU AI Act Art. 10). Yet, practitioners often satisfy these mandates with coarse
governance checklists and simple metrics (e.g. label-error rate, missing-value fraction), leaving a
wide gulf between regulatory intent and technical practice. Concurrently, Al research has produced
methods such as noisy label detection, core-sets, data attribution, and valuation that can directly
address legal requirements but remain underused in compliance workflows. In this paper, we bridge
this gap by (i) proposing a regulation-aligned taxonomy of five challenges in ML data (inherent data
quality, context-dependent data quality, availability, variability and security); (ii) mapping established
and emerging research and methods to this taxonomys; (iii) sketching an exemplary workflow for
regulatable ML. Our analysis highlights opportunities for regulators and practitioners to narrow the
gap between policy and practice by leveraging recent advances in data-centric ML.

2 Related Work

Data quality in machine learning encompasses regulatory requirements, documentation, quantitative
metrics, and other methodologies. We review major contributions in each area and highlight gaps.

Regulatory Frameworks The EU AI Act [18]] mandates that training, validation, and test sets be
“relevant, representative, error-free, and complete” (Art. 10(3)), but leaves the technical implementa-
tion open. These criteria are further detailed in standards, such as those from the ISO/IEC JTC 1/SC
42 committee for AI. Most notably ISO/IEC 5259 [33]], specifies 24 data-quality metrics for analytics
and machine learning. ISO/IEC 5259 organizes these metrics along two dimensions (inherent quality
and context-dependent quality) and operationalizes the notions of relevance, representativeness,
accuracy, and completeness, albeit at a relatively high level of abstraction. Detailed definitions of
each metric are provided in Appendix [C]
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Challenge Focus Regulatory Source

Inherent Data Quality Accuracy, label errors, duplicates Al Act 10; GDPR5(1)(d)
Context-Dependent Quality  Bias, imbalance, feature relevance Al Act 10

Data Availability Sufficiency, edge cases, labeling budget GDPR Art. 5(1)(c); 15
Data Variability Distribution shift, drift detection Al Act 72; GDPR 5(1)(d)
Data Security Privacy, poisoning, breach protection Al Act 15; GDPR 32

Table 1: Regulation-aligned taxonomy of ML data challenges.

Data Documentation and Transparency Standardized documentation frameworks, such as Data
Cards [56] and Datasheets for Datasets [24], record a dataset’s origin, composition, labeling process,
and limitations. While these efforts support regulatory compliance by improving transparency, they
do not engage directly with legal mandates or prescribe quantitative metrics for quality.

Data Quality Metrics Surveys on data quality metrics [78| [10, 48| 27, [55]] collate measures,
often aligned with ISO/IEC 5259, that quantify dimensions such as completeness, consistency,
and timeliness. Although taxonomies vary, a common dichotomy separates inherent and context-
dependent dimensions. Few works explicitly tie metric selection to regulatory requirements, leaving
a gap between theoretical measures and compliance.

Data-Centric AI Summaries and Recommendations Jakubik et al. [34] distinguish between
dataset extension (collection) and refinement (quality improvement), illustrating commercial tooling
for each. Zha et al. [/4]] organize the data lifecycle into training-data development, inference-data
development, and maintenance, providing resources and tools but omitting deeper treatment of
emerging topics like data valuation (Section [6.6). Hammoudeh and Lowd [32] survey methods for
training-data influence (e.g., poisoning, backdoor attacks, data reduction) with a technical focus
but limited practical guidance, and Yu et al. [[73] review dataset distillation techniques, highlighting
applications in continual and federated learning, privacy, and robustness. Practitioner-oriented
recommendations by Lones [43]], Orr and Crawford [53]], and Zhao et al. [[77] advocate for dataset
diversification, rigorous quality checks, and transparent documentation. However, these standards
rarely provide explicit mappings to regulatory criteria or concrete metrics, leaving practitioners to
interpret abstract requirements without clear technical guidance.

2.1 Interim Conclusion

While prior work addresses legal mandates, documentation standards, metric surveys, and data-centric
methodologies, these threads remain largely siloed rather than integrated into a unified compliance
framework. In the next section, we introduce key terminology and an analytical lens to bridge this

gap.

3 Taxonomy of ML Data Challenges

Scientific literature and regulatory frameworks use varied terminology for ML data challenges. In
this work we use the terms: inherent data quality, context-dependent data quality, data availability,
data variability, and data security to broadly categorize data problems. Table[T] summarizes these,
with examples and regulatory references.

Inherent Data Quality Inherent data quality encompasses all metrics that can be computed with
respect to the available data without any further knowledge. Key challenges include ensuring
label and annotation accuracy, identifying and correcting noise and errors such as incorrect values,
inconsistencies, and duplicate data [S1, 9]. These issues can degrade model accuracy, skew the
training process, and inflate dataset size.

Relationship to Regulation GDPR Article 5(1)(d) mandates data accuracy [[17]. The Al Act Article
10 requires error-free datasets [[18]].
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Context-Dependent Data Quality Context-dependent data quality involves properties requiring
external assumptions about the deployment environment. Challenges include class imbalances
causing biased outcomes [[11]], bias/fairness issues perpetuating societal inequities [47]], improper
data splits leading to overfitting, and irrelevant features reducing model relevance. Each of these
issues rests on implicit assumptions about real-world conditions and thus undermines true dataset
representativeness.

Relationship to Regulation Al Act Article 10 mandates relevant, representative datasets [18]].

Data Availability Data availability addresses collecting sufficient data and ensuring safe access.
Challenges include limited data due to labeling costs, class imbalances, or privacy constraints, and
excessive data causing storage/processing issues [12]. Techniques like transfer learning [[79]], and
active learning [60] maximize data utility.

Relationship to Regulation GDPR Article 5(1)(c) mandates data minimization, limiting collection to
necessary data [[17]. Article 15 grants individuals the right to access their personal data, impacting
availability.

Data Variability Data variability describes changes in data over time, such as evolving user
behaviors, shifting environments, or updated collection methods, causing drift between training and
real-world data. Static models may fail in dynamic settings, reducing reliability. Drift detection [6]
and adaptive methods address this.

Relationship to Regulation Al Act Article 72 requires post-market monitoring for high-risk systems
[L8]. GDPR Article 5(1)(d) mandates that personal data must be kept up-to-date to maintain its
relevance and integrity [17]].

Data Security Al systems are prone to both classical security aspects related to data access and
novel attack schemes such as data poisoning [66]] or membership inference attacks [61]]. Classical
privacy concerns involve safeguarding sensitive information from unauthorized access and ensuring
compliance with regulations such as GDPR [[17]. Security, on the other hand, focuses on protecting
data from breaches, malicious attacks, and unauthorized modifications. Encryption, secure data
storage, and access controls are measures to maintain data integrity and security. From the machine
learning (ML) side, techniques like data anonymization [49], differential privacy [4] and measures
against data poisoning [66] can help protect individual privacy while maintaining data utility.

Relationship to Regulation Al Act Article 15 mandates robustness and cybersecurity for high-risk
systems [18]]. GDPR Article 32 requires secure processing [[17]].

4 Methodology

The aim of this paper is to map emerging and established research efforts onto these dimensions. To
this end, we conducted a structured literature review. First, we queried Google Scholar, arXiv, and ma-
jor AI/ML conference proceedings for studies on data-centric practices and regulatory requirements,
supplementing these results with recommendations generated by large-language models. Second, we
extracted methods catalogued in foundational surveys and overviews [43|[74}34] and designated them
as established. Finally, we identified additional techniques absent from these summaries, labeled
them as emerging, and mapped every method to our taxonomy of data challenges.

S Mapping Established Methods to Regulatory Needs

We now show how common techniques directly address regulatory requirements. Table 2] (top)
summarizes the mapping, followed by brief explanations. For each method, we illustrate opportunities
to address the identified data quality issues. We also discuss potential challenges associated with
implementing these methods in practice.

5.1 Data Validation Techniques and Metrics

Data validation ensures that training datasets are accurate and error-free. Statistical techniques can
detect and correct label mistakes [S1,152]], while tools like TensorFlow Data Validation (TFDV) flag
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INHERENT CONTEXT AVAILABILITY VARIABILITY SECURITY

Data Validation v

Drift Detection v

Feature Selection v v v
Active Learning v v

Core-Sets v v

Data Augmentation v v v
Syntehtic Data v v v v v
Data Difficulty v v

Data Distillation v v
Memorization v v v
Explainable Al v v v v
Data Attribution v v v
Data Valuation v v v v
Sample Size v v v

Table 2: Data Challenges and corresponding methods and research areas. The top methods are more
established whereas the bottom ones require more research.

anomalies and produce descriptive statistics [9]. Beyond error detection, several works introduce
metrics for data quality. Mitchell et al. [48]] reviews measures, e.g. Euclidean distance, KL-divergence,
but without prescribing thresholds 48], and Zhao et al. [76] analyze over 100 ML datasets to propose
a framework for evaluating reliability, validity, and diversity. Other studies examine dimensions
such as accuracy, completeness, and timeliness in line with ISO 5259; see Appendix |C|for a detailed
comparison [29, 78, [10].

Opportunities: Data validation techniques play a crucial role in detecting irregularities within
datasets, which can significantly impact model performance [S1]. By identifying and correcting
these errors, data validation enhances dataset accuracy and reliability, ultimately leading to improved
model performance and increased trustworthiness. This directly addresses INHERENT data quality
challenges.

Challenges: One critical challenge in data validation is distinguishing between errors and edge cases,
particularly when automatic corrections are applied. For instance, balancing distributions may not
always be desirable [[64]. Automatically fixing errors can inadvertently alter data instances that were
originally correct or overlook complex errors that require human judgment.

5.2 Drift Detection

Drift detection refers to the recognition of shifts between the data a model was trained on and
real-world data. Identifying such drifts can be achieved by tracking performance changes over time
or, from a data perspective, by comparing the distribution of the training data to that of the real-world
data [26]].

Opportunities: Drift detection directly addresses data VARIABILITY by identifying shifts in live data.
This information can be utilized to take various actions, such as stopping the model, triggering a
fail-safe mode, or requiring human intervention to reassess or retrain the model.

Challenges: Although drift detection is crucial, implementing it effectively can be challenging.
Identifying the right metrics for detecting drift and establishing thresholds for action can be complex.

5.3 Feature Selection

Feature Selection is an important aspect of machine learning and has been well addressed in the
literature [65]]. Jakubik et al. [34] summarize it as one of the two major components of data-centric
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Al They distinguish between methods aimed at improving feature quality, which include removing
irrelevant features, and methods for creating or acquiring new relevant features.

Opportunities: Feature selection can reduce the size of the dataset while also enhancing its represen-
tativity. It addresses both INHERENT and CONTEXT-DEPENDENT data quality; removing unnecessary
features increases the inherent value of the data, while certain features may only be essential for
specific tasks, thereby improving the contextual relevance of the dataset. Furthermore, the choice of
features may present SECURITY issues, as they might reveal sensitive information.

Challenges: While feature selection is vital, it can be challenging to determine which features are
truly irrelevant or redundant. Additionally, the process may require domain expertise to ensure that
important features relevant to specific tasks are not inadvertently discarded. This balance is necessary
to maintain the overall predictive power of the model.

5.4 Active Learning

In active learning, the algorithm has access to a small labeled dataset D and a large unlabeled dataset
U. The algorithm can query an oracle (e.g., a human labeler) for labels up to a certain budget b. The
objective is to optimize model performance within the constraints of this budget [60]. A common
method for achieving this is by selecting data instances with high predictive uncertainty.

Opportunities: Active learning efficiently utilizes labeling resources by focusing on the most informa-
tive data instances, thereby addressing the challenge of AVAILABILITY. Furthermore, active learning
supports the selection of the most relevant and diverse data instances for a specific task, enhancing
the representativity of the dataset for that application. This, in turn, addresses CONTEXT-DEPENDENT
data quality, ensuring that the model is trained on data that accurately reflects the target domain.

Challenges: Implementing active learning can be computationally intensive, as it requires iterative
model training and evaluation. Additionally, the effectiveness of active learning heavily depends
on the choice of the query strategy, which may not be universally optimal for all types of data and
tasks. Moreover, the need for an oracle to provide labels can introduce delays and inconsistencies,
especially if human labelers are used.

5.5 Core-Sets

A core-set is a small subset S C D of a full dataset D such that the learning algorithm achieves
similar performance when trained on this subset as it would on the entire dataset [20]. A popular
method for finding core-sets is the use of clustering techniques, where representative samples are
selected based on their distances to cluster centroids.

Opportunities: Core-sets significantly reduce the volume of data required for training without compro-
mising model performance. This is particularly beneficial for large datasets, as it minimizes storage
and computational needs while retaining the essential characteristics of the data. By ensuring that
the dataset remains manageable and efficient, core-sets address the challenge of data AVAILABILITY.
Conversely, if a smaller dataset can achieve similar performance to a larger one, the smaller dataset
should be favored.The data size can be considered an INHERENT property.

Challenges: 1dentifying an optimal core-set can be both challenging and computationally expensive,
especially for complex datasets. The process often involves sophisticated algorithms and heuristics,
which may not be straightforward to implement. Furthermore, core-sets might not capture all the
nuances of the original data, particularly in scenarios where rare events or minority classes are
important. This limitation can lead to reduced performance in applications where such events are
critical, underscoring the need for careful consideration when employing core-sets.

5.6 Data Augmentation

Data augmentation methods enhance the quality and diversity of training data by artificially increasing
the size of datasets. Techniques like Synthetic Minority Over-sampling Technique (SMOTE) [[L1]
can be effective in addressing data representativity issues, particularly class imbalances.

Opportunities: Data augmentation techniques contribute to creating a more diverse and representative
dataset. By artificially increasing the data size, these methods effectively address class imbalances and



195
196
197
198

199
200
201
202

204

205

207
208

210
211
212
213

214
215
216
217

218

219
220
221

222

223
224
225
226
227
228
229

230
231
232
233
234

236

237
238
239

240

241
242

enhance the model’s generalizability, leading to improved performance and fairness. While data aug-
mentation primarily addresses data AVAILABILITY, it can also improve CONTEXT-DEPENDENT data
quality for specific tasks and may provide partial defenses against overfitting and model vulnerability
to SECURITY breaches by diversifying the training data.

Challenges: A recent article titled The Good, the Bad, and the Ugly Sides of Data Augmentation
summarizes the challenges well [42]. Artificially modified or balanced data may not represent
real-world scenarios, potentially introducing noise or artifacts that could negatively affect model
performance [16]. Additionally, the effectiveness of different augmentation techniques varies greatly
depending on the specific dataset and task, necessitating careful experimentation and tuning.

5.7 Synthetic Data

Synthetic data refers to the creation of artificial data for machine learning. This approach is particularly
advantageous in scenarios where data collection is difficult, expensive, or where privacy concerns are
significant [} 44]. Typically, techniques such as Generative Adversarial Networks (GANs) or stable
diffusion are employed to generate this data.

Opportunities: Synthetic data enables the generation of large, diverse datasets without collecting
sensitive real-world samples, thereby reducing cost and time while safeguarding privacy and ensuring
regulatory compliance. By filling gaps, e.g. underrepresented classes or rare scenarios, and simulating
varied conditions, it boosts model robustness (addressing INHERENT and CONTEXT-DEPENDENT
data quality, and VARTIABILITY) and mitigates SECURITY risks tied to real data.

Challenges: Generating synthetic data can be challenging, especially for images, because it often
requires training large models like GANs [28] or diffusion models [59]. Additionally, synthetic data
can introduce another layer of bias and a content gap [7/0]. Obtaining performance comparable to or
superior to real data remains a significant hurdle in many applications [S].

6 Mapping Emerging Methods to Regulatory Needs

Next, we map emerging directions onto our taxonomy. We classify a method as “emerging” if it
was identified in our review but is not yet covered by existing surveys. Table [2| (bottom) provides an
overview of these methods and the primary data challenges they address.

6.1 Data Difficulty

Meding et al. [46] describe dichotomous data difficulty and show that many datasets, such as
ImageNet, suffer from imbalanced data difficulty. There are many data instances in the test set
that are never classified correctly (called impossible) and many that are always classified correctly
(called trivial). They show that models can be better compared on the remaining instances. A similar
conclusion can be drawn for label errors. Northcutt et al. [S1] show that larger models tend to be
favored on datasets with label errors, while smaller models might actually outperform them when
evaluated on a dataset without errors.

Opportunities: Understanding dichotomous data difficulty enhances the precision of model per-
formance evaluation. Performance across these distinct samples should be assessed specifically,
potentially through extending labels with metadata that indicates the difficulty level of individual
samples. This approach could also help identify areas of the dataset that are underrepresented. If
certain concepts that tend to be more difficult can be identified, it may suggest the need for gathering
additional training data. Thus, this understanding can serve as both an INHERENT data quality metric
and a means to address data AVAILABILITY.

Challenges: Addressing dichotomous data difficulty necessitates training multiple models, which can
be computationally intensive. Moreover, while it may function as a data quality metric, its validation
outside of academic settings remains uncertain and requires further investigation.

6.2 Data Distillation

Data Distillation is a relatively new field in machine learning, first introduced by Wang et al. [[71]].
Conceptually related to core-sets, the goal of data distillation is to condense a large dataset into a
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smaller one that maintains similar performance. The key distinction is that distilled data consists of
synthetic images, which are often not recognizable by humans. A popular method for creating these
synthetic images is gradient matching [75].

Opportunities: Similar to core-sets and synthetic data, data distillation can reduce the required dataset
size, thereby addressing the data AVAILABILITY issue. Furthermore, as Yu et al. [73] point out, it can
also contribute to resolving privacy, security, and robustness challenges, thus addressing SECURITY
challenges.

Challenges: Although data distillation holds significant potential and has been evaluated on real-world
examples, such as medical data [41], its practical applications, particularly in meeting regulatory
demands, remain underexplored.

6.3 Memorization

Memorization occurs when a model heavily relies on unique training instances to make predictions,
akin to a student memorizing a rare fact for an exam. For example, in a facial recognition dataset, a
single image of a person with a distinctive tattoo may be memorized, improving accuracy for that
individual but risking privacy through membership inference attacks [72]]. Feldman [21]] defines a
training instance as unique if its removal reduces the model’s ability to classify it correctly. Estimating
memorization involves training models with and without the instance, though efficient methods exist
[21L [36]]. Jiang et al. [36] further use memorization as a measure to categorize the structure of a
dataset and show that mislabeled instances are harder to memorize.

Opportunities: Memorization scores identify underrepresented regions (e.g., rare faces) and label
errors, addressing data AVAILABILITY and INHERENT data quality. They also flag privacy risks,
enhancing SECURITY. Additionally, memorization has proven useful in data pruning [63]].

Challenges: A primary issue is the difficulty of translating memorization scores into actionable data
collection strategies. Memorization scores identify unique training samples critical for generalization
but do not inherently specify what additional data to collect.

6.4 Explainable AI

Explainable AI (XAI) techniques aim to make machine learning models transparent by revealing
which inputs drive predictions. Early methods such as LIME [58]] and SHAP [45] highlight influential
features or regions in individual samples. Recent work evaluates XAI’s role in debugging models
[2 1], detecting bias [[13,[19]], certifying AI systems [23]], and building user trust [67,68]]. Crucially,
XAI can uncover data issues, for example, Ribeiro et al. showed that a wolf detector was focusing on
snowy backgrounds rather than the animal itself, leading to targeted data augmentation [S8]].

Opportunities: XAl pinpoints spurious correlations and gaps in data coverage, guiding selective
data collection or relabeling to improve both INHERENT and CONTEXT-DEPENDENT data quality.
By exposing underrepresented scenarios, it addresses AVAILABILITY concerns, and by revealing
memorized examples, it highlights potential privacy and SECURITY risks [22].

Challenges: Interpretations generated by XAl methods are often ambiguous or misleading, requiring
expert judgment to translate insights into actionable data-quality improvements [3} [23]]. Overreliance
on these explanations can introduce automation bias, and there is a lack of standardized, scalable
workflows for applying XAI to data-quality assurance. Practical adoption of XAl-driven remains
rare, underscoring its status as an emerging method.

6.5 Data Attribution

Data attribution traces a model’s predictions back to specific training samples. For each test prediction,
it assigns scores to training samples based on their influence [32]. A high attribution value may
indicate that removing sample ¢ from the training set would likely result in j being misclassified.
Conversely, a low (or negative) value implies that the presence of ¢ contributes to the misclassification
of j. Thus, data attribution can be interpreted as a matrix M, where rows represent training instances
and columns test instances. Since such a matrix can become very large and interpretation challenging,
it is common to display the top five samples with the highest positive influence and the top five
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with the highest negative influence (see Figure[I]of the Appendix). Tools like TRAK [54] make the
computation efficient by reducing the number of models that need to be retrained.

Opportunities: Data attribution detects label errors, data leakage, and underrepresented classes,
addressing INHERENT and CONTEXT-DEPENDENT quality issues. It also highlights privacy risks,
thereby addressing SECURITY concerns. Typically, mislabeled training samples show strong negative
influence, while test instances with few positive influencers reveal underrepresented regions and
potential security vulnerabilities.

Challenges: While the applicability of XAl has been widely discussed in ML research, data attribution
remains underexplored and is not well known among researchers [50]. Although the applications
mentioned seem plausible, they have not been systematically analyzed. Furthermore, interpreting the
attribution scores can be challenging due to the complexity of the relationships between training and
test samples.

6.6 Data Valuation

Data valuation is closely related to data attribution. In data valuation, each training instance ¢ is
assigned a scalar value v;, indicating its influence on the model performance. The value of instance
i can be interpreted as the average attribution score v; = Y _,* , M; i, where M is the attribution
matrix from Section[6.5] Although data values can be computed from an attribution matrix, e.g.,
created by TRAK, it is currently more common to rely on sampling-based methods. Ghorbani and
Zou [25] apply the Shapley value from cooperative game theory to data valuation. In recent years,
many methods have been introduced to speed up the computation of data values, most of which aim
to find better and faster approximations for the Shapley value [69} 139,40, [35] 162]].

Opportunities: By assigning each training example a value that reflects its impact on model perfor-
mance, data valuation enables targeted dataset pruning, removing low-value or noisy samples to
boost INHERENT data quality, and supports domain transfer by selecting high-value instances for
context-specific tasks, thereby improving CONTEXT-DEPENDENT quality. It also underpins emerging
data marketplaces by quantifying availability without exposing raw data, and highlights unique,
high-value examples that may pose privacy or SECURITY risks.

Challenges: While data valuation addresses numerous challenges, more specialized methods often
exist, and the computational costs are high. Efficiently calculating Shapley values, especially for
large datasets, remains difficult.

6.7 Sample-size Estimation

Determining appropriate sample sizes for both test and training sets is crucial for reliable model
evaluation and efficient data collection.

Several theoretical approaches have been proposed for test-set sizing. Guyon [31] suggest that the
optimal fraction r reserved for validation (or test) should scale inversely with the square root of the
number of model parameters |6|: r = ﬁ.

An alternative formulation asks what absolute number of test samples n is needed to estimate error

rates with statistical significance. Guyon et al. [30] gives the rule of thumb n ~ 1%, where p is the

expected error rate of the best recognizer (e.g., a human). Additional formulations are discussed in
Appendix

When test sets are small, high variance in performance estimates can undermine confidence.
Bouthillier et al. [8] recommend running multiple evaluation trials, varying data order, initialization,
etc., to stabilize metrics. Although the standard deviation decreases with larger sets, repeated runs can
compensate when gathering more data is infeasible (see Figure [2] of the Appendix for an example).

For training-set sizing, simple heuristics (e.g. the “one-in-ten” rule of ten examples per parameter)
lack solid justification. Instead, practitioners often plot learning curves, model performance versus
fraction of training data, which typically exhibit logarithmic gains (Figueroa et al. 2012; Viering et al.
2021). Early additions yield large improvements, while returns diminish beyond a certain point (e.g.,
performance surpasses 90% at 50% of data, with less than a 5% gain from doubling in Appendix [B).
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Opportunities: Determining the appropriate test-set size ensures that performance estimates are both
statistically sound and reflective of real-world conditions, thereby addressing CONTEXT-DEPENDENT
quality. Estimating the amount of training data helps avoid unnecessary collection and annotation
costs, addressing data AVAILABILITY. Finally, the total dataset size constitutes an INHERENT quality
attribute of the data.

Challenges: In domains with scarce or costly data, gathering an ideal number of samples may simply
be infeasible. Even when test or training sets are sufficiently large, models can still pick up spurious
correlations. Finally, despite regulatory calls such as EU AI Act Art. 10, systematic and widely
adopted methods for sample-size estimation remain underrepresented in practice.

7 An Exemplary Workflow for Regulated ML

Below we outline a concise five-step process that operationalizes the methods from before. A full
treatment is beyond this paper’s scope, but this sketch shows how established and emerging methods
can fit into a practical pipeline.

1. Define Objectives & Scope Work with domain/compliance experts to enumerate use-case
edge cases and data obligations and document the outcomes.

2. Plan Acquisition & Splits Estimate test-set size (e.g. n = 100/p or r = 1/4/|6]), collect
roughly 5n samples, and stratify into train (3n), test (n), and holdout (n) sets.

3. Validate Inherent Quality & Document Run automated checks (e.g. CleanLab for label
errors, schema validation). Generate a Data Card recording provenance, quality metrics, and
corrections.

4. Advanced Assessment & Remediation On the holdout set, apply drift detection and
memorization/attribution analyses (Sec. [0 to find coverage gaps. Remediate via targeted
re-labeling, augmentation, synthetic data, or distillation.

5. Final Audit & Continuous Monitoring Merge the holdout back into training, finalize
documentation, and archive an audit trail. Deploy live drift monitors and schedule periodic
re-validation to maintain ongoing compliance.

8 Discussion & Outlook

In this paper, we introduced a regulation-aligned taxonomy of five ML data challenges, systematically
mapped both established and emerging data-centric methods to these challenges, and sketched a
five-step workflow for “regulatable ML.” While these methods offer powerful techniques to enhance
the quality, safety, and regulatory compliance of Al systems, they require further empirical validation
and integration into practical toolchains and workflows. Future work should focus on validating these
approaches in real-world settings and embedding them into end-to-end compliance processes. Finally,
closer collaboration between regulators and the ML research community will be essential to refine
regulatory mandates and accelerate the adoption of data-centric best practices.
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601

s2 A Data Attribution Example

Test Sample Positive Influence

Figure 1: Example of data attributions computed with TRAK. The leftmost image is the test sample
(a cat). Above it are the five training images with the highest positive influence: adding them to
the training set increases the model’s confidence in correctly classifying the test image. Below are
the five images with the strongest negative influence: their presence tends to reduce classification
confidence. Some attributions can be counterintuitive (e.g. a dog image showing positive influence
on the cat sample), highlighting challenges in interpreting influence scores.
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Figure 2: Blue: Test accuracy and deviation (y-axis) when training 10 models on full training data
with increasing test size (z-axis). Red: Test performance and deviation (y-axis) with increasing size
of training data (z-axis) on full test set.
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s« C Data Quality Metrics from Research

Table 3: Examples of different data measurements from [48]].

DISTANCE DENSITY DIVERSITY TENDENCY ASSOCIATION
Physical  Sci- Length Mass-per- Biodiversity Mean, Median, Correlation
ences volume Mode

Euclidean Dis- Data Density Gini Diversity Burstiness
General tance
Data Cosine Similar- KNN Density Vendi Score
Measures it

y

Earth Mover’s

Distance

Kullback-

Leibler Diver-

gence

Word Mover’s Information Text Diversity Perplexity Pointwise Mutual

Distance (lan- Density (lan- (language) (language) Information
Modality- guage) guage)
Specific Levenshtein Idea  Density Lexical Diver- Fit to Zipf’s Law
Data Distance (lan- (language) sity (language)  (language)
Measures cuage)

Inception Dis- The Incep- Image Diversity

tance (vision) tion score  (vision)

(vision)

Subset Diver-
sity (vision)
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Table 4: Data Quality dimensions, metrics, descriptions, and examples from [[78]].

DIMENSION METRICS DESCRIPTION EXAMPLES
Intrinsic Correctness A record in a dataset is free of errors. Before starting a mailing campaign, the correctness of the
attributes “postal code" shall be evaluated, and even small
deviations shall be penalized because a deviation of only 1%
(the postal codes 80000 and 79200) hinders the delivery of a
mailing.
Data is correctly labeled if it is a labeled  In the medical domain, an informal phrase of “’lack of feeling"
record. should be labeled as “numbness”.

Duplication Measures if the same instances repeatin ~ If a record in a medical concept training dataset is “Hunger
the dataset, especially in both the training  — don’t want to eat", and there is exactly the same record in
and test datasets. a test dataset, then the record is considered as an overlapped

record in the two datasets.

Trustworthiness ~ Defines how factual the source that pro-  For a medical concept dataset, it should be obtained directly
vides the information is. It can be sub-  from the hospital’s system, which undergoes regular data qual-
jectively evaluated, such as indicating the ity checks and is maintained according to industry standards.
level on a scale, or the data can go through
fact-check algorithms.

Contextual Class imbal-  Evaluates if the distribution of examples =~ Most of the contemporary works on class imbalance fall into

ance across the known classes is biased or  the imbalance ratios ranging from 1:4 up to 1:100. The imbal-
skewed. ance ratio may range from 1:1000 up to 1:5000 for extreme

class imbalance problems.

Completeness A complete dataset should include as few A medical insurance dataset must include a customer’s birth-
missing values as possible. date, otherwise the medical consumption forecast model per-

formance will be hindered.

ComprehensivenessA dataset contains all representative sam-  In a medical text classification task, the training dataset should
ples from the population. contain sufficient labeled medical texts covering all the condi-

tions, symptoms, and treatments.

Unbiasedness Refers to whether the data used for ma-  Photo recognition software does not recognize the facial ex-
chine learning training has a distribution ~ pressions of ethnic minorities, or electronic soap dispensers
bias or historical bias. that do not respond to darker skin tones because the training

image datasets have an insufficient representation of some
geographic regions.

Variety Requires each validation dataset and  The percentage of the overlapped data between a
the test dataset to contain a significant  test/validation dataset and its corresponding training dataset
amount of new data compared to the cor-  should be as low as possible, such as less than 10%.
responding training dataset.

Representational ~ Conformity Measures how much the data conforms to  In a text classification task, a dataset of textual documents is
the conventions for capturing information  labeled with sentiment (positive, negative, neutral). The labels
in a certain manner, including machine-  should be encoded following a standardized set of categories,
readable data structures and formats for  and all data processing, such as removing punctuation, con-
capturing specific attributes. verting text to lowercase, and tokenizing sentences, should be

made to the whole dataset.

Consistency Requires data to be presented in the same  In an image classification task, if one dataset uses pixel values
format and to be compatible with previ-  in the range [0, 255], while another dataset scales pixel values
ous data. to the range [0, 1], this will cause inconsistency in model

training and predictions.

Accessibility Availability High data availability ensures that data is In a healthcare ML application for diagnosing diseases from

readily accessible with defined user per-
missions for access and modifications.

medical images, user entitlements are managed through strict
access controls, allowing only authorized medical profession-
als and data scientists to access the images.
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Table 5: Data Quality Metrics from ISO/IEC 5259 [33]]. The standard distinguishes between inherent
and system-dependent data quality metrics. Inherent metrics assess the intrinsic properties of the
data itself, such as accuracy, completeness, and consistency. System-dependent metrics evaluate the
data’s quality within the context of its use in a specific system and involve availability, portability, and
recoverability. A few metrics belong to both categories. Descriptions are generated with ChatGPT.

METRIC DESCRIPTION CATEGORY
Accuracy The degree to which data correctly describes the "real world" Inherent
object or event.
Completeness The extent to which data has no missing values. Inherent
Consistency Ensuring data is consistent and not contradictory across different Inherent
datasets and systems.
Credibility The degree to which data is trustworthy and believable, often  Inherent
based on its source.
Currentness How up-to-date data is, depending on the intended use. Inherent
Accessibility The ease with which data can be accessed and retrieved. Both
Compliance Adherence to relevant standards, policies, and regulations. Both
Confidentiality Not provided in the standard. Both
Efficiency The extent to which data provides the expected level of perfor- Both
mance.
Precision The level of detail and exactness of the data (e.g., decimal places Both
in numerical values).
Traceability Not provided in the standard. Both
Understandability The ease with which data can be comprehended and used by Both
stakeholders.
Availability Not provided in the standard. System-
Dependent
Portability The ease with which data can be transferred and used across  System-
different systems. Dependent
Recoverability Not provided in the standard. System-
Dependent
Auditability Part of data that has undergone an audit or is available for it. NA
Identifiability The capability to identify personally identifiable information in NA
the dataset.
Effectiveness The degree to which data contributes to achieving the desired NA
outcome or objective.
Balance Ensuring that the dataset is evenly distributed and representative ~ NA
of various groups.
Diversity The difference between the samples in the dataset. NA
Relevance The extent to which data is applicable and useful for the intended NA
purpose.
Representativeness The degree to which data accurately reflects the broader popula- NA
tion or phenomenon.
Similarity The extent to which data instances are similar to each other in NA
terms of specified criteria.
Timeliness The latency between when the data is used and when it is avail- NA

able.
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Table 6: Recommendations for Reliability and Validity from Zhao et al. [76].

Topic

RECOMMENDATIORESCRIPTION

Reliability Inter-annotator

agreement

Test-retest
reliability

An established method for assessing reliability, particularly in crowdsourcing, is through
inter-annotator agreement. This method often entails multiple annotators labeling an
instance, with the final label determined by a majority vote. Another method to gauge
inter-annotator reliability is by employing statistical measures of agreement. We find that
some text datasets provide quantitative metrics to quantify inter-annotator agreement,
such as Fleiss‘s x or Cohen‘s k. While consensus methods are employed in both text
and image datasets, quantitative metrics for inter-annotator agreement are reported
exclusively in text datasets. We recommend that image dataset curators also incorporate
these statistical measures when evaluating crowdsourced labels.

Another approach that dataset collectors can adopt is the test-retest method. In education,
this method involves administering the same test twice over a period, with consistent
results indicating reliability. This principle is particularly relevant when assessing the
reliability of collection methods like web scraping. For instance, curators can reapply
the same methodology to recollect instances, validating whether the recollected dataset
maintains the same diversity properties. Nonetheless, a lack of reliability from these
tests does not necessarily imply that the collection methodology inadequately captures
diversity. Changes in the underlying data distribution over time can influence the results.
For example, when evaluating linguistic diversity using data scraped from Reddit, major
societal events, such as elections, can unexpectedly alter the distribution. Even in such
cases, measuring test-retest reliability remains valuable for gaining insights into potential
shifts in data distributions.

Validity

Convergent va-
lidity:
Cross-dataset
generalization

Convergent
validity:
Comparing
existing
diversity met-
rics

Discriminant
validity

Commonly employed to evaluate "dataset bias," cross-dataset generalization enables
researchers to compare datasets. By utilizing existing datasets with similar structures
(e.g., label taxonomy, modality) and constructs of diversity, collectors can train on their
dataset and test on existing datasets or vice versa, comparing relevant metrics such as
accuracy. Model performance can also be assessed against standard train-test splits from
the same dataset. If the models perform similarly in both cross-dataset and same-dataset
scenarios, it suggests that the datasets have similar distributions for the target variable,
indicating correlated constructs of diversity. Model performance can also be assessed
against standard train-test splits from the same dataset. If the models perform similarly
in both cross-dataset and same-dataset scenarios, it suggests that the datasets have similar
distributions for the target variable, indicating correlated constructs of diversity. However,
a constraint of employing cross-dataset generalization is the necessity for congruent
taxonomies (for the target variable) and comparable distributions across datasets.

Dataset collectors can leverage established metrics for measuring data diversity. For
instance, the Vendi Score, drawing inspiration from ecology and quantum statistical
mechanics, has been introduced as a measure of diversity within image and text dataset
categories. Curators can demonstrate how their collection process aligns with such
recognized diversity metrics. Given that diversity metrics depend on the embedding space
employed, datasets should be benchmarked across a multiplicity of spaces optimized for
the definition of diversity selected by the dataset curators.

Discriminant validity assesses whether measurements for theoretically unrelated con-
structs yield unrelated results. Consider the initial Visual Question Answer (VQA)
dataset, which aimed to collect diverse and interesting questions and answers, encom-
passing question types such as “What is ...”, “How many ...”, and “Do you see a ...”. If
diversity is defined by the types of questions asked, it should have no relation to other
factors, such as gender distribution.

Prior works identified language biases in how questions and answers are formulated in
the VQA dataset. For instance, based on the dataset construction, a model predicting
“Yes” whenever the question begins with “Do you see a ...” can achieve high accuracy
without considering the image in question. This suggests potential low discriminant
validity for the given measure, highlighting the importance of applying discriminant
validity to mitigate construction biases during dataset creation.
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D Suggested Split Rations for Train-Test Splits

Regarding split ratios, several works attempt to find theoretical justifications for optimal splits.
Recently, Dubbs [[15]] derived ideal splits for linear regression models and independent Gaussian
distributions. Guyon [31]] suggest that the fraction of patterns reserved for the validation set should
be inversely proportional to the square root of the number of free adjustable parameters. Let |0| be
the number of adjustable parameters in the model, then the optimal test ratio r is given by:

1

T = —

v

A similar formula is suggested by Joseph [37]. Instead of the free parameters of the model, they
suggest using the number of parameters in a linear regression model that explains the data well. Let
| 8| be the number of parameters in such a linear regression model, then the optimal ratio r is given
by:

1
T_i\/m—l—l .

Another approach is to reverse the question and ask what size test set gives good error rate estimates
[30]. Guyon et al. [|30] propose various formulas for this. The simplest form suggests that the number
of test samples n should be approximately:

100
n~ —
p

where p is the expected error rate of the best recognizer, i.e., a human. This approach is related to
sample size estimation based on statistical significance, commonly used in medical and psychological
research. For example, to evaluate the effect of medication against a certain disease and the target is
an error margin of € with a confidence level of o = 0.99, the necessary sample size n is given by:

~ 38.99 x p(1 —p)
nN—2 .
€

Here, p is the a-priori known occurrence rate of the disease, and zg g9 is the value for the selected
confidence interval derived from the normal distribution. This method can also be applied to machine
learning and has been discussed in several works from the medical domain [7} [14} 57, 38]]. In the
context of ML, the interpretation could be as follows: if a model is trained to predict the disease with
a randomly drawn test set of size n, there is a 99% confidence that the real-world model performance
is within 1% of the error rate on the test set (for ¢ = 0.01 and o = 0.99).
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