
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ELPO: ENSEMBLE LEARNING BASED PROMPT OPTI-
MIZATION FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The remarkable performance of Large Language Models (LLMs) highly relies on
crafted prompts. However, manual prompt engineering is a laborious process, cre-
ating a core bottleneck for practical application of LLMs. This phenomenon has
led to the emergence of a new research area known as Automatic Prompt Opti-
mization (APO), which develops rapidly in recent years. Existing APO methods
such as those based on evolutionary algorithms or trial-and-error approaches real-
ize an efficient and accurate prompt optimization to some extent. However, those
researches focus on a single model or algorithm for the generation strategy and op-
timization process, which limits their performance when handling complex tasks.
To address this, we propose a novel framework called Ensemble Learning based
Prompt Optimization (ELPO) to achieve more accurate and robust results. Mo-
tivated by the idea of ensemble learning, ELPO conducts voting mechanism and
introduces shared generation strategies along with different search methods for
searching superior prompts. Moreover, ELPO creatively presents more efficient
algorithms for the prompt generation and search process. Experimental results
demonstrate that ELPO outperforms state-of-the-art prompt optimization meth-
ods across different tasks, e.g., improving F1 score by 7.6 on ArSarcasm dataset.

1 INTRODUCTION

Over the past few years, Large Language Models (LLMs) have emerged not merely as incremental
improvements in natural language processing (NLP), but as transformative agents redefining the
relationship between humans and intelligent systems. Flagship families including GPT (Radford
et al., 2018; 2019; Brown et al., 2020; Achiam et al., 2023), LLaMA (Touvron et al., 2023a;b),
and PaLM (Anil et al., 2023) are trained on web-scale corpora and display emergent capabilities
that are unforeseen in smaller-scale predecessors. Among these, in-context learning (Brown et al.,
2020) exemplifies a paradigm shift: models without any fine-tuning can tackle sentiment analysis,
text classification, code generation, logical reasoning, and other diverse tasks by following natural
language instructions, also known as “prompts”.

This ability has fueled visions of a “general-purpose linguistic interface” where machine behavior is
shaped as effortlessly as conversing with a colleague. Yet, this promise comes with a sharp problem:
LLMs are strikingly sensitive to small changes in prompts (Jiang et al., 2020; Zhao et al., 2021; Lu
et al., 2022). Synonym substitutions, minor structural tweaks or rephrased instructions may lead
to outputs drastically different from what human intuition expects (Webson & Pavlick, 2022). Such
fragility has propelled prompt engineering, the art and science of designing prompts for high-quality
outputs into the spotlight (Liu et al., 2023; Reynolds & McDonell, 2021). But for many users,
particularly non-experts, crafting effective prompts is an opaque, trial-and-error process, hindered
by the vast, unstructured search space of possible natural language instructions (Jiang et al., 2022).

To ease this burden, the field has turned toward Automatic Prompt Optimization (APO) (Zhou et al.,
2023). APO automates the prompt design process by creating candidate instructions and identi-
fying the optimal ones through performance evaluation. Strategies ranging from feedback-driven
refinement, evolutionary algorithms, to trajectory-based exploration have shown encouraging re-
sults. However, they have surfaced some new, fundamental difficulties. First, relying on a single
optimization algorithm risks fragility: in light of the “No Free Lunch” theorem for optimization
(Wolpert & Macready, 2002), no one strategy can consistently capture every subtlety across tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Second, most existing systems treat the candidate pool as a flat, unstructured set, leading to wasted
computation on unpromising variants, thereby diminishing efficiency. These bottlenecks leave APO
methods struggling to fulfil the promise of truly adaptive, scalable prompt engineering.

Motivated by both the remarkable potential of LLMs and the instability of prompt-based interaction,
we propose a novel framework for APO called Ensemble Learning based Prompt Optimization
(ELPO) which combines multiple generation and search algorithms to derive accurate and robust
results. As for the prompt generation, three strategies are applied to maintain the diversity and qual-
ity of candidate prompts. It is expensive to evaluate each candidate prompt on the entire training
dataset (Prasad et al., 2023), so well-designed search methods for minimizing the queries for em-
ploying LLMs are also necessary. With respect to prompt search, to the best of our knowledge,
we are the first to combine Bayesian search (Jones et al., 1998; Brochu et al., 2010; Snoek et al.,
2012) and Multi-Armed Bandit (MAB) (Audibert & Bubeck, 2010; Lattimore & Szepesvári, 2020),
applying it to APO for improving search efficiency substantially. Inspired by the idea of ensemble
learning (Zhou, 2012), a robust result is chosen by applying multiple generation and search methods
along with ensemble voting.

In summary, this paper makes the following main contributions.

(1) As for generation, we creatively propose Hard-Case Tracking which focuses on recurrent
error samples and analyzes them in conjunction with failed prompts, employing large lan-
guage models to generate more robust and generalizable prompts. Moreover, we combine
it with other two strategies simultaneously when generating new prompts.

(2) In terms of search efficiency, we propose a novel search algorithm in APO based on
Bayesian search. It reflects prompts into high-dimensional spaces to increase search ef-
ficiency as a result of evaluation on only part of the prompts.

(3) In terms of robustness and generalization, we use an ensemble voting strategy that aggre-
gates multiple well-performing yet structurally diverse candidate prompts.

(4) We conduct extensive experiments on various tasks and demonstrate that our algorithm
outperforms state-of-the-art methods. The ablation study validates the effectiveness of each
individual component, confirming their respective contributions to the algorithm’s success.

2 RELATED WORK

The field of APO has rapidly evolved, moving from simple generation-and-selection pipelines to
highly sophisticated search and refinement strategies. The existing methods can be broadly cat-
egorized by their core mechanism for proposing and selecting new prompts considering different
optimization space, criteria, operators and iterative algorithms (Cui et al., 2025).

Many researches are based on soft prompt space optimization (Li & Liang, 2021; Sun et al., 2022;
Zou et al., 2023; Zhao et al., 2024; Zhou et al., 2024; Zhao et al., 2025), despite their efficiency,
these methods suffer from two major drawbacks that limit their practical application, especially with
modern, closed-source LLMs. Firstly, they are inherently white-box, requiring direct access to the
model’s internal states, such as gradients and hidden layer activations, for backpropagation. This is
infeasible for practitioners who interact with powerful models like those from OpenAI or Anthropic
exclusively through APIs (Pryzant et al., 2023). Secondly, the resulting optimized prompts are
vectors of floating-point numbers, not human-readable text. Thus, it is necessary to explore a novel
APO algorithm with black-box APIs that this paper focuses on. Nevertheless, optimizing in a high-
dimensional, non-differentiable space of natural language presents its own set of challenges, leading
to various creative methodologies.

Reinforcement Learning (RL) Based Algorithms. These methods formulates prompt optimization
as an RL problem. Under this setting, the LLM acts as an agent, the prompt is the state, and the
actions are discrete text editing operations (e.g., add, delete, or rephrase a word). The reward is
derived from the task performance on a validation dataset. For example, RLPrompt (Deng et al.,
2022) and TEMPERA (Zhang et al., 2023) train a policy network to decide which editing actions
to take. While promising, RL-based methods can be complex to implement, often requiring the
training of an auxiliary policy or reward model. Furthermore, the discrete, phrase-level operations
may lead to grammatically flawed or semantically incoherent prompts (Prasad et al., 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Search and Evolution Based Algorithms. Early approaches in this domain treat prompt opti-
mization as a search problem. Some methods employ a simple but often inefficient Monte Carlo
search, where a large number of candidate prompts are generated (e.g., through paraphrasing) and
evaluated. The Automatic Prompt Engineer (APE) framework (Zhou et al., 2023) exemplifies this,
using an LLM to generate diverse instructions and then selecting the best one based on a score
function. Inspired by APE, Wang et al. (2024) propose PromptAgent which extend Monte Carlo
to a search tree through a series of selections, expansions, simulations, and backpropagation steps.
To make the search more structured, other works have turned to evolutionary algorithms. Methods
like GPS (Xu et al., 2022), EvoPrompt (Guo et al., 2024), and PromptBreeder (Fernando et al.,
2024) maintain a population of candidate prompts and iteratively apply genetic operators such as
mutation (e.g., rephrasing a sentence), crossover (e.g., combining parts of two prompts). While
more systematic than random search, a primary drawback is that the search can be directionless and
sample-inefficient. The generation of new candidates often relies on random modifications with-
out a clear signal on how to improve the prompt, potentially wasting many LLM API resources on
unpromising candidates (Pryzant et al., 2023).

LLM-as-Optimizer and Feedback Based Algorithms. Recently, a more directed approach has
emerged that leverages the LLM’s own reasoning capabilities to guide the optimization process
(Pryzant et al., 2023; Zhou et al., 2023; Cheng et al., 2024; Yang et al., 2024; Ye et al., 2024; Juneja
et al., 2025; Xiang et al., 2025). These feedback-based methods typically operate in an iterative
loop: (1) evaluate the current prompt on a batch of examples, (2) identify erroneous outputs, and
(3) feed these errors back to a powerful optimizer LLM, instructing it to critique the current prompt
and propose refined versions. A foundational method in this subfield is ProTeGi (Pryzant et al.,
2023), which introduces the concept of “textual gradients”. In this framework, the LLM-generated
critique serves as a semantic gradient for prompts. This directed feedback makes the search far
more efficient than directionless Monte Carlo or evolutionary approaches. Other concurrent works
have also explored using LLM feedback to refine prompts for SQL-generation (Chen et al., 2024) or
general tasks (Ye et al., 2024).

Although all the aforementioned methods have demonstrated some achievements, they exhibit crit-
ical limitations that our work aims to address. Firstly, these methods rely on a single optimization
algorithm which limits their performance. Secondly, they are often myopic, operating on a step-
by-step basis. They generate feedback based only on the errors in the current iteration and discard
it once a new prompt is selected. Potentially valuable historical feedback and unselected critiques
are lost, forcing the optimizer to potentially rediscover information and leading to a less efficient
optimization process (Yan et al., 2025). Finally, while some methods use retrieved exemplars to
augment prompts during inference, the selection of these exemplars is typically based on general
semantic similarity (Hu et al., 2024; Juneja et al., 2025), which may not be optimal for task per-
formance or align well with the optimized instruction. To overcome these deficiencies, this paper
proposes ELPO to derive accurate and robust results.

3 METHODOLOGY

3.1 PRELIMINARY

As we detail in Section 2, in the field of APO, various methods have been developed for searching
the best prompts. However, a persistent characteristic observed across these techniques is a notable
degree of performance instability. The efficacy of a single method can be highly sensitive to initial
conditions, stochastic elements within the algorithm, or minor perturbations in the training data
(Breiman, 1996). Furthermore, a closer examination of the existing landscape reveals that no single
method consistently outperforms all others across all tasks or datasets since LLMs are probability
based models which bring unpredictable randomness naturally. For instance, APE may excel in
scenarios requiring broad, exploratory search with a higher cost, while ProTeGi might be more
effective in solving problems with reasoning precess. Each approach possesses unique strengths and
weaknesses, and the performance of any individual method can be suboptimal or highly variable
depending on the specific problem context. This suggests that the individual models, or predictors,
are good but unstable, a characteristic that makes them prime candidates for improvement through
aggregation techniques (Breiman, 1996; Zhou, 2012; Ganaie et al., 2022).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Pipeline of ELPO.

In most traditional approaches, the generation strategy and the search process tend to rely on a
single model or algorithm, which limits their performance when handling complex tasks. As a re-
sult, traditional methods usually lack flexible adjustment mechanisms and struggle to quickly adapt
and respond when task requirements change. As shown in Figure 1, the ensemble framework pro-
posed in this paper integrates shared generation strategies, different search, and voting mechanisms.
The main idea is to enhance the diversity and adaptability of the model through the integration of
multiple generation models, utilizing different feedback mechanisms and optimization strategies.
Furthermore, a voting mechanism is employed to ensure the reliability and accuracy of the final out-
put. Compared with existing methods, this ensemble framework enables optimization from multiple
dimensions, effectively avoids the biases of single strategy, and gives a more comprehensive and
efficient solution.

3.2 ABUNDANT PROMPT GENERATION

In the process of prompt optimization, the quantity and quality of candidate prompts directly de-
termine the outcome. To address this, we introduce an ensemble-based generation framework that
leverages a multi-generator strategy to enhance both the diversity and quality of candidate prompts.
Different generators are applied to capture various task-specific details and complement one an-
other. This ensemble mechanism not only broadens the range of choices during optimization but
also strengthens the accuracy and robustness of the final results.

Bad-Case Reflection. The core of the Bad-Case Reflection lies in conducting in-depth analyses of
erroneous cases through a reflection mechanism. Traditional feedback-based methods typically in-
volve collecting erroneous examples and directly modifying the prompts; however, these approaches
merely focus on correcting errors and lack a profound understanding of the underlying causes. In
contrast, the proposed method generates self-reflective prompts to assist the model in identifying
the fundamental sources of error and iteratively refines the system prompts based on the reflection,
thus improving the model’s performance on similar issues. Moreover, as shown in Algorithm 1,
this approach leverages some failure cases to create few-shot examples, which further enhance the
effectiveness of the prompts. The iteration terminates when all bad cases are resolved or the maxi-
mum number of iterations is reached. Compared to conventional error-feedback-based techniques,
this reflection-driven optimization method strengthens the model’s generalization capabilities by
incorporating few-shot examples.

Evolutionary Reflection. Evolutionary Reflection generator is inspired by mutation and crossover
operations in genetic algorithms (Holland, 1992b; Mitchell, 1998).The algorithm adopts two distinct
generation strategies: direct mutation and zero-order generation. Direct mutation involves modify-
ing the current prompt directly to produce new prompts that are semantically similar but expressed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Bad-Case Reflection
1: Input: Initial prompt p, bad cases B, the number of iterations for optimization T
2: Sample bad case set Bs ⊂ B
3: for t = 1, . . . , T do
4: Generate reflection prompt pref based on p and Bs

5: Update target prompt pt using pref
6: Evaluate prompt pt on Bs to get a new bad cases set B̂s, and let Bs ← B̂s

7: end for
8: p∗ ← Generate Few-shot block from Bs and add it to target prompt pT
9: Output: p∗

differently, analogous to the mutation operation (Holland, 1992a) in genetic algorithms. This strat-
egy explores transitions from existing solutions to potentially superior ones, thereby enhancing the
diversity of generated prompts. Zero-order generation, on the other hand, analyzes the characteris-
tics of the current prompt population and generates an entirely novel prompt based on the structure
and techniques of existing prompts. This approach emulates the crossover operation in genetic al-
gorithms by synthesizing the attributes of multiple existing prompts, resulting in more innovative
candidate solutions. As we detail in Algorithm 2, these two strategies complement each other. In-
formed by heuristic principles of genetic methods, they establish a dynamic balance between local
refinement and global exploration, enabling the system to iteratively accumulate more diverse and
promising candidate solutions.

Algorithm 2 Evolutionary Reflection
1: Input: prompt population P , the number of iterations for optimization T , the sizes of candidate

prompts s1, s2
2: Generate new candidate prompts P1 via direct mutation from P with |P1| = s1
3: Generate new candidate prompts via zero-order generation from P with |P2| = s2
4: Evaluate candidate prompts P1 ∪ P2, and let p∗ ← best prompt in P1 ∪ P2

5: Output: p∗

Hard-Case Tracking. The design of this method is inspired by feedback-based methods and the
OPRO (Yang et al., 2024) framework, which highlights the importance of leveraging large language
models as optimizers based on solution-score pairs. A critical drawback of existing approaches is
their myopic perspective on prompt evaluation. They typically operate by either analyzing the failure
cases of an individual prompt or just considering the terminal performance metrics. Consequently,
these methods lack a global awareness of the optimization dynamics across the entire population
of candidate prompts. To overcome this, we propose Hard-Case Tracking, a novel technique that
maintains and utilizes a global view of all prompts’ behaviors and error patterns. Additionally, rec-
ognizing the sophisticated inferential power of contemporary LLMs (Kojima et al., 2022; Wei et al.,
2022), our framework forgoes the generation of explicit intermediate summaries. We instead em-
power the model to perform autonomous reasoning through an implicit chain of thought, a strategy
that preserves the full fidelity of information and prevents premature information loss. Specifically,
we employ a bad case tracker to dynamically monitor inputs associated with the highest frequency of
errors and their corresponding prompts in historical data, regarding these as “hard cases” within the
task. This hard-case-driven optimization given in Algorithm 3 fundamentally enables explicit mod-
eling of the optimization trajectory, effectively integrating the joint utilization of historical solution
pathways and problem text emphasized in the OPRO methodology, thereby enhancing adaptability
to challenging cases and improving the generalization of prompts. Moreover, this strategy can sys-
tematically and iteratively address frequent points of failure, resulting in superior task performance.

3.3 EFFICIENT PROMPT SEARCH

During the ensemble optimization phase, the evaluation of a large number of candidate prompts
poses significant time constraints, conducting assessments for each prompt would inevitably result
in substantial inefficiency. To address this challenge, we introduce an intelligent screening mech-
anism based on Bayesian optimization and the MAB principle to efficiently pre-select candidate

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 3 Hard-Case Tracking
1: Input: Bad case tracker B, prompt population P , the size of Hard-Case dataset k
2: Select top-k cases by error frequency from B to build Hard-Case dataset

D := {(Casei, Failure timesi, Failed promptsi)}ki=1

3: Construct meta-prompt pmeta using D
4: Use an LLM to generate improved prompt p∗ based on pmeta

5: Output: p∗

prompts. This ensemble optimizer significantly reduces evaluation costs while maintaining cover-
age and fairness, and it is capable of prioritizing the identification of high-potential prompts. The
proposed design effectively alleviates computational bottlenecks encountered in large-scale prompt
optimization tasks and offers a scalable solution for automated prompt selection in the context of
complex tasks.

Bayesian Search. The core idea of Bayesian optimization is to perform probabilistic modeling
of the performance landscape over candidate prompts using historical evaluation data, enabling
sample-efficient selection under limited evaluation budgets. Specifically, given a set of evaluated
prompts {xi, yi}ni=1, where xi denotes the embedding of the i-th prompt and yi is its observed
performance, a Gaussian Process Regression (GPR) model is fitted to estimate the underlying ob-
jective function f(x). For any unevaluated candidate x, the posterior predictive distribution is
f(x) ∼ N (µ(x), σ2(x)), where µ(x) and σ2(x) represent the expectation and variance of x, re-
spectively. The acquisition function, Expected Improvement (EI), quantifies the expected gain over
the current best observed performance f∗, and is defined as:

EI(x) := E [max(f(x)− f∗ − ξ, 0)] ,

where ξ is a positive constant for exploration. The closed-form expression is: EI(x) = (µ(x) −
f∗− ξ)Φ(Z) + σ(x)ϕ(Z), where Z = (µ(x)− f∗− ξ)/σ(x), Φ(·) and ϕ(·) denote the cumulative
distribution function and the probability density function of the standard normal distribution, respec-
tively. By computing EI(x) for all candidate prompts and selecting those with the highest EI values
for evaluation, the algorithm efficiently explores the search space and identifies optimal or near-
optimal prompts with fewer evaluations. Bayesian optimization thus achieves a principled balance
between exploitation of known well-performing prompts and exploration, resulting in accelerated
convergence and improved resource efficiency. This process is shown in Algorithm 4.

Algorithm 4 Bayesian Search for Prompt Selection
1: Input: Candidate prompts C, evaluated prompts and their scores {(xi, yi)}ni=1, the number of

optimized prompts N
2: Fit GPR on (xi, yi) to estimate f(x)
3: for each candidate x ∈ C do
4: Calculate posterior mean µ(x) and variance σ2(x)
5: Compute EI value as: EI(x) = (µ(x)− f∗ − ξ)Φ(Z) + σ(x)ϕ(Z)
6: end for
7: Select top-N candidates C∗ with the highest EI(x)
8: Output: C∗

MAB Search. The MAB also achieves a principled balance between exploration and exploitation
from another perspective. Candidate prompts are first embedded and clustered via K-means, with
each cluster viewed as an individual arm. During each evaluation round, pulling an arm corresponds
to evaluating a prompt from the corresponding cluster, and the observed reward (e.g., F1 score) is
recorded. To efficiently allocate evaluation resources, the Upper Confidence Bound (UCB) criterion
is adopted. For the k-th arm, the UCB score is defined as:

UCBk := r̄k + c
√

lnN/nk,

where r̄k denotes the average reward for arm k, nk is the number of pulls for arm k, c is an explo-
ration parameter and N is the total number of pulls across all arms. At each step, the arms with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the highest UCB scores are selected, and prompts are randomly sampled from these clusters for
evaluation. This strategy adaptively focuses on clusters likely to yield high-reward prompts while
ensuring adequate exploration of less-tested regions. This iterative process is formalized in Algo-
rithm 5. Compared to random or greedy strategies, the MAB method provides an asymptotically
optimal allocation of evaluation budget, leading to faster convergence and robust performance.

Algorithm 5 MAB Search for Prompt Selection
1: Input: Candidate prompts C, the number of clusters K
2: Embed C into Euclidean space and perform K-means clustering with parameter K, time steps

Ts, exploration parameter c
3: Initialize each cluster as an arm k ∈ {1, . . . ,K} with r̄k = 0 and nk = 0
4: for Nts = 1, . . . , TS do
5: For each arm k, compute UCB score: UCBk = r̄k + c

√
(lnNts)/nk

6: Select top arms as a set SK with the highest UCB scores
7: For each arm k ∈ SK , randomly choose a prompt for evaluation and updating nk and r̄k
8: end for
9: Output: Prompts with highest observed rewards

3.4 ENSEMBLE VOTING

In large-scale prompt optimization tasks, relying on a single prompt is often insufficient to achieve
robustness and generalization required by diverse and dynamic scenarios. To address this limitation,
we propose an ensemble voting strategy that aggregates multiple well-performing yet structurally
diverse candidate prompts. The ensemble is constructed by selecting top-ranked prompts from the
optimization population, with clustering and ranking employed to ensure diversity in linguistic ex-
pression and reasoning strategies, effectively mitigating the risk of local optima.

Within the ensemble, each member independently produces its prediction for the same input, and
the final output is determined through a voting mechanism. Since each prompt follows a different
generation path and the LLM involves inherent randomness during generation, prompt bias may be
amplified. Thus considering different prompts may be better suited for different tasks. We adopt a
weighted voting mechanism, where voting weights are assigned according to the capability of each
prompt. Formally, given M ensemble members, the final prediction ŷ(x) for input x is defined as:

ŷ(x) = argmaxy∈Y
∑M

j=1 wj · I{fj(x) = y},

where wj is the weight of the j-th prompt, fj(x) represents its prediction, and I is the indicator
function. The weight vector w is obtained by solving the following optimization problem:

minw
{
−F1macro(w) + λ∥w∥22

}
s.t.

∑M
j=1 wj = 1, wj ≥ wmin,

where λ is a regularization coefficient designed to ensure balanced weight allocation and reduce the
risk of overfitting, wmin > 0 is a pre-given constant as a weight threshold.

During each iteration, the ensemble pool is automatically updated based on the latest evaluation re-
sults, with new high-quality prompts continuously incorporated through clustering and performance-
driven selection. Consequently, both ensemble membership and weight assignments are dynamically
adapted, allowing the system to respond effectively to shifts in data distribution and task complex-
ity, thereby further improving robustness and generalization across heterogeneous test environments.
This voting method is summarized in Algorithm 6. Extensive experimental results demonstrate that
the ensemble voting approach consistently outperforms single-prompt baselines, yielding superior
stability and fault tolerance. These advantages are particularly pronounced in settings characterized
by high prompt diversity and dynamically evolving candidate spaces.

4 EXPERIMENTS AND RESULTS

Datasets. We perform evaluation on the following 6 datasets: Liar (Wang, 2017), BBH-navigate
(Suzgun et al., 2023), Ethos (Mollas et al., 2022), ArSarcasm (Farha & Magdy, 2020), WSC

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 6 Ensemble Voting
1: Input: Queries Q, optimization population P , test dataset Dtest = {(qi, ai)}i consists of

queries and answers, ensemble size M , regularization parameter λ, minimum weight wmin

2: Select M well-performing and diverse prompts {pj}Mj=1 from P via clustering and ranking
3: Generate predictions fj(qi) for (qi, ai) ∈ Dtest and j ∈ {1, . . . ,M}
4: Construct prediction matrix F with Fij = fj(qi)
5: Optimize weights w = (w1, . . . , wM) by solving

minw
{
−F1macro(w;F, Dtest) + λ∥w∥22

}
s.t.

∑M
j=1 wj = 1, wj ≥ wmin (j = 1, . . . ,M)

6: for each query q ∈ Q do
7: Aggregate predictions by weighted voting:

â(q) = argmaxa
∑M

j=1 wj I{fj(q) = a}
8: end for
9: Output: A(Q) = {â(q)}q∈Q

(Levesque et al., 2012), GSM8K(Cobbe et al., 2021). WSC features multiple-choice questions,
GSM8K includes questions that require integer answers, and the others offer true or false questions.

Baselines. Several representative methods are compared, including existing LLM-based prompt
optimizers such as APE, ProTeGi, OPRO, Promptbreeder, EvoPrompt, and GPO (Tang et al., 2025).
Besides, we consider two baselines: one using manually written simple prompts, which are provided
in the appendix, and another using the instruction “Let’s think step by step.” from chain-of-thought
(CoT) as proposed by Kojima et al. (2022) for performance comparison.

4.1 MAIN RESULTS

In Table 1, we present a comparison between ELPO and representative prompt optimization methods
on true/false questions, generative questions and multiple-choice questions. Overall, ELPO consis-
tently outperforms existing approaches across all datasets. All the F1 score and accuracy results are
multiplied by 100. For true/false questions, our approach shows notable improvement. Specifically,
ELPO achieves an F1 score of 91.1 on the BBH dataset, outperforming CoT’s 81.9 by 9.2 points and
demonstrating better generalization. For generative and multiple-choice questions, our method also
delivers substantial gains. On the WSC and GSM8K datasets, ELPO attains an accuracy of 95.9 and
a score of 96.0, respectively, surpassing GPO’s 84.0 and Promptbreeder’s 91.7.

These results indicate that ELPO not only shows stronger optimization ability in complex reasoning
tasks (e.g., LIAR, BBH, GSM8K) but also maintains stable advantages in fine-grained semantic
detection tasks (e.g., ETHOS, ArSarcasm, WSC). Compared with feedback-based methods (e.g.,
ProTeGi) and evolutionary methods (e.g., EvoPrompt, PromptBreeder), ELPO achieves significant
improvements in both accuracy and stability.

Method LIAR BBH ETHOS ArSarcasm WSC GSM8K
(F1) (F1) (F1) (F1) (Acc.) (Acc.)

Empty 46.4 69.4 93.0 83.7 77.3 89.0
CoT (Kojima et al., 2022) 46.0 81.9 84.5 83.7 81.3 89.0
APE (Zhou et al., 2023) 51.2 74.3 93.2 84.3 79.3 91.3
ProTeGi (Pryzant et al., 2023) 60.3 73.6 97.0 84.1 80.0 91.0
OPRO (Yang et al., 2024) 52.1 75.0 94.8 84.7 83.3 90.7
Promptbreeder (Fernando et al., 2024) 51.8 75.7 95.7 84.5 80.0 91.7
EvoPrompt (Guo et al., 2024) 52.3 76.4 94.3 83.9 78.8 90.7
GPO (Tang et al., 2025) 56.6 75.0 95.5 83.8 84.0 90.3
ELPO 72.1 91.1 98.4 92.3 95.9 96.0

Table 1: Comparison of performance between ELPO and existing methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.2 ABLATION STUDY

Effect of Each Component. We take the combination of Bad-Case Reflection and the MAB Search
as the “Baseline” configuration, as it represents the simplest form of APO. For comparison, we intro-
duce a “Generator” treatment group to evaluate the impact of incorporating diverse generators such
as Hard-Case Reflection and Evolutionary Reflection. In addition, a “Framework” treatment group
is established to assess the effectiveness of the ensemble framework, including the shared generation
strategy and ensemble voting strategy. This experimental design ensures that we can systematically
verify the effectiveness of each key component in our proposed method. The results are given in
Table 2. We observe that increasing the diversity of generators leads to a significant improvement
in F1 score on these datasets, which confirms the effectiveness of the generator expansion strategy.
Furthermore, benefited from the generator expansion strategy, the ensemble framework strategy can
further enhance model performance.

Baseline Generator Framework
LIAR BBH ETHOS ArSarcasm WSC GSM8K
(F1) (F1) (F1) (F1) (Acc.) (Acc.)

✓ 42.5 71.1 97.6 74.4 76.2 76.7
✓ ✓ 65.3 84.0 97.7 86.7 88.9 90.5
✓ ✓ 43.2 73.1 97.9 79.2 87.0 80.0
✓ ✓ ✓ 72.1 91.1 98.4 92.3 95.9 96.0

Table 2: Effect of each component in our method.

Effect of Voting Method. As shown in Table 3, we further validate the rationality of the ensemble
voting strategy in the ensemble framework. The results show that using an average strategy to vote
on the selected prompts can slightly improve accuracy, while applying a weighted voting strategy
can further enhance model performance.

Baseline average weighted
LIAR BBH ETHOS ArSarcasm WSC GSM8K
(F1) (F1) (F1) (F1) (Acc.) (Acc.)

✓ 63.3 84.7 95.1 83.3 91.2 93.3
✓ ✓ 66.7 85.8 98.3 85.7 94.7 93.8
✓ ✓ 72.1 91.1 98.4 92.3 95.9 96.0

Table 3: Effect of Voting Method.

5 CONCLUSION

In this paper, we propose a novel framework for APO called Ensemble Learning based Prompt
Optimization (ELPO) which combines multiple generation and search algorithms to derive accurate
and robust results. By integrating a variety of improved generators, we fully leverage the generative
capabilities and remarkable knowledge of LLMs to construct a rich pool of candidate prompts. To
conserve resources and enhance efficiency, we further propose an optimized search strategy that
selects the most promising prompts prior to actual sample evaluation. Additionally, we employ an
ensemble voting approach to improve model performance across diverse tasks, resulting in greater
accuracy and robustness.

Despite the promising results, our study has several limitations. Firstly, our generation strategy is
not plentiful enough, which may restrict the pool of candidate prompts. It is an interesting direction
to extend this framework to more generation strategies, such as human intervention methods, to
provide more promising candidates. Secondly, our search strategy is not sufficiently robust. Though
we can save resources by evaluating only the top-performing prompts, the search strategy does not
always guarantee that the best prompts will be selected from the candidates.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors confirm that they have read and will adhere to the ICLR Code of Ethics throughout the
submission, review, and discussion process. The research presented in this paper does not involve
any human participants, personally identifiable information, or other sensitive data.

REPRODUCIBILITY STATEMENT

We provide all source code for anonymous review in the supplementary material to facilitate repro-
ducibility. The repository contains no personally identifying information. The experiments were
conducted using publicly available datasets which are described in Section 4. Random seeds were
fixed for all runs.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits. In
Conference on Learning Theory (COLT 2010), pp. 41–53, 2010.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp. 1877–
1901, 2020.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In International Conference on Learning Representations, 2024.

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning Wang, Yuxiao Dong, Jie Tang, and Minlie
Huang. Black-box prompt optimization: Aligning large language models without model training.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 3201–3219, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser and-
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, pp. abs/2110.14168, 2021.

Wendi Cui, Jiaxin Zhang, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das, Bradley A Malin,
and Sricharan Kumar. Heuristic-based search algorithm in automatic instruction-focused prompt
optimization: a survey. In Findings of the Association for Computational Linguistics: ACL 2025,
pp. 22093–22111, 2025.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 3369–3391, 2022.

Ibrahim Abu Farha and Walid Magdy. From arabic sentiment analysis to sarcasm detection: The
arsarcasm dataset. In Proceedings of the 4th Workshop on Open-Source Arabic Corpora and
Processing Tools, with a Shared Task on Offensive Language Detection, pp. 32–39, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim
Rocktäschel. Promptbreeder: self-referential self-improvement via prompt evolution. In Interna-
tional Conference on Machine Learning, volume 235, pp. 13481–13544, 2024.

Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer, and Ponnuthurai N
Suganthan. Ensemble deep learning: a review. Engineering Applications of Artificial Intelligence,
115:105151, 2022.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In International Conference on Learning Representations, 2024.

John H Holland. Adaptation in natural and artificial systems: an introductory analysis with appli-
cations to biology, control, and artificial intelligence. MIT Press, 1992a.

John H Holland. Genetic algorithms. Scientific American, 267(1):66–73, 1992b.

Xinyu Hu, Pengfei Tang, Simiao Zuo, Zihan Wang, Bowen Song, Qiang Lou, Jian Jiao, and Denis
Charles. Evoke: evoking critical thinking abilities in llms via reviewer-author prompt editing. In
International Conference on Learning Representations, 2024.

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra Molina, Aaron Donsbach, Michael Terry, and
Carrie J Cai. Promptmaker: Prompt-based prototyping with large language models. In Extended
Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, pp. 1–8, 2022.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language
models know? Transactions of the Association for Computational Linguistics, 8:423–438, 2020.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

Gurusha Juneja, Gautam Jajoo, Nagarajan Natarajan, Hua Li, Jian Jiao, and Amit Sharma. Task
facet learning: a structured approach to prompt optimization. In Findings of the Association for
Computational Linguistics: ACL 2025, pp. 23473–23496, 2025.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in Neural Information Processing Systems,
volume 35, pp. 22199–22213, 2022.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Pro-
ceedings of the Thirteenth International Conference on Principles of Knowledge Representation
and Reasoning, pp. 552–561, 2012.

Xiang Lisa Li and Percy Liang. Prefix-tuning: optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: a systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1–35, 2023.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: overcoming few-shot prompt order sensitivity. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 8086–8098, 2022.

Melanie Mitchell. An introduction to genetic algorithms. MIT Press, 1998.

Ioannis Mollas, Zoe Chrysopoulou, Stamatis Karlos, and Grigorios Tsoumakas. Ethos: a multi-label
hate speech detection dataset. Complex & Intelligent Systems, 8(6):4663–4678, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: gradient-free, edit-based in-
struction search for prompting large language models. In Proceedings of the 17th Conference of
the European Chapter of the Association for Computational Linguistics, pp. 3845–3864, 2023.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 7957–7968, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: beyond the
few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–7, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, volume 25, pp.
2951–2959, 2012.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the imita-
tion game: quantifying and extrapolating the capabilities of language models. Transactions on
Machine Learning Research, 2023.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning
for language-model-as-a-service. In International Conference on Machine Learning, pp. 20841–
20855, 2022.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. In Findings of the Association for Computational
Linguistics: ACL 2023, pp. 13003–13051, 2023.

Xinyu Tang, Xiaolei Wang, Wayne Xin Zhao, Siyuan Lu, Yaliang Li, and Ji-Rong Wen. Unleashing
the potential of large language models as prompt optimizers: Analogical analysis with gradient-
based model optimizers. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 39, pp. 25264–25272, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

William Yang Wang. ” liar, liar pants on fire”: A new benchmark dataset for fake news detection.
arXiv preprint arXiv:1705.00648, 2017.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. Promptagent: strategic planning with language models enables expert-level
prompt optimization. In International Conference on Learning Representations, 2024.

Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pp. 2300–2344, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, volume 35, pp. 24824–24837, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE trans-
actions on evolutionary computation, 1(1):67–82, 2002.

Jinyu Xiang, Jiayi Zhang, Zhaoyang Yu, Fengwei Teng, Jinhao Tu, Xinbing Liang, Sirui
Hong, Chenglin Wu, and Yuyu Luo. Self-supervised prompt optimization. arXiv preprint
arXiv:2502.06855, 2025.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, and Zhilin Yang. Gps:
genetic prompt search for efficient few-shot learning. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp. 8162–8171, 2022.

Cilin Yan, Jingyun Wang, Lin Zhang, Ruihui Zhao, Xiaopu Wu, Kai Xiong, Qingsong Liu, Guoliang
Kang, and Yangyang Kang. Efficient and accurate prompt optimization: the benefit of memory
in exemplar-guided reflection. In Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 753–779, 2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In International Conference on Learning Representations,
2024.

Qinyuan Ye, Mohamed Ahmed, Reid Pryzant, and Fereshte Khani. Prompt engineering a prompt
engineer. In Findings of the Association for Computational Linguistics: ACL 2024, pp. 355–385,
2024.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E. Gonzalez. Tempera:
Test-time prompt editing via reinforcement learning. In International Conference on Learning
Representations, 2023.

Chenzhuo Zhao, Ziqian Liu, Xingda Wang, Junting Lu, and Chaoyi Ruan. Pmpo: Probabilistic met-
ric prompt optimization for small and large language models. arXiv preprint arXiv:2505.16307,
2025.

Yiran Zhao, Wenyue Zheng, Tianle Cai, Do Xuan Long, Kenji Kawaguchi, Anirudh Goyal, and
Michael Qizhe Shieh. Accelerating greedy coordinate gradient and general prompt optimization
via probe sampling. In Advances in Neural Information Processing Systems, volume 37, pp.
53710–53731, 2024.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: improving
few-shot performance of language models. In International Conference on Machine Learning,
pp. 12697–12706, 2021.

Andy Zhou, Bo Li, and Haohan Wang. Robust prompt optimization for defending language models
against jailbreaking attacks. In Advances in Neural Information Processing Systems, volume 37,
pp. 40184–40211, 2024.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In International Confer-
ence on Learning Representations, 2023.

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC Press, 2012.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were employed only for minor language editing, including spelling correction and grammar
checking, during the preparation of this manuscript. No technical content, research ideation, exper-
imental design, or data analysis was generated by LLMs. All factual and scientific statements were
written by the authors and verified independently. The authors take full responsibility for all content
in the paper.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B ADDITIONAL DETAILS FOR THE SETUP

B.1 TASKS AND DATA DETAILS

We present a summary of the dataset sizes, data split information, sources, and licensing details
in Table 4. To the best of our knowledge, our usage of these datasets aligns with their intended
purposes, and the data we utilize do not contain any personal or sensitive information.

Dataset Name Task Train & Dev Test License
LIAR True/False 3681 461 Unknown
BBH-Navigate True/False 153 97 Apache-2.0
ETHOS True/False 300 217 GNU GPLv3
ArSarcasm True/False 8437 2110 MIT
GSM8K Integer Generation 7473 1319 MIT
WSC Multiple-Choice 162 123 CC BY 4.0

Table 4: Dataset tails.

The LIAR dataset (Wang, 2017) consists of 12,791 English statements for fake news detection, each
provided with contextual information and truthfulness labels. For our experiments, we split the
dataset randomly, then getting 3,681 samples for training and 461 samples for testing.

The BIG-bench Hard dataset (Suzgun et al., 2023) is a challenging subset of the BIG Bench corpus
(Srivastava et al., 2023), featuring 23 tasks that pose significant difficulties for current language
models. In our study, we focus on the navigation task, in which the goal is to determine whether an
agent, after executing a series of navigation steps, returns to its starting position. We allocate 153
instances for training and 97 instances for testing.

ETHOS (Mollas et al., 2022) is a hate speech detection dataset in English, comprising 998 online
comments, each annotated with hate speech labels. We split the dataset randomly then assigning
300 instances to the training set and 217 instances to the testing set.

The ArSarcasm dataset (Farha & Magdy, 2020) is an Arabic sarcasm detection corpus made up of
10,547 online comments, all labeled for sarcasm. We utilize the original data division, with 8,437
samples for training and 2,110 samples for evaluation.

The GSM8K (Cobbe et al., 2021) dataset consists of 8,792 high-quality, linguistically diverse grade
school math word problems, all created by human authors. Following the dataset division used in
GPO (Tang et al., 2024), we employ 7473 samples for training and 1319 for testing.

The WSC(Levesque et al., 2012) dataset was proposed as an alternative to the Turing Test, as well
as a benchmark for evaluating a system’s commonsense reasoning capabilities. In line with the
methodology adopted by GPO (Tang et al., 2024), we select 162 samples for training and 123 for
testing.

B.2 IMPLEMENTATION DETAILS

We select Doubao-pro as the task model and set its temperature to 0 to ensure deterministic outputs.
For the prompt optimizer, we utilize the model of GPT-4o to get high quality of prompt generation.
the prompts for different tasks can be founded later in the paper. At each step, we generate 10, 5 and
1 prompts using the Bad-Case Reflection, Evolutionary Reflection, and Hard-Case Tracking meth-
ods respectively and then aggregate them into the shared candidate prompts. The best-performing
prompts among them are selected as the parent prompts for the next iteration. All experiments are
conducted three times, and we report the average results.

14

https://www.cs.ucsb.edu/~cwilliam/data/liar_dataset.zip
https://github.com/google/BIG-bench
https://huggingface.co/datasets/iamollas/ethos
https://github.com/iabufarha/ArSarcasm
https://github.com/openai/grade-school-math
https://huggingface.co/datasets/ErnestSDavis/winograd_wsc

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C ELPO PROCESS

C.1 PROMPT GENERATION

In each epoch, we will generate prompts based on the initial prompt and the excellent prompt in
previous iteration throuth three methods. All newly generated prompts constitute the candidate
prompts in each epoch.

Original Prompt

Task
Solve the math problem. Please output only the answer to the math
problem without any additional response.
Few-Shot Exemplars
Input: Ryan is considering buying a new multivitamin brand. Each
pill has 50 mg of Vitamin A in it. The recommended daily serving of
Vitamin A is 200 mg. How many pills does Ryan need to hit the
recommended amount for the week?
Expected: 28
Prediction
Input: {input}
Expected:

Bad-Case Reflection

Prompt1
You are a specialist in navigation and spatial reasoning,
responsible for analyzing whether a set of movement instructions
returns to the original position (coordinate (0, 0) on a two-
dimensional Cartesian plane).

Evaluation Guidelines:

1. **Starting Point**:
- Begin at the origin (0, 0).
- Assume an initial direction of north unless explicitly

specified otherwise.

2. **Sequential Processing**:
- Execute each instruction in order.
- Update orientation immediately upon commands that involve

changes in direction (e.g., "turn left," "turn right," "turn around
").

- For movement commands (e.g., "forward," "backward," "left," "
right"), revise x- and y-coordinates based on the current
orientation, ensuring all movement offsets are cumulative.

3. **Tracking Progress**:
- Log the updated position and orientation after each instruction

for clarity.
- Avoid skipping or combining intermediate steps to ensure

thoroughness.

4. **Final Analysis**:
- Compare the concluding position with the starting position (0,

0). The direction at the end does not matter for this comparison.
- If the final position matches the starting point, output: ‘[{"

label":"YES"}]‘.
- If the final position is different, output: ‘[{"label":"NO"}]‘.

Error Prevention Measures:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

- Validate directional changes (e.g., turns) for accuracy.
- Track all movements along the x- and y-axes systematically.
- Base decisions strictly on the given instructions; avoid assuming
unstated positions or directions.
- Use intermediate results for each step to detect and address
discrepancies before generating the final output.

Example Walkthroughs:

- **Example 1**:
- **Input**: "Move 3 steps forward. Turn around. Move 3 steps

forward. Turn right."
1. Start at (0, 0), facing north. Move forward 3 steps: (0, 3).
2. Turn around to face south. Move forward 3 steps: (0, 0).
3. The final position equals the starting point (0, 0).
- **Output**: ‘[{"label":"YES"}]‘.

- **Example 2**:
- **Input**: "Face forward throughout. Move 7 steps backward.

Move 4 steps left. Move 7 steps left. Move 7 steps right. Move 8
steps forward."

1. Start at (0, 0), facing north. Move backward 7 steps: (0, -7)
.

2. Move left 4 steps: (-4, -7). Move left another 7 steps: (-11,
-7).

3. Move right 7 steps: (-4, -7). Move forward 8 steps: (-4, 1).
4. The final position does not equal the starting point (0, 0).
- **Output**: ‘[{"label":"NO"}]‘.

Follow these instructions closely to ensure consistent and accurate
navigation analyses.

Prompt2
You are an expert in navigation and spatial reasoning, tasked with
determining whether a sequence of movement instructions leads back
to the starting position (coordinate (0, 0) on a two-dimensional
Cartesian plane)...

Prompt3
You are an advanced navigation reasoning system designed to
accurately evaluate movement instructions and determine if they lead
back to the starting point. Your role is to simulate these

movements step by step in a precise 2D coordinate system, ensuring
accurate position and orientation tracking...
More candidates ...

Evolutionary Reflection

Prompt1
Task Description:
Your role is to serve as an accurate navigation analyzer responsible
for evaluating whether a series of movement commands will lead back
to the starting position. Use logical reasoning and spatial

tracking to systematically assess the movement sequence and
determine if the endpoint aligns with the origin.

Instructions for Analysis:
1. Interpret all types of movements and directional changes
explicitly. Movements include actions such as "forward," "backward,"

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and alterations in direction like "turn left," "turn right," and "
turn around."
2. Simulate the entire sequence step by step with precision,
ensuring meticulous tracking of:

- **Position**: Update grid coordinates accordingly (e.g., +1 for
movement north, -1 for south).
- **Orientation**: Monitor the current facing direction (north,

south, east, west) and adjust as per "turn" commands.
3. Determine whether the endpoint is identical to the starting point
(coordinates (0, 0)):
- If the coordinates match, return ‘{"label":"YES"}‘ in JSON

format.
- If the coordinates do not match, return ‘{"label":"NO"}‘ in

JSON format.

Rules:
- Avoid making unwarranted assumptions for unspecified data; adhere
to logical default interpretations when ambiguous (e.g., "always
face forward" implies an initial orientation of north unless stated
otherwise).
- Follow a systematic, step-by-step approach to maintain accuracy.
- The output must strictly conform to the JSON format: ‘[{"label":"
YES"}]‘ or ‘[{"label":"NO"}]‘.

Example Walkthrough:
Input: "Always face forward. Take 4 steps forward. Turn right. Take
2 steps forward. Turn around. Take 6 steps backward."
- Step-by-Step Processing:
1. Begin at (0, 0) facing north.
2. Move 4 steps forward then (0, 4).
3. Turn right then now facing east.
4. Move 2 steps forward then (2, 4).
5. Turn around then now facing west.
6. Move 6 steps backward then (-4, 4).
7. Final position is (-4, 4), which does not match the starting

point (0, 0).

Output: ‘[{"label":"NO"}]‘

Proceed to analyze the provided input and generate the output in the
required format.

Prompt2
You are an expert in navigation and spatial reasoning, tasked with
determining whether a sequence of movement instructions leads back
to the starting position (coordinate (0, 0) on a two-dimensional
Cartesian plane)...
Prompt3
You are a specialist in navigation and spatial reasoning,
responsible for analyzing whether a set of movement instructions
returns to the original position (coordinate (0, 0) on a two-
dimensional Cartesian plane)...
More candidates...

Hard-Case Tracking

Prompt1
You are a highly specialized navigation reasoning system tasked with
determining if a set of movement instructions leads back to the

starting point, (0, 0), on a 2D Cartesian grid. Follow the
instructions step by step, ensuring precise position and orientation
updates.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Key Operational Steps:
1. **Initialization**:

- Start at ‘(0, 0)‘ on the Cartesian plane.
- Default orientation is **North** unless explicitly stated

otherwise.

2. **Step-by-Step Execution**:
- Parse and execute all instructions sequentially. Handle each

movement and orientation update independently.
- Movements must increment or decrement ‘[X, Y]‘ according to the

current orientation:
- Facing **North**: ‘+Y‘ for forward, ‘-Y‘ for backward.
- Facing **East**: ‘+X‘ for forward, ‘-X‘ for backward.
- Facing **South**: ‘-Y‘ for forward, ‘+Y‘ for backward.
- Facing **West**: ‘-X‘ for forward, ‘+X‘ for backward.

- Update orientation for turn commands:
- **Turn Right**: 90 degrees clockwise.
- **Turn Left**: 90 degrees counterclockwise.
- **Turn Around**: Reverse orientation 180 degrees .

3. **Specific Constraints**:
- If instructions include ’Always face forward’, maintain

constant orientation **North** throughout.
- Do not make assumptions about implied details; default to

logical consistency.

4. **Final Validation**:
- After processing all instructions, verify if the final position

‘[X, Y]‘ equals ‘[0, 0]‘.
- If true, output ‘[{"label":"YES"}]‘; otherwise, output ‘[{"

label":"NO"}]‘.

Output Requirements:
- Return your response in strict JSON format:

- ‘[{"label":"YES"}]‘ for paths leading back to the starting
point.

- ‘[{"label":"NO"}]‘ for paths that do not.

Example Input Processing:
Input: "Take 3 steps forward. Turn around. Take 3 steps forward
."
1. Start at ‘(0, 0)‘, facing North.
2. Move forward 3 steps then ‘(0, 3)‘.
3. Turn around to face South.
4. Move forward 3 steps then ‘(0, 0)‘.
Output: ‘[{"label":"YES"}]‘.

Strictly adhere to this approach to ensure logical accuracy and
format compliance.
More candidates ...

C.2 PROMPT SEARCH

Since there are many prompts in the candidates, it will consume a lot of resources to evaluate each
prompt. We use Bayesian Search and MAB Search Method to select potential prompt.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompt Candidates

Prompt1
You are a specialist in navigation and spatial reasoning,
responsible for analyzing whether a set of movement instructions
returns to the original position (coordinate (0, 0) on a two-
dimensional Cartesian plane).

Evaluation Guidelines:

1. **Starting Point**:
- Begin at the origin (0, 0).
- Assume an initial direction of north unless explicitly

specified otherwise.

2. **Sequential Processing**:
- Execute each instruction in order.
- Update orientation immediately upon commands that involve

changes in direction (e.g., "turn left," "turn right," "turn around
").

- For movement commands (e.g., "forward," "backward," "left," "
right"), revise x- and y-coordinates based on the current
orientation, ensuring all movement offsets are cumulative...
Prompt2
You are an expert in navigation and spatial reasoning, tasked with
determining whether a series of movement instructions leads back to
the starting position (coordinate (0, 0) on a 2D Cartesian plane).

Guidelines for Evaluation:

1. **Initialization**:
- Begin at the origin point (0, 0).
- Assume an initial facing direction of north unless specified

otherwise.

2. **Step-by-Step Processing**:
- Execute each instruction sequentially in the given order.
- Adjust orientation immediately upon encountering direction-

changing commands (e.g., "turn left," "turn right," "turn around").
- For movement commands (e.g., "forward," "backward," "left," "

right"), update the x- and y-coordinates based on the current
orientation, ensuring all displacements are cumulative...
More candidates...

Bayesian Search

Prompt1
You are a specialized model focused on navigation and spatial
reasoning tasks. Your objective is to analyze sequences of movement
and orientation instructions to determine whether the endpoint
aligns with the starting position, ensuring precision and
consistency. Follow these principles:

1. **Instruction Parsing and Clarity**: Break down each instruction
explicitly. Separate movements (e.g., steps forward, backward) from
orientation changes (e.g., turn left, turn right). Resolve vague
terms logically (e.g., default "forward" to current facing direction
or "right/left" to standard cardinal directions if unspecified).

2. **Orientation and Movement Accuracy**: Maintain precise tracking
of orientation (north, east, south, west) throughout the sequence:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

- Apply directional changes before updating grid coordinates.
- For relative terms (e.g., "right," "left"), compute orientation

dynamically based on the existing facing direction.

3. **Step-by-Step Grid Simulation**: Treat the ‘(0, 0)‘ starting
point as a Cartesian grid origin. At every step:

- Update orientation and grid position incrementally based on the
instruction.
- Validate intermediate positions and orientation shifts

systematically to prevent accumulation of errors.

4. **Consistency in Ambiguity Handling**: Standardize rule-based
interpretations for unclear phrasing (e.g., assume "always forward"
unless explicitly reoriented). Reassess ambiguous instructions to
ensure consistent logic across all steps.

5. **Accurate Final Validation**: Compare the final coordinates ‘(x,
y)‘ to the origin ‘(0, 0)‘:
- If they match, return ‘[{"label":"YES"}]‘.
- If they differ, return ‘[{"label":"NO"}]‘.

6. **Output Specification**: Deliver results strictly in the format
‘[{"label":"YES"}]‘ or ‘[{"label":"NO"}]‘.

Approach every problem methodically:
- Parse, simulate, and validate every step of the sequence
systematically.
- Regularly reassess movements, orientation, and grid positions to
identify and correct potential errors early.
- Ensure default assumptions and interpretations align logically
with task requirements for coherent outcomes.

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: If you follow these instructions, do you return to the
starting point? Always face forward. Take 5 steps right. Take 4
steps backward. Take 8 steps left. Take 5 steps left. Take 6 steps
backward. Take 9 steps forward. Take 5 steps right. Take 1 step
forward. Take 3 steps right.
Options:
- Yes
- No
Expected: YES

[Example 2]
Input: If you follow these instructions, do you return to the
starting point? Take 3 steps. Turn around. Take 3 steps. Turn right.
Options:
- Yes
- No
Expected: YES
Prompt2
You are an expert navigation analyzer specializing in spatial
reasoning. Your task is to determine whether a sequence of movement
instructions results in returning to the starting point. To ensure
accuracy, follow these structured guidelines...
Prompt3
You are an advanced spatial navigation and path-tracking system
designed to evaluate movement instructions step by step and
determine whether the path returns to the starting point. Your focus
is on rigorous interpretation of instructions, precise handling of

direction, magnitude, positional updates, orientation rules, and

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

constraints like "always face forward." Adhere to the following core
principles...

MAB Search

Prompt1
Task Description:
Your role is to serve as an accurate navigation analyzer responsible
for evaluating whether a series of movement commands will lead back
to the starting position. Use logical reasoning and spatial

tracking to systematically assess the movement sequence and
determine if the endpoint aligns with the origin.

Instructions for Analysis:
1. Interpret all types of movements and directional changes
explicitly. Movements include actions such as "forward," "backward,"
and alterations in direction like "turn left," "turn right," and "

turn around."
2. Simulate the entire sequence step by step with precision,
ensuring meticulous tracking of:

- **Position**: Update grid coordinates accordingly (e.g., +1 for
movement north, -1 for south).
- **Orientation**: Monitor the current facing direction (north,

south, east, west) and adjust as per "turn" commands.
3. Determine whether the endpoint is identical to the starting point
(coordinates (0, 0)):
- If the coordinates match, return ‘{"label":"YES"}‘ in JSON

format.
- If the coordinates do not match, return ‘{"label":"NO"}‘ in

JSON format.

Rules:
- Avoid making unwarranted assumptions for unspecified data; adhere
to logical default interpretations when ambiguous (e.g., "always
face forward" implies an initial orientation of north unless stated
otherwise).
- Follow a systematic, step-by-step approach to maintain accuracy.
- The output must strictly conform to the JSON format: ‘[{"label":"
YES"}]‘ or ‘[{"label":"NO"}]‘.

Example Walkthrough:
Input: "Always face forward. Take 4 steps forward. Turn right. Take
2 steps forward. Turn around. Take 6 steps backward."
- Step-by-Step Processing:
1. Begin at (0, 0) facing north.
2. Move 4 steps forward to (0, 4).
3. Turn right to now facing east.
4. Move 2 steps forward to (2, 4).
5. Turn around to now facing west.
6. Move 6 steps backward to (-4, 4).
7. Final position is (-4, 4), which does not match the starting

point (0, 0).

Output: ‘[{"label":"NO"}]‘

Proceed to analyze the provided input and generate the output in the
required format.

Prompt2
You are a specialist in navigation and spatial reasoning,
responsible for analyzing whether a set of movement instructions

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

returns to the original position (coordinate (0, 0) on a two-
dimensional Cartesian plane)...
Prompt3
You are a sophisticated spatial navigation and path-tracking system
specialized in accurately analyzing sequences of movement
instructions. Your main responsibility is to determine whether a
given set of navigation commands results in a return to the starting
point. Carefully process each instruction step by step, ensuring

precise updates to both positional coordinates ‘[X, Y]‘ and
orientation...

To assess the effectiveness of our search strategy, we evaluated the performance of prompt words
from all candidates on the real dataset. As illustrated in Figure 2, six prompts were selected from the
candidates using the search method. The average F1 score across all candidates is 80.2.Importantly,
five out of the six chosen prompts achieved scores above this average, and four ranked among the top
five overall. These results indicate that our search strategy reliably identifies high-quality prompts
while conserving resources.

Figure 2: Efficiency of search.

C.3 ENSEMBLE VOTING

Ensemble Voting

Prompt1
You are an expert navigation and spatial reasoning model designed to
assess whether a sequence of movement instructions results in a

return to the starting point (coordinate (0, 0) on a 2D Cartesian
grid).

Guidelines for Accurate Evaluation:

1. **Initialization**:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

- Always begin at position (0, 0) on the Cartesian grid, facing
north, unless explicitly stated otherwise.

2. **Instruction Parsing**:
- Carefully read and interpret each instruction in order.

Identify special conditions like "always face forward," which
override direction changes.

3. **Orientation Updates**:
- For commands like "turn left," "turn right," or "turn around,"

update the facing direction immediately before processing movement
instructions.

- Ignore orientation changes if a locked orientation such as "
always face forward" is indicated.

4. **Movement Calculations**:
- For each movement ("forward," "backward," "left," "right"),

calculate the change in x- and y-coordinates based on the current
orientation. Align movements strictly with locked orientations when
applicable.

5. **Intermediate State Tracking**:
- After each instruction, log the updated coordinates and facing

direction. Use these intermediate records to cross-check for
consistency and prevent cumulative errors.

6. **Final Validation**:
- Compare the final grid coordinates to the starting point (0, 0)

. Output ‘[{"label":"YES"}]‘ only if the final position matches (0,
0); otherwise, output ‘[{"label":"NO"}]‘.

7. **Error Prevention Checks**:
- Ensure consistent updates to x- and y-coordinates and facing

directions at every step. Validate each intermediate state before
proceeding to the next instruction.

- Pay close attention to overridden conditions like "always face
forward" to prevent misinterpretation of implied directions.

Example Processes:

- Input: "Always face forward. Take 2 steps left. Take 4 steps
backward. Take 10 steps right."

1. Start at (0, 0), facing north, with locked orientation forward
(north).
2. Move 2 steps left to (-2, 0).
3. Move 4 steps backward to (-2, -4).
4. Move 10 steps right to (8, -4). Final position: (8, -4).
Output: ‘[{"label":"NO"}]‘.

- Input: "Take 3 steps. Turn around. Take 3 steps."
1. Start at (0, 0), facing north. Move 3 steps forward to (0, 3).
2. Turn around to face south. Move 3 steps forward to (0, 0).
3. Final position matches (0, 0).
Output: ‘[{"label":"YES"}]‘.

By prioritizing accurate parsing, intermediate validation, and
systematic processing of movements and orientation changes, ensure
consistent evaluations for all navigation tasks.

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: If you follow these instructions, do you return to the
starting point? Always face forward. Take 2 steps left. Take 4 steps

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

backward. Take 10 steps right. Take 2 steps left. Take 3 steps left
. Take 7 steps right.
Options:
- Yes
- No
Expected: NO

[Example 2]
Input: If you follow these instructions, do you return to the
starting point? Always face forward. Take 9 steps right. Take 6
steps right. Take 10 steps backward. Take 9 steps left. Take 4 steps
left.

Options:
- Yes
- No
Expected: NO

Prompt2
You are an expert in navigation and spatial reasoning, tasked with
determining whether a series of movement instructions leads back to
the starting position (coordinate (0, 0) on a 2D Cartesian plane)...

Prompt3
You are a sophisticated navigation and spatial reasoning system
designed to determine whether a sequence of movement instructions
returns to the starting position, (0, 0), on a 2D Cartesian grid.
Your task is to ensure precise calculations and logical consistency
by strictly following the given instructions...

D ADDITIONAL RESULT

Here, we present the initial prompt and the ELPO-optimized prompt across different tasks.

Initial prompt of the LIAR dataset

Task
Determine whether the Statement is a lie (Yes) or not (No) based on
the Context and other
information.
Output format
Answer Yes or No as labels.
Prediction
Text: {input}
Label:

ELPO optimized prompt of the LIAR dataset

Prompt1:
You are an expert in mathematics, logic, and navigational reasoning
tasked with rigorously determining whether a given Statement is true
or false based solely on the provided Context and any explicitly

relevant, verifiable data. Follow this exact, methodical process:
carefully parse every word, focusing on precise interpretation of
negations, qualifiers, conditional phrases, and comparative or
superlative modifiers (e.g., "not," "only," "less than," "more than
," "ever," "always"); accurately interpret all quantitative
information including numbers, percentages, units, ratios, sequences
, temporal references, and ensure consistency with units and scales;

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

thoroughly decompose complex or compound statements into smaller
components and verify each part individually; explicitly distinguish
between facts directly supported by the Context or widely accepted

general knowledge and assumptions, opinions, or implicit claims,
avoiding any unsupported inferences; apply step-by-step logical
analysis, visualization, or spatial reasoning as appropriate to
validate relational, temporal, and logical claims; when information
is ambiguous, conflicting, or incomplete, prioritize the most direct
, explicit, and reliable evidence within the Context; double-check
all numerical calculations, logical deductions, and spatial
assessments before reaching a conclusion; remain vigilant against
common errors including misreading negations or qualifiers,
misinterpreting percentages or comparisons, overlooking units or
contextual cues, misclassifying assumptions as facts, and neglecting
nested conditionals or compound relationships. Conclude with a

clear, concise final answer: output only "Yes" if the Statement is
verified as true by this rigorous analysis, or "No" if it is false.
Do not provide explanations or additional commentary.

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: Says Amanda Fritz manages less than 5 percent of city
operations.
Expected: YES

[Example 2]
Input: Many state and federal agencies have such navigators involved
in helping folks maneuver through the often complex processes

associated with filing benefits claims, for example -- even buying
health insurance.
Expected: YES

[Example 3]
Input: Says MAX carries 30 percent of evening rush-hour commuters
traveling from Downtown on the Sunset and Banfield freeways.
Expected: YES

[Example 4]
Input: The State of Texas is funding womens health services at
historically high levels; they just increased their level another 50
million for the next two years.

Expected: YES

[Example 5]
Input: Ohio is not meeting its obligation to update voter
registrations when voters change their address with the BMV.
Expected: YES

[Example 6]
Input: Says he was the only Republican to vote against creating a
House panel to investigate Planned Parenthood.
Expected: YES

Prompt2:
Task
As an expert in math and navigation reasoning, determine whether the
given Statement is true or false based solely on the provided

Context and any explicitly verifiable, relevant information. Use
precise, step-by-step logical, numerical, temporal, and spatial
analysis without introducing unsupported assumptions.

Guidelines

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

- Carefully parse every element of the Statement, paying special
attention to negations, conditionals, exclusive terms such as "only
," comparative phrases like "more than," "less than," and nuanced
modifiers.
- Break down complex or compound Statements into smaller parts and
verify each part independently against the Context.
- Cross-check all quantitative data, units, percentages, ratios,
dates, sequences, directions, and spatial relationships against the
Context, performing explicit calculations or logical reasoning as
needed.
- Distinguish rigorously between explicit facts and opinions,
assumptions, or implicit claims; rely solely on verifiable
information present in the Context or established, relevant general
knowledge.
- Avoid inferring or assuming information beyond the provided
Context unless it is logically necessary, explicitly justified, and
clearly documented in your reasoning.
- When confronted with ambiguity, contradiction, or incomplete
information, prioritize the most direct, explicit, and reliably
sourced evidence from the Context.
- Employ mental visualization, mapping, or systematic logical and
numerical checks to confirm temporal, spatial, conditional, and
comparative relationships.
- Double-check all calculations, logical deductions, qualifier
interpretations, and spatial or temporal conclusions before
finalizing your determination.
- Vigilantly avoid common errors such as ignoring negations,
misreading percentages or comparative data, conflating assumptions
with facts, misinterpreting spatial or logical relationships, or
overlooking key qualifiers.
- Maintain a rigorous, detailed, and cautious approach throughout
the analysis to ensure accuracy and reliability in your verification
.

Output format
Respond only with a single word: Yes if the Statement is true
strictly based on the Context; otherwise, No.

Prediction
Text: {input}
Label:

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: This is the slowest job recovery since Hoover.
Expected: NO

[Example 2]
Input: The State of Texas is funding womens health services at
historically high levels; they just increased their level another 50
million for the next two years.

Expected: YES

[Example 3]
Input: Oregonians have an amazing no-cost way to fight abortion with
free political donations

Expected: YES

[Example 4]
Input: Our pension system is the only one in the country thats 100
percent funded.
Expected: YES

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

[Example 5]
Input: Says Rick Scott called education not a core function of the
state.
Expected: NO

[Example 6]
Input: When we took office, let me remind you, there was virtually
no international pressure on Iran.
Expected: NO

Prompt3:
Task
As an expert in mathematics and spatial reasoning, determine whether
the given Statement is true or false solely based on the supplied

Context and any directly relevant, verifiable information, using
thorough logical, numerical, and spatial analysis.

Guidelines
- Perform a detailed and methodical review of all elements within
the Context before forming your conclusion.
- Accurately interpret every quantitative detail-including units,
ratios, percentages, sequences, directions, and spatial
relationships-without exception.
- Pay close attention to all negations, qualifiers, conditionals,
and implied meanings, carefully considering modifiers such as "not,"
"only," "less than," "more than," and comparative terms.

- Distinguish clearly between facts, opinions, assumptions, and
implied statements; verify facts exclusively through explicit
contextual evidence or commonly accepted knowledge.
- Refrain from making assumptions beyond the provided information
unless they are strictly necessary, explicitly justified, and
clearly documented in your reasoning.
- In cases of ambiguity, contradiction, or incomplete data,
prioritize the most direct, explicit, and trustworthy information
available in the Context.
- Avoid common pitfalls: do not ignore negations or qualifiers,
misconstrue percentages or comparative data, or misunderstand
spatial, logical, or conditional relationships.
- Employ mental visualization, mapping, or stepwise logical checks
to confirm spatial and relational interpretations as needed.
- Verify all calculations, logical inferences, and spatial
evaluations carefully before delivering your final decision.
- Analyze the Statement meticulously, focusing on each word and
modifier in its context to ensure precise comprehension.

Output format
Respond with a single word: Yes if the Statement is true; No if it
is false.

Prediction
Text: {input}
Label:

Initial prompt of the BBH-nevigate dataset

Role & Task
You are an expert in spatial navigation. Given a sequence of
navigation instructions, determine if the path returns to the
starting point.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Instructions include directions (north, south, east, west) and
actions (move forward, turn left, turn right).
Track the position and orientation carefully, considering each step
and turn. Output only "Yes" if the path returns to the starting
point, or "No" if it does not.

Output Requirement
You must output the result in strict JSON format, with no additional
text. The JSON should be an array containing a single object with

the "label" key.
- If the path returns to the starting point, output: [{"label":"YES
"}]
- If the path does NOT return to the starting point, output: [{"
label":"NO"}]
- Any output that deviates from this format (such as plain text,
missing brackets, or other content) will be considered invalid.

Example
- Input: "Always face forward. Take 1 step backward. Take 4 steps
left. Take 4 steps left."
- Output: [{"label":"NO"}]

ELPO optimized prompt of the BBH-nevigate dataset

Prompt1
You are an expert in spatial navigation path - return - to - start -
point determination. Given a series of navigation instructions (

which consist of directions like north, south, east, west and
actions like move forward, turn left, turn right), figure out
whether the path goes back to the starting point.
- **Orientation Tracking**: Start by initializing the orientation (
assume facing north at the start). Maintain a turn - count (mod 4)
and orientation mapping (turn_count: 0 to North, 1 to West, 2 to
South, 3 to East). For each turn (left/right), update the
orientation using the cumulative 90 - degree turn rule. After every
4 left/right turns, reset the orientation. Keep a running count of
cumulative turn angles.
- **Movement Tracking**: For each forward/backward step, update the
position in the current orientation’s forward/backward axis (e.g.,
if facing north, forward is +y, backward is -y in a Cartesian - like
coordinate system. If facing east, forward is +x, backward is -x.

If facing south, forward is -y, backward is +y. If facing west,
forward is -x, backward is +x). When there is a left/right step (
which changes the direction of movement), first update the
orientation as per the rules and then update the position. Track
movements explicitly by writing down the movement in each axis (x
and y) for each step (e.g., [orientation, x_change, y_change]).
- **Sum Calculation**: Maintain separate sums for the x (east - west
) and y (north - south) axes. After processing all the steps in the
instruction, check if both sums are zero. Use a step - by - step
table for x and y sums and double - check arithmetic (e.g., - 5+3 =
- 2, not + 2). Use intermediate checks (e.g., after every 5 steps).
- **Edge Case Handling**: Test edge cases like 4 consecutive turns (
left or right) to ensure orientation reset. For ambiguous inputs (e.
g., "Turn around" = 2 left/right turns), convert to standard turns.
For movement without direction (e.g., "Take N steps"), assume
forward unless context (like prior "Turn around") implies backward.
Pre - process input: replace "Turn around" with "Turn left Turn left
" or "Turn right Turn right". For "Take N steps", default to "Take N
steps forward" (override if "Turn around" precedes).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

- **Error Prevention**: Avoid orientation miscalculation (especially
orientation reset after 4 turns), movement axis error (correctly

map movement to current orientation’s axis), sum calculation
arithmetic mistake, and edge case neglect. Use a systematic approach
(like writing down orientation and movement for each step) to avoid
confusion. Double - check all calculations, especially for edge

cases. Pay close attention to the order of operations (e.g., update
orientation first when there is a turn before updating movement).
When handling input instructions, parse them carefully to ensure all
steps (turns and movements) are correctly identified and processed.
When dealing with movement steps that have no direction specified (

e.g., "Take 10 steps" without specifying forward or backward),
assume forward movement unless context suggests otherwise. But also
be aware of cases where "turn around" followed by "Take steps"
implies backward movement.

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: If you follow these instructions, do you return to the
starting point? Always face forward. Take 2 steps forward. Take 2
steps backward. Take 4 steps right. Take 7 steps right.
Options:
- Yes
- No
Expected: NO

Prompt2:
You are an expert in spatial navigation path - return - to - start -
point determination. Given a series of navigation instructions (

which consist of directions like north, south, east, west and
actions like move forward, turn left, turn right), figure out
whether the path goes back to the starting point.
- **Orientation Tracking**: Start by initializing the orientation (
assume facing north at the start). Maintain a turn - count (mod 4)
and orientation mapping (turn_count: 0 to North, 1 to West, 2 to
South, 3 to East). For each turn (left/right), update the
orientation using the cumulative 90 - degree turn rule. After every
4 left/right turns, reset the orientation. Keep a running count of
cumulative turn angles. Replace "Turn around" with "Turn left Turn
left" or "Turn right Turn right" (whichever is appropriate).
- **Movement Tracking**: For each movement (e.g., "Take N steps
forward/backward"):

- If there was a turn before the movement, update orientation
first.

- Map movement to current orientation’s axis:
- North: forward = +y, backward = -y
- East: forward = +x, backward = -x
- South: forward = -y, backward = +y
- West: forward = -x, backward = +x

- Record x_change and y_change for each step (e.g., [orientation,
x_change, y_change]).
- For movement without direction (e.g., "Take N steps"):

- Assume forward unless "Turn around" precedes (then assume
backward).
- **Sum Calculation**: Maintain separate sums for x and y axes.
After each step, update the sums (e.g., x_sum += x_change, y_sum +=
y_change). Use intermediate checks (e.g., after every 5 steps) to
verify sums. Double - check arithmetic (e.g., -5 + 3 = -2, not +2).
- **Edge Case Handling**: Test edge cases like 4 consecutive turns (
left or right) to ensure orientation reset. For ambiguous inputs (e.
g., "Turn around"), convert to standard turns (2 left/right turns).
For movement without direction, use the default (forward) with
context override (if "Turn around" precedes, use backward).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

- **Error Prevention**: Avoid orientation miscalculation (especially
orientation reset after 4 turns), movement axis error (correctly

map movement to current orientation’s axis), sum calculation
arithmetic mistake, and edge case neglect. Use a systematic approach
(like writing down orientation and movement for each step in a

table: Step \ Instruction \ Orientation \ x_change \ y_change) to
avoid confusion. Double - check all calculations, especially for
edge cases. Pay close attention to the order of operations (e.g.,
update orientation first when there is a turn before updating
movement). When handling input instructions, parse them carefully to
ensure all steps (turns and movements) are correctly identified and
processed. Additionally, always use a step - by - step table (as

mentioned in the error prevention section) to avoid confusion. After
calculating x_sum and y_sum, double - check the arithmetic and

ensure that orientation was correctly updated before each movement.
Familiarize yourself with edge cases (4 turns, ambiguous
instructions) through practice problems. Use the following
additional guidelines:

- **Orientation Tracking**: Always start with initial orientation
(north) and turn - count (0). For each turn (left/right), increment

/decrement turn - count (mod 4). Double - check orientation mapping
(0 to North, 1 to West, 2 to South, 3 to East). When 4 turns (left
or right) occur consecutively, reset turn - count to 0 and
orientation to North. Replace "Turn around" with 2 left/right turns
(whichever is appropriate) immediately.

- **Movement Tracking**: If a turn precedes a movement, update
orientation first. Use the correct axis mapping: North (forward = +y
, backward = -y), East (forward = +x, backward = -x), South (forward
= -y, backward = +y), West (forward = -x, backward = +x). For

movement without direction (e.g., "Take N steps"), assume forward
unless "Turn around" precedes (then assume backward). Record [
orientation, x_change, y_change] for each step in a table (Step \
Instruction \ Orientation \ x_change \ y_change).

- **Sum Calculation**: Maintain separate x_sum and y_sum. After
each step, update the sums (x_sum += x_change, y_sum += y_change).
Use intermediate checks (e.g., after every 5 steps) to verify sums.
Double - check all arithmetic operations (e.g., - 5+3=-2, not +2).

- **Edge Case Handling**: Test 4 consecutive turns (left or right
) in practice problems to ensure orientation reset. For ambiguous "
Turn around", convert to standard turns (2 left/right turns) as per
system prompt. For movement without direction, use default (forward)
with context override (if "Turn around" precedes, use backward).
- **General Advice**: Use a systematic step - by - step table (as

in the error prevention section of the system prompt) for every
problem. This helps in visualizing orientation and movement changes
clearly. Double - check all calculations (orientation update,
movement - axis mapping, sum arithmetic) at each step. Familiarize
yourself with common edge cases (4 turns, ambiguous instructions)
through continuous practice. When in doubt about an instruction (e.g
., movement direction ambiguity), refer back to the rules in the
system prompt (e.g., default forward with "Turn around" context
override for backward).

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: If you follow these instructions, do you return to the
starting point? Always face forward. Take 6 steps backward. Take 8
steps left. Take 3 steps right. Take 7 steps forward. Take 3 steps
right. Take 9 steps right. Take 1 step backward. Take 7 steps left.
Options:
- Yes
- No
Expected: YES

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

[Example 2]
Input: If you follow these instructions, do you return to the
starting point? Always face forward. Take 8 steps forward. Take 9
steps right. Take 2 steps forward. Take 10 steps backward. Take 9
steps left.
Options:
- Yes
- No
Expected: YES

[Example 3]
Input: If you follow these instructions, do you return to the
starting point? Always face forward. Take 9 steps left. Take 10
steps forward. Take 9 steps right. Take 10 steps backward.
Options:
- Yes
- No
Expected: YES

Initial prompt of the ETHOS dataset

Task
Is the following text hate speech?
Output format
Answer Yes or No as labels.
Prediction
Text: {input}
Label:

ELPO optimized prompt of the ETHOS dataset

Prompt1:
You are an expert in identifying hate speech in text. Hate speech is
language that explicitly or implicitly targets a protected group-

defined by characteristics including race, ethnicity, religion,
gender, sexual orientation, disability, mental or physical health
status, or other identities-with clear hostility, hateful intent, or
calls for hatred, discrimination, violence, or dehumanization

against that group.

To determine whether the given text constitutes hate speech, follow
these precise guidelines:

1. Confirm that the text targets a protected individual or group
with explicit or implicit hostility, hateful intent, or advocacy of
hatred, discrimination, violence, or dehumanization. The hostility
must be connected to the group’s identity; general criticism,
negative opinions, or frustration without group-based hostility do
not qualify as hate speech.

2. Recognize that hate speech includes not only overt hateful
statements but also subtle, coded, metaphorical, sarcastic, or
indirect language that clearly conveys hostility and intent to
demean, devalue, or incite harm toward a protected group.

3. Carefully distinguish between insults or negative remarks about
individuals or behaviors and hate speech. Individual insults count
as hate speech only if they target the person explicitly because of

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

their protected group identity or as a representative symbol of that
group.

4. Apply a comprehensive and inclusive list of protected groups,
explicitly including mental and physical health conditions as
protected statuses. Statements attacking or dehumanizing people on
the basis of mental or physical illness, or advocating harm or
discrimination toward them, constitute hate speech.

5. Analyze the context, rhetorical devices, and implied intention
behind language to identify if the text promotes hatred,
discrimination, violence, or dehumanization against a protected
group.

6. Require clear, convincing, and direct or indirect evidence of
hateful targeting and harmful intent before labeling text as hate
speech. Avoid false positives by responding ’No’ when evidence is
ambiguous, lacks clear hostility toward a protected group, or only
expresses criticism or negative opinion without hateful intent.

7. When uncertain or lacking sufficient evidence of hateful intent
toward a protected group, always respond ’No.’ Respond only with ’
Yes’ if the text clearly meets all these criteria.

Respond only with ’Yes’ if the text unequivocally constitutes hate
speech as defined above; otherwise, respond with ’No.’

Text: {input}
Label:

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: To say that black lives matter, is not racist statement. But
the B.L.M. organization itself is racist group. If they could just
quit hating white people and turn that energy towards their own
community, the biggest group of black oppressors there is, they
might make a difference.
Expected: NO

[Example 2]
Input: Do you know why he is smiling because there is no ’excretion
law’ in New Zealand! The max sentence he will receive from a judge
is no more than 27 years in prison! Is this justice? Or because
Muslims lives don’t matter!??? :(((
Expected: NO

[Example 3]
Input: I’m very sad about this fucking situation with all this
muslims
Expected: NO

[Example 4]
Input: all mental illnesses are awful and must be treated
Expected: YES

Prompt2:
You are an expert in identifying hate speech in text. Hate speech is
language that explicitly or implicitly targets a protected group-

defined by characteristics including race, ethnicity, religion,
gender, sexual orientation, disability, mental or physical health
status, or other identities-with the intent to promote hatred,
discrimination, violence, dehumanization, or to incite such actions.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

To determine whether the given text constitutes hate speech, follow
these precise steps:

1. Identify whether the text targets a protected group or
individuals specifically identified with a protected group with
hostility, hatred, harmful intent, or calls for harm, including
explicit or implicit hateful language conveyed through direct,
subtle, coded, or indirect means.

2. Recognize that hate speech may include aggressive insults,
threats, dehumanization, calls for violence, or derogatory language
linked to protected group identities, even if veiled by sarcasm,
metaphor, or rhetorical devices.

3. Distinguish hate speech from language expressing general anger,
frustration, criticism, or insults that do not specifically target
protected groups or advocate harm against them; profanity or insults
alone do not constitute hate speech without targeted hateful intent

.

4. Carefully analyze context, underlying intent, rhetorical
structures, and the relationship between the language and protected
group identities to detect advocacy, promotion, or encouragement of
hatred, discrimination, violence, or dehumanization.

5. Include all protected groups comprehensively, explicitly
considering commonly overlooked identities such as mental and
physical health conditions, religion, ethnicity, and political or
ideological groups when they are targeted with hateful intent.

6. Treat insults or threats aimed solely at individuals as hate
speech only if they reflect hostility toward the individual’s
protected group identity or are directed at individuals as
representatives of a protected group.

7. Require clear, convincing evidence of hateful targeting and
harmful intent before labeling text as hate speech, avoiding false
positives by withholding judgment when such evidence is ambiguous or
lacking.

8. When uncertain, err on the side of caution by responding ’No’;
respond only with ’Yes’ if the text clearly meets all criteria of
hate speech as defined above.

Respond only with ’Yes’ if the text clearly meets these criteria;
otherwise, respond with ’No.’

Text: {input}
Label:

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: That girl still need a good ass whooping, stupid ass bitch!!
Expected: YES

[Example 2]
Input: This priest is being hated even by his stupid god.
Expected: YES

[Example 3]
Input: If I had to meet one of the apostles I would fuck them for
not killing him
Expected: YES

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

[Example 4]
Input: Ignorant feminist, she got roasted and still doesn’
understand what equality of outcome means even when Jordan explained
data to her. What’s this means she’s ignorant and emotionally

biased.
Expected: YES

[Example 5]
Input: Taliban and all people with this thought must hanged
Expected: YES

Prompt3:
You are tasked with determining whether a given text constitutes
hate speech. Hate speech is defined as language that explicitly or
implicitly targets a protected group-such as those defined by race,
ethnicity, religion, gender, sexual orientation, disability, mental
or physical health status, or other identities-with the intent to
promote hatred, discrimination, violence, dehumanization, or to
incite such actions.

To accurately assess if the text is hate speech:
1. Identify whether the text targets a protected group in a hateful
or harmful way, either explicitly or through subtle, coded, or
indirect language.
2. Differentiate hate speech from negative or emotionally charged
expressions like anger, frustration, criticism, sarcasm, profanity,
or insults that do not promote hatred or harm against protected
groups. Strong emotions or controversial opinions alone do not
constitute hate speech.
3. Consider the context, rhetorical devices, and underlying intent
behind the language to detect if there is an advocacy or promotion
of hatred, discrimination, or violence toward the protected group.
4. Include all protected groups comprehensively, paying particular
attention to those related to mental or physical health conditions
as these are often overlooked.
5. Avoid labeling statements expressing sorrow, anger, or
frustration without hateful targeting as hate speech.
6. Use a careful, methodical approach, applying hate speech
definitions consistently, and strive to minimize both false
positives (wrongly labeling non-hate speech as hate speech) and
false negatives (missing actual hate speech).
7. When uncertain, prioritize accuracy by balancing caution and
rigor, seeking contextual clues before labeling.

Respond only with ’Yes’ if the text meets the criteria for hate
speech; otherwise, respond with ’No.’

Text: {input}
Label:

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: To say that black lives matter, is not racist statement. But
the B.L.M. organization itself is racist group. If they could just
quit hating white people and turn that energy towards their own
community, the biggest group of black oppressors there is, they
might make a difference.
Expected: NO

[Example 2]
Input: Can’t tell if you’re a pedophile victim or a pedophile.
Expected: NO

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

[Example 3]
Input: Do you know why he is smiling because there is no ’excretion
law’ in New Zealand! The max sentence he will receive from a judge
is no more than 27 years in prison! Is this justice? Or because
Muslims lives don’t matter!??? :(((
Expected: NO

[Example 4]
Input: all mental illnesses are awful and must be treated
Expected: YES

[Example 5]
Input: or when the man walked up to the little girl with the gay
pride flag i wanted to jump into the video and punch him but ya know
thats assault

Expected: YES

Initial prompt of the ArSarcasm dataset

Task
Is this tweet sarcastic?
Output format
Answer Yes or No as labels.
Prediction
Text: {input}
Label:

ELPO optimized prompt of the ArSarcasm dataset

Prompt1:
Task
Determine whether the following tweet is sarcastic. Sarcasm often
involves saying the opposite of what is meant, using irony,
exaggeration, or humor to convey criticism or mockery.

Instructions
1. Carefully analyze the tone, context, and implicit meaning of the
tweet.
2. Consider whether the statement uses irony, ridicule, or
exaggeration to convey a message contrary to the literal words.
3. Tweets may include cultural, political, or social references;
account for these nuances.
4. If unsure, apply a step-by-step reasoning process (Chain of
Thought) to reflect on the indicators of sarcasm before deciding.
5. Do NOT label as sarcastic if the statement is straightforward or
literal without hints of irony or mockery.
6. Your final answer must be either "Yes" (sarcastic) or "No" (not
sarcastic), with no additional text.

Prediction
Text: {input}
Thought process: [Step-by-step reasoning about tone, context, irony,
exaggeration, cultural references, and intent]

Label:
Prompt2:
You are an expert in detecting sarcasm in short Arabic tweets. For
each tweet, carefully analyze subtle linguistic cues, tone, cultural
context, and the use of irony, exaggeration, or contradiction

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

between the literal content and the intended meaning. Pay close
attention to indirect expressions, humor, hashtags, emojis,
interjections, and any mockery or criticism disguised as praise or
neutral statements. Consider cultural references and context beyond
just the words to determine if the tweet’s message contradicts
reality or conveys criticism through sarcasm. For each input, first
reflect on potential misinterpretations by identifying missed irony,
overlooked mockery, or ignored cultural context. Then answer with

Yes if the tweet is sarcastic, otherwise No.

Text: {input}
Label:

Prompt3:
Task
Determine whether the following tweet is sarcastic. Sarcasm
typically involves expressing the opposite of the literal meaning,
often using irony, exaggeration, mockery, or humor to convey
criticism or a hidden message.

Instructions
1. Carefully analyze the tweet’s literal meaning first before
considering sarcasm.
2. Identify clear, explicit or strongly implied indicators of
sarcasm such as irony, ridicule, exaggeration, contradictory
statements, or mockery.
3. Consider cultural, political, social, and linguistic
referencesincluding emojis, hashtags, and idiomatic expressionsbut
treat these only as supporting evidence, never as definitive proof
of sarcasm.
4. When tone or context is subtle or ambiguous, apply a deliberate
step-by-step Chain of Thought reasoning process: weigh all
linguistic and contextual clues objectively, verifying if the
message contradicts its literal meaning or contains mockery or irony
.
5. Do not label a tweet sarcastic if it is straightforward, literal,
serious, or lacks clear cues of mockery, humor, irony, or

contradiction.
6. Avoid overinterpreting emojis, hashtags, or cultural references
without supporting textual evidence of sarcasm.
7. Your final answer must be exactly "Yes" if sarcastic or "No" if
not, with no additional explanation or text.

Prediction
Text: {input}
Thought process: [Detailed, stepwise analysis of literal meaning,
tone, irony, exaggeration, context, cultural and linguistic cues,
verifying contradictions or mockery before concluding sarcasm]
Label:

Initial prompt of the WSC dataset

Task
Solve the problem.
Prediction
Text: {input}
Label:

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Initial prompt of the WSC dataset

Prompt1:
You are an expert in pronoun resolution and coreference
understanding within short text passages that require nuanced
semantic and logical reasoning. Given a passage and two options
labeled A and B, your task is to determine the noun phrase that the
pronoun logically and semantically refers to, based on a thorough
analysis of the passages full context.

Guidelines:
1. Carefully read the entire passage to fully grasp the situation
and the roles of all entities mentioned.
2. Identify all plausible noun phrase candidates that the pronoun
could refer to; do not assume the closest noun phrase is correct.
3. For each candidate, evaluate semantic compatibility, actions
described, properties, and the logical coherence of the pronouns
reference within the passage.
4. Prioritize logical and semantic fit over proximity or surface
cues.
5. Eliminate candidates that conflict with the passages meaning,
actions, or described properties.
6. Select the antecedent that best maintains overall coherence,
logical consistency, and natural interpretation of the passage.

Submit only the letter of the correct answer.

Example:
Text: "I couldn’t find a spoon, so I tried using a pen to stir my
coffee. But that turned out to be a bad idea, because it got full of
ink. What does the pronoun ’it’ refer to?" (A) The pen (B) The

coffee
Label: B

Prediction:
Text: {input}
Label:

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: "I couldn’t find a spoon, so I tried using a pen to stir my
coffee. But that turned out to be a bad idea, because it got full of
ink. What does the pronoun ’it’ refer to?" (A) The pen (B) The

coffee
Expected: B

Prompt2:
Task
Solve the problem by choosing the appropriate option, either A or B,
and submit only the letter of your chosen answer.

Example
Text: "Steve follows Fred’s example in everything. He admires him
hugely. What does the pronoun ’He’ refer to?" (A) Steve (B) Fred
Label: A
Prediction
Text: {input}
Label:
Prompt3:
You are an expert in resolving pronoun ambiguity in complex
sentences containing multiple clauses and potential antecedents. For
each input sentence, determine whether option A or B correctly

identifies the pronouns true referent. Provide your answer as a

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

single letter, preceded by a thorough, step-by-step analysis as
detailed below.

Follow this comprehensive procedure before selecting your answer:

1. Exhaustively identify every plausible antecedent from all
clausesmain, subordinate, embedded, and causally linkedwithout
omitting or assuming candidates based on proximity, salience, or
default heuristics.

2. For each candidate antecedent, rigorously verify grammatical
agreement in person, number, gender, and syntactic compatibility,
carefully analyzing the sentences structure.

3. Fully parse the sentences syntax to delineate clause hierarchies
and establish the precise grammatical role (e.g., subject, object,
possessor) of each candidate within all relevant clauses.

4. Integrate deep semantic and contextual reasoning, assessing
coherence, causal relationships, and real-world plausibility for
each candidate as the pronouns referent, considering who logically
can perform or experience the described action.

5. Avoid premature exclusion of any candidates; only eliminate
antecedents after thorough syntactic and semantic evaluation.

6. If ambiguity persists after the initial pass, systematically
repeat all steps, ensuring no candidates have been overlooked or
incorrectly rejected and that both syntactic and semantic analyses
are fully complete.

Do not rely on shortcuts such as defaulting to the nearest noun,
using gender cues alone, or making unsubstantiated assumptions.

Format your response exactly as follows:

Text: {input sentence with options}
Label: {A or B}

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: "Tom threw his schoolbag down to Ray after he reached the
bottom of the stairs. What does the pronoun ’he’ refer to?" (A) Tom
(B) Ray
Expected: B

[Example 2]
Input: "John couldn’t see the stage with Billy in front of him
because he is so short. What does the pronoun ’he’ refer to?" (A)
John (B) Billy
Expected: A

[Example 3]
Input: "Madonna fired her trainer because she couldn’t stand her
boyfriend. What does the pronoun ’her’ refer to?" (A) Madonna (B)
The trainer
Expected: B

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Initial prompt of the GSM8K dataset

Task
Solve the math problem.
Prediction
Input: {input}
Expected:

Initial prompt of the GSM8K dataset

Prompt1:
You are an expert in solving complex multi-step math word problems
involving quantities, totals, leftovers, and transactional
relationships such as items ordered, sold, leftover, or remaining.
For each problem:

1. Carefully read the entire problem and identify all given
quantities, explicitly extracting each with its units and clear
labels. Define distinct variables for every relevant quantity
involved.

2. Pay close attention to relational language and key terms like
leftover, remaining, total, sold, ordered, and similar. Precisely
translate these into explicit mathematical relationships for example
, interpret "leftover" as items remaining after subtraction (
leftover = ordered sold).

3. Write down all equations representing these relationships before
performing any calculations, clearly linking totals to sums or
differences of parts. Explicitly state how quantities combine,
increase, decrease, or remain consistent.

4. Systematically solve the problem step-by-step: carry out
arithmetic operations carefully, double-check all calculations
immediately after each step, and verify that the operations
correctly reflect the relationships identified.

5. After computing intermediate and final results, verify their
numerical correctness, logical coherence, and contextual
consistencyincluding proper units and labelsand ensure all
quantities sum or balance as indicated by the problem. If
inconsistencies appear, revisit and correct prior steps before
proceeding.

6. Use estimation and reasonableness checks throughout to confirm
answers are plausible within the problems context and scale.

7. Present only the final numeric answer exactly as requested,
including units if specified, without explanation, intermediate
steps, or commentary.

Apply this methodical approach to all problems to accurately track
quantities, totals, leftovers, and related multi-step arithmetic
reasoning.

Few-Shot Exemplars (from high-scoring failures)
[Example 1]
Input: Barney’s grocery store sold out all of its items at the
beginning of the pandemic, so they ordered extra items to restock
the shelves. However, they ended up ordering far too much and have
to keep the leftover items in the storeroom. If they ordered 4458

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

items, sold another 1561 items that day, and have 575 items in the
storeroom, how many items do they have left in the whole store?
Expected: 3,472

Prompt2:
You are proficient at tackling complex multi-step math word problems
covering arithmetic, ratios, proportions, percentages, geometry,

and fundamental algebra. For each given problem, adhere to this
meticulous procedure:

1. Thoroughly read the problem and explicitly identify every
numerical value presented, including their units and relevant
context (such as totals, parts, rates, or specific conditions).

2. Clearly assign variables and extract all expressed relationships,
ratios, proportions, and conditions from the problem; accurately

convert these into precise mathematical equations or expressions
without making any assumptions beyond the provided information.

3. Break the problem down into well-defined, logical, and sequential
steps. Fully solve and confirm the correctness of each step before

proceedingdo not omit any intermediate calculations or reasoning.

4. Ensure units are consistently and correctly applied throughout
all computations, converting units beforehand when necessary.

5. Process percentages, ratios, and fractions with careful attention
to their accurate contextual meanings.

6. After completing each intermediate calculation, review its
validity, consistency, and plausibility within the problems scenario
.

7. Once all steps are complete and verified, thoroughly re-examine
the entire solution to ensure it fully satisfies the questions
demands and constraints, double-checking all interpretations,
equation setups, and mathematical procedures.

8. At the conclusion, provide only the precise final numerical
answer requested, including units if specified, with no explanations
, intermediate details, or commentary.
Prompt3:
Task
Solve the math problem and provide only the final answer without any
extra explanations or comments.

Few-Shot Exemplars
Input: Ryan is considering buying a new multivitamin brand. Each
pill contains 50 mg of Vitamin A. The recommended daily intake of
Vitamin A is 200 mg. How many pills does Ryan need to consume in a
week to meet the recommended amount?
Expected: 28
Prediction
Input: {input}
Expected:

40

	Introduction
	Related Work
	Methodology
	Preliminary
	Abundant Prompt Generation
	Efficient Prompt Search
	Ensemble Voting

	Experiments and Results
	Main Results
	Ablation Study

	Conclusion
	The Use of Large Language Models (LLMs)
	Additional Details for the Setup
	Tasks and Data Details
	Implementation Details

	ELPO Process
	Prompt Generation
	Prompt Search
	Ensemble Voting

	Additional Result

