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Abstract

A key property of reasoning systems is the ability to make sharp decisions on their
input data. For contemporary AI systems, a key carrier of sharp behaviour is the
softmax function, with its capability to perform differentiable query-key lookups.
It is a common belief that the predictive power of networks leveraging softmax
arises from “circuits” which sharply perform certain kinds of computations consis-
tently across many diverse inputs. However, for these circuits to be robust, they
would need to generalise well to arbitrary valid inputs. In this paper, we dispel this
myth: even for tasks as simple as finding the maximum key, any learned circuitry
must disperse as the number of items grows at test time. We attribute this to a
fundamental limitation of the softmax function to robustly approximate sharp
functions, prove this phenomenon theoretically, and propose adaptive temperature
as an ad-hoc technique for improving the sharpness of softmax at inference time.

1 Motivation

It is no understatement to say that the softmaxθ : Rn → [0, 1]n function1:

softmaxθ(e) =

[
exp(e1/θ)∑
k exp(ek/θ)

. . .
exp(en/θ)∑
k exp(ek/θ)

]
(1)

is one of the most fundamental functions in contemporary artificial intelligence systems.

The role of softmax in deep learning is to convert any vector of logits, e ∈ Rn, into a probability
distribution, in a form that is part of the exponential family. Further, softmax allows for application
of a temperature parameter, θ ∈ R, to adjust the amount of probability mass attached to the highest
logit—a concept borrowed from the Boltzmann distribution in statistical mechanics.

Initially, the primary utilisation of softmax in deep learning was within the final layer of classifiers.
Its influence in this domain vastly expanded after it saw use in the internal layers—as a differen-
tiable key-value store [GWD14] or a mechanism for attending over the most relevant parts of the
input [BCB15]. This attentional framing of softmax was critical in defining important models for
sequences [VSP+17, Transformers], images [DBK+21, ViTs] and graphs [VCC+18, GATs].

Several efforts attribute the success of softmax to its capability of modelling computations relevant to
reasoning. This can be related to the concept of circuits in theoretical computer science [AB09]. Sev-
eral interpretable pieces of “circuitry” [OCS+20] have already been discovered in large Transformers,
primarily under the umbrella of mechanistic interpretability [ENO+21, OEN+22, WVC+22].

Here we study the robustness of such circuitry, especially when going beyond the distribution the
models are trained on—a critical regime for reasoning engines. We find that, in spite of its many
successes, softmax does not have a chance to robustly generalise such circuits out of distribution,
especially because it provably cannot approximate sharpness with increasing problem size (Figure 1).
Here we call a function sharp if its output only depends on a constant number of its inputs (e.g. max).

∗Work performed while the author was at Google DeepMind.
1Strictly speaking, the proper name for this function should be softargmax. We choose to retain the

terminology introduced by [Bri89], primarily for reasons of alignment with modern deep learning frameworks.
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Figure 1: Illustration of Theorem 2.2, one of our key results. Assuming a tokenised input from a
fixed vocabulary and a non-zero temperature, for every softmax attention head inside an architecture
comprising only MLPs and softmax self-attention layers, it must hold that, given sufficiently many
tokens, its attention coefficients will disperse, even if they were sharp for in-distribution instances.

We hope that this result encourages future study of alternative attentional functions, in light of the
problems we identify, especially for building reasoning engines of the future. That being said, we
also believe that our findings indicate ways to modify the softmax function to support sharpness for
longer—as one simple example of this, we propose an adaptive temperature mechanism for softmax.

Background The analysis of attentional coefficients and attempting to attribute interpretable
operations to them dates back to the earliest deployments of internal softmax layers at scale; examples
include [GWD14, Figure 6], [BCB15, Figure 3], [VSP+17, Figures 3–5] and [QTM+18, Figure 5].
A strong current in this space analyses the self-attentional heads of Transformers [VTM+19, JW19].

With the rise of large language models, mechanistic interpretability has taken charge in detecting and
elucidating various circuits in Transformers [ENO+21]. Some prominent discoveries include induc-
tion heads [OEN+22], indirect object identification [WVC+22], multiple-choice heads [LRK+23],
successor heads [GOOC23], attentional sinks [DOMB23], comparator heads [HLV24] and retrieval
heads [WWX+24]. Most recently, these efforts have relied on sparse autoencoders [KKB+24].

While the skills above are quite impressive and span many rules one might hope a robust reasoning
system would have, and the discovered heads always appear sharp when inspected, it is also known
that many easy tasks requiring sharp attention—such as finding minima—are hard to do reliably with
LLMs out-of-distribution [MMI+24, Figure 6]. More challenging sharp order statistic tasks, such as
finding the second minimum [OV22] may even be hard to learn in-distribution. The discrepancy of
such results with the previous paragraph motivate our study, and formalisation of softmax dispersion.

Certain dispersion effects in softmax—e.g. as an effect of increasing temperature—are already
well-understood in thermodynamics. A core contribution of our work is understanding dispersion in a
setting where the amount of logits can vary, which is relevant for generalisation in Transformers. We
are not the first to observe dispersion in this setting empirically; prior works studying the capability
of Transformers to execute algorithms [YSK+20] and perform random-access lookups [EPM24] also
note dispersion patterns. Our work is the first to rigorously prove these effects, directly attribute them
to the softmax operator, as well as propose ways to improve sharpness empirically within softmax.
The proof technique we will use to demonstrate this is inspired by [BBK+24], though unlike their
work, our results apply regardless of whether the computational graph is bottlenecked or not.

2 Demonstrating and proving the dispersion in softmax and Transformers

To motivate our theory, we train a simple architecture including a single dot-product attention head
to predict a feature of the maximum item in a set. Each item’s features are processed with a deep
MLP before attending, and the output vector of the attention is passed to a deep MLP predictor (see
Appendix A for experimental details). We train this model using sets of ≤ 16 items, and in Figure 2
we visualise the head’s attentional coefficients, computed over sets of varying size at inference time.
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Figure 2: Visualising the attentional head for the max retrieval task for a batch of 32 sets, over the 16
items with largest key. If the head operates correctly, it must allocate sharp attention to the rightmost
item. From left to right, in each frame we double the number of items the head has to process.

Figure 3: Entropy of attention heads in the first block of
Gemma 2B with prompt “What is the maximum in
the following sequence: {seq}? The maximum
is:” and varying the number of elements in seq.

While the model indeed attributes focus
sharply and cleanly on the maximum item,
this only holds true on the problem sizes
that the model was trained on. As we simu-
late an out-of-distribution setting where the
problem size increases (without changing
the value distribution), the attentional co-
efficients eventually disperse towards the
uniform distribution.

This effects manifests in the attention heads
of Transformers as well—we visualise the
entropy (a proxy for sharpness) of Gemma
2B [GMH+24]’s heads when answering a
similar maximisation task in Figure 3.

In fact, we can show that this effect is in-
evitable in softmax using the following
Lemma (proved in Appendix B):

Lemma 2.1 (softmax must disperse). Let e(n) ∈ Rn be a collection of n logits going into the
softmaxθ function with temperature θ > 0, bounded above and below s.t. m ≤ e

(n)
k ≤M for some

m,M ∈ R. Then, as more items are added (n→ +∞), it must hold that, for each item 1 ≤ k ≤ n,
softmaxθ(e

(n))k = Θ( 1n ). That is, the computed attention coefficients disperse for all items.

Lemma 2.1 relies on being able to bound the logit values with specific constants. In modern
Transformer architectures operating over a vocabulary of possible token values, we can actually
bound the logits in every single attentional layer—implying that dispersion must happen everywhere
in a Transformer for sufficient problem sizes. We prove this important result in Appendix C.

Theorem 2.2 (softmax in Transformers over vocabularies must disperse). Let X ⊂ Rm be an
m-dimensional input feature space, and let X(n) ∈ Xn be a matrix of input features for n items.
Further, assume that input features come from a finite set of possible values, i.e. |X | < |N|.
Let e(n)j = (q(n))⊤k

(n)
j where q(n) = ϕ(x

(n)
1 , . . . ,x

(n)
n ) and K(n) = κ(x

(n)
1 , . . . ,x

(n)
n ), where

ϕ : Xn → Rk and κ : Xn → Rn×k are continuous functions, each expressible as a composition of L
layers gL ◦ fL ◦ · · · ◦ g1 ◦ f1 where each layer contains a feedforward component fi(z1, . . . , zn)k =
fi(zk) or a self-attentional component gi(z1, . . . , zn)k =

∑
1≤l≤n αlkvi(zl) where αlk ∈ [0, 1] are

softmax-normalised attention coefficients and vi is a feedforward network. Then, for any θ > 0
and ϵ > 0, there must exist an n ∈ N such that softmaxθ(e(n))k < ϵ for all 1 ≤ k ≤ n. That is,
attention coefficients must disperse in all Transformer heads if the input vocabulary is finite.

3 Adaptive temperature

Since we now know dispersion is inevitable, are there any ways we can leverage our theory’s findings
to make softmax sharper? One obvious constraint our theory rests on is the assumption that θ > 0,
i.e. that our temperature is nonzero. While zero temperature—a special case of hard attention
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Table 1: Improvements observed when applying adaptive temperature on the max retrieval task
(without changing the parameters), averaged over ten seeds. p-values computed using a paired t-test.

ID size Out-of-distribution sizes
Model 16 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384

Baseline 98.6% 97.1% 94.3% 89.7% 81.3% 70.1% 53.8% 35.7% 22.6% 15.7% 12.4%
Adaptive θ 98.6% 97.1%94.5% 89.9% 82.1% 72.5% 57.7% 39.4% 24.9%17.5% 14.0%

p-value 0.4 0.4 0.002 2 · 10−5 2 · 10−4 3 · 10−5 10−4 6 · 10−4 0.02 10−3 4 · 10−3

[DBLdF12, Ran14, MHG+14, XBK+15, MA16, CNM19, PNM19]—guarantees sharpness, training
large-scale Transformers with it tends to not work well in practice [BIB+24].

What about applying zero temperature to an already-trained Transformer? We can show that this is
also problematic since, for any attention head where the Transformer has learnt to induce sharpness,
it necessarily did so by increasing magnitude of its weights (see Appendix D for a proof):

Proposition 3.1 (Sharpness in Transformers necessitates large weights). Let e(n) ∈ Rn be a collec-
tion of n logits, computed using a dot product attention mechanism; i.e. e(n)k = ⟨Qy,Kxk⟩, where
y ∈ Rm is a query vector and Q,K ∈ Rm′×m are parameters. Let δ = max

1≤i≤n
e
(n)
i − min

1≤j≤n
e
(n)
j be

their maximum difference. Then δ is upper bounded as δ ≤ 2σ
(Q)
maxσ

(K)
max∥y∥max1≤i≤n ∥xi∥, where

σ
(Q)
max, σ

(K)
max ∈ R are the largest singular values of Q and K. That is, the sharpness of the softmax in

Transformers depends on the norm of its parameters.

Figure 4: The polynomial fit used to derive our adaptive
formula for θ as a function of the Shannon entropy,
H . The fit degree-4 function was θ ≈ 1/(−1.791 +
4.917H − 2.3H2 + 0.481H3 − 0.037H4).

However, forcing parameters to be of large
magnitude promotes overfitting, and the
likelihood that the incorrect item gets the
largest logit—as can be observed in several
cases in Figure 2. As such, setting temper-
ature to zero will degrade accuracy—we
might prefer a solution that makes the coef-
ficients sharper while making sure that the
chosen item is not left behind.

This motivates our use of adaptive tem-
perature, where we vary θ depending on
the entropy in the input coefficients. Adap-
tive temperature can be elegantly motivated
by the fact that decreasing the tempera-
ture must monotonically decrease the en-
tropy, which is well-known in thermody-
namics. We demonstrate it both theoret-
ically (Proposition E.1) and empirically
(Figures 5–6) in Appendix E. Note we are
not the first to propose dynamically adapting temperature—[NZV18, RKH+21] do this in the clas-
sification layer (and hence do not have to handle an ever-increasing amount of items), whereas
[CC22, CRF24] perform it over intermediate attentional heads, but in a way that only depends on
problem size (e.g. multiplying logits by log n), hence not taking into account initial logit sharpness. It
is important to also call out Entropix [xd24], a notable library for (var)entropy-based LLM sampling.

To compute the approximate temperature value as a function of entropy, we generate a dataset of
inputs to our model where the maximal items do not obtain the highest logit. For each such input, we
find the “optimal” value of θ that would maximise its probability. Then we fit an inverse degree-4
polynomial to this data—see Figure 4—and use it to predict temperatures to use at inference time.
Note we do not wish to increase entropy; as such, we do not apply the correction to θ if it’s predicted
to be greater than 1. Our proposed temperature adaptation indeed leads to sharper coefficients
(Appendix E, Figure 6) and improved out-of-distribution accuracy on the max retrieval task (Table 1).
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We conclude by remarking, once again, that adaptive temperature is an ad-hoc method and it does not
escape the conclusions of our theory! Any kind of unnormalised attention, such as linear [Sch92] or
sigmoid attention [RDD+24] does not have such issues. Similarly, forcing hard or local attention, or
inserting discontinuities in the feedforward layers [DvGPV24] breaks the assumptions of our theory.
While such approaches haven’t seen as much success at scale as the “vanilla” Transformer, we hope
our results inspire future work into making them stable, especially for constructing reasoning systems.

4 Debunking Challenge Submission

4.1 What commonly-held position or belief are you challenging?

Provide a short summary of the body of work challenged by your results. Good summaries should
outline the state of the literature and be reasonable, e.g. the people working in this area will agree
with your overview. You can cite sources beside published work (e.g., blogs, talks, etc).

It is a commonly-held belief that deep learning architectures relying on softmax attentional aggrega-
tors (such as Transformers) are capable of robust reasoning because their attentional heads specialise
to sharp values and learn to simulate specific circuits [AB09] over the inputs. There is a wide body
of work, in mechanistic interpretability and beyond, uncovering such candidate circuits.

Some prominent discoveries (restated from the main paper) include induction heads [OEN+22], indi-
rect object identification [WVC+22], multiple-choice heads [LRK+23], successor heads [GOOC23],
attentional sinks [DOMB23], comparator heads [HLV24] and retrieval heads [WWX+24].

4.2 How are your results in tension with this commonly-held position?

Detail how your submission challenges the belief described in (1). You may cite or synthesize results
(e.g. figures, derivations, etc) from the main body of your submission and/or the literature.

Our work does not deny that Transformer attention heads are capable of circuit-like behaviours over
specific inputs—likely ones the Transformer was prepared for in some manner at training time. We
challenge the belief that these observed behaviours are truly robust across all relevant, valid inputs.

We prove (Theorem 2.2) that no softmax-based attention head in Transformer architectures can ever
remain sharp over all possible inputs, and that it must disperse. We also empirically demonstrate this
dispersion effect, over carefully controlled synthetic tasks (Figure 1) and within LLMs (Figure 3).

4.3 How do you expect your submission to affect future work?

Perhaps the new understanding you are proposing calls for new experiments or theory in the area, or
maybe it casts doubt on a line of research.

We expect that our submission will call upon greater resources to be committed to investigating
variants of attentional architecture which do not feature solely the softmax operator.

Such architectural proposals that escape the confines of our theoretical results already exist—
examples include linear attention [Sch92], sigmoidal attention [RDD+24], hard attention [DBLdF12,
Ran14, MHG+14, XBK+15] or introducing other kinds of discontinuities in the feedforward layers
[DvGPV24]. These have not seen as much broad initial success at scale compared to “vanilla”
Transformer architectures, leading to a lack of careful tuning efforts for making them stable.

Our hope is that our results indicate clear motivation for investigating such systems and related ones
in greater depth, as well as investing greater efforts into stabilising them and making them performant.
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A Experimental details for the maximum entry retrieval task

As briefly described in the main paper, we leverage the max retrieval task over a single attention head
as a way to empirically validate our theory, as well as assess the benefits of adaptive temperature in a
controlled setting. In this section, we describe the various aspects of our experimental setup, for the
purposes of clarity and reproducibility.

A.1 Motivation

We deliberately focus on a single attention head environment and a simple selection function (max) to
remove any confounders from our observations.

Since we are using exactly one attention head, whatever coefficients it outputs can be directly related
to the network’s belief in which items are most important for the downstream prediction. This allows
us to, e.g., correlate the coefficients with the ground-truth magnitude of the items.

The fact that we are looking for the maximal element’s property means we are not requiring any
complicated behaviour from the coefficients: when our target task is to approximate max, the softmax
coefficients need to approximate argmax—which is exactly what they are designed to be a smooth
approximation for. As such, this choice of target task exhibits high algorithmic alignment [XLZ+20].

A.2 Data generation

Let n be the number of items in the set that we wish to classify. For each item, 1 ≤ i ≤ n, we need
to define a priority value, which is used to select the maximal entry. We sample these values from a
uniform distribution; ρi ∼ U(0, 1).
We would also wish our task to be a classification rather than regression task, in order to leverage a
more robust accuracy metric. As such, let C be the desired number of classes. We can now attach to
each item a class, κi ∼ U{1, . . . , C}, sampled uniformly at random. In all our experiments, C = 10.

Then, for each input item, 1 ≤ i ≤ n, we consider its features to be xi ∈ RC+1 to be defined
as xi = ρi∥onehot(κi, C), i.e. the concatenation of these two sampled pieces of data where κi is
represented as a one-hot vector.

Lastly, since we will leverage dot-product attention, we also need a query vector. In this particular
task, the query is irrelevant, and we initialise it to a random uniformly-sampled value, q ∼ U(0, 1).
Our task is to predict, given {xi}1≤i≤n and q, the class of the maximal item, i.e., κargmaxi ρi .

A.3 Neural network architecture

The neural network model is designed to be a simple set aggregation model (in the style of Deep Sets
[ZKR+17]), with a single-head dot product attention as the aggregation function.
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Its equations can be summarised as follows:
hi = ψx(xi) (2)
q = ψq(q) (3)

ei = (Qq)⊤(Khi) (4)

αi =
exp(ei/θ)∑

1≤j≤n exp(ej/θ)
(5)

z =
∑

1≤i≤n

αiVhi (6)

y = ϕ(z) (7)
Equations 2–3 prepare the embeddings of the items and query, using two-layer MLPs ψx and ψq using
the GeLU activation function [HG16] and an embedding size of 128 dimensions. Then, a single-head
dot-product attention (with query, key and value matrices Q, K and V) is executed in equations 4–6.
Lastly, the output class logits are predicted from the attended vector using a two-layer GeLU MLP, ϕ.
Each component is a two-layer MLP to ensure it has universal approximation properties.

A concise implementation of our network using JAX [BFH+18] and Flax [HLO+24] is as follows:

import jax.numpy as jnp
from flax import linen as nn
from typing import Callable

class Model(nn.Module):
n_classes: int = 10
n_feats: int = 128
activation: Callable = nn.gelu

@nn.compact
def __call__(self, x, q):
x = nn.Dense(features=self.n_feats)(x)
x = self.activation(x)
x = nn.Dense(features=self.n_feats)(x)
x = self.activation(x)
q = nn.Dense(features=self.n_feats)(q)
q = self.activation(q)
q = nn.Dense(features=self.n_feats)(q)
x = nn.MultiHeadDotProductAttention(

num_heads=1,
qkv_features=self.n_feats)(
inputs_q=q,
inputs_kv=x)

x = nn.Dense(features=self.n_feats)(jnp.squeeze(x, -2))
x = self.activation(x)
x = nn.Dense(features=self.n_classes)(x)
return x

A.4 Experimental hyperparameters

We train our model for 100, 000 gradient steps using the Adam SGD optimiser [KB15] with initial
learning rate of η = 0.001. At each step, we present to the model a batch of 128 input sets. All sets
within a batch have the same size, sampled uniformly from n ∼ U{5, . . . , 16}. The model is trained
using a cross-entropy loss, along with L2 regularisation with hyperparameter λ = 0.001.

The mixed-size training is a known tactic, designed to better prepare the model for distribution
shifts on larger sets at inference time. Similarly, the weight decay follows the recommendation in
Proposition 3.1, as an attempt to mitigate overfitting out-of-distribution as a byproduct of sharpening
the softmax coefficients.

Both methods prove to be effective in deriving a stable baseline model.
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B Proof of Lemma 2.1

Lemma 2.1 (softmax must disperse). Let e(n) ∈ Rn be a collection of n logits going into the
softmaxθ function with temperature θ > 0, bounded above and below s.t. m ≤ e

(n)
k ≤M for some

m,M ∈ R. Then, as more items are added (n→ +∞), it must hold that, for each item 1 ≤ k ≤ n,
softmaxθ(e

(n))k = Θ( 1n ). That is, the computed attention coefficients disperse for all items.

Proof. Let us denote the attentional coefficient assigned to k by α(n)
k = softmaxθ(e

(n))k ∈ [0, 1].
Then we can bound α(n)

k above as:

α
(n)
k =

exp(e
(n)
k /θ)∑

l exp(e
(n)
l /θ)

≤ exp(M/θ)

n exp(m/θ)
=

1

n
exp

(
M −m

θ

)
(8)

Similarly, we can bound α(n)
k below as:

α
(n)
k =

exp(e
(n)
k /θ)∑

l exp(e
(n)
l /θ)

≥ exp(m/θ)

n exp(M/θ)
=

1

n
exp

(
m−M

θ

)
(9)

Hence, if we let δ = (M −m)

1

n
exp−δ

θ
≤ α

(n)
k ≤ 1

n
exp

δ

θ
(10)

Which implies α(n)
k = Θ( 1n ) as δ and θ are both constants.

C Proof of Theorem 2.2

Theorem 2.2 (softmax in Transformers over vocabularies must disperse). Let X ⊂ Rm be an
m-dimensional input feature space, and let X(n) ∈ Xn be a matrix of input features for n items.
Further, assume that input features come from a finite set of possible values, i.e. |X | < |N|.
Let e(n)j = (q(n))⊤k

(n)
j where q(n) = ϕ(x

(n)
1 , . . . ,x

(n)
n ) and K(n) = κ(x

(n)
1 , . . . ,x

(n)
n ), where

ϕ : Xn → Rk and κ : Xn → Rn×k are continuous functions, each expressible as a composition of L
layers gL ◦ fL ◦ · · · ◦ g1 ◦ f1 where each layer contains a feedforward component fi(z1, . . . , zn)k =
fi(zk) or a self-attentional component gi(z1, . . . , zn)k =

∑
1≤l≤n αlkvi(zl) where αlk ∈ [0, 1] are

softmax-normalised attention coefficients and vi is a feedforward network. Then, for any θ > 0
and ϵ > 0, there must exist an n ∈ N such that softmaxθ(e(n))k < ϵ for all 1 ≤ k ≤ n. That is,
attention coefficients must disperse in all Transformer heads if the input vocabulary is finite.

Proof. Firstly, note that since X is a finite set of m-dimensional vectors, then it is also part of a
compact space spanning all convex combinations of those vectors. Then, all feedforward layers, fi
and vi, being continuous functions, move inputs from a compact set to another compact set. Similarly,
every self-attentional layer, gi, computes a convex combination of the outputs of vi, and as such, if
outputs of vi are on a compact space, the outputs of gi remain on the same compact space. Therefore,
if the input space of ϕ and κ is compact, then the output space of ϕ and (each row of) κ on Rk must
be compact as well, regardless of the choice of n. Further, the dot product of two vectors (q(n))⊤k

(n)
j

coming from compact spaces must be compact as well. Hence, by definition, the logits must be
bounded by m ≤ e

(n)
k ≤ M for constant m and M . Then, letting δ = M −m, we know (Lemma

2.1) that softmaxθ(e(n))k ≤ 1
n exp (δ/θ), so for all n >

exp (δ/θ)

ϵ
this value will be below ϵ.

D Proof of Proposition 3.1

Proposition 3.1 (Sharpness in Transformers necessitates large weights). Let e(n) ∈ Rn be a collection
of n logits, computed using a dot product attention mechanism; i.e. e(n)k = ⟨Qy,Kxk⟩, where
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y ∈ Rm is a query vector and Q,K ∈ Rm′×m are parameters. Let δ = max
1≤i≤n

e
(n)
i − min

1≤j≤n
e
(n)
j be

their maximum difference. Then δ is upper bounded as:

δ ≤ 2σ(Q)
maxσ

(K)
max∥y∥ max

1≤i≤n
∥xi∥

where σ(Q)
max, σ

(K)
max ∈ R are the largest singular values of Q and K. That is, the sharpness of the

softmax in Transformers depends on the norm of its parameters.

Proof. We start by showing that the largest singular values of Q and K determine the maximum
stretch due to that matrix acting on x ∈ Rm. More precisely, we wish to show:

∥Qx∥ ≤ σ(Q)
max∥x∥ ∥Kx∥ ≤ σ(K)

max∥x∥
where ∥ · ∥ is the Euclidean norm. Since both inequalities have the same form, we focus on Q w.l.o.g.
Many of these statements can be derived from linear algebra textbooks [Axl15]. However, the proofs
are short enough that we re-derive them here for clarity.

Consider the singular value decomposition (SVD) Q = UΣV⊤, where Σ is a rectangular diagonal
matrix of singular values σ(Q)

i ∈ R. As U and V are orthogonal, ∥Ux∥ = ∥Vx∥ = ∥x∥. Therefore,
∥Qx∥ = ∥UΣV⊤x∥ = ∥Σv∥, where v = V⊤x, meaning that ∥v∥ = ∥x∥. Then we derive:

∥Σv∥ = ∥Qx∥ =

√∑
i

(
σ
(Q)
i vi

)2

≤ σ(Q)
max

√∑
i

v2i = σ(Q)
max∥x∥

We now note that
e
(n)
k = ⟨Qy,Kxk⟩ = ∥Qy∥∥Kxk∥ cos θ

with θ the angle between the arguments of the inner product. We can now bound e(n)k from above:

e
(n)
k ≤ ∥Qy∥∥Kxk∥ ≤ σ(Q)

maxσ
(K)
max∥y∥∥xk∥

with σ(Q)
max, σ

(K)
max being the maximum singular value of Q and K, respectively, and where the last

step comes from the inequality shown above. Similarly, we obtain a lower bound, yielding:

−σ(Q)
maxσ

(K)
max∥y∥∥xk∥ ≤ e

(n)
k ≤ σ(Q)

maxσ
(K)
max∥y∥∥xk∥

This gives us the desired upper bound for δ:

δ = max
1≤i≤n

e
(n)
i − min

1≤j≤n
e
(n)
j

≤ max
1≤i≤n

σ(Q)
maxσ

(K)
max∥y∥∥xi∥ − min

1≤j≤n
−σ(Q)

maxσ
(K)
max∥y∥∥xj∥

= σ(Q)
maxσ

(K)
max∥y∥ max

1≤i≤n
∥xi∥+ σ(Q)

maxσ
(K)
max∥y∥ max

1≤j≤n
∥xj∥

= 2σ(Q)
maxσ

(K)
max∥y∥ max

1≤i≤n
∥xi∥

completing the proof.

E On the relationship between temperature and entropy

There exists a close connection between the temperature, θ, leveraged within the softmaxθ func-
tion, and the resulting Shannon entropy of the output coefficients. In this section, we explore this
relationship through various angles.

First, in Proposition E.1, we show this connection theoretically. This is done by adapting a standard
result from thermodynamics (via the Boltzmann distribution) into the domain of softmax:

Proposition E.1 (Decreasing temperature decreases entropy). Let e(n) ∈ Rn be a collection of
n logits. Consider the Boltzmann distribution over these n items, pi ∝ exp(−βe(n)i ) for β ∈ R,
and let H = −

∑
i pi log pi be its Shannon entropy. Then, as β’s magnitude increases, H must

monotonically decrease. Thus, since β ∝ 1
θ where θ is the temperature in softmaxθ, decreasing the

temperature must monotonically decrease the entropy.
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Proof. We start by briefly acknowledging the extremal values of β: at β = 0 (i.e., θ → ∞), all
logits are weighed equally, hence pi = U(n) are uniform, and entropy is maximised. Similarly, at
β → ±∞ (i.e., θ = 0), either the minimum or the maximum logit is given a probability of 1, leading
to a distribution with minimal (zero) entropy.

Now, consider the partition function Z =
∑

i exp(−βe
(n)
i ), such that pi =

exp(−βe
(n)
i )

Z . We will take
derivatives of logZ with respect to β. Starting with the first derivative:

d

dβ
logZ =

1

Z

∑
i

−e(n)i exp(−βe(n)i ) = −
∑
i

e
(n)
i pi = −Ei∼pi

(e
(n)
i )

we recover the expected logit value sampled under the distribution. Now we differentiate again:

d2

dβ2
logZ = − d

dβ

∑
i

e
(n)
i pi

= −
∑
i

e
(n)
i

d

dβ

exp(−βe(n)i )

Z

= −
∑
i

e
(n)
i

−e(n)i exp(−βe(n)i )Z − exp(−βe(n)i )
∑

j −e
(n)
j exp(−βe(n)j )

Z2

=
∑
i

(e
(n)
i )2

exp(−βe(n)i )

Z
−
∑
j

e
(n)
j

exp(−βe(n)j )

Z

∑
k e

(n)
k exp(−βe(n)k )

Z

=
∑
i

(e
(n)
i )2pi −

∑
j

e
(n)
j pj

∑
k

e
(n)
k pk

= Ei∼pi
((e

(n)
i )2)− Ei∼pi

(e
(n)
i )2 = Vari∼pi

(e
(n)
i )

and we recover the variance of the expected logit value.

Now we turn our attention to the entropy formula:

H = −
∑
i

pi log pi = −
∑
i

pi(log exp(−βe(n)i )− logZ)

=
∑
i

pi logZ −
∑
j

−βe(n)j pj

= logZ + βEi∼pi
(e

(n)
i ) = logZ − β

d

dβ
logZ

To check the monotonicity of H as β varies, we now take the derivative of this expression w.r.t. β:

dH

dβ
=

d

dβ
logZ − d

dβ
logZ − β

d2

dβ2
logZ = −β d2

dβ2
logZ = −βVari∼pi(e

(n)
i )

Since variance can never be negative, we find that dH
dβ ≤ 0 when β ≥ 0, and −dH

dβ ≤ 0 when β ≤ 0.
As such, as the magnitude |β| grows, the value of H must monotonically decrease.

To supplement our proof in a way that clearly indicates the trends between the two quantites, we also
provide—in Figure 5—a visualisation of how the Shannon entropy varies with temperature, for a
10-logit input with varying spread between the logits. While this figure clearly illustrates the expected
trends, it is worth reflecting on its asymmetry.

Lastly, another effect of the temperature on entropy can be directly observed in our experimental
framework—in Figure 6 we demonstrate the sharpening effect that applying adaptive temperature
can have on the softmax coefficients of the sole attention head.
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Figure 5: Entropy of the softmaxθ function for 10 elements of a power series. Entropy increases with
temperature but the rate at which it increases is heavily dependent on the attention logit distribution.
For the degenerate cases near the axes λ = 0 and λ = 1 all logits are the same an we have maximum
entropy.

Figure 6: Visualising the attentional head for the max retrieval task with (below) and without (above)
adaptive temperature applied, for the same batch and parameters as in Figure 2. Note the increased
sharpness in the coefficients, especially as the amount of items increases.

14


	Motivation
	Demonstrating and proving the dispersion in softmax and Transformers
	Adaptive temperature
	Debunking Challenge Submission
	What commonly-held position or belief are you challenging?
	How are your results in tension with this commonly-held position?
	How do you expect your submission to affect future work?

	Experimental details for the maximum entry retrieval task
	Motivation
	Data generation
	Neural network architecture
	Experimental hyperparameters

	Proof of Lemma 2.1
	Proof of Theorem 2.2
	Proof of Proposition 3.1
	On the relationship between temperature and entropy

