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ABSTRACT

Warm-Start reinforcement learning (RL), aided by a prior policy obtained from
offline training, is emerging as a promising RL approach for practical applications.
Recent empirical studies have demonstrated that the performance of Warm-Start RL
can be improved quickly in some cases but become stagnant in other cases, calling
for a fundamental understanding, especially when the function approximation is
used. To fill this void, we take a finite time analysis approach to quantify the
impact of approximation errors on the learning performance of Warm-Start RL.
Specifically, we consider the widely used Actor-Critic (A-C) method with a prior
policy. We first quantify the approximation errors in the Actor update and the Critic
update, respectively. Next, we cast the Warm-Start A-C algorithm as Newton’s
method with perturbation, and study the impact of the approximation errors on
the finite-time learning performance with inaccurate Actor/Critic updates. Under
some general technical conditions, we obtain lower bounds on the sub-optimality
gap of the Warm-Start A-C algorithm to quantify the impact of the bias and error
propagation. We also derive the upper bounds, which provide insights on achieving
the desired finite-learning performance in the Warm-Start A-C algorithm.

1 INTRODUCTION

Online reinforcement learning (RL) (Kaelbling et al., 1996; Sutton & Barto, 2018) often faces the
formidable challenge of high sample complexity and intensive computational cost (Kumar et al.,
2020; Xie et al., 2021), which hinders its applicability in real-world tasks. Indeed, this is the case
in portfolio management (Choi et al., 2009), vehicles control (Wu et al., 2017; Shalev-Shwartz
et al., 2016) and other time-sensitive settings (Li, 2017; Garcıa & Fernández, 2015). To tackle this
challenge, Warm-Start RL has recently garnered much attention (Nair et al., 2020; Gelly & Silver,
2007; Uchendu et al., 2022), by enabling online policy adaptation from an initial policy pre-trained
using offline data (e.g., via behavior cloning or offline RL). One main insight of Warm-Start RL is
that online learning can be significantly accelerated, thanks to the bootstrapping by an initial policy.

Despite the encouraging empirical successes (Silver et al., 2017; 2018; Uchendu et al., 2022), a
fundamental understanding of the learning performance of Warm-Start RL is lacking, especially in
the practical settings with function approximation by neural networks. In this work, we focus on
the widely used Actor-Critic (A-C) method (Grondman et al., 2012; Peters & Schaal, 2008), which
combines the merits of both policy iteration and value iteration approaches (Sutton & Barto, 2018)
and has great potential for RL applications (Uchendu et al., 2022). Notably, in the framework of
abstract dynamic programming (ADP) (Bertsekas, 2022a), the policy iteration method (Sutton et al.,
1999) has been studied extensively, for warm-start learning under the assumption of accurate updates.
In such a setting, policy iteration can be regarded as a second-order method in convex optimization
(Grand-Clément, 2021) from the perspective of ADP, and can achieve super-linear convergence rate
(Santos & Rust, 2004; Puterman & Brumelle, 1979; Boyd et al., 2004). Nevertheless, when the
A-C method is implemented in practical applications, the approximation errors are inevitable in the
Actor/Critic updates due to many implementation issues, including function approximation using
neural networks, the finite sample size, and the finite number of gradient iterations. Moreover, the
error propagation from iteration to iteration may exacerbate the ‘slowing down’ of the convergence
and have intricate impact therein. Clearly, the (stochastic) accumulated errors may throttle the
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convergence rate significantly and degrade the learning performance dramatically (Fujimoto et al.,
2018; Uehara et al., 2021; Dalal et al., 2020; Doan et al., 2019). Thus, it is of great importance
to characterize the learning performance of Warm-Start RL in practical scenarios; and the primary
objective of this study is to take steps to build a fundamental understanding of the impact of the
approximation errors on the finite-time sub-optimality gap for the Warm-Start A-C algorithm, i.e.,

Whether and under what conditions online learning (e.g., A-C) can be significantly accelerated by a
warm-start policy from offline RL?

To this end, we address the question in two steps: (1) We first focus on the characterization of the
approximation errors via finite time analysis, based on which we quantify its impact on the
sub-optimality gap of the A-C algorithm in Warm-Start RL. In particular, we analyze the A-C
algorithm in a more realistic setting where the samples are Markovian in the rollout trajectories for
the Critic update (different from the widely used i.i.d. assumption). Further, we consider that the
Actor update and the Critic update take place on the single-time scale, indicating that the time-scale
decomposition is not applicable to the finite-time analysis here. We tackle these challenges using
recent advances on Bernstein’s Inequality for Markovian samples (Jiang et al., 2018; Fan et al.,
2021b). By delving into the coupling due to the interleaved updates of the Actor and the Critic, we
provide upper bounds on the approximation errors in the Critic update and the Actor update of online
exploration, respectively, from which we pinpoint the root causes of the approximation errors.

(2) We analyze the impact of the approximation errors on the finite-time learning performance
of Warm-Start A-C. Based on the approximation error characterization, we treat the Warm-Start A-C
algorithm as Newton’s method with perturbation, and study the impact of the approximation errors
on the finite-time learning performance of Warm-Start A-C. For the case when the approximation
errors are biased, we derive lower bounds on the sub-optimality gap, which reveals that even with a
sufficiently good warm-start, the performance gap of online policy adaptation to the optimal policy
is still bounded away from zero when the biases are not negligible. Further, we also derive the
upper bounds, which shed light on designing Warm-Start A-C to achieve desired finite-time learning
performance. We present the experiments results to further elucidate our findings in Appendix K.

Related Work. (Warm-Start RL) AlphaZero (Silver et al., 2017) is one of the most remarkable
successes in Warm-Start RL. In a line of very recent works (Gupta et al., 2020)(Ijspeert et al.,
2002)(Kim et al., 2013) on Warm-Start RL, the policy is initialized via behavior cloning from offline
data and then is fine-tuned with online reinforcement learning. A variant of this scheme is proposed
in Advanced Weighted Actor Critic (Nair et al., 2020) which enables quick learning of skills across a
suite of benchmark tasks. In the same spirit, Offline-Online Ensemble (Lee et al., 2022) leverages
multiple Q-functions trained pessimistically offline as the initial function approximation for online
learning. Jump-start RL (Uchendu et al., 2022) utilizes a guided-policy to initialize online RL in
the early phase with a separate online exploration-policy. The guided-policy will be abandoned as
the online exploration-policy improves. However, a fundamental characterization of the finite-time
performance of Warm-Start RL is still lacking. Recent work (Xie et al., 2021) provides a quantitative
understanding on the policy fine-tuning problem in episodic Markov Decision Processes (MDPs) and
establishes the lower bound for the sample complexity, where no function approximation is used.
Our work aims to take steps to quantify the impact of approximation error on online RL when a
warm-start policy is given.

(Actor-Critic as Newton’s Method) The intrinsic connection between the A-C method and Newton’s
method can be traced back to the convergence analysis of policy iteration in MDPs with continuous
action spaces (Puterman & Brumelle, 1979). The connection is further examined later in a special
MDP with discretized continuous state space (Santos & Rust, 2004). Recent work (Bertsekas, 2022b)
points out that the success of Warm-Start RL, e.g., AlphaZero, can be attributed to the equivalence
between policy iteration and Newton’s method in the ADP framework, which leads to the superlinear
convergence rate for online policy adaptation. Under the generalized differentiable assumption, it
has also been proved theoretically that policy iteration is the instances of semi-smooth Newton-type
methods to solve the Bellman equation (Gargiani et al., 2022). While some prior works (Grand-
Clément, 2021) have provided theoretical investigation of the connections between policy iteration
and Newton’s Method, the studies are carried out in the abstract dynamic programming (ADP)
framework, assuming accurate updates in iterations. Departing from the ADP framework, this work
treats the A-C algorithm as Newton’s method in the presence of approximation errors, and focuses on
the finite-time learning performance of Warm-Start RL.
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(Finite-time analysis for Actor-Critic methods) Among the existing works on the finite time
analysis of A-C methods with function approximation, (Yang et al., 2019) establishes the global
convergence under the linear quadratic regulator. (Wang et al., 2020) proves the convergence behavior
when both Actor and Critic are approximated by overparameterized neural networks. (Kumar et al.,
2019) considers the sample complexity under i.i.d. assumptions where the Actor update and Critic
update can be ‘decoupled’. Khodadadian et al. (2022) considers the two-timescale setting with
Markovian samples. (Fu et al., 2020) focuses on the more general single-time scale setting but
constrains the policy function approximation in the energy based function class.

2 BACKGROUND

Markov Decision Processes. We consider a MDP defined by a tuple (S,A, P, r, γ), where S =
{1, 2, · · · , n}, n < ∞ and A = {1, 2, · · · , A}, A < ∞ represent the finite state space and finite
action space, respectively. P (s′|s, a) : S × A × S → [0, 1] is the probability of the transition
from state s to state s′ by applying action a and r(s, a) : S ×A → R is the corresponding reward.
γ ∈ (0, 1) is the discount factor. At each step t, an agent moves from the current state st to next state
st+1 by taking an action at following the policy π : S → A and receives the reward rt. In the Warm-
Start RL, we assume that the initial policy π0 is given, e.g., in the form of a neural network (Li, 2017),
and obtained by offline training. For brevity, we use bold symbols rπ ∈ Rn : [rπ]s = r(s, π(s))

and Pπ ∈ Rn×n : [Pπ]s,s′ ≜ P (s′|s, π(s)) to denote the reward vector and the transition matrix
induced by policy π. We further denote by dπ : S → [0, 1] and ρπ : S × A → [0, 1] the stationary
state distribution and state-action transition distribution induced by policy π. We use ρ0 to represent
the initial state distribution. We use ∥ · ∥ or ∥ · ∥2 to represent the 2-norm.

Value Functions. For any policy π, define the value function vπ(s) : S → R as vπ(s) =
Eat∼π(·|st),st+1∼P (·|st,at) [

∑∞
t=0 γ

trt|s0 = s] to measure the average accumulative reward star-
ing from state s by following policy π. We define Q-function Qπ(s, a) : S × A → R as
Qπ(s, a) = E[

∑∞
t=0 γ

trt|s0 = s, a0 = a] to represent the expected return when the action a
is chosen at the state s. By using the transition matrix and reward vector defined above, we have the
compact form of the value function vπ = (I − γPπ)−1rπ, where I ∈ Rn×n is the identity matrix
and vπ ∈ Rn is the value vector with the component-wise values [vπ]s ≜ vπ(s), with

vπ(s) ≜ Ea∼π(·|s)[Q
π(s, a)]. (1)

The main objective is to find an optimal policy π∗ such that the value function is maximized, i.e.,
max
π

Es∼ρ0 [v
π(s)] ≜ max

π
Es∼ρ0,a∼π(·|s)[Q

π(s, a)]. (2)

In what follows, we use both Q-function and value function v(s) for convenience, and the relation
between the two is given in Eqn. (2).

Bellman Operator. For v ∈ Rn, define the Bellman evaluation operator Tπ : Rn → Rn and the
Bellman operator T : Rn → Rn as

Tπ(v) =rπ + γPπv, T (v) = max
π
{rπ + γPπv} = max

π
Tπ(v).

It is well known that the Bellman operator T is a contraction mapping and has order-preserving
property. Note that the Bellman operator T may not be differentiable everywhere due to the max
operator, and the value v∗ of the optimal policy π∗ is the only fixed point of the Bellman operator T
(Puterman, 2014). From the definition of the Bellman Evaluation Operator Tπ , we have vπ to be the
fixed point of Tπ , i.e., vπ = Tπ(vπ).

2.1 POLICY ITERATION AS NEWTON’S METHOD IN ABSTRACT DYNAMIC PROGRAMMING

Policy iteration carries out policy learning by alternating between two steps: policy improvement and
policy evaluation. At time t, the policy evaluation step seeks to learn the value function vπt for the
current policy πt by solving the fixed point equation of the Bellman evaluation operator:

v = Tπt(v). (3)
Denote vt = vπt for simplicity. Then in the policy improvement step, a new policy πt+1 is obtained
by maximizing the learnt value function vt in the policy evaluation step, in a greedy manner, i.e.,

πt+1 = argmax
π

Tπ(vt). (4)
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Figure 1: Illustration of error propagation effect in the A-C method: The approximation errors
from Critic update (Ec) and Actor update (Ea) are carried forward and may get amplified due to
accumulation. (To distinguish the approximation errors between Critic update and Actor update, we
use tilde symbol ( ˜ ) above variables, such as policy π̃ and value vector ṽ, to represent the policy
and the value vector obtained in the presence of Critic update error. We use hat symbol ( ˆ ) above
the variables to represent the results with approximation error in Actor update.)

To introduce the connection between policy iteration and Newton’s Method, we first define operator
F : v → v−T (v) for convenience. As in (Grand-Clément, 2021; Puterman, 2014), F can be treated
as the “gradient” of an unknown function. Under the assumption that F (v) is differentiable at v,
the Jacobian Jv of F at v can be obtained as Jv = I − γPπ(v), where π(v) ≜ argmaxπ T

π(v).
Note that J−1

v =
∑∞
i=1(γPπ(v))

i is invertible (Puterman, 2014). Since it can be shown that
vπt+1 = (I − γPπt+1

)−1rπt+1
= J−1

vπtrπt+1
for the policy evaluation of πt+1, we have that,

vπt+1 = vπt − J−1
vπtJvπtvπt + J−1

vπtrπt+1
= vπt − J−1

vπtF (v
πt), (5)

which indicates that the analytic representation of policy iteration in the abstract dynamic program-
ming framework reduces to Newton’s Method. It is worth mentioning that the convergence behavior
of policy iteration near the optimal value v∗ cannot be directly obtained by using the results from
convex optimization (Boyd et al., 2004) since the Bellman operator T may not be differentiable at
any given value vector v. The full proof is included in Appendix A.

2.2 AN ILLUSTRATIVE EXAMPLE OF THE ERROR PROPAGATION IN ACTOR-CRITIC UPDATES

The A-C method can be viewed as a generalization of policy iteration in ADP, where the Critic
update corresponds to the policy evaluation of the current policy and the Actor update performs the
policy improvement. In practice, function approximation (e.g., via neural networks) is often used
to approximate both the Critic and the Actor, which inevitably incurs approximation errors for the
policy update and evaluation. More importantly, the approximation errors could propagate along with
the iterative updates in the A-C method. We have the illustrative example to get a more concrete
sense of the impact of the approximation errors on the policy update.

As illustrated in Figure 1, for a given policy πt with the underlying true policy value vπt , we denote
ṽπt as the learnt value estimation of vπt in the Critic step. We further denote πt+1 and π̃t+1 as the
greedy policy obtained in the Actor update Eqn. (4) by using vπt and ṽπt , respectively. Let π̂t+1 be
the policy estimation of π̃t+1 with function approximation in the Actor step. Intuitively, πt+1 is the
underlying true policy update from πt using one step policy iteration without any error, π̃t+1 is the
policy update from πt with approximation errors in the Critic update, and π̂t+1 is the policy update
from πt with approximation errors in both the Critic step and the Actor step. To characterize the
impact of the approximation errors on the policy update, i.e., the difference between vπt+1 and vπ̂t+1 ,
we evaluate the Critic error, i.e., the difference between vπt+1 and vπ̃t+1 , and the Actor error, i.e., the
difference between vπ̃t+1 and vπ̂t+1 , in a separate manner. More specifically, to quantify the Critic
error, we can first have the following update based on the same reasoning with Eqn. (5):

vπ̃t+1 = vt − J−1
ṽt

(
vt − (rπ̃t+1

+ γPπ̃t+1
vt)
)
≜ vt − J−1

ṽt

(
vt − T̃ (vt)

)
,

where T̃ (vt) = rπ̃t+1
+ γPπ̃t+1

vt and Jṽt
= I − γPπ̃t+1

. Denote the approximation error (random
variable) in the Bellman operator T and the Jacobian Jv by ET,t and EJ,t, i.e.,

T̃ (vt)− T (vt) =(rπ̃t+1
+ γPπ̃t+1

vt)− (rπt+1
+ γPπt+1

vt) ≜ ET,t,
J−1
ṽt
− J−1

vt
=(I − γPπ̃t+1

)−1 − (I − γPπt+1
)−1 ≜ EJ,t,

where it is clear that both error terms stem from the function approximation errors in the Critic update.
To quantify the Actor error, we assume that

vπ̂t+1 = vπ̃t+1 + Ea,t, (6)
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where Ea,t is the error term. Therefore, by casting the A-C method as Newton’s method with
perturbation, we can characterize the approximation errors on the policy update:

vπ̂t+1 = vπt+1 + Ec,t + Ea,t,
where Ec,t ≜ −EJ,t(vt−T (vt))+(J−1

vt
+EJ,t)ET,t and Ea,t capture the impact of the approximation

error from Critic update step and Actor update step, respectively. Intuitively, as illustrated in Figure
1, both errors from the previous update in the A-C method may propagate to the next update and thus
affect the convergence behavior of the algorithm substantially, in contrast to idealized policy iteration
without approximation errors. This phenomenon has also been observed in the empirical results
(Fujimoto et al., 2018; Thrun & Schwartz, 1993). In this work, we strive to systematically analyze
the impact of the approximation errors, through (1) a detailed characterization of the approximation
errors in the Critic update and the Actor update in Section 3 and (2) a thorough analysis of the error
propagation effect and biases in Section 4. The illustration of our analysis is available in Appendix A.

3 CHARACTERIZATION OF APPROXIMATION ERRORS

Actor-Critic Methods with Function Approximation. In what follows, we consider that the policy
is parameterized by θ ∈ Θ, which in general corresponds to a non-linear function class. Following
(Konda & Tsitsiklis, 1999; Peters & Schaal, 2008; Kumar et al., 2019; 2020; Santos & Rust, 2004),
the Q-function is parameterized by a linear function class with base function ϕ(s, a) and parameter
ω ∈ Ω ⊂ Rd, i.e., Qω(s, a) = ω⊤ϕ(s, a). We note that the modeling of the Q-function via linear
value function is often used to extract insight in the A-C method. Similar to the policy iteration, the
update in the A-C method alternates between the following two steps 1.

Critic update: The Critic updates its parameter ω to evaluate the current policy πt, e.g., through
m-step (m ≥ 1) Bellman evaluation operator Tπ to the current Q-function estimator (namely, m-step
return), which leads to the following update rule at time step t,

Qt+1(s, a)←Eπt

[
(1− γ) ·

m−1∑
i=0

γir (si, ai) + γm ·Qωt (sm, am) | s0 = s, a0 = a

]
, (7)

ωt+1 ←argminωE(s,a)∼ρπt

[
Qt+1(s, a)− ω⊤ϕ(s, a)

]2
. (8)

Actor update: The Actor is updated through a greedy step to maximize Q-function Qωt+1
, i.e.,

πt+1 ← argmax
π

E(s,a)∼ρπ
[
Qωt+1

(s, a)
]
. (9)

3.1 APPROXIMATION ERROR IN THE CRITIC UPDATE

Solving the minimization problem in Eqn. (8) involves the expectation over the stationary state-
action distribution ρπt induced by the current policy πt, which can be approximated by sample
average in practice. Therefore, we consider the Critic update below based on two groups of samples,
{(sl, al)}Nl=1 and {τl}Nl=1 where τl = {sl,t, al,t, rl,t}mt=0, which are collected by following πt:

ωt+1 = ΓR

{(∑N
l=1 ϕ (sl, al)ϕ (sl, al)

⊤
)−1

·
∑N
l=1

(
(1− γ)

∑m−1
i=0 γirl,i + γmQωt

(sl,m, al,m)
)
ϕ (sl,m, al,m)

}
, (10)

where Γ is the projection operator onto the Critic parameter space Ω with radius R in Rd. Since
the samples in each trajectory τl are obtained via rolllouts, in general the samples in each trajectory
follow a Markovian process (Dalal et al., 2018; Kumar et al., 2019). We further assume the samples
are from the stationary distribution induced by the current policy.

In what follows, we use ω and ω̃ to distinguish the difference between the sample-based update and
the solution from Eqn. (8), such that the approximation error in the Critic update can be quantified as
|Qω̃t

−Qωt
|. We first impose the following standard assumptions on the Bellman evaluation operator

Tπ , the base function ϕ and the MDP.

1We remark that our analysis framework and theoretical results are able to be applied to off-policy setting
with the extra assumption on the behavior policy. We include the details in Appendix L.
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Assumption 1. For given Critic parameter ω and policy parameter θ, the following condition holds:
inf
ω̄∈Ω

Eρπθ [
(
(Tπθ )mQω − ω̄⊤ϕ

)
(s, a)] = 0,

where ρπθ is the stationary state-action transition probability induced by policy πθ.

Assumption 1 (Fu et al., 2020) indicates that the solution of the Critic update given in Eqn. (8) lies in
the Critic parameter space Ω. We note that this assumption is used for ease of exposition, and our
results can be modified by incorporating an additional constant term when this assumption does not
hold. The proof sketch in this case can be found in Appendix C.
Assumption 2. The base function ϕ in the Critic satisfies the following two conditions: (1)
∥ϕ(s, a)∥2 ≤ 1, ∀ (s, a) ∈ S × A; and (2) the smallest singular value for Eρ[ϕ(s, a)ϕ(s, a)

⊤]
is lower bounded by a positive constant σ∗ for any stationary state-action transition distribution ρ.

Assumption 2 is widely used in the A-C method to guarantee that the minimization in Eqn. (8) can
be attained by a unique minimizer (Fu et al., 2020; Bhandari et al., 2018; Agarwal et al., 2021).
Assumption 3. The reward r(s, a) satisfies the following two conditions: (1) The reward is upper
bounded by a positive constant rmax for all (s, a) ∈ S × A; and (2) the stationary state-action
transition matrix P π has non-zero spectral gap 1− λπ > 0 for all π.

The first condition in Assumption 3 is often used for discounted MDPs to ensure a finite value
function (Thrun & Schwartz, 1993; Fujimoto et al., 2018; Fu et al., 2020). Moreover, since the
samples in the same trajectories are generally correlated, the second condition is adopted to guarantee
the concentration properties of the Markov chain, which is generally true for the stationary Markov
chain (Jiang et al., 2018; Ortner, 2020; Amit et al., 2020).

For any λ ∈ [0, 1), let α1(λ) = (1 + λ)/(1− λ), α2(λ) = 5/(1− λ) where α2(0) = 1/3. Define

r̃m =

√
α2

2r
2
max(max{λπt ,0})2 ln2 p−2mα1(max{λπt ,0}) ln p−α2(max{λπt ,0}) ln p

m + rmax.

Then we can have the following main result on the approximation error in the Critic update step.
Proposition 1 (Approximation Error in Critic Update). Under Assumptions 1, 2, 3, the following
inequality holds with probability at least 1− p, for any t > 0, (s, a) ∈ S ×A:

E[|Qωt
(s, a)−Qω̃t

(s, a)|] ≤ 4((1−γ)r̃m+γmR)√
N(σ∗)2

(
− 2

3N log p
4d +

√
4

9N2 log
2 p

4d −
2
N log p

4d

)
,

where d is the dimension of the Critic parameter ω and R is the radius of Critic parameter space Ω as
defined in Eqn. (10).

Proposition 1 establishes the upper bound for the approximation error in the Critic update, which
encapsulates the impact of the finite sample size and the finite-step rollout with Bellman evaluation
operator Tπ. It can be seen from Proposition 1 that in order to obtain an accurate evaluation of the
policy, we can increase the sample size N in the update Eqn. (10) and have more steps of rollout
with Bellman evaluation operator Tπ . We remark that Proposition 1 considers the correlation across
samples, and we appeal to the recent advances in Bernstein’s Inequality for Markovian samples (Jiang
et al., 2018)(Fan et al., 2021b) to tackle this challenge. The proof of Proposition 1 can be found in
Appendix B and Appendix C.

3.2 APPROXIMATION ERROR IN THE ACTOR UPDATE

In practice, the greedy search step for solving Eqn. (9) is generally approximated by multiple (e.g.,
Na) steps of policy gradient. Based on the policy gradient theorem (Silver et al., 2014; Sutton et al.,
1999), we can have the following update at gradient step k ∈ [1, Na] in the t-th Actor update:

θt,1 = θt, θt,Na = θt+1,

θt,k+1 = θt,k + αE
(s,a)∼ρ

πθt,k [Qωt+1(s, a)∇θπθt,k(a|s)], (11)

where α is the learning rate. For simplicity, we drop the subscript t in θt,k when no confusion
will arise and denote ρk := ρπθk . As in the Critic update, we sample a trajectory with length l by
following the current policy πθk , i.e., {s1, a1, s2, a2, · · · , sl, al}, to approximate the expectation in
Eqn. (11). Then we can have that

θk+1 =θk + α 1
l

∑l
i=1[Qωt+1

(si, ai)∇θπθk(ai|si)] := θk + α(Ck,t,1 + Ck,t,2) + αfk,t, (12)
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where Ck,t,1, Ck,t,2 and fk,t are defined as follows

Ck,t,1 :=1/l
∑l
i=1(Qωt+1(si, ai)∇θπθk(ai|si)−Qω̃t+1

(si, ai)∇θπθk(ai|si)),

Ck,t,2 :=1/l
∑l
i=1(Qω̃t+1

(si, ai)∇θπθk(ai|si)−Qπθt (si, ai)∇θπθk(ai|si)),

fk,t :=1/l
∑l
i=1Q

πθt (si, ai)∇θπθk(ai|si).
Here Ck,t,1 captures the error resulted from using samples to estimate expectation in the Critic update.
Based on our result in Proposition 1, with high probability, this term will go to 0 when we have
infinite samples or infinite rollout length m. Note that (Tπθt )mQωt

= Qω̃t+1
(Critic update) and

limm→∞(Tπθt )mQωt
= Qπθt . And Ck,t,2 implies the approximation error when applying the Bell-

man operator limited (m) times. This term will go to 0 when m→∞. fk,t is an unbiased estimation
of the gradient of E(s,a)∼ρk [Q

πθt (s, a)], i.e., E[fk,t] = E(s,a)∼ρk [Q
πθt (s, a)∇θπθk(a|s)].

Based on Eqn. (12), it is clear that the Actor update with the approximation error resulted from
the Critic update can be viewed as a stochastic gradient update with some perturbation Ck,t =
Ck,t,1 + Ck,t,2. Denote θ∗t+1 as the solution of the Eqn. (9). For ease of exposition, we use h(ω, θ)
to denote the objective function in the Actor update:

h(ω, θ) = E(s,a)∼ρπθ [Qω(s, a)] = Es∼dπθ [vπω (s)]. (13)

Note that h is a function of Actor parameter θ for a given Critic parameter ω. Next, we quantify the
approximation error in the Actor update in terms of the gap h(ωt+1, θ

∗
t+1)− h(ωt+1, θt+1).

Recall that Proposition 1 gives upper bound for the approximation error Eω[|Qωt
−Qω̃t

|] in the Critic
update, which has direct impact on Ck,t. Based on Proposition 1, we have the following two lemmas
for the upper bounds on the bias term b = E[Ck,t] and the error term β = fk,t + Ck,t −E[Ck,t] in
the stochastic gradient update Eqn. (12), respectively. The proof of Lemmas 1 and 2 can be found in
Appendix D and E, respectively.
Lemma 1 (σ2-bounded noise). Suppose Assumptions 1, 2, 3 hold. Then with probability at least
1− p, E[∥β∥2] ≤ ∥∇θh(ω, θ) + b∥2 + σ2, ∀θ, where σ2 ≥ 0 is a constant and depends on p.
Lemma 2 (ζ2-bounded bias). Suppose Assumptions 1, 2, 3 hold. Then with probability at least 1− p,
∥b∥2 ≤ ζ2, ∀θ, where ζ2 ≥ 0 is a constant and depends on p.
Denote the score function ψθ(a|s) := ∇θπθ(a|s) and we impose the following standard assumptions.
Assumption 4. For any θ, θ′ ∈ Rd and state-action pair (s, a) ∈ S×A, there exist positive constants
Lψ, Cψ and Cπ such that the following holds: (1) ∥ψθ − ψθ′∥ ≤ Lψ∥θ − θ′∥; (2) ∥ψθ∥ ≤ Cψ and
(3) ∥πθ(·|s)− πθ′(·|s)∥TV ≤ Cπ∥θ − θ′∥, where ∥ · ∥TV is the total-variation distance.

We remark that the smoothness and bounded property of the score function as stated in the (1) and (2)
in Assumption 4 are widely adopted in the literature (Xu et al., 2020a;b; Zou et al., 2019; Agarwal
et al., 2020; Kumar et al., 2019), and it has been shown (Xu et al., 2020a) that (3) in Assumption 4
can be satisfied for any smooth policy with bounded action space.

For the sake of tractability, we next give the following two lemmas about the smoothness and Polyak-
Lojasiewicz Condition on the objective function h(·, θ). The proof can be found in Appendix F.
Lemma 3 (L-smoothness). Suppose Assumption 4 hold. Then function h(·, θ) is bounded from
below by an infimum hinf ∈ R, differentiable and∇h is L-Lipschitz, i.e., ∥∇h(ω, θ)−∇h(ω, θ′)∥ ≤
L∥θ − θ′∥, ∀ ω, θ, θ′.
Lemma 4 (µ-PL). If∇h(ω, θ) ̸= 0, then we have 1

2∥∇h(ω, θ)∥ ≥ µ(h(ω, θ
∗)−h(ω, θ)) ≥ 0,∀ θ, ω.

Let α ≤ 1
2L . Next we present the upper bound of the approximation error in the Actor update.

Proposition 2 (Approximation Error in Actor Update). Given the updated Actor parameter θt−1, the
following inequality holds with probability at least 1− p:

Eθ[∥h(ω, θ∗t )− h(ω, θt)∥] ≤ (1− αµ)Na(h(ω, θ∗t )− h(ω, θt−1)) +
ζ2 + 2αLσ2

2µ
,

where σ2, ζ2, L and µ are defined in Lemma 1, Lemma 2, Lemma 3 and Lemma 4, respectively.
Proposition 2 reveals that due to the bias and noise induced by the Critic approximation error, running
more gradient iterations do not necessarily guarantee the convergence to the optimal policy πθ∗t . Note
that Lemmas 1 and 2 in (Ajalloeian & Stich, 2020) are given in the form of assumptions, whereas in
this work, we justify that both assumptions hold with high probability and prove Proposition 2, and
the proof can be found in Appendix G.
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4 IMPACT OF APPROXIMATION ERRORS AND WARM-START POLICY ON
FINITE-TIME LEARNING PERFORMANCE

We next quantify the impact of the approximations errors on the sub-optimality gap of the Warm-
Start A-C method with inaccurate Actor/Critic updates. We first cast the A-C method as Newton’s
Method with perturbation, and then present both the finite-time upper bound and lower bound on the
finite-time learning performance in Section 4.1.

Actor-Critic Method as Newton’s Method with Perturbation. As mentioned earlier, the Critic
update follows Eqn. (10) with finite samples and finite step rollout with Bellman evaluation operator
Tπ and the Actor update follows Eqn. (12). Given the policy πt at time t, we denote the resulting
policy of one A-C update as π̂t+1. Recall that we use π̃t+1 to denote the policy attained the max
in T (vπt) as illustrated in Figure 1. Furthermore, we define the following notations for ease of our
discussion: (1) Denote Ev,t = vπ̂t+1 − vπ̃t+1 as the approximation error in the Actor update; (2)
Denote Er,t = rπ̃t+1

− rπ̂t+1
as the error in the reward vector, which is induced by the approximation

error in the Actor update step; (3) Denote EP,t = Pπ̃t+1
− Pπ̂t+1

as the error in the transition matrix
P ; (4) Denote EĴ,t = J−1

ṽt
− J−1

v̂t
where Jv̂t

= I − γPπ̂t+1
and Jṽt

= I − γPπ̃t+1
.

Following the same line as in Section 2.2, we treat the A-C algorithm as Newton’s method with
perturbation Et, i.e.,

vπ̂t+1 = vπ̂t − (J−1
v̂t

(vπ̂t − T (vπ̂t))− Et) := vπ̂t − L̂(t), (14)

where L̂(t) is the stochastic estimator of Newton’s update L(t) = J−1
v̂πt

(
vπ̂t − T

(
vπ̂t
))

, and

Et = Ev,t + EĴ,t(v
π̂t+1 − (rπ̃t+1

+ γPπ̃t+1
vπ̂t+1))− J−1

v̂t
(Er,t + γEP,tvπ̂t),

which can be further decomposed into bias and Martingale difference noise as follows:
B(t) ≜E[L̂(t)]− L(t) = E[Et],
N (t) ≜L̂(t)−E[L̂(t)] = Et −E[Et].

We have a few observations in order. It can be seen that the perturbation Et results from both Actor
approximation error (e.g., Er,t, EP,t) and Critic approximation error (e.g., Ev,t). More importantly,
the learnt Q function in the Critic update Eqn. (10) is biased in general due to finite rollout steps m,
which further leads to the biased gradients in the Actor update Eqn. (11) (Kumar et al., 2019). Clearly,
the estimation bias plays an important role in affecting the learning performance, especially when
deep neural networks are used as function approximations, which has been extensively investigated
using empirical studies (Fujimoto et al., 2018; Elfwing et al., 2018; Van Hasselt et al., 2016).

Next, we examine the bias B(t) based on the approximation errors in the Actor/Critic updates.
Combining the results in Proposition 1 and 2 on the approximation error in the Critic/Actor updates,
we have the following result on the bias B(t). A full derivation is given in Appendix H.
Proposition 3 (Upper Bound on the Bias). Suppose Assumption 4 holds. Let Sϵ(·) be an open ball
of radius ϵ. There exist positive constants Lb, and ϵ, such that when θt+1 ∈ Sϵ(θ∗t+1), the following
holds for any t > 0,

∥B(t)∥ ≤ LbEθ[∥h(·, θ∗t+1)− h(·, θt+1)∥].

4.1 FINITE-TIME LEARNING PERFORMANCE AND ERROR PROPAGATION EFFECT

Lower Bound on Performance Gap. Aiming to understand “whether online learning can be
accelerated by a warm-start policy”, we first derive a lower bound to quantify the impact of the
bias and the error propagation. By unrolling the recursion of the Newton update (with perturbation)
Eqn. (14), we obtain the following theorem.

Theorem 1. The lower bound of ∥E[v∗ − vπ̂t+1 ]∥ satisfies that
∥E
[
v∗ − vπ̂t+1

]
∥ ≥ ∥γt+1P̄t+1(v

∗ − vπ0) +
∑t
i=1 γ

iP̄iB(t− i) + B(t)∥, (15)

where P̄t+1 = E
[(∏t

i=0 Pπt+1−i

)]
and π0 is the warm-start policy.

Error Propagation and Accumulation. It can be seen form Theorem 1 that the bias terms {B(t)}
add up over time, and the propagation effect of the bias terms is encapsulated by the last two terms
on the right side of Eqn. (15). Clearly, the first term on the right side, corresponding to the impact of

8
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the warm-start policy π0, diminishes with A-C updates. To get a more concrete sense of Theorem 1,
we consider the following special settings. (1) When the bias is always positive, i.e., B(t) > 0 for all
t ≥ 0, the lower bound in Theorem 1 is always positive, i.e., ∥E

[
v∗ − vπ̂t+1

]
∥ ≥ ∥B(t)∥ > 0. In

this case, the sub-optimal gap remains bounded away from zero. Similar conclusion can be made
when the bias is always negative. (2) When the bias term can be either positive or negative, the
lower bound is shown as Eqn. (15). In this case, the learning performance of the A-C algorithm
largely depends on the behavior of the Bias term. It can be seen from Theorem 1 that even when
the warm-start policy is near-optimal, it is still challenging to guarantee that online fine-tuning can
improve the policy if the approximation error is not handled correctly. We note that this has also been
observed empirically (Nair et al., 2020; Lee et al., 2022).

Upper Bound on Performance Gap. In order to derive the upper bound on the sub-optimality gap,
we first introduce the following standard assumption on the Jacobian Jv as in the analysis of policy
iteration (Puterman & Brumelle, 1979; Grand-Clément, 2021).

Assumption 5. For some q > 0 there exists a constant 0 < LJ < +∞ such that
∥Jvπ − Jv∗∥ ≤ LJ∥vπ − v∗∥q ∀ π,

and there is a constant 0 < M < +∞ such that ∥J−1
vπ ∥ ≤M, ∀ π.

Denote Ht := ∥J−1
v̂t

[Jv̂t
− Jv∗ ] ∥. Clearly, we have Ht is upper bounded by Ht ≤ MLJ∥vπ̂t −

v∗∥q from Assumption 5. Next, We present the finite-time upper bound in Theorem 2.

Theorem 2. Suppose Assumption 5 holds. Then we have that for any t > 0,

∥E[vπ̂t+1 − v∗]∥ ≤

(
t∏
i=0

Ht−i

)
∥v∗ − vπ0∥+

t∑
i=1

 i∏
j=1

Ht−j

 ∥B(t− i)∥+ ∥B(t)∥.
Under what conditions online learning can be accelerated by the warm-start policy? The upper
bound in Theorem 2 sheds light on the impact of warm-start policy π0 (the first term) and the bias
{B(t)} (the last two terms), thereby providing guidance on how to achieve desired finite-time learning
performance. Specifically, consider the case when the approximation error is unbiased. Clearly,
we have ∥E[vπ̂t+1 − v∗]∥ ≤

(∏t
i=0Ht−i

)
∥v∗ − vπ0∥, which decreases quickly if the warm-start

policy π0 is close to the optimal policy π∗. This observation corroborates the most recent empirically
finding, where the online RL is able to further improve the warm-start policy by few adaptation
steps (Silver et al., 2017; Bertsekas, 2022a; Kalashnikov et al., 2018). More generally, when the
bias B(t) ̸= 0, the upper bound hinges heavily on the biases in the approximation errors, even when
the warm-start policy π0 is close to the optimal policy. In this case, recall the result on the upper
bound of the bias B(t) in proposition 3, where we establish the connection between the bias and
the approximation error. As expected, in order to reduce the performance gap, it is essential to
decrease the bias in the approximation error, which can be achieved by increasing gradient steps and
sample sizes. The proof of Theorem 1 and 2 are relegated to the Appendix I and J, respectively. The
experiments results and analysis on the Gridworld benchmark can be found in Appendix K.

5 CONCLUSION

In this work, we take a finite-time analysis approach to quantify the impact of approximation errors
on the learning performance of Warm-Start A-C method with a given prior policy. By delving into the
intricate coupling between the updates of the Actor and the Critic, we first provide upper bounds on
the approximation errors in both the Critic update and Actor update of online adaptation, respectively,
where the recent advances on Bernstein’s Inequality are leveraged to deal with the sample correlation
therein. Based on these results, we next cast the Warm-Start A-C method as Newton’s method with
perturbation, which serves as the foundation for characterizing the impact of the approximation errors
on the finite-time learning performance of Warm-Start A-C. In particular, we derive lower bounds on
the sub-optimality gap under biased approximation errors, indicating that the performance gap can be
bounded away from zero even for Warm-Start A-C with a good prior policy. And we also provide
upper bounds on the sub-optimality gap, which provides guidance on the design of Warm-Start RL
for achieving desired finite-time learning performance.
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Appendix

A EXAMPLES IN SECTION 2.2

In this section, we elaborate further on the illustrative example in Section 2.2. We use the notation
defined in Figure 1.

Policy Iteration as Newton’s Method. Based on (Puterman & Brumelle, 1979)(Grand-Clément,
2021), we first build the relation between policy iteration and Newton’s Method in the abstract
dynamic programming (ADP) framework, assuming accurate updates.

From the definition of the value function v, we have that for any policy π,
vπ = rπ + γPπv

π.

Recall the definition of Bellman evaluation operator Tπ(·) and the Bellman operator T (·),
Tπ(v) =rπ + γPπv, T (v) = max

π
{rπ + γPπv} = max

π
Tπ(v).

It follows that
vπt+1 = J−1

vπtrπt+1

= vπt − vπt + J−1
vπtrπt+1

= vπt − J−1
vπtJvπtvπt + J−1

vπtrπt+1

= vπt − J−1
vπt

(
−rπt+1

+ Jvπtvπt
)

= vπt − J−1
vπt

(
−rπt+1

+
(
I − γPπt+1

)
vπt
)

= vπt − J−1
vπt

(
vπt − rπt+1 − γPπt+1v

πt
)

= vπt − J−1
vπt (v

πt − T (vπt)) , (16)
where Jv = I − γPπ(v) and π(v) attains the max in T (v). Eqn. (16) establishes a connection
between policy iteration under ADP and Newton’s Method. Specifically, if we assume function
F : v → v − T (v) is differentiable at any vector v visited by policy iteration, then we have
vt+1 = vt + J−1

vt
F (vt), which is exactly the update of the Newton’s Method in convex optimization

(Boyd et al., 2004). Due to the fact that F (·) may not be differentiable at all v in policy iteration,
the assumptions on the Lipschitzness of v → Jv is commonly used to prove the convergence of the
policy iteration (see Assumption 5). Following the same line, next we show the case when function
approximation is used in the A-C algorithm.

A-C Updates with Function Approximation. Consider the illustration example in Section 2.2. Next
we outline the main differences between the A-C update with function approximation and the policy
iteration in the ADP framework, and cast A-C based policy iteration with function approximation as
Newton’s Method with perturbation. Specifically,

vπ̃t+1 = J−1
vπ̃t

rπ̃t+1

= vπt − vπt + J−1
vπ̃t

rπ̃t+1

= vπt − J−1
vπ̃t

Jvπ̃tv
πt + J−1

vπ̃t
rπ̃t+1

= vπt − J−1
vπ̃t

(
−rπ̃t+1

+ Jvπ̃tv
πt
)

= vπt − J−1
vπ̃t

(
−rπ̃t+1

+
(
I − γPπ̃t+1

)
vπt
)

= vπt − J−1
vπ̃t

(
vπt − (rπ̃t+1

+ γPπ̃t+1
vπt)

)
≜ vπt − J−1

vπ̃t

(
vπt − T̃ (vπt)

)
,

where Jvπ̃t = I − γPπ(vπ̃t ) and π(v) attains the max in T (v) (not T̃ (v)), with the following two
operators defined as

T (vt) ≜rπt+1 + γPπt+1vt,

T̃ (vt) ≜rπ̃t+1
+ γPπ̃t+1

vt.
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Assumption 1

Projection on the  
Critic parameter space
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Base function  
In Critic update

ϕ
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transition matrix
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Approximation Error 
In the Critic update

Lemma 1

 - bounded Noiseσ2

Lemma 2

- bounded Biasζ2

Assumption 4

Score function in 
the Actor update

Lemma 3

 -smoothnessL

Lemma 4

- PL Conditionμ

Proposition 2

Approximation Error 
In the Actor update

Characterization of Approximation Errors 
In the Critic Update

Characterization of Approximation Errors 
In the Actor Update

Proposition 3

Upper bound of the biases {B(t)}

Impact of Approximation Errors and Warm-start Policy  
on Finite-time Learning Performance

Theorem 1

The Lower Bound of 
 E[v* − v ̂πt+1]

Theorem 2

The Upper Bound of 
 E[v* − v ̂πt+1]

Figure 2: Illustration of the theoretical analysis.

For convenience, let ET,t and EJ,t denote the approximation errors in the Bellman operator T and the
Jacobian Jv , i.e.,

T̃ (vt)− T (vt) =(rπ̃t+1
+ γPπ̃t+1

vt)− (rπt+1
+ γPπt+1

vt) ≜ ET,t,
J−1
ṽt
− J−1

vt
=(I − γPπ̃t+1

)−1 − (I − γPπt+1
)−1 ≜ EJ,t,

and define
vπ̂t+1 ≜ vπ̃t+1 + Ea,t,

where Ea,t capture the error induced by inaccurate policy improvement (the greedy step, e.g., Eqn.
(9)) in the Actor update. Then we have that

vπ̃t+1 = vπt − J−1
vπ̃t

(
vπt − T̃ (vπt)

)
= vt − (J−1

vt
+ EJ,t) (vt − T (vt)− ET,t)

= vt − J−1
vt

(vt − T (vt))︸ ︷︷ ︸
Exact Newton Step

−EJ,t(vt − T (vt)) + (J−1
vt

+ EJ,t)ET,t︸ ︷︷ ︸
Perturbation

≜ vt − J−1
vt

(vt − T (vt))︸ ︷︷ ︸
Exact Newton Step

+Et

= vπt+1 + Et.
In a nutshell, we have that

vπ̂t+1 = vπt+1 + Ec,t + Ea,t,
where

Ec,t ≜ −EJ,t(vt − T (vt)) + (J−1
vt

+ EJ,t)ET,t.

B PROOF OF BERNSTEIN’S INEQUALITY WITH GENERAL MAKOVIAN
SAMPLES

In this section, we provide the proof of Bernstein’s Inequality with General Makovian samples
following the proof in Theorem 2 (Jiang et al., 2018).

With a bit abuse of notation,let π denote the stationary distribution of the Markov chain {Xi}i≥1.
We define π(h) :=

∫
h(x)π(dx) to be the integral of function h with respect to π. Let L2(π) =

{h : π(h2) < ∞} be the Hilbert space of square-integrable functions and L0
2(π) = {h ∈ L2(π) :

π(h) = 0} be the subspace of mean zero functions. Let P be the Markov transition matrix of its

15
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underlying (state space) graph and P ∗ be its adjoint in the Hilbert space. Let λ(P ) ∈ [0, 1] be the
operator norm of P on L0

2(π) and λr(P ) ∈ [−1, 1] be the rightmost spectral value of (P + P ∗)/2.
Then the right spectral gap of P is defined as 1 − λr (Levin & Peres, 2017) (We remark that in
Assumption 3, we assume the absolute spectral gap is non-zero, which implies the right spectral
gap is also non-zero. This is true since −1 ≤ λr ≤ λ ≤ 1.). Let Eh denote the multiplication
operator of function eh : x 7→ eh(x). In the Hilbert space L2(π), we define the norm of a function
h to be ∥h∥π =

√
⟨h, h⟩π. Furthermore, we introduce the norm of a linear operator T on L2(π) as

|||T |||π = sup{∥Th∥π : ∥h∥π = 1}.
We first restate Bernstein’s Inequality with General Makovian Samples (Jiang et al., 2018) in the
following theorem. Let α1(λ) = (1 + λ)/(1− λ), α2(λ) = 5/(1− λ) and α2(0) = 1/3.

Theorem 3 (Bernstein’s Inequality with General Makovian Samples). Suppose {Xi}i≥1 is a station-
ary Markov chain with invariant distribution π and non-zero right spectral gap 1−λr > 0, and f :7→
x[−c, c] is a function with π(f) = 0. Let σ2 = π(f2). Then, for any 0 ≤ t < (1−max{λr, 0})/5c
and any ϵ > 0,

Pπ

(
1

n

n∑
i=1

f (Xi) > ϵ

)
≤ exp

(
− nϵ2/2

α1 (max {λr, 0}) · σ2 + α2 (max {λr, 0}) · cϵ

)
. (17)

Proof. Step 1. Establish the upper bound of E
[
et

∑n
i fi(Xi)

]
.

Let I : x 7→ 1 be the fucntion mapping x to 1 and let Π be the projection operator onto 1, i.e.,
Π : g 7→ ⟨h, I⟩πI = π(h)I . Define the León-Perron operator to be P̂γ = γI + (1− γ)Π, γ ∈ [0, 1).
Then we recall the following lemma (Lemma 2, (Jiang et al., 2018)) on the stationary Markov chain
(Fan et al., 2021a).

Lemma 5. Let {Xi} be a stationary Markov chain with invariant measure π and non-zero right
spectral gap 1− λr > 0. For any bounded function f and any t ∈ R,

Eπ

[
et

∑n
i=1 f(Xi)

]
≤
∣∣∣∣∣∣∣∣∣Etf/2P̂max{λr,0}E

tf/2
∣∣∣∣∣∣∣∣∣n
π
.

Lemma 6 indicates that it is sufficient to prove the upper bound of E
[
et

∑n
i fi(Xi)

]
by proving the

upper bound of
∣∣∣∣∣∣∣∣∣Etf/2P̂max{λr,0}E

tf/2
∣∣∣∣∣∣∣∣∣n
π

.

To this end, we first invoke the following lemma (Lemma 6, (Jiang et al., 2018)) to construct f̂k ≈ f
such that for any λ ∈ [0, 1),

∣∣∣∣∣∣∣∣∣Etf/2P̂λEtf/2∣∣∣∣∣∣∣∣∣
π
= limk→∞

∣∣∣∣∣∣∣∣∣Etf̂k/2P̂λEtf̂k/2∣∣∣∣∣∣∣∣∣
π

.

Lemma 6. For function f : x ∈ X 7→ [−c, c] such that π(f) = c, π(f2) = σ2. Let ⌈·⌉ be the ceiling

function and f̃k(x) =
⌈
f(x)+c
c/3k

⌉
× c

3k − c. Let f̂k =
f̃k−π(f̃k)
1+1/3k . Then f̃k takes at most 6k+1 possible

values and satisfies that for any bounded linear operator T acting on the Hilbert Space L2(π) and
any t ∈ R, ∣∣∣∣∣∣∣∣∣Etf/2TEtf/2∣∣∣∣∣∣∣∣∣

π
= lim
k→∞

∣∣∣∣∣∣∣∣∣Etf̂k/2TEtf̂k/2∣∣∣∣∣∣∣∣∣
π
.

Assume that the Markov chain {X̂i}i≥1, X̂i ∈ X is generated by the León-Perron operator P̂λ. It
follows that {Ŷi}i≥1 = {f̂k(X̂i)}i≥1 is a Markov chain in the state space Y = f̂k(X ). We recall the
following lemma (Lemma 7, (Jiang et al., 2018)) on the relation between the two Markov chains.

Lemma 7. Let P̂λ be the León-Perron operator with λ ∈ [0, 1) on state space X . Let f be a function
on X . On the finite state space Y = {y ∈ f(X ) : π({x : f(x) = y}) > 0}, define a transition
matrix Q̂λ = λI + (1− λ)Iµ⊤, with transition vector µ consisting of elements π({x : f(x) = y})
for yinY . Let EtY denote the diagonal matrix with elements ety : y ∈ Y . Then we have,∣∣∣∣∣∣∣∣∣Etf/2P̂λEtf/2∣∣∣∣∣∣∣∣∣

π
=
∣∣∣∣∣∣∣∣∣EtY/2Q̂λEtY/2∣∣∣∣∣∣∣∣∣

µ
.
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Next, we bound the term
∣∣∣∣∣∣∣∣∣EtY/2Q̂λEtY/2∣∣∣∣∣∣∣∣∣

µ
by the expansion of the largest eigenvalue of the

perturbed Markov operator Etf/2PEtf/2 as a series in t. Specifically, we recall the following result
(Lezaud, 1998).

Lemma 8. Consider a reversible, irreducible Markov chain on finite state space X . Let D be the
diagonal matrix with {f(x) : x ∈ X} and T (m) = PDm/m! for any m ≥ 0 with D0 = I . Assume
the invariant distribution of the Markov chain is π and the second largest eigenvalue of the transition

matrix P is λr < 1. Let t0 =
(
2
∣∣∣∣∣∣T (1)

∣∣∣∣∣∣
π
(1− λr)−1

+ c0

)−1

for some c0 such that∣∣∣∣∣∣∣∣∣T (m)
∣∣∣∣∣∣∣∣∣
π
≤
∣∣∣∣∣∣∣∣∣T (1)

∣∣∣∣∣∣∣∣∣
π
cm−1
0 ,∀m ≥ 1.

Denote the largest eigenvalue of PEtf by β(t) and Z = (I − P + Π)−1 − Π. Let Z0 = −Π,
Z(j) = Zj , j ≥ 1, β(0) = 1 and β(m), m ≥ 1 be

β(m) =

m∑
p=1

−1
p

∑
v1+···+vp=m,vi≥1,k1+···+kp=p−1,kj≥0

trace
(
T (v1)Z(k1) . . . T (vp)Z(kp)

)
,

Then we have the following expansion on β(t),

β(t) =

∞∑
m=0

β(m)tm, |t| < t0.

Follow the same line as in (Lezaud, 1998) (Page 854-856), denote σ2 = ∥f∥2π and c = c0 ≥ |||D|||π
(defined in Lemma 8), then we have the following upper bound of β(t).

β(t) = β(0) + β(1)t+
∑
m=2

β(m)tm

≤ 1 + 0 +

∞∑
m=2

π (fm) tm

m!
+

∞∑
m=2

σ2λt

5c

(
5ct

1− λr

)m−1

≤ exp

( ∞∑
m=2

π (fm) tm

m!
+

∞∑
m=2

σ2λt

5c

(
5ct

1− λr

)m−1
)

≤ exp

(
σ2

c2
(
etc − 1− tc

)
+

σ2λt2

1− λr − 5ct

)
:= exp(g1(t) + g2(t)) (18)

Now we are ready to derive the bound for the term E
[
et

∑n
i fi(Xi)

]
. Following the results in Lemma

6, we consider a sequence of fk such that,∣∣∣∣∣∣∣∣∣Etf/2P̂λEtf/2∣∣∣∣∣∣∣∣∣
π
= lim
k→∞

∣∣∣∣∣∣∣∣∣Etf̂k/2P̂λEtf̂k/2∣∣∣∣∣∣∣∣∣
π
.

Next, we construct the finite state space counterpart of each pair ofEtf̂k/2P̂λEtf̂k/2 and π by Lemma
7, i.e., ∣∣∣∣∣∣∣∣∣Etf̂k/2P̂λEtf̂k/2∣∣∣∣∣∣∣∣∣

π
:=
∣∣∣∣∣∣∣∣∣EtYk/2Q̂λE

tYk/2
∣∣∣∣∣∣∣∣∣
µk

Let the random variable in the state space Yk be Yk, then the mean and variance of Yk is∑
y∈Yk

π
({
x : f̂k(x) = Y

})
y = π

(
f̂k

)
= 0 and

∑
y∈Yk

π
({
x : f̂k(x) = y

})
y2 = π

(
f̂2k

)
.

For each k, applying Eqn. (18) gives us,∣∣∣∣∣∣∣∣∣EtYk/2Q̂λE
tYk/2

∣∣∣∣∣∣∣∣∣
µk

≤ exp

π
(
f̂2k

)
c2

(
etc − 1− tc

)
+

π
(
f̂2k

)
λt2

1− λr − 5ct
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Note that as k → ∞, we have π
(
f̂2k

)
→ π(f2) = σ2. Then we have the upper bound for each

operator
∣∣∣∣∣∣Etfi/2PEtfi/2∣∣∣∣∣∣

π
, i.e., for any λ ∈ [0, 1),∣∣∣∣∣∣∣∣∣Etf/2PλEtf/2∣∣∣∣∣∣∣∣∣

π
≤ exp(g1(t) + g2(t))

where g1 and g2 are defined in Eqn. (18).

Consequently, we obtain the upper bound for E
[
et

∑n
i fi(Xi)

]
as follows, E

[
et

∑n
i fi(Xi)

]
,

Eπ

[
et

∑n
i=1 fi(Xi)

]
≤ exp

(
nσ2

c2
(
etc − 1− tc

)
+

nσ2 max{λr, 0}t2

1−max{λr, 0} − 5ct

)
Step 2 Use the convex analysis argument to derive the Bernstein’s Inequality.

We first restate the following lemma (Lemma 9, (Jiang et al., 2018)) on the terms g1 and g2.

Lemma 9. For λ ∈ [0, 1), let g1(t) = nσ2

c2 (etc − 1− tc) and g2(t) =
nσ2 max{λr,0}t2
1−max{λr,0}−5ct , then for

any 0 ≤ t < (1− γ)/5c, the Frechet conjugates (g1 + g2)
∗ satisfy the following inequalities.

if λ ∈ (0, 1) : (g1 + g2)
∗(ϵ) := sup

0≤t<(1−λ)/5c
{tϵ− g1(t)− g2(t)} ≥

ϵ2

2

(
1 + λ

1− λ
σ2 +

5cϵ

1− λ

)−1

if λ = 0 : (g1 + g2)
∗
(ϵ) =g∗1(ϵ) ≥

ϵ2

2

(
σ2 +

cϵ

3

)−1

.

By the Chernoff bound, we have,

− logP

(
1

n

n∑
i=1

fi (Xi) > ϵ

)
≥ n× sup

t∈R
{tϵ− g1(t)− g2(t)}

Notice that g1(t) = O(t2) and g2(t) = O(t2) as t→ 0, then for some t > 0, we have tϵ− g1(t)−
g2(t) > 0. Meanwhile, when t ≤ 0, we have tϵ− g1(t)− g2(t) ≤ 0. Thus, we can obtain that,

sup {tϵ− g1(t)− g2(t) : t > 0} = sup {tϵ− g1(t)− g2(t) : t ∈ R} = (g1 + g2)
∗
(ϵ).

Letting λ = max{λr, 0}, α1(λ) = (1 + λ)/(1− λ), α2(λ) = 5/(1− λ) and α2(0) = 1/3 yields,

Pπ

(
1

n

n∑
i=1

f (Xi) > ϵ

)
≤ exp

(
− nϵ2/2

α1 (max {λr, 0}) · σ2 + α2 (max {λr, 0}) · cϵ

)
. (19)

This concludes the proof.

C PROOF OF PROPOSITION 1

Let ω̄t+1 = ΓR(ω̃t+1), and assume ∥ϕ(s, a)∥ ≤ 1 uniformly (see Assumption 1). Based on the
approach in Appendix G.1 (Fu et al., 2020), it suffices to upper bound ∥ωt+1 − ω̃t+1∥2. Observe that

∥ωt+1 − ω̄t+1∥2 ≤ ∥Φ̂v̂ − Φv∥2 ≤ ∥Φ∥2 · ∥v̂ − v∥2 + ∥Φ̂− Φ∥2 · ∥v̂∥2,
where Φ and v are given as follows:

Φ̂ =

(
1

N

N∑
l=1

ϕ (sl, al)ϕ (sl, al)
⊤

)−1

,

Φ =
(
Eρt+1

[
ϕ(s, a)ϕ(s, a)⊤

])−1
,

v̂ =
1

N

N∑
l=1

(
(1− γ)

m−1∑
i=0

γirl,i + γmQωt
(sl,m, al,m)

)
· ϕ (sl,m, al,m) ,

v = Eρt+1

[
(1− γ)

m−1∑
i=0

(
γirl,i + γmPπθt+1

Qωt
(sm, am)

)
· ϕ(sm, am)

]
.
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Recall that the following assumptions are in place: (1) Spectral norm ∥ϕ(s, a)∥2 ≤ 1, ϕ(s, a) ∈ Rd;
(2) |r(s, a)| ≤ rmax and r̄ = Es,ar(s, a); (3) ∥ωt∥2 ≤ R and (4) the minimum singular value of
the matrix Eρt [ϕ(s, a)ϕ(s, a)

⊤], t ≥ 1 is uniformly lower bounded by σ∗. It can be shown that
∥Φ∥2 ≤ 1

σ∗ .

Next, we derive the bound by appealing to Bernstein’s Inequality with General Makovian samples.
Following Theorem 2 (Jiang et al., 2018) (The proof of Bernstein’s Inequality can be found in
Appendix B), let πr be the invariant distribution (which is relevant to the current policy πk) of the
stationary Markov chain {rt}mt=1. Suppose that it has non-zero right spectral gap 1− λr > 0. Let
σ2
r =

∫
(r − r̄)2πr(dr). Then, we have that for any ϵ > 0:

Pπr

(
1

m

m∑
i=1

(ri − r̄) > ϵ

)
≤ exp

(
− mϵ2/2

α1 (max {λr, 0}) · σ2 + α2 (max {λr, 0}) · rmaxϵ

)
,

where α1(λ) =
1+λ
1−λ , α2(λ) =

{
1
3 if λ = 0
5

1−λ if λ ∈ (0, 1)
.

We conclude that with probability at least 1− p,

m−1∑
i=0

ri ≤

√
α2
2 (max {λr, 0})2 ln p2 − 2mα1 (max {λr, 0}) ln p− α2 (max {λr, 0}) ln p

m
+ r̄ := r̃m.

It follows that with probability at least 1− p,
∥v̂∥2 ≤ (1− γ)r̃m + γmR,

Further, note that
∥v∥2 ≤ (1− γ)r̄ + γmR,

Since the minimum singular value of Φ̂−1 is no less than σ∗

2 w.h.p. when N is large enough, we have
that

∥Φ̂∥2 ≤
2

σ∗ .

For convenience, define

X̂ ≜

(
1

N

N∑
l=1

ϕ (sl, al)ϕ (sl, al)
⊤

)
, X ≜

(
Eρt+1

[
ϕ(s, a)ϕ(s, a)⊤

])
,

and define

Z ≜X̂ −X =

N∑
k=1

Sk, (20)

Sk ≜
1

N
(ϕkϕ

⊤
k −X), (21)

where Sk, k = 1, · · · , N are independent.

Next, we derive the uniform bound on the spectral norm of each summand as follows:

∥Sk∥2 =
1

N
∥ϕkϕ⊤k −X∥ ≤

1

N
(∥ϕkϕ⊤k ∥+ ∥X∥) ≤

2

N
.

To this end, we bound the matrix variance statistic V (Z):

V (Z) :=∥E[Z2]∥ = ∥
N∑
k=1

E[S2
k]∥.
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Note that the variance of each summand is given by

E[S2
k] =

1

N2
E[(ϕkϕ

⊤
k −X)2]

=
1

N2
E[∥ϕk∥2 · ϕϕ⊤ − ϕϕ⊤X −Xϕϕ⊤ +X2]

≼
1

N2
[E[ϕϕ⊤]−X2]

≼
1

N2
X.

Combining the above, we conclude that

0 ≼
N∑
k=1

E[S2
k] ≼

1

N
X.

Observe that
∥X∥ = ∥E[ϕϕ⊤]∥2 ≤ E[∥ϕϕ⊤∥] = E∥ϕ∥2 ≤ 1.

Since the spectral norm is the variance statistic given by

V (Z) ≤ 1

N
∥X∥,

appealing to Bernstein’s Inequality, we have that

P{∥Z∥ ≥ t} ≤2d exp

(
−t2
2

1
N ∥X∥+

2t
3N

)
,

E[∥Z∥] ≤
√

2

N
∥X∥ log(2d) + 2

3N
log(2d)

≤
√

2

N
log(2d) +

2

3N
log(2d).

This is to say, with probability at least 1− p/2, the following holds:

∥X − X̂∥ ≤ − 2

3N
log

p

4d
+

√
4

9N2
log2

p

4d
− 2

N
log

p

4d
.

In a nutshell, we have that
∥Φ̂− Φ∥2 =∥X̂−1 −X−1∥2

=∥X̂−1(X̂ −X)X−1∥2
=∥Φ̂(X̂ −X)Φ∥2

≤ 2

(σ∗)2
∥X̂ −X∥2

≤ 4√
N (σ∗)

2 ·

(
− 2

3N
log

p

4d
+

√
4

9N2
log2

p

4d
− 2

N
log

p

4d

)
.

Similarly, the following inequality holds with probability at least 1− p/2:

∥v̂ − v∥2 ≤ −
δ1
3
log

p

2(d+ 1)
+

√
δ21
9

log2
p

2(d+ 1)
− 2δ2 log

p

2(d+ 1)
,

where d is the dimension of vector φ, δ1 = 1
N ((1− γ)(r̃m + r̄) + 2γmR) and δ2 = ∥E[v̂ − v]∥2

satisfying

δ2 ≤
1

N
[(1− γ)(|r̃m|(|r̃m − r̄|+ γmR|r̃m − r̄|))]

≤1− γ
N

[rmax + γmR]|r̃m − r̄|.
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Summarizing, we have that
∥ωt+1 − ω̄t+1∥2 ≤∥Φ∥2 · ∥v̂ − v∥2 + ∥Φ̂− Φ∥2 · ∥v̂∥2

≤− δ1
3σ∗ log

p

2(d+ 1)
+

√
δ21
9

log2
p

2(d+ 1)
− 2δ2 log

p

2(d+ 1)

+
4((1− γ)r̃m + γmR)√

N(σ∗)2

(
− 2

3N
log

p

4d
+

√
4

9N2
log2

p

4d
− 2

N
log

p

4d

)
,

which indicates that with probability at least 1− p,

|Qωt+1
−Qω̄t+1

| ≤

(
4((1− γ)r̃m + γmR)√

N(σ∗)2

(
− 2

3N
log

p

4d
+

√
4

9N2
log2

p

4d
− 2

N
log

p

4d

))
≜ϵQ. (22)

Remark. In the case when Assumption 1 does not hold, i.e., we have
inf
ω̄∈Ω

Eρπθ [
(
(Tπθ )mQω − ω̄⊤ϕ

)
(s, a)] = c1,

where c1 > 0 is a constant. Let ω̄t+1 = ΓR(ω̃t+1), recall that ω̃ denotes the solution of Eqn. (8) and
ω denotes the sample-based solution, then we have

|Qω̄t+1
−Qω̃t+1

| = c1

From Eqn. (22), we obtain that,

|Qωt+1
−Qω̄t+1

| ≤ ϵQ

Then the difference between the sample-based solution and the underlying true solution of Eqn. (8)
is,

|Qωt+1 −Qω̃t+1 | ≤ ϵQ + c1.

Note that when Assumption 1 holds,
Qω̃t+1

= Qω̄t+1
.

D PROOF OF LEMMA 1

Recall β = fk,t + Ck,t −E[Ck,t]−E[fk,t]. We also have the following definitions:

Ck,t,1 ≜1/l

l∑
i=1

(Qωt+1
(si, ai)∇θπθk(ai|si)−Qω̃t+1

(si, ai)∇θπθk(ai|si)),

Ck,t,2 ≜1/l

l∑
i=1

(Qω̃t+1
(si, ai)∇θπθk(ai|si)−Qπθt (si, ai)∇θπθk(ai|si)),

fk,t ≜1/l

l∑
i=1

Qπθt (si, ai)∇θπθk(ai|si),

Ck,t ≜Ck,t,1 + Ck,t,2.

Next we evaluate E[∥fk,t + Ck,t −E[Ck,t]−E[fk,t]∥2] as follows:
∥fk,t + Ck,t −E[Ck,t]−E[fk,t]∥2

=(fk,t + Ck,t)(fk,t + Ck,t)
⊤ + (E[Ck,t] +E[fk,t])(E[Ck,t] +E[fk,t])

⊤

− 2(fk,t + Ck,t)(E[Ck,t] +E[fk,t])
⊤

≤(fk,t + Ck,t)(fk,t + Ck,t)
⊤ + (E[Ck,t] +E[fk,t])(E[Ck,t] +E[fk,t])

⊤. (23)
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Note that Ck,t and fk,t are both bounded above since Q-function is bounded and ∇θπθ(a|s) is
bounded (see Assumption 4), i.e.,

∥∇π(a|s)∥ ≤Cψ,

∥Q(s, a)∥ ≤
∞∑
t=1

γtrmax =
rmax

1− γ
.

Then we have the following bounds for Ck,t and fk,t:

∥Ck,t∥ ≤ 2Cψ
rmax

1− γ
,

∥fk,t∥ ≤ Cψ
rmax

1− γ
.

Taking expectation over both sides of the inequality (23), we have that
E[∥β∥2] ≤ 1 · ∥E[Ck,t] +E[fk,t]∥2 +E[(fk,t + Ck,t)(fk,t + Ck,t)

⊤].

Let Mn = 1 and σ2 = E[(fk,t + Ck,t)(fk,t + Ck,t)
⊤]. Then we have that

E[∥β∥2] ≤Mn · ∥E[Ck,t]∥+ σ2,

where σ depends on probability p as indicated in Eqn. (22).

E PROOF OF LEMMA 2

Recall that b = E[Ck,t] and
Ck,t :=Ck,t,1 + Ck,t,2

=1/l

l∑
i=1

(
Qωt+1(si, ai)∇θπθk(ai|si)−Qω̃t+1

(si, ai)∇θπθk(ai|si)+

(Qω̃t+1
(si, ai)∇θπθk(ai|si)−Qπθt (si, ai)∇θπθk(ai|si)

)
.

Next, we evaluate ∥b∥2. Observe that (see also Appendix D)

∥Ck,t∥ ≤ 2Cψ
rmax

1− γ
.

Let ζ = 2∥Cψ rmax

1−γ ∥. Then we have

∥b∥2 = ∥E[Ck,t]∥2 ≤ E[∥Ck,t∥2] ≤ ζ2.

F PROOF OF LEMMA 3 AND LEMMA 4

• [Lemma 3] Given Critic parameter ω in the objective function, it can be seen that
∥∇h(ω, θ) − ∇h(ω, θ′)∥ ≤ Qmax∥∇πθ − ∇πθ′∥. Since value function is bounded (e.g.,
Qmax) and the score function ∇πθ is Lψ-smooth (ref. Assumption 6), the constant in
Assumption 4 can be easily determined by L = QmaxLψ .

• [Lemma 4] Since the objective function is finite, let hmax = maxθ ̸=θ∗ h(θ, ω), h
∗
max =

maxθ=θ∗ h(θ, ω),. In the case when the gradient is non-zero, let gmin = minθ ̸=θ∗ ∇h, then
we can determine µ = gmin

h∗
max−hmax

≥ 0.

G PROOF OF PROPOSITION 2

Observe that the Actor updates use the biased stochastic gradient methods (SGD). For simplicity, we
adopt the following notations to study the Actor update:

θk+1 = θk + α(∇h(ω, θk) + b(t) + β(t)). (24)
where b(t) = E[Ck,t] is the bias, α is the step size, and

β = fk,t + Ck,t −E[Ck,t]−E[fk,t]

is the zero-mean noise. Note that the objective function h(ω, θk) is a function of θ. Denote the
optimal value (in this iteration of the Actor update) by h(ω, θ∗).
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We prove the following lemma on the modified version of the descent lemma for smooth function (cf.
(Ajalloeian & Stich, 2020; Nesterov, 2003)).

Lemma 10. Suppose Assumption 3 and 4 hold. Then, for any stepsize α ≤ 1
(Mn+1)L , the following

inequality holds with probability at least 1− p:

E[h(ω, θk+1)− h(ω, θk)|θk] ≤
α

2
ζ2 +

α2L

2
σ2 − α

2
∥∇h(ω, θk)∥2.

Observe that under the PL-condition (Assumption 4), we have the following recursion:

E[h(ω, θk+1)− h(ω, θ∗)] ≤ (1− αµ)E[h(ω, θk)− h(ω, θ∗)] +
α

2
ζ2 +

α2L

2
σ2. (25)

By applying Eqn. (25) recursively, we obtain the desired results in Proposition 2.

H PROOF OF PROPOSITION 3

We first prove the following lemma on the relation between Actor parameter θ and the objective
function h(ω, θ).

Lemma 11. There exist a contant Lh > 0 and an open ball Sϵ(θ∗t ) such that for any θt ∈ Bϵ(θ∗t )
the following holds for any t > 0.

E[∥πθt − π∗∥TV] ≤ LhE[h(ω, θ∗t )− h(ω, θt)].

Proof. By Taylor’s expansion, we have
h(ω, θ∗) = h(ω, θt) +∇h(ω, θt)(θ∗t − θt) + o(∥θ∗t − θt∥).

Since h(ω, ·) satisfies Polyak-Lojasiewicz Condition, it follows that
∥∇h(ω, θ)∥ ≥ 2µ(h(ω, θ∗)− h(ω, θ)) := Lg for all θ.

Note that Lg > 0 when θ ̸= θ∗. Then we have that
h(ω, θ∗t )− h(ω, θt) =|∇h(ω, θt)(θ∗ − θt) + o(∥θ∗ − θt∥)|

≥|∇h(ω, θt)(θ∗t − θt)| − |o(∥θ∗ − θt∥)|
≥Lg∥θ∗t − θt∥ − Lo∥θ∗t − θt∥
=(Lg − Lo)∥θ∗t − θt∥,

where the last inequality uses the fact that there exists ϵ such that when ∥θt − θ∗t ∥ ≤ ϵ,
|o(∥θ∗t − θt∥)| ≤ Lo∥θ∗t − θt∥, Lo < Lg.

Taking expectation over both sides gives
E[h(ω, θ∗t )− h(ω, θt)] =(Lg − Lo)E[∥θ∗t − θt∥]

≥(Lg − Lo)∥E[θ∗t − θt]∥.

Then we conclude that the parameter of interest Lh,

Lh =
Cπ

Lg − Lo
> 0.

where Cπ is defined in Assumption 4.

We are ready to present the proof of Proposition 3. Based on the definition of EĴ,t and ET̂ ,t, we derive
the upper bound for each term respectively.

EĴ,t =(I − γPπ̂t+1)
−1 − (I − γPπ̃t+1

)−1

=(I − γPπ̃t+1
)−1

(
γPπ̃t+1

− γPπ̂t+1

)
(I − γPπ̂t+1)

−1.

Observe that value function v is smooth and upper bounded. We denote the smoothness parameter by
Lv , the upper bound by ∥v∥ ≤ V max, and the smoothness of the reward function by Lr.

By taking the norm of both sides and applying Assumption 3, 4 and 5, we obtain
∥EĴ,t∥ ≤M

2LJLv∥π̃t+1 − π̂t+1∥TV.
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Further, observe that
ET̂ ,t = rπ̂t+1 + γPπ̂t+1v

π̂t − (rπ̃t+1
+ γPπ̃t+1

vπ̂t),

= rπ̂t+1 − rπ̃t+1
+ γ(Pπ̂t+1 − Pπ̃t+1

)vπ̂t .

By taking the norm of both sides and applying Assumption 5, we obtain
∥ET̂ ,t∥ = ∥rπ̂t+1 − rπ̃t+1

∥+ ∥γ(Pπ̂t+1 − Pπ̃t+1
)vπ̂t∥

≤(Lr + γV max)∥π̃t+1 − π̂t+1∥TV

:=Lmax
T .

Recall the definition of Et is given as

Et =−
(
EĴ,t(v

π̂t − T (vπ̂t)) + J−1
v̂t
ET̂ ,t + ET̂ ,tEĴ,t

)
.

Taking the norm and expectation on both sides yields that

∥E[Et]∥ ≤ E[∥Et∥] =E
[
∥EĴ,t(v

π̂t − T (vπ̂t)) + J−1
v̂t
ET̂ ,t + ET̂ ,tEĴ,t∥

]
≤LEE[∥π̃t+1 − π̂t+1∥TV],

where LE = (2V maxK+Lmax
T )M2LvLJ +M(Lr+γV

max) > 0 is a constant. Since π̃t+1 = π∗
t+1

is the greedy solution, we thereby complete the proof of Proposition 3.

I PROOF OF THEOREM 1

Following the value function update rule, we have
vπ̂t+1 = vπ̂t −

(
J−1
v̂t

(
vπ̂t − T (vπ̂t)

)
+ Et

)
= vπ̂t − (L(t) + Et)
:= vπ̂t − L̂(t).

Then, the difference between vπ̂t+1 and v∗ is given by
v∗ − vπ̂t+1 =v∗ − vπ̂t + J−1

v̂t

(
vπ̂t − T (vπ̂t)

)
+ Et. (26)

Observe the following result holds for any π̂t,
(vπ̂t − T (vπ̂t))− (v∗ − T (v∗))︸ ︷︷ ︸

=0

≥ J2
v̂t
(vπ̂t − v∗). (27)

Recall our decomposition of the value function update is given as
L̂(t) = L(t) + L̂(t)−E[L̂(t)]︸ ︷︷ ︸

Martingale Difference Noise: N (t)

+E[L̂(t)]− L(t)︸ ︷︷ ︸
Bias: B(t)

.

Plugging Eqn. (27) into Eqn. (26), we obtain
v∗ − vπ̂t+1 =v∗ − vπ̂t +

(
J−1
v̂t

(
vπ̂t − T (vπ̂t)

)
+ Et

)
≥ (I − Jvπ̂t )) (v

∗ − vπ̂t) + B(t) +N (t)

=γPπ̃t+1
(v∗ − vπ̂t) + B(t) +N (t).

Taking expectation on both sides yields that
E[v∗ − vπ̂t+1 |vπ̂t ] ≥γPπ̃t+1

(v∗ − vπ̂t) + B(t).
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Applying the above inequality recursively gives that

E
[
v∗ − vπ̂t+1

]
≥γt+1E

[(
t∏
i=0

Pπ̃t+1−i

)]
(v∗ − vπ0)

+

t∑
i=1

γiE

i−1∏
j=0

Pπ̃t+1−j

 (B(t− i)) + B(t)

:=γt+1P̄t+1(v
∗ − vπ0) +

t∑
i=1

γiP̄iB(t− i) + B(t), (28)

with P̄t+1 = E
[(∏t

i=0 Pπ̃t+1−i

)]
. Taking norm on both sides of Eqn. (28) yields the desired

results.

J PROOF OF THEOREM 2

Based on the update rule of the value function, we have
v∗ − vπ̂t+1 =J−1

v̂t
Jv̂t

(v∗ − vπ̂t) + J−1
v̂t

(
vπ̂t − T (vπ̂t)

)
+ Et

≤J−1
v̂t

Jv̂t
(v∗ − vπ̂t)− J−1

v̂t
Jv∗(v∗ − vπ̂t)− Et

≤J−1
v̂t

[Jv̂t
− Jv∗ ] (v∗ − vπ̂t) + Et,

which implies that
E[v∗ − vπ̂t+1 |vπ̂t ] ≤ J−1

v̂t
[Jv̂t
− Jv∗ ] (v∗ − vπ̂t) + B(t).

Then, taking norm on both sides of the inequality above gives
∥E[v∗ − vπ̂t+1 |vπ̂t ]∥ ≤∥J−1

v̂t
[Jv̂t
− Jv∗ ] (v∗ − vπ̂t) + B(t)∥. (29)

Let Ht = ∥J−1
v̂t

[Jv̂t
− Jv∗ ] ∥. It follows from Assumption 5 that

Ht ≤MLJ∥vπ̂t − v∗∥q.
where LJ is defined in Assumption 5.

Hence, we have that
∥E[vπ̂t+1 − v∗]∥ ≤∥J−1

v̂t
∥∥Jv̂t

− Jv∗∥∥vπ̂t − v∗∥+ ∥B(t)∥. (30)
By applying Eqn. (30) recursively, we conclude that

∥E[vπ̂t+1 − v∗]∥ ≤

(
t∏
i=0

Ht−i

)
∥E[v∗ − vπ0 ]∥+

t∑
i=1

 i∏
j=1

Ht−j

 ∥B(t− i)∥+ ∥B(t)∥.
K EXPERIMENTS

A Summary of Theoretical Results. This work aims to provide a comprehensive answer to the
question of “whether and under what conditions online learning (e.g., the general algorithm like AC)
can be significantly accelerated by a warm-start policy from offline RL”. Our key observations are as
follows.

(1) Our results in Theorem 1 and Theorem 2 point out that the warm-start policy goes hand-
by-hand with the approximation error to influence the learning performance (see the table
below for the summary). The intricate relationship between the warm-start policy and the
approximation error can be identified by studying the structure of the bounds in Theorem
4 and Theorem 5, where the warm-start policy not only has impact on the first term (e.g.,
v∗ − vπ0) but also the bias propagation through H0 := ∥J−1

v̂0
[Jv̂0

− Jv∗ ] ∥. Meanwhile,
the biases have impact on the effect of the warm-start policy (the first term in the bounds)
through Ht directly.

(2) In Theorem 1, we point out that the bias terms have direct impact on “whether the warm-start
policy is able to facilitate the online learning”. For instance, “even when the warm-start
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policy is nearly-optimal”, there is still no guarantee that online fine-tuning can improve
the policy much if there exist biases in the approximation errors in online Actor and Critic
updates and these biases are not dealt with properly. To clarify further, consider the case
when the bias is always positive, i.e., B(t) > 0 for all t ≥ 0, the lower bound is always
positive and bounded away from zero.

(3) In Theorem 2, we aim to answer the question: “under what conditions online learning
can be significantly accelerated by a warm-start policy?”. Consider the case when the
approximation error is unbiased (such that the A-C can be viewed as the Newton’s Method).
Clearly, we have ∥E[vπ̂t+1 − v∗]∥ ≤

(∏t
i=0Ht−i

)
∥v∗ − vπ0∥, which can decrease

quickly as long as the warm-start policy π0 is not far away from the optimal policy π∗ and
also satisfies Assumption 5. Intuitively, this result shows that “the imperfections of the
warm-start policy can be ‘washed out’ by the (superlinear) Newton step” and corroborates
with the observation in the very recent literature (Bertsekas, 2022b.). We remark that this
phenomenon has not been formalized by previous works on the A-C algorithm.

B(t)→ 0 ∥B(t)∥ > 0
when the distance be-
tween π0 and π∗ is
small

The warm-start can facilitate the
online convergence (Theorem 2)
(Empirical studies:Silver et al.
(2017; 2018))

Biases can throttle the convergence
significantly due to the accumula-
tion effect (Theorem 1) (Empirical
studies: Uchendu et al. (2022))

when the distance be-
tween π0 and π∗ is
relatively large

The imperfections of the warm-
start can be “washed out” by on-
line learning (Theorem 2, Eqn.
(30)) (Empirical studies: Bert-
sekas (2022b))

The warm-start policy goes hand-by-
hand with the approximation error to
influence the learning performance

Empirical Results. We consider experiments over the Gridworld benchmark task. In particular,
we consider the following sizes of the grid to represent different problem complexity, i.e., 10× 10,
15× 15 and 20× 20. The goal of the agent is to find a way (policy) to travel from a specified start
location, e.g., the red square in Fig. 3, to an assigned target location, e.g., the red hexagram in Fig. 3,
such that the (discounted) accumulative reward along the way is maximized. Specifically, the action
space contains 4 discrete actions, namely, up, down, left, right, which are represented as 1,2,3,4 in
the algorithm, respectively. The reward in the goal state is defined as 10 and in the bad state , e.g.,
the black cube in Fig. 3, is -6. The rest of the states result in the reward −1. The discounting factor
is set as γ = 0.9. We consider the grid with 10 rows and 10 columns such that the state space has
100 states. The transition properties of the environment is as follows: the agent will transfer to next
state following the chosen action with probability 0.7; the agent will go left of the desired action
with probability 0.15 and go right with with probability 0.15. For each experiment, the shaded area
represents a standard deviation of the average evaluation over 5 training seeds.

Specifically, we consider the following A-C algorithm to solve the Gridworld benchmark task,

Critic Update: The Critic updates its value by applying the Bellman evaluation operator (Tπ) for
m-times (m ≥ 1), i.e., given policy π, at the t-th step A-C update,

v(t+ 1) = (Tπ)m(v(t)). (31)

Actor Update: The Actor updates the policy by a greedy step to maximize the learnt v value, i.e.,

π′ = argmax
π

Tπ(v(t+ 1)). (32)

Impact of the Warm-Start Policy. We first consider the impact of the Warm-Start policy in the
ideal setting, where both the Critic update and Actor update is nearly accurate as in ADP. In this
case, we let m be large enough, e.g., m = 1000, in the Critic update Eqn. (31). As observed in Fig.
4, a ‘good’ Warm-Start policy can efficiently accelerate the learning process, e.g., it only takes two
iterations to convergence with a Warm-Start policy. Meanwhile, in all three cases, the performance
gap ∥v(t)− v∗∥ decays over time which reflects our discovery in Theorem 2. Specifically, when the
Warm-Start policy is not ‘good’ enough (or even no Warm-Start), the A-C algorithm can still be able
to improve the learning performance overtime (see e.g., the first term on the right side of the upper
bound in Theorem 2).
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Impact of the Approximation Error in the Critic Update. We evaluate the impact of the approxi-
mation error in the Critic update on the convergence behavior by two approaches. (1) First, we study
the Critic update with finite time Bellman evaluation, e.g., m = 500, 50, 20, 5. As shown in Fig. 5,
the inaccurate Critic update impacts the convergence behavior as expected. The case when m = 5
shows that the finite time Bellman evaluation may contribute to the slower convergence. (2) Next,
we consider the general case when there is approximation error in the Critic update. In particular,
we add the uniform noise e(t) in the value function with different bias, e.g.,E[e(t)] = 0, 0.5, 1,−1.
Meanwhile, we also consider the case when the bias can be either +0.5 or −0.5 in the learning
process, e.g., E[e(t)] = 0.5 with probability 0.5 and E[e(t)] = −0.5 with probability 0.5. The
resulting convergence behavior is presented in Fig. 6. Notably, it can be clearly seen that both the
positive and negative bias may result in an error floor and ‘prevent’ the algorithm from converging to
the optimal (e.g., the last two terms of the lower bound in Theorem (1)). The experiment results in
Fig. 6 corroborate our theoretical findings in Theorems 1, 2 and 1.

Impact of the Approximation Error in the Actor Update. We investigate the learning performance
of the A-C algorithm under inaccurate Actor update. In particular, we add the perturbation on the
learnt policy in Eqn. (32) as follows,

Policy(s) =
{

Policy(s), p,

randi([1, 4]), 1− p.

where Policy(s) denotes the action should the agent take at the current state s following the learnt
policy and randi([1, 4]) is a random function to choose the action 1, 2, 3, 4 uniformly. Thus, with
probability p, the agent will choose the action follow the current policy while with probability 1− p,
the agent will choose a random action. By setting different p, we show in Fig. 7 that the approximation
error in the Actor update may significantly degrade the learning performance. Meanwhile, Fig. 7 also
indicates that decreasing bias can be helpful to improve the learning performance (see the red and
green lines in Fig. 7). This observation also verifies our results in Theorem 1.

L OFF-POLICY A-C ALGORITHEM AS NEWTON’S METHOD WITH
PERTURBATION

We note that the actor and critic updates in Eqn. (9) and Eqn. (8) are a general template that admits
both off- and on-policy method. More specifically, denote the target policy by πtar and the behavior
policy by πbhv. When the off-policy menthod is used, then the updates in Eqn. (9) and Eqn. (8) are
given by

ωt+1 ← argminωE(s,a)∼ρπbhv

[
Qω,πtart+1

(s, a)− ω⊤ϕ(s, a)
]2
,

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

(a) 10× 10 Gridworld. (b) 15× 15 Gridworld. (c) 15× 15 Gridworld.

Figure 3: Gridworld benchmark with different sizes. The colors specify the ‘goodness’ measure of
the state, i.e., the darker color cubes are with lower v(s) value and the agent should avoid those areas.
The horizontal lines and vertical lines in each cube point to the direction the agent should take, i.e.,
policy at every state. Fig. 3(a), Fig. 3(b) and Fig. 3(c) show the learning results after 50 iterations of
A-C update.
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(a) 10× 10 Gridworld. (b) 15× 15 Gridworld. (c) 15× 15 Gridworld.

Figure 4: The impact of the Warm-Start Policy when no approximation errors in Actor update and
Critic update. The convergence behavior given different initial policy, i.e., a random policy (no
Warm-Start), a Warm-Start policy obtained by running the A-C algorithm for one iteration and two
iterations. The x-axis represents the A-C update step and y-axis is the value of the norm ∥v(t)−v∗∥.

(a) 10× 10 Gridworld. (b) 15× 15 Gridworld. (c) 20× 20 Gridworld.

Figure 5: Learning performance vs. rollout length.

(a) 10× 10 Gridworld. (b) 15× 15 Gridworld. (c) 20× 20 Gridworld.

Figure 6: Illustration of the lower bound in Theorem 1.

(a) 10× 10 Gridworld. (b) 15× 15 Gridworld. (c) 20× 20 Gridworld.

Figure 7: Convergence behavior vs. Approximation Error in the Actor Update.
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πt+1 ← argmax
π

E(s,a)∼ρπbhv

[
Qωt+1,πtar,t(s, a)

]
.

This is in contrast to the updates given below when the on-policy method is used:

ωt+1 ← argminωE(s,a)∼ρπtar

[
Qω,πtart+1

(s, a)− ω⊤ϕ(s, a)
]2
,

πt+1 ← argmax
π

E(s,a)∼ρπtar

[
Qωt+1,πtar,t(s, a)

]
.

• One major challenge of the off-policy analysis lies in the fact that the behavior policy
can be arbitrary Sutton et al. (1999)Sutton & Barto (2018) and hence it is impossible to
develop a unifying framework. For example, the behavior policy can be obtained by human
demonstration (a similar idea is used in an early version of AlphaGo), deriving from the
target policy as in Q-learning/DQN or from a previous behavior policy. Meanwhile, the
key drawback of off-policy method is that it does not stably interact with the function
approximation and is generally of greater variance and slower convergence rate Sutton &
Barto (2018). In this regard, modern off-policy deep RL requires techniques such as growing
batch learning, importance sampling or ensemble method to stabilize the algorithm. Thus,
for ease of exposition, we only include the on-policy analysis in our work.

• Our framework and theoretical results are able to be applied to off-policy setting with the
extra assumption on the behavior policy. In particular, we assume the behavior policy is in
the neighborhood of the target policy, i.e., in each Actor and Critic update step,

∥Ebhv-tar,t∥ := ∥πtar, t− πbhv,t∥ ≤ Cbt,
where Ctb ≥ 0 is a constant. In this way, we can write the A-C update in the off-policy
setting as a Newton Method with perturbation, i.e.,

vπtar,t+1 = vπtar,t–(J
−1
vπtar,t

(vπtar,t − T (vπtar,t))− Et),
where Et is the perturbation which captures the approximation error from Actor update,
Critic update and the behavior policy. Explicitly, we have the perturbation with the following
form,

Et = Ev,t + EĴ,t(v
π̂t+1 − (rπ̃t+1

+ γPπ̃t+1
vπ̂t+1))− J−1

v̂t
(Er,t + Ebhv−tar,t + γ(EP,t + Ebhv−tar,t)vπ̂t).

Thus, the off-policy analysis is similar to the on-policy case but with the ‘error’ induced by
the behavior policy.
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Figure 8: Illustration of the theoretical analysis.

In Section 3. We add the illustration of the theoretical analysis Fig. 8 to make this work more
accessible to a broader audience.

In Section 4. We add Table 1 to summarize the key observations from our main results (Theorem 1
and Theorem 2)

B(t)→ 0 ∥B(t)∥ > 0
when the distance be-
tween π0 and π∗ is
small

The warm-start can facilitate the
online convergence (Theorem 2)
(Empirical studies:Silver et al.
(2017; 2018))

Biases can throttle the convergence
significantly due to the accumula-
tion effect (Theorem 1) (Empirical
studies: Uchendu et al. (2022))

when the distance be-
tween π0 and π∗ is
relatively large

The imperfections of the warm-
start can be “washed out” by on-
line learning (Theorem 2, Eqn.
(30)) (Empirical studies: Bert-
sekas (2022b))

The warm-start policy goes hand-by-
hand with the approximation error to
influence the learning performance

Table 1: The learning performance given different warm-start policy and biases setting.In Theorem
1, we point out that the bias terms have direct impact on “whether the warm-start policy is able to
facilitate the online learning”. For instance, “even when the warm-start policy is nearly-optimal”,
there is still no guarantee that online fine-tuning can improve the policy much if there exist biases in
the approximation errors in online Actor and Critic updates and these biases are not dealt with properly.
To clarify further, consider the case when the bias is always positive, i.e., B(t) > 0 for all t ≥ 0, the
lower bound is always positive and bounded away from zero. In Theorem 2, we aim to answer the
question: “under what conditions online learning can be significantly accelerated by a warm-start
policy?”. Consider the case when the approximation error is unbiased (such that the A-C can be
viewed as the Newton’s Method). Clearly, we have ∥E[vπ̂t+1 − v∗]∥ ≤

(∏t
i=0Ht−i

)
∥v∗ − vπ0∥,

which can decrease quickly as long as the warm-start policy π0 is not far away from the optimal
policy π∗ and also satisfies Assumption 5. Intuitively, this result shows that “the imperfections of the
warm-start policy can be ‘washed out’ by the (superlinear) Newton step” and corroborates with the
observation in the very recent literature (Bertsekas, 2022b.). We remark that this phenomenon has
not been formalized by previous works on the A-C algorithm.
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