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EVOLUTION IN 3D ENVIRONMENTS
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Figure 1: The left illustrates uncoordinated morphology and control without subequivariance, re-
sulting in task failure. The right demonstrates symmetry in morphology and control through sube-
quivariant co-evolution, enabling successful goal completion.

ABSTRACT

The co-evolution of morphology and behavior in 3D space has garnered consid-
erable interest in the field of embodied intelligence. While recent studies have
highlighted the considerable benefits of geometric symmetry for tasks like learn-
ing to locomote, navigate, and explore in dynamic 3D environments, its role
within co-evolution setup remains unexplored. Existing benchmarks encounter
several key issues: 1) the task lacks consideration for spatial geometric informa-
tion; 2) the method lacks geometric symmetry to deal with the complexities in
3D environments. In this work, we propose a novel setup, named Subequivariant
Morphology-Behavior Co-Evolution in 3D Environments (3DS-MB), to address
the identified limitations. To be specific, we propose EquiEvo, which injects geo-
metric symmetry, i.e., subequivariance, to construct dynamic, learnable local ref-
erence frames, enabling the joint policy to generalize to diverse task spatial struc-
tures, thereby improving co-evolution efficiency. Then, we evaluate EquiEvo on
the proposed environments, where our method consistently and significantly out-
performs existing approaches in tasks such as locomotion navigation and adver-
sarial scenarios. Extensive experiments underscore the importance of subequivari-
ance for the co-evolution of morphology and behavior, effective morphology-task
mapping and robust morphology-behavior mapping.

1 INTRODUCTION

The rich diversity of animal morphologies, shaped over millions of years in complex environments,
underscores the deep link between body form and intelligence, where well-adapted morphologies
enable agents to learn and perform complex tasks effectively (Gupta et al., 2021; Brooks, 1991).
Morphology evolution is fundamentally driven by environmental interactions and task demands,
as supported by evolutionary biology (Maynard-Smith, 1974; Gould, 2010). The co-evolution of
morphology and behavior in 3D environments has gained significant interest (Sims, 1994; Dong
et al., 2023; Chen et al., 2023b; Gupta et al., 2021), focusing on how agents’ form and function
evolve together to improve adaptability and performance. Some works, such as (Gupta et al., 2021;
Dong et al., 2023), impose bilateral symmetry constraints directly on morphology, diverging from
evolutionary principles, as agents should evolve optimal morphologies through interaction with the
environment, rather than relying on predefined constraints.

Alternatively, the geometric symmetry of environments and dynamic systems naturally exists, which
motivates us to explore how leveraging such symmetry can accelerate the evolution of optimal mor-
phologies through interaction with the environment. Recent studies highlight that leveraging geo-
metric symmetry in tasks like locomotion, navigation, and exploration within dynamic 3D settings

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

can significantly improve the efficiency of behavioral evolution (Chen et al., 2023a; 2024). While re-
cent co-evolution benchmarks (Yuan et al., 2022; Huang et al., 2024; Liu et al., 2022) have achieved
remarkable progress (Liu et al., 2022), they often fail to fully exploit geometric symmetry within 3D
spaces. These benchmarks face two main issues: 1) a focus on tasks with limited spatial geomet-
ric considerations, such as the “move forward” objective, which are simplified to fixed directional
movements and do not require complex direction-aware strategies; 2) a lack of research exploring
the use of geometric symmetry in co-evolution setups to handle the directional complexities of 3D
environments effectively.

In this work, we address the limitations of current co-evolution benchmarks by focusing on tasks
that require rich 3D spatial understanding and incorporate dynamic interactions. To achieve this, we
propose a novel setup, named Subequivariant Morphology-Behavior Co-Evolution in 3D Environ-
ments (3DS-MB). Our setup extends two core tasks to enable co-evolution in complex 3D spatial
environments: navigation and sumo (Chen et al., 2023a; Huang et al., 2024). In the navigation
task, the agent moves towards randomly generated goals, requiring continuous adaptation to new
spatial contexts. In the sumo task, two agents compete in an arena, where the objective is to push
the opponent out. The constantly changing adversarial dynamics require agents to adapt to vary-
ing attack and defense angles, demanding both strategic behavior and morphology adaptation to
effectively leverage rich directional information. These tasks introduce variability in movement and
environmental interaction, challenging agents to develop robust, generalized policies that account
for diverse geometric conditions.

To effectively handle the directional complexities of 3D environments, we incorporate subequivari-
ant neural networks within our co-evolution framework. As illustrasted in Figure 1, we introduce
subequivariant graph neural networks (Chen et al., 2023a; Han et al., 2022a) to predict a dynamic,
adaptive Local Reference Frame (LRF) for the agent (Chen et al., 2024). By projecting directional
vectors from the global world frame into this LRF, we transform spatial representations into an in-
variant form, preserving geometric symmetry and simplifying the search space. For instance, under
rotational symmetry, states and actions in any direction can be treated as equivalent, effectively re-
ducing a 2D/3D problem to a simpler 1D/2D one. This approach enables the policy to generalize
across diverse spatial structures, improving both generalization ability and sample efficiency in the
co-evolution process, allowing agents to efficiently learn and adapt to the complex directional in-
formation inherent in 3D tasks. An essential aspect of our approach is ensuring that the evolution
of morphology remains invariant to geometric transformations, such as rotations or translations, as
these do not alter the intrinsic properties of the environment.

Our contributions can be summarized as follows:

• We introduce 3DS-MB, a benchmark for subequivariant morphology-behavior co-
evolution, designed to capture the rich spatial geometric information and variability in-
herent in complex 3D environments.

• We propose EquiEvo, a novel co-evolution framework that leverages subequivariant graph
neural networks to effectively incorporate geometric symmetry, enhancing both morphol-
ogy adaptation and behavior control.

• We empirically validate the performance of EquiEvo on the 3DS-MB, where our approach
consistently outperforms existing methods. Extensive ablation studies and analyses further
demonstrate the framework’s robustness and highlight the benefits of integrating subequiv-
ariance in co-evolution tasks.

2 PRELIMINARIES

Morphology-Behavior Co-Evolution. To account for the effect of morphology to agent’s behavior,
the typical MDP formulation could be extended by incorporating the agent’s morphology. Specif-
ically, we define the extended MDP as M = (S,A, T , R, γ,Gm) of state space, action space,
transition dynamics, a reward function, a discount factor and the agent’s morphology. Gm is typ-
ically represented as a graph. The transition dynamics P (st+1|st, at,Gm) and the control policy
π(at|st,Gm) are all conditioned on Gm. The expected return depends on both the policy π and the
morphology Gm: J(π,Gm) := Eπ,Gm [

∑∞
t=0 γ

trt]. The morphology-behavior co-evolution problem

2
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can be mathematically described as optimizing the following two-layer objective:

G∗m := argmax
Gm

J(πG ,Gm)

s.t. πG = argmax
π

J(π,Gm).
(1)

Building on the classical policy optimization algorithm, PPO (Schulman et al., 2017), Yuan et al.
(2022) propose a unified approach to jointly optimize two sub-policies: morphology transformation
and behavior control. Specifically, the policy is structured to first transform the agent’s morphology
and develop its attributes, which is then followed by behavior control for the resulting morphology
within each episode.

Geometric Symmetry. Learning in 3D environments is hard due to the excess requirement of
exploration. To relieve the difficulty of co-evolution in 3D environments with the massive search
space, the inherent geometric symmetry of 3D environments should be exploited. Intuitively, if the
entire environment undergoes rigid transformations such as rotations and translations, the perceived
environment should remain unchanged from the perspective of an agent within it. In other words,
the agent should remain unaffected by global geometric transformations. This property is formally
captured by the concept of equivariance, defined as follows:

Definition 1 (Equivariance). Suppose z⃗1 to be vector features (positions, velocities, etc) that are
steerable by a group G, and h non-steerable scale features. A function f is G-equivariant, if for
any transformation g ∈ G,∀z⃗ ∈ R3×m,h ∈ Rd, f(g · z⃗,h) = g · f(z⃗,h). Similarly, f is invariant
if f(g · z⃗,h) = f(z⃗,h). Here · denotes the group operation.

To adhere to the principles of classical physics under the influence of gravity in typical 3D environ-
ments, we consider equivariance over a specific subgroup of E(3)2 defined as Eg⃗(3). This subgroup
is composed of Og⃗(3) := {O ∈ R3×3 | O⊤O = I, Og⃗ = g⃗} and Tg⃗(3) := {t⃗ ∈ R3 | t⃗× g⃗ = 0⃗}.
The group operation of Eg⃗(3) is instantiated as g · z⃗ := Oz⃗ + t⃗3. In this way, Eg⃗(3)-equivariance
is constrained to translations, rotations, and reflections along the direction of g⃗. We refer to this
property as subequivariance, specifically highlighting Eg⃗(3)-equivariance. This relaxation of group
constraints is critical in environments influenced by gravity, as it allows the model to capture gravita-
tional effects. Unless otherwise specified, in the following text, we will use the term “equivariance”
to refer to Eg⃗(3)-equivariance, and “invariance” to refer to Eg⃗(3)-invariance.

Subequivariant Graph. Subequivariant graph is an extention of geometric graph (Han et al., 2024),
defined as G⃗g⃗ := (V, E ,H, Z⃗, g⃗). H ∈ RN×Ch contains scalar node features of Ch channels.
Z⃗ ∈ RN×3×Cz contains vector node features of Cz channels. g⃗ indicates that the permitted trans-
formations to the graph must be elements of Eg⃗(3). The transformation of subequivariant graph
by g ∈ Eg⃗(3) is defined as g · G⃗g⃗ := (V, E ,H, g · Z⃗, g⃗). To effectively make use of subequivari-
ant graph, previous works have adopted a universally expressive construction of Og⃗(3)-equivariant
function (Han et al., 2022a; Chen et al., 2023a; 2024):

fg⃗(z⃗,h) = [z⃗, g⃗]σ([z⃗, g⃗]⊤[z⃗, g⃗],h), (2)

where σ (·) is an Multi-Layer Perceptron and [ ] denotes concatenation along the last dimension.

3 SETUP AND METHOD

Table 1: Comparison of Setups.

Aspect Prior 3DS-MB
Task Fixed Directions Variable Directions
Graph Topology Graph Subequivariant Graph
Group ∅ Eg⃗(3)

Our goal is to learn a co-evolution policy in 3D environments
that simultaneously adapts the agent’s morphology and en-
hances behavior control skills to optimize task performance.
To achieve this, we first introduce our newly proposed 3D
morphology-behavior co-evolution setup, termed 3DS-MB,

1Note that we use a right-arrow superscript on z⃗ to distinguish it from the scalar h, which remains unaffected
by the transformations.

2The symmetrical structure of 3D environments is captured by E(3), the 3-dimensional Euclidean group,
which includes rotations, reflections, and translations.

3Note that t⃗ only acts on the 3D coordinate vector.
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which incorporates tasks involving richer 3D information. We then present our co-evolution frame-
work, EquiEvo (illustrated in Figure 2), which leverages the symmetric structure of 3D environ-
ments through subequivariant neural networks to efficiently evolve morphology and learn control
skills. We also outline our method in Algorithm 1.

3.1 EXTENSION TO 3DS-MB

Setups. Exploring how agents evolve and behave in tasks involving complex state information
of 3D environments is crucial, as factors like positions, velocities, and directions are inherently
represented as vectors.

𝑖
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Figure 2: Flowchart of EquiEvo.

While prior works have made significant strides,
existing benchmarks (Yuan et al., 2022; Huang
et al., 2024) primarily focus on tasks with fixed
directions and limited consideration of those re-
quiring richer vector representations, particu-
larly tasks involving variable directions. Con-
sequently, there is no need to utilize symme-
try groups, and modeling with topology graphs
is sufficient for co-evolution of morphology and
behavior in their tasks. In contrast, our pro-
posed 3DS-MB setup introduces tasks with vari-
able directions, employs subequivariant graphs,
and leverages the group Eg⃗(3) to capture the ge-
ometric properties of 3D spaces. A detailed com-
parison of the environment setups between 3DS-
MB and prior benchmarks is provided in Table 1.

Invariant of Morphology Value. The evolu-
tion of morphology should be invariant to geo-
metric transformations like rotations or transla-
tions, as these do not alter the intrinsic proper-
ties of the environment. From the perspective of
PPO optimization, to optimize the morphology
transform policy, we need to estimate the value
of morphology transform actions, which must be
invariant to Eg⃗(3) transformations. For exam-
ple, consider a scenario where an agent with the
same morphology is initialized in a state that has
been rotated within the environment. The behav-
ior should rotate correspondingly, ensuring that
the morphology value determined by behavior re-
mains consistent. In co-evolution frameworks
like Transform2Act (Yuan et al., 2022), mor-
phology transformation and behavior control are
treated as different steps within a single episode.
Consistent feedback for morphology transformation can only be achieved by leveraging geometric
symmetry throughout the interaction with the environment. To achieve this, we integrate equivariant
networks into the behavior control policy. By inject symmetry into the model architecture, the out-
put is constrained to be equivariant, provides consistent value for morphology value estimation, and
facilitates the co-evolution learning process. Furthermore, equivariant networks have been proven
to learn control policies more efficiently, which is crucial for reducing the complexity of solving the
complex two-layer optimization problem. The role of geometric symmetry in morphology evolution
is discussed in detail in Appendix D.

3.2 EQUIEVO

Agent Representation. The morphology of the agent is a graph Gm := (V, E ,Hm). where each
node i ∈ V represents a limb, and each edge (i, j) ∈ E corresponds to the joint that connects the
limbs i and j. The morphology structure of the agent is represented by the topology of graph. Hm

4
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contains morphology attributes for the agent’s limbs, joints, and the specific design for the structure
given by the graph. For each node i, hm

i ∈ RCm includes the length and size of the limb, joint torque
limit, the node depth in the body tree, etc.

The agent’s state is defined as a subequivariant graph G⃗g⃗ := (V, E ,Hm,Hb, Z⃗, g⃗) =

(G,Hb, Z⃗, g⃗). Each node i has scalar state and vector state, expressed as hb
i ∈ Hb and z⃗i ∈ Z⃗,

respectively. The scalar state hb
i ∈ RCb contains scalars representing the configuration of the joint,

including joint angle, joint angular velocity, etc. The vector joint state z⃗i ∈ R3×Cm contains posi-
tion p⃗i ∈ R3, direction, linear velocity, angular velocity, etc. Here, position p⃗i is transformed into a
translation-invariant representation by subtracts position of root node, thereby ensuring translation
invariance. Notably, the morphology attributes and the scalar state are invariant, while the vector
state is equivariant.

We emphasize the differences between Gm and Gg⃗ . Gm solely represents the agent’s morphology and
does not interact with the environment. In contrast, Gg⃗ interacts with the environment, involving Hb

and Z⃗, which are obtained during the rollout process.

Morphology Transform. In the morphology transform stage, starting from the original morphol-
ogy, the agent undergoes morphology transform actions am to modify the structure and attributes
through the morphology transform sub-policy πm

θ . We adopted the two-stage design introduced
in Transform2Act (Yuan et al., 2022). The transform actions am ∈ {as,aa} include two types:
(1) Structure transform actions as, which are discrete and change the topological structure of the
morphology by adding or removing joints and limbs; (2) Attribute transform actions aa, which
can be continuous or discrete, used to modify the specific instantiation of the given structure. Ac-
cordingly, πm

θ is a composition of the structure transform sub-policy πs
θ and the attribute transform

policy πa
θ . We divide the morphology transform stage into two sub-stages - structure transform stage

and attribute transform stage - and use Φ as the stage identifier. We can represent the morphology
transform sub-policy as follows:

πm
θ (am|Gm,Φ) :=

{
πs
θ(a

s|Gm,Φ), if Φ = Structure

πa
θ(a

a|Gm,Φ), if Φ = Attribute
(3)

The structural transform stage lasts for Ns steps, while the attribute transform stage spans Na steps.
The resulting morphology is then utilized by the behavior sub-policy to interact with the environ-
ment. Notably, during the morphology transform stage, no environment reward is assigned to the
agent, as there is no direct interaction with the environment. Instead, the morphology transform
sub-policy is updated solely based on feedback from the subsequent behavior control stage.

Local Reference Frame Canonicalization. According to Han et al. (2024), the Local Refer-
ence Frame (LRF) Canonicalization is a common technique in geometric graph neural networks
to achieve equivariance (or invariance). We chose to use the LRF in our work for its simplicity and
effectiveness. During the behavior control stage, at each step, we first predict a local reference frame
(LRF) using subequivariant graph neural networks. We then perform canonicalization by projecting
the vector states from the global world frame into the LRF as follows:

Gg⃗ ← LRF(G⃗g⃗). (4)

To obtain LRF, We use subequivariant graph neural networks φ to process G⃗g⃗ , predict two candidate
vectors and perform orthonormalization OP:

u⃗, v⃗ ← φ
(
G⃗g⃗

)
, (5)

O ← OP(u⃗, v⃗). (6)

Specifically, φ consists of L subequivariant message passing layers. The message passing mecha-
nism operates as follows: we first construct edge features from the node features, and then use both
ϕg⃗ and ψg⃗ , as described in Equation (2), to generate messages. These messages are subsequently
aggregated and merged with the original state. For details on subequivariant message passing, please
refer to Appendix C.

5
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After message passing, we predict u⃗ and v⃗ by using the output vector state z⃗
(L)
1 of the root node:

u⃗← z⃗
(L)
1 Wu⃗, (7)

v⃗ ← z⃗
(L)
1 Wv⃗, (8)

where Wu⃗ ∈ Rm×1 and Wv⃗ ∈ Rm×1.

Now we use u⃗ and v⃗ to construct a orthonormal basis. As z⃗ only consider Og⃗(3)-equivariant
transformations, we could set one of the axes as parallel to g⃗. We have O := [e⃗1, e⃗2, e⃗3] ←
OP(u⃗, v⃗):

e⃗3 ← [0, 0, 1]⊤ (9)

e⃗1 ←
u⃗− ⟨u⃗, e⃗3⟩e⃗3
∥u⃗− ⟨u⃗, e⃗3⟩e⃗3∥

, (10)

e⃗2 ←
v⃗ − ⟨v⃗, e⃗1⟩e⃗1 − ⟨v⃗, e⃗3⟩e⃗3
∥v⃗ − ⟨v⃗, e⃗1⟩e⃗1 − ⟨v⃗, e⃗3⟩e⃗3∥

. (11)

Having obtained O, we project the agent’s vector state into the local reference frame to obtain the
invariant vector state:

zi ← O⊤z⃗
(0)
i , (12)

where z⃗
(0)
i ∈ R3×m is the input vector state of node i in the global world frame, and zi ∈ R3×m is

the invariant vector state in the local reference frame.

Finally, we transform the subequivariant graph of the agent’s state into an invariant graph Gg⃗ :=

(Gm,Hb,Z, g⃗) ← LRF(G⃗g⃗). A formal proof of the invariance of LRF Canonicalization is pre-
sented in Theorem 1.

Behavior Control. We use the invariant graph Gg⃗ (such as GraphConv (Kipf & Welling, 2017)) to
perform behavior control. We use a conventional neural network φb

θ (such as MLP) to instantiate
the behavior control sub-policy πb

θ and predict the behavior control action ab:

ab ← φb
θ (Gg⃗) . (13)

Value Estimation. In the value estimation process, for greater flexibility, we employ separate
individual models with the same architecture as φ in Equation (5) to predict GVg⃗ . The invariant
graph GVg⃗ is then used for value estimation. We instantiate the value function Vϕ using a conventional
neural network φϕ (such as MLP), which predicts the value V as follows:

V ← φϕ

(
GVg⃗

)
. (14)

Formal proof of the invariance of the co-evolution are presented in Appendix A.

4 EXPERIMENTS

4.1 3DS-MB ENVIRONMENTS

(a)
(Evo)Humanoid
Navigation.

(b)
(Evo)Ant
Navigation.

(c)
(Evo)Ants
Sumo.

Figure 3: Illustrations of Tasks. Navigation: the
agent navigates towards the target (green). Sumo:
Two agents compete against each other to push the
opponent out of the arena.

To evaluate our EquiEvo method, we extend
the morphology-behavior co-evolution envi-
ronments (Yuan et al., 2022; Huang et al.,
2024), based on the MuJoCo simulation en-
gine (Todorov et al., 2012), to operate within
a practical three-dimensional physical environ-
ment. We refer to this new environment as
3DS-MB. In the 3DS-MB environments, the
agent’s morphology design and state are rep-
resented by the morphology graph Gm and the
subequivariant graph G⃗g⃗ . We apply the 3DS-
MB environments to three different tasks, as
shown in Figure 3.

6
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Figure 4: Training and Evaluation Curves in Navigation.

Humanoid Navigation. 1. Initial Conditions. The agent’s position and orientation are initialized
randomly, with the goal point placed randomly within a radius of [3, 4] from the agent. Each time
the agent reaches the goal, a new goal point is generated randomly, requiring the agent to continually
adjust its direction of movement to reach as many goal points as possible. For this task, we use a
humanoid morphology. To maintain the humanoid structure, we skip the structural transform stage
and start directly with the attribute transform. 2. Termination. The state must simultaneously
satisfy isfinite(p⃗), isfinite(v⃗), and h ∈ [minHeight,maxHeight], where p⃗, v⃗, and h represent the
position, velocity, and height of the agent, respectively. The values minHeight and maxHeight are
the preset minimum and maximum heights. If any of these conditions are not met, the training is
terminated. For the humanoid agent, we set h ∈ [1, 2]. 3. Reward. For the navigation task, we
design a reward structure for the humanoid agent that consists of six components: success bonus,
forward reward, distance reward, control cost, contact cost, and survive reward. The total reward is
the sum of these components. For more details, please refer to Appendix E.1.

Ant Navigation. 1. Initial Conditions. The initial setup is similar to that of the Humanoid Navi-
gation task. In this task environment, we use the ant morphology for experimentation, incorporating
the structure transform stage, attribute transform stage, and behavior control stage during the evolu-
tion process. 2. Termination. The termination conditions mirror those of the Humanoid Navigation
task. For the ant agent, we set h ∈ [0.28, 0.8]. 3. Reward. For the navigation task, we design a
reward structure for the Ant agent consisting of four components: success bonus, distance reward,
control cost, and survive reward. The total reward is the sum of these components. For further
details, please refer to Appendix E.1.

Ants Sumo. 1. Initial Conditions. The positions and orientations of two agents are randomly
initialized, requiring them to learn to attack and defend in various strategic situations while attempt-
ing to push each other out of the arena. The radius of the arena is randomized within the range of
[2.5, 4.5], and the arena has a fixed height of 0.5. Additionally, the agents are permitted to reach a
maximum height of 0.29 above the arena ground. In this environment, we use the ant morphology
for experimentation. Following the CompetEvo (Huang et al., 2024) setup, the structure transform
stage is omitted, retaining only the attribute transform stage and behavior control stage. 2. Termi-
nation. The objective is for one agent to win by disqualifying the opponent, which occurs when
an agent pushes the other out of the arena or when an agent’s height exceeds the set limit (draw
outcomes). The disqualified agent loses, ending the episode. 3. Reward. For the Ants Sumo task,
we design a reward structure consisting of seven components: win bonus, lose bonus, draw bonus,
control cost, push opponent reward, move reward, and survive reward. The total reward is the sum
of these components. For more details, please refer to Appendix E.1.

We chose to evolve morphology skeletons from scratch to address the most challenging setup and
eliminate biases from prior knowledge, starting the Ant Navigation task with a simple “atomic mor-
phology” (a torso body). For other starting morphologies, such as in the Humanoid Navigation
and Ants Sumo tasks, we focused solely on attribute transformations to maintain task-specific con-
straints, as structural transformation boundaries are less well-defined.

7
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Figure 5: Training and Evaluation Curves for Sumo.

4.2 BASELINES, METRICS, AND IMPLEMENTATIONS

Baselines. For Agent X(Ant/Humanoid), we employ the EquiEvo method to obtain EquiEvoX. To
conduct a comprehensive comparison, we define the other three baseline methods: EquiX, EvoX,
X. EquiX maintains subequivariance but removes the morphology transform component. EvoX
includes morphology transform but does not integrate subequivariance. X is the most basic baseline
method, lacking both subequivariance and morphology transform component. For the three types of
tasks, the specific methods adopted are as follows:

• Ant Navigation: EquiEvoAnt, EquiAnt, EvoAnt, Ant.

• Humanoid Navigation: EquiEvoHumanoid, EquiHumanoid, EvoHumanoid, Humanoid.

• Ants Sumo: EquiEvoAnt, EquiAnt, EvoAnt, Ant.

The Ant Navigation uses the Transform2Act (Yuan et al., 2022) codebase as the baseline, while
the Humanoid Navigation and Ant Sumo use the CompetEvo (Huang et al., 2024) codebase as the
baseline. For more information on the baselines, please refer to Appendix E.2.

Metrics. For Navigation task, we use cumulative reward to assess the performance of the agents; for
Sumo task, we use win rate (Win Rate = #win episode / #all episode). Each experiment is trained
with 3 seeds to report the average and standard deviation of the cumulative reward or win rate.

Implementations. We use PPO (Schulman et al., 2017) as the reinforcement learning algorithm
in all experiments. We implemented EquiEvo based on the Transform2Act codebase (Yuan et al.,
2022) and the CompetEvo codebase (Huang et al., 2024), which are built on the PyTorch framework.
There is no weight sharing between the policy network πθ and the value estimation network Vϕ. The
value of the maximum timesteps of an episode is 1,000 (Navigation) / 500 (Sumo). The value of the
maximum epoch is 500 (Ant) / 2,000 (Humanoid). Additionally, in Sumo, we adopt Bansal et al.
(2018)’s approach, where teams using different methods compete against each other within an arena.
For detailed hyperparameters, refer to Table 2.

4.3 MAIN RESULTS

Humanoid EvoHumanoid EquiEvoHumanoid

Figure 6: Visualization of Humanoid
Morphology.

Navigation. We first conduct a performance compari-
son of methods on the navigation task, as shown in Fig-
ure 4.

For the Humanoid agent, EquiEvo surpasses baseline
methods across random scenarios (Figure 4b). The rank-
ing from best to worst—EquiEvoHumanoid, EquiHu-
manoid, Humanoid, and EvoHumanoid—highlights the
significance of subequivariance in morphology-behavior
co-evolution. Without subequivariance, applying mor-
phology transform alone (Evo) expands the search space,
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Figure 7: Comparisons with Hand-Craft Normalization.

hindering efficient training. This demonstrates the crucial role of subequivariance in optimizing
co-evolution.

The visualization in Figure 6 demonstrates that subequivariance significantly impacts the shape of
the humanoid agent. EvoHumanoid, developed without geometric symmetry constraints, lacks bal-
ance, resulting in poor coordination and stability during movement. In contrast, EquiEvoHumanoid
develops a more coordinated morphology, leading to greater stability and flexibility—more akin to
that of a professional athlete.

For Ant, the experimental results (Figure 4a) rank EquiEvoAnt as the best in locomotion navigation,
followed by EvoAnt, EquiAnt, and Ant. The EquiEvo method enhances learning by integrating
subequivariance and morphology transform, demonstrating the effectiveness of both components in
our approach. EvoAnt performs well due to its morphology transform, while EquiAnt is weaker
without it but still outperforms Ant.

Sumo. In the sumo task (Figure 5), the EquiEvoAnt agent consistently outperformed all baselines.
The results emphasize the critical impact of subequivariance, which proved more influential than
morphology evolution alone in enhancing performance. However, integrating morphology evolution
with subequivariance yielded a synergistic effect, further boosting the agents’ capabilities. This
highlights that subequivariance is key to success in sumo tasks, with the addition of morphology
evolution refining and optimizing strategies for significant performance gains.

4.4 ABLATIONS AND ANALYSES

Comparisons with Hand-Crafted Normalization. In addition to our equivariant network ap-
proach, hand-crafted methods can also construct a Local Reference Frame (LRF). To compare the
effectiveness of these approaches, we designed the following experiments, ablated in Figure 7: 1.
Evo+DN: a variant using hand-crafted normalization where z⃗ are treated as scalars and the goal
direction is used to construct the LRF; 2. Evo+HN: another hand-crafted normalization variant,
treating z⃗ as scalars but constructing the LRF based on the agent’s heading direction; 3. Evo: a
non-equivariant variant that treats z⃗ as scalars without any LRF construction.

Can equivariant network methods replace or even surpass hand-crafted normalization? Experi-
ments demonstrate that regardless of using goal or heading direction to construct the LRF, hand-
crafted methods perform worse than ours, indicating that equivariant networks are more effective
for morphology evolution, offering a plug-in solution for equivariant adaptation.

Do different tasks require different LRF designs for symmetry? We observe that EvoAnt, a goal-
directed task, benefits more from DN since the primary reward comes from approaching the goal.
In contrast, the humanoid task, which requires both goal-reaching and forward motion, sees better
performance with HN. This suggests that optimal LRF design varies by task. Additionally, evi-
dences from prior works (Chen et al., 2023a; 2024) indicate that learning-based equivariant meth-
ods, which automatically identify the optimal LRF by leveraging geometric information, outperform
hand-crafted approaches that rely on manually applying symmetry priors.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Training Process (%)

0

5000

10000

15000

20000

25000

Re
wa

rd

EquiActorCritic
EquiActor
EquiCritic
NoEqui

Figure 8: Ablations of Equivariance on EvoAnt.
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Figure 9: Analyses of Morphology-Task.

Ablations of Equivariance. In EquiEvo (or EquiActorCritic), both the Actor and Critic networks
are designed to be subequivariant, ensuring that the entire reinforcement learning process adheres to
equivariance under the Actor-Critic framework. To evaluate the impact of each network, we perform
ablation experiments where one network retains subequivariance while the other does not, producing
the variants EquiActor and EquiCritic, respectively. The results in Figure 8 demonstrate that the per-
formance of EquiEvo diminishes when either the Actor or Critic lacks subequivariance, emphasizing
the necessity of this property in both networks. Moreover, the Actor’s subequivariance appears to
play a more crucial role than the Critic’s, likely because of its direct impact on decision-making and
action selection. These findings underscore the importance of maintaining subequivariance in both
the Actor and Critic to achieve an efficient and consistent reinforcement learning process.

b

c

a

Structure Transform Attribute Transform

Figure 10: Step-by-step visualization of the morphology transforma-
tion within a single episode, corresponding to the final checkpoint .
(a) EvoAnt; (b) EquiEvoAnt; (c) EquiEvoAnt with Forward Reward.

Analyses of Morphology-
Task Mapping. The
evolved morphology of
EquiEvoAnt exhibits strong
symmetry, as seen in Fig-
ure 10, which coincides
with the symmetric struc-
ture of the task reward.
To investigate how task
design affects morphology
evolution, we introduce a
forward reward to EvoAnt
and train both EquiEvoAnt
and EvoAnt under this modified reward structure. The reward curves, presented in Figure 9, indicate
that EquiEvoAnt continues to outperform EvoAnt in this altered task. In Figure 10 (b) and (c),
we compare the evolution processes under different task (reward) settings. For the task with a
forward reward, the evolved morphology exhibits a laterally symmetric structure with stronger
front legs and weaker hind legs, while the task without a forward reward leads to an radially
symmetric morphology. This shows that the evolution of morphology is fundamentally shaped by
environmental interactions and task demands, rather than being a predefined goal. The comparison
between Figure 10 (a) and (b) shows that methods without integrating geometric equivariance,
due to lower sample efficiency, fail to fully evolve a radially symmetric morphology that meets
task requirements. This highlights the necessity of considering geometric equivariance in the
co-evolution of morphology and behavior frameworks.

Analysis of Morphology-Behavior Mapping. We conduct experiments on the Ant Navigation
task to analyze robust Morphology-Behavior Mapping, with details in Appendix E.3.

5 CONCLUSIONS
We present EquiEvo, a 3D subequivariant framework for co-evolving morphology and behavior,
leveraging geometric symmetries to enhance efficiency and adaptability. Our results demonstrate its
effectiveness in navigation and sumo tasks, highlighting the importance of geometric equivariance
in driving task-specific morphologies through interaction-driven optimization. Further discussion
on structural evolution is provided in Appendix E.4. Future work can explore more complex envi-
ronments, tasks, and evolution settings to further advance embodied intelligence and robotic design.
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A PROOFS

In this section, we theoretically prove that our proposed EquiEvo ensures the co-evolution process
preserve the symmetry as desired.

Finally, we transform the subequivariant graph of the agent’s state into an invariant graph

Theorem 1. The LRF canonicalization, denoted as Gg⃗ ← LRF(G⃗g⃗) is Og(3)-invariant, satisfying
any transformation g ∈ Og⃗(3), Gg⃗ = LRF(g · G⃗g⃗).

Proof. Let the projected graph Gg⃗ be the output of the LRF canonicalization with input G⃗g⃗ =

(Gm,Hb, Z⃗, g⃗). Similarly, let G′g⃗ be the output of the LRF canonicalization with input g · G⃗g⃗ =

(Gm,Hb, g · Z⃗, g⃗), for any transformation g ∈ Og⃗(3). If Gg⃗ = G′g⃗ , this indicates that the LRF
canonicalization preserves Og⃗(3)-invariance.

We first prove that OP in Equation (6) is equivariant.

Let g be a transformation in Og⃗(3), which includes rotation and reflection R along the direction of
g⃗. Specifically, the transformation is applied as follows:

O′ ← g ·O := ROi, (15)

z′ ← g · v⃗ := Rz⃗. (16)

We use the fact that ∀R ∈ Og⃗(3),∀x⃗, y⃗ ∈ R3, ⟨Rx⃗, Ry⃗⟩ = x⃗⊤R⊤Ry⃗ = x⃗⊤y⃗ = ⟨x⃗, y⃗⟩ and
∥Rx⃗∥ = ⟨Rx⃗, Rx⃗⟩ = ⟨x⃗, x⃗⟩ = ∥x⃗∥. By definition, Re⃗3 = e⃗3. According to the property of
Equation (5), we know that z⃗(L)

1 , u⃗ and v⃗ are Og⃗(3)-equivariant.

Let O′ ← OP(g · u⃗, g · v⃗). By the properties of the orthogonalization process in Equations (9)
to (11), we have:

e⃗′3 = [0, 0, 1]⊤ = e⃗3 = Re⃗3, (17)

e⃗′1 =
Ru⃗− ⟨Ru⃗, e⃗′3⟩e⃗′3
∥Ru⃗− ⟨Ru⃗, e⃗′3⟩e⃗′3∥

(18)

=
Ru⃗− ⟨Ru⃗, Re⃗3⟩Re⃗3
∥Ru⃗− ⟨Ru⃗, Re⃗3⟩Re⃗3∥

(19)

=
R(u⃗− ⟨u⃗, e⃗3⟩e⃗3)
∥R(u⃗− ⟨u⃗, e⃗3⟩e⃗3)∥

(20)

= R
(u⃗− ⟨u⃗, e⃗3⟩e⃗3)
∥(u⃗− ⟨u⃗, e⃗3⟩e⃗3)∥

(21)

= Re⃗1, (22)

e⃗′2 =
Rv⃗ − ⟨Rv⃗, e⃗′1⟩e⃗′1 − ⟨Rv⃗, e⃗′3⟩e⃗′3
∥Rv⃗ − ⟨Rv⃗, e⃗′1⟩e⃗′1 − ⟨Rv⃗, e⃗′3⟩e⃗′3∥

(23)

=
Rv⃗ − ⟨Rv⃗, Re⃗1⟩Re⃗1 − ⟨Rv⃗, Re⃗3⟩Re⃗3
∥Rv⃗ − ⟨Rv⃗, Re⃗1⟩Re⃗1 − ⟨Rv⃗, Re⃗3⟩Re⃗3∥

(24)

=
R(v⃗ − ⟨v⃗, e⃗1⟩e⃗1 − ⟨v⃗, e⃗3⟩e⃗3)
∥R(v⃗ − ⟨v⃗, e⃗1⟩e⃗1 − ⟨v⃗, e⃗3⟩e⃗3)∥

(25)

= R
(v⃗ − ⟨v⃗, e⃗1⟩e⃗1 − ⟨v⃗, e⃗3⟩e⃗3)
∥(v⃗ − ⟨v⃗, e⃗1⟩e⃗1 − ⟨v⃗, e⃗3⟩e⃗3)∥

(26)

= Re⃗2. (27)

Therefore,

O′ = [e⃗′1, e⃗
′
2, e⃗

′
3] = R [e⃗1, e⃗2, e⃗3] = RO. (28)

Then we have

z′
i = O′⊤z⃗

(0)′

i = O⊤R⊤Rz⃗
(0)
i = O⊤z⃗

(0)
i = zi. (29)
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Hence,

G′g⃗ = (Gm,Hb,Z ′, g⃗) (30)

= (Gm,Hb,Z, g⃗) (31)
= Gg⃗. (32)

Corollary 1. Let am
t ,a

b
t , Vϕ be output of the actor and the critic of EquiEvo with Gm and G⃗g⃗ as

input. Let am
t

′,ab
t
′, V ′

ϕ be the actor and critic with g · Gm and g · G⃗g⃗ as input, g ∈ Og⃗(3). Then,
(am

t
′,ab

t
′, V ′

ϕ) = (am
t ,a

b
t , Vϕ), indicating the EquiEvo preserve Og⃗(3)-invariance.

Proof. First, based on the geometric transformation properties of the topology graph, we have

Gm′ = g · Gm = Gm. (33)

Then, by Theorem 1, ∀R ∈ Og⃗(3), we have

G′g⃗ = g · G⃗g⃗ = Gg⃗. (34)

Therefore,

am
t

′ = φm
θ (Gm′) (35)

= φm
θ (Gm) = am

t , (36)

ab
t
′ = φb

θ(G′g⃗) (37)

= φb
θ(G′g⃗) = ab

t , (38)

and

V ′
ϕ = φb

ϕ(G′g⃗) (39)

= φb
ϕ(G′g⃗) = Vϕ. (40)

B RELATED WORK

Optimization of Agent morphology Design: Research in the field of optimization of agent mor-
phology design mainly falls into two mainstream approaches: the first focuses on optimizing the
properties, functions, and design parameters of agents (Schaff et al., 2019; Ha, 2019; Chen et al.,
2023b), and the second on structure optimization based on graph neural networks (Wang et al.,
2018; Yuan et al., 2022; Hu et al., 2023). The former often adopts population-based methods,
handling morphology and control strategy optimization separately through a two-level optimiza-
tion process (Ha, 2019), such as the application of evolutionary search in morphology optimiza-
tion (Gupta et al., 2021; Wang et al., 2019); the latter focuses on multi-objective joint optimiza-
tion (Yuan et al., 2022). Research also includes the optimization of continuous design parameters
of agents, using methods such as simulated annealing, trajectory optimization, and deep reinforce-
ment learning (Baykal & Alterovitz, 2017; Ha et al., 2017; Chen et al., 2020). Recent studies have
further simplified the evolutionary process and improved task-independent design optimization (Ch-
eney et al., 2014; Desai et al., 2017; III et al., 2021). Despite the progress made by these methods,
sample efficiency remains a challenge, as agents with different design morphologies often learn
independently within the population. Yuan et al. (2022) introduce Transform2Act, an innovative
policy for simultaneous morphology design and control optimization that adapts skeletal structures
and joint attributes for efficient environmental interaction, advancing integrated agent design and
control. Huang et al. (2024) presents CompetEvo, a system that integrates morphology evolution
with adversarial game self-training to enhance agents’ capabilities, showing morphology evolution
significantly boosts combat skills and emergent behaviors.
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Geometric Equivariant Models: Notably, the physical realm exhibits inherent symmetries, and
extensive research has been conducted on group equivariant models (Cohen & Welling, 2016a;b;
Worrall et al., 2017). In recent times, the research area of geometrically equivariant graph neu-
ral networks (Han et al., 2022b) has emerged, utilizing symmetry as an inductive bias during the
learning process. These models are crafted to ensure that their outputs undergo rotation, transla-
tion, or reflection in alignment with the inputs, thereby preserving the symmetry. Within a Markov
decision process (MDP) that exhibits symmetries (van der Pol et al., 2020), the state-action space
possesses inherent symmetries, allowing policies to be optimized within a more straightforward,
abstract MDP. van der Pol et al. (2020) endeavors to train policy networks that are equivariant and
value networks that are invariant in two-dimensional simulated environments. In contrast, Chen et al.
(2023a) delves into the study of body-level equivariant policy networks within intricate 3D physics
environments, enhancing policy generalization over various orientations. Additionally, Chen et al.
(2024) address the challenges of multi-agent games by employing entity assignment along with an
entity-level subequivariant message-passing mechanism. Both our approach and Chen et al. (2023a;
2024) implement equivariance based on the core function described in Equation (2). However, there
are key differences in the design and application. Chen et al. (2023a) employs a transformer archi-
tecture with a fully connected topology, whereas both Chen et al. (2024) and our approach utilize
GNNs. The main distinction lies in the graph construction: Chen et al. (2024) models multi-agent re-
lationships, requiring an entity assignment to define the graph’s topology, while our method focuses
on single-agent morphology evolution, directly using the morphology’s inherent topology to build
the graph. This design aligns with our goal of co-optimizing morphology and behavior efficiently
within a single-agent framework.

C SUBEQUIVARIANT MESSAGE PASSING

Concretely, we have:

z⃗
(l)
ij = [(p⃗j − p⃗i), z⃗

(l)
i , z⃗

(l)
j ], (41)

h
(l)
ij = [∥p⃗j − p⃗i∥2,h(l)

i ,h
(l)
j ], (42)

m⃗
(l)
ij ,m

(l)
ij = ϕg⃗

(
z⃗
(l)
ij ,h

(l)
ij

)
, (43)

m⃗
(l)
i ,m

(l)
i =

∑
j∈N (i)

m⃗
(l)
ij ,

∑
j∈N (i)

m
(l)
ij , (44)

(z⃗
(l+1)
i ,h

(l+1)
i ) = (z⃗

(l)
i ,h

(l)
i ) + ψg⃗

(
[m⃗

(l)
i , z⃗

(l)
i ], [m

(l)
i ,h

(l)
i ]

)
, (45)

where

• p⃗i, the position of node i;

• h
(l)
i and z⃗

(l)
i , the scalar and vector states of node i at the l-th layer;

• h
(l)
ij and z⃗

(l)
ij , the scalar and vector states of edge ij at the l-th layer;

• m⃗
(l)
ij and m

(l)
ij , the vector and scalar messages passed through edge ij;

• m⃗
(l)
i and m

(l)
i , the aggregated vector and scalar messages at node i;

• ϕg⃗ and ψg⃗ , as described in Equation (2), the subequivariant functions used for message
passing and state updates.

D THE ROLE OF GEOMETRIC SYMMETRY IN MORPHOLOGY EVOLUTION

The optimization of morphology in co-evolution tasks is governed by a bi-level objective, as defined
in Equation (1):

G∗m := argmax
Gm

J(πG ,Gm) s.t. πG = argmax
π

J(π,Gm),

where J(π,Gm) represents the cumulative reward for a given morphology Gm and policy π. This
two-layer optimization highlights the dependence of morphology optimization on the behavior pol-
icy that performs for a given morphology. It is important to note that J is defined as an expectation,
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meaning that all states are integrated out in the expectation sense. Consequently, the morphology’s
policy and value functions theoretically depend only on the morphology Gm and the behavior policy
πG .

In practice, the bi-level optimization is implemented as a co-optimization process, where the inner
and outer optimizations alternate incrementally rather than fully optimizing inner layer. Since the
evaluation of J relies on finite samples of the behavior policy, if the behavior policy is not equiv-
ariant, the limited sampling will cause J to vary under sampled initial state. Geometric symmetry
reduces the variability introduced by sampling, as equivariant networks ensure equivalent actions
and consistent values, providing consistent feedback across state transformations——such as trans-
lations, rotations, or reflections. For instance, under rotational symmetry, equivalent actions are
treated as identical, and the feedback provided to the morphology is unaffected by differences in
sampled initial states. This consistent feedback not only improves the reliability of morphology
evaluation but also enhances the efficiency of the co-evolution process, allowing for better optimiza-
tion within the search space.

s1

s0

Equivariant Evolution (Training) Process

s1

s0

NoEquivariant Evolution (Training) Process

25%100% 50%75% 25% 100%50% 75%

Figure 11: Visualization of Morphological Evolution Across Training Progress.

Figure 11 compares the morphological evolution during training under two scenarios: without (left)
and with (right) the integration of geometric symmetry. Checkpoints at 25%, 50%, 75%, and 100%
of the training process are visualized for two random seeds (s0 and s1). Without injecting geometric
symmetry (left), morphology evolution appears asymmetric and incomplete, with structural trans-
formations seemingly getting trapped in local optima early in the process, leading to lower reward
curves. This may be attributed to the nature of reinforcement learning, where morphology and be-
havior are gradually evolved through abundant exploration of the environment. During this learning
process, the co-evolution of morphology and behavior becomes highly vulnerable to local minima,
and searching for a good policy within the large space would be notoriously difficult. In contrast,
injecting geometric symmetry (right) fosters more intricate and comprehensive morphology
evolution, accompanied by higher reward curves, indirectly supporting the claim that geo-
metric symmetry enhances the efficiency of the co-evolution process by compacting the search
space redundancy in a lossless manner, enabling better optimization.

E MORE EXPERIMENTALS DETAILS AND RESULTS

E.1 REWARD

Humanoid Navigation: For the navigation task, we design the reward for Humanoid agent. The de-
signed reward structure comprises six components: a. Success Bonus: A significant sparse reward

of 1,000 is awarded. b. Forward Reward: It is quantified as 1.25×
p⃗

||p⃗|| ·∆p⃗

∆t , where p⃗
||p⃗|| represents

the unit direction vector of the agent’s position, and ∆p⃗ represents the displacement of the agent
from the current time step. c. Distance Reward: A dense reward to incentivize the achievement of
the task objective. It is computed as ∆s

∆t , where ∆s represents the change in distance from the agent
to the target. d. Control Cost: This penalty discourages agents from executing excessively large
actions, and is calculated as −0.1 ×

∑√
ai. e. Contact Cost: The penalty discourages excessive

contact forces, and is calculated as −min(0.5× 10−6 ×
∑

c2i , 10), where ci represents the compo-
nent of the force exerted on the agent by external forces. f. Survive Reward: For each step taken,
the agent receives a survival reward of 5. Thus, the reward is equal to the sum of the aforementioned
rewards.
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Ant Navigation: For the navigation task, we design the reward for Ant agent. The designed reward
structure comprises four components: a. Success Bonus: A significant sparse reward of 1,000 is
awarded. b. Distance Reward: A dense reward to incentivize the achievement of the task objective.
It is computed as 10× ∆s

∆t , where ∆s represents the change in distance from the agent to the target.
c. Control Cost: This penalty discourages agents from executing excessively large actions, and
is calculated as −0.01 ×

∑√
ai. d. Survive Reward: For each step taken, the agent receives a

survival reward of 1. Thus, the reward is equal to the sum of the aforementioned rewards.

Ants Sumo: For Ants Sumo task, we design the reward structure. The designed reward structure
comprises seven components: a. Win Bonus: A sparse reward of 2000 for achieving the win
condition. b. Lose Bonus: A sparse penalty of -2000 for the losing condition. c. Draw Bonus: A
sparse penalty of -1000 for the draw condition. This penalty is meant to encourage confrontation.
d. Control Cost: This penalty discourages agents from executing excessively large actions, and
is calculated as −0.1 ×

∑√
ai. e. Push Opponent Reward: This motivates agents to push the

opponent, calculated as−10×exp(−||p⃗opp||), where p⃗opp represents the position of the opponent. f.
Move Reward: This motivates agents to move closer to the opponent, calculated as 10×max(∆p⃗ ·
p⃗opp−p⃗

||p⃗opp−p⃗|| , 0), where ∆p⃗ represents the displacement of the agent from the current time step. g.
Survive Reward: For each step taken, the agent receives a survival reward of 2. Thus, the reward
is equal to the sum of the aforementioned rewards.

E.2 BASELINE METHODS

Ant Navigation: In the navigation task, we use Ant agent for experimentation. The agent we
improve by using EquiEvo method is named EquiEvoAnt, which integrates both subequivariance
and morphology evolution mechanism. To conduct a comprehensive comparison, we define the
following three baseline methods: EquiAnt: This baseline method maintains subequivariance but
removes the morphology evolution component. EvoAnt: This baseline method includes morphology
evolution but does not integrate subequivariance. Ant: This is the most basic baseline method,
lacking both subequivariance and morphology evolution component.

Humanoid Navigation: In the navigation task, we also introduce Humanoid agent for experimenta-
tion, while we omit structure transform stage during evolution. After applying the EquiEvo method,
we name the agent EquiEvoHumanoid. To conduct a comprehensive comparison, we define the
following three baseline methods: EquiHumanoid: This baseline method maintains subequivariance
but removes the morphology evolution component. EvoHumanoid: This baseline method includes
morphology evolution but does not integrate subequivariance. Humanoid: This is the most basic
baseline method, lacking both subequivariance and morphology evolution capabilities. In this task,
we skip structure transform stage.

Ants Sumo: In the sumo task, we still use the Ant agent for experimentation. We adopt the EquiEvo
method and omit the structure transform stage during evolution, naming it EquiEvoAnt, which in-
tegrates both subequivariant networks and morphology evolution mechanisms. To conduct a com-
prehensive comparison, we define the following three baseline methods: EquiAnt: This baseline
method maintains subequivariance but removes the morphology evolution component. EvoAnt:
This baseline method includes morphology evolution but does not integrate subequivariance. Ant:
This is the most basic baseline method, lacking both subequivariance and morphology evolution
capabilities. In this task, we skip structure transform stage.

E.3 ANALYSIS OF MORPHOLOGY-BEHAVIOR MAPPING

We conduct experiments on the Ant Navigation task to analyze the impact of Morphology-Behavior
Mapping, particularly focusing on the role of JSMLP, which was proposed in Transform2Act (Yuan
et al., 2022) to differentiate joint actions. While JSMLP introduces body-specific characteristics,
enhancing effectiveness in some contexts, it reduces the generality of the morphology-behavior
mapping and impedes reusability in tasks with symmetric structures. To validate this, we ablate
four variants: Evo w. JSMLP (baseline with JSMLP), Evo w.o. JSMLP (baseline without JSMLP),
EquivEvo w.o. JSMLP (our method without JSMLP), and EquivEvo w. JSMLP (our method with
JSMLP). As shown in Figure 12, the removal of the JSMLP module improves performance, with
EquivEvo w.o. JSMLP outperforming all variants. This indicates that eliminating JSMLP enhances
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Figure 12: Analyses of Morphology-Behavior.

adaptability and learning by maintaining the generality of the morphology-behavior mapping, allow-
ing better exploitation of task symmetry. Consequently, simplifying the model by omitting JSMLP
within the EquivEvo framework facilitates more efficient navigation in symmetric tasks.

E.4 DISCUSSION ON STRUCTURAL EVOLUTION

Structural evolution is a promising yet challenging direction in morphology-behavior co-
optimization. In this subsection, we provide a detailed discussion of our decisions, experimental
findings, and future directions regarding structural evolution.

Evolving from Scratch and Predefined Morphology Structures. For the Ant Navigation task,
we chose to evolve morphology skeletons from scratch, starting from the “atomic morphology”
shown in Figure 1. This setup represents the most challenging scenario in co-evolution, allowing us
to demonstrate the effectiveness of our method while avoiding biases introduced by predefined mor-
phologies. In contrast, the Ants Sumo and Humanoid Navigation tasks use predefined morphology
structures, where only attribute development is allowed. This decision are driven by the challenge
of defining clear boundaries for structural transformations across different starting morphologies,
particularly for complex predefined morphology structures.

Figure 13: EvoAnts Sumo.

Challenges of Structual Evolution. Structural evolution is inher-
ently complex and remains underexplored. Several key issues must
be addressed, such as how many body parts can grow from a torso
node, how many can branch from each node, which nodes require
constraints, the maximum structural depth, and the corresponding
attribute transformations. Without carefully designed constraints,
the search space grows exponentially, making optimization ineffi-
cient and unstable.

Structual Evolution for Ants Sumo. In the EvoAnts Sumo task
(see Figure 13), structural evolution can lead to uncoordinated de-
velopment of multiple body parts, resulting in excessive forces that cause the agent to fling itself
out of the arena. This instability prevents meaningful results, which is why we only included the
outcomes of attribute evolution for this task.

Structural Evolution for Humanoids. Training humanoids is significantly more challenging
compared to simpler morphologies like the ant. Achieving stable behavior in attribute evolution
already requires extensive training and computational resources. Adding structural evolution to
the mix would drastically increase complexity, demanding even longer training times and greater
computational resources. Given our current computational limitations, we are unable to conduct ex-
periments involving structural evolution for humanoids. Nonetheless, we acknowledge the potential
value of this research direction and will pursue it in future work.
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The Complexity of 3D Structural Evolution. Incorporating structural evolution into 3D tasks is
exceptionally challenging. The interplay between the dimensionality of the environment, task, and
action space—including morphology structure, attributes, and behaviors—creates a compounded
effect that leads to an exponential explosion in the optimization search space. Furthermore, such a
problem setup has not been systematically explored before. Prior work has typically focused on 2D
spaces (Ha, 2019), 3D spaces with 2D structural tasks (Yuan et al., 2022; Gupta et al., 2021; Dong
et al., 2023), tasks that do not incorporate structural evolution (Huang et al., 2024), or have imposed
rigid constraints on morphology, such as bilateral symmetry (Dong et al., 2023), limiting the natural
development of morphology through interaction with the environment.

Our work represents a crucial step forward by leveraging geometric symmetries to reduce this com-
plexity. We believe our method lays the foundation for exploring this valuable and fascinating prob-
lem setup. While our current results are a small step, they highlight the necessity and significance
of addressing these challenges to advance the field further.

Future Directions. The limitations and insights gained from our experiments point to several ex-
citing future directions. These include extending structural evolution to more complex morphologies
like humanoids, refining structural constraints to balance exploration and optimization, and system-
atically investigating the role of geometric symmetries in 3D structural tasks. By continuing to
explore these directions, we aim to address the challenges of structural evolution and unlock its full
potential for embodied intelligence and robotic design.

Table 2: Hyperparameter Settings for EquiEvo

Hyperparameter Setting

Number of structural transformations Ns 5
Number of attribute transformations Na 1
Number of control executions Ne 1,000
Topological graph neural network layer type GraphConv
Geometric graph neural network layer type SubequivariantMP
Topological graph neural network size
(structural transformation phase) (64, 64, 64)
Topological graph neural network size
(attribute transformation phase) (64, 64, 64)
Geometric graph neural network vector size
(geometric subgroup equivariant transformation phase) (16, 16, 16)
Geometric graph neural network scalar feature size
(geometric subgroup equivariant transformation phase) (32, 32, 32)
Topological graph neural network size
(control execution phase) (64, 64, 64)
Policy learning rate 5e-5
Value estimation graph neural network size (64, 64, 64)
Value estimation MLP size (512, 256)
Value learning rate 3e-4
PPO clipping ϵ 0.2
PPO batch size 50000
PPO mini-batch size 2048
PPO iterations per batch 10
Training epochs 1000
Discount factor γ 0.995
GAE λ 0.95
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Algorithm 1 EquiEvo

1: Initialize policy πθ and value Vϕ {including topological graph neural networks φs
θ, φa

θ, φb
θ , φϕ,

and subequivariant graph neural network φg
θ}

2: while not reached maximum iteration do
3: Initialize memory M← ∅
4: while M not reached batch size do
5: Gm ← initial morphology topology graph

{Structure Transform Stage}
6: for t = 0, 1, . . . , Ns − 1 do
7: Sample structure transform action ast ∼ φs

θ(Gm)
8: Φ← Structure
9: Gm ← apply as to modify Gm’s morphology structure (V, E)

10: r ← 0; Store (r,as,Gm,Φ) to M
11: end for

{Attribute Transform Stage}
12: for t = Ns, . . . , Ns +Na − 1 do
13: Sample attribute transform action aa ∼ φa

θ(Gm)
14: Φ← Attribute
15: Gm ← apply aa to modify Gm’s bone joint attributes Hm

16: r ← 0; Store (r,aa,Gm,Φ) to M
17: end for

{Behavior Control Stage}
18: G⃗g⃗,Ns+Na

← initial morphology subequivariant graph
19: for t = Ns +Na, . . . , Ns +Na +Ne − 1 do
20: v⃗t ← φg

θ(G⃗g⃗) {LRF Canonicalization}
21: Use the calculated LRF transformation vector u⃗, v⃗ to predict a local reference frame and

project the morphology subequivariant graph G⃗g⃗ to the geometry-invariant representa-
tion Gg⃗

22: Sample motor control action ab ∼ φb
θ(Gg⃗)

23: Φ← Execution
24: Gg⃗ ← environment dynamics P b(Gg⃗|Gg⃗,ab)

25: r ← environment reward; Store (r,ab,Gg⃗,Φ) to M
26: end for
27: end while{Policy Network Update}
28: Update policy πθ and value Vϕ using PPO algorithm based on samples in M
29: end while
30: return πθ
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