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Abstract

Online Continual Learning (OCL) requires models to learn sequentially from
data streams with limited memory. Rehearsal-based methods, particularly Expe-
rience Replay (ER), are commonly used in OCL scenarios. This paper revisits ER
through the lens of ϵ-constraint optimization, revealing that ER implicitly employs
a soft constraint on past task performance, with its weighting parameter post-hoc
defining a slack variable. While effective, ER’s implicit and fixed slack strategy
has limitations: it can inadvertently lead to updates that negatively impact gener-
alization, and its fixed trade-off between plasticity and stability may not optimally
balance current streaming with memory retention, potentially overfitting to the
memory buffer. To address these shortcomings, we propose the Gradient-Guided
Epsilon Constraint (GEC) method for online continual learning. GEC explic-
itly formulates the OCL update as an ϵ-constraint optimization problem, which
minimize the loss on the current task data and transform the stability objective
as constraints and propose a gradient-guided method to dynamically adjusts the
update direction based on whether the performance on memory samples violates a
predefined slack tolerance ε̄: if forgetting exceeds this tolerance, GEC prioritizes
constraint satisfaction; otherwise, it focuses on the current task while control-
ling the rate of increase in memory loss. Empirical evaluations on standard OCL
benchmarks demonstrate GEC’s ability to achieve a superior trade-off, leading to
improved overall performance.

1 Introduction

Continual Learning (CL) aims to develop systems that can learn sequentially from a stream of tasks,
a critical capability for real-world applications where data evolves [De Lange et al., 2021]. On-
line Continual Learning (OCL) presents a particularly challenging scenario where data arrives in
small batches, is typically processed in a single pass, and memory for past experiences is strictly
limited [Mai et al., 2022, Lopez-Paz and Ranzato, 2017]. The central challenge in OCL is catas-
trophic forgetting [McCloskey and Cohen, 1989, French, 1999], where learning new tasks causes a
severe degradation of performance on previously learned ones. This has been a focal point of recent
research [De Lange et al., 2021, Mai et al., 2022].

Among the various strategies proposed to mitigate forgetting, rehearsal-based methods, which store
and replay a small subset of past data,have proven to be particularly effective in the OCL[Rebuffi
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et al., 2017, Rolnick et al., 2019]. Experience Replay (ER), in its basic form, combines the loss
on current data with a weighted loss on replayed memory samples. The potential for overfitting to
the limited memory buffer has motivated constraint-based replay methods like Gradient Episodic
Memory (GEM) [Lopez-Paz and Ranzato, 2017] and Averaged GEM (A-GEM) [Chaudhry et al.,
2018]. These methods use memory samples primarily to constrain the gradient direction of the
current task, aiming to prevent an increase in loss on past tasks. However, there is substantial
empirical evidence [Zhang et al., 2022] suggesting that rehearsal-based methods like ER, which train
directly on memory samples, consistently outperform methods that only use memory for gradient
constraints.

In this paper, we investigate the underlying reasons for ER’s strong empirical performance by revis-
iting it from the perspective of ϵ-constraint optimization [Miettinen, 1999] (Section 3). We posit that
ER implicitly solves an ϵ-constraint optimization problem, where the constraint on past task perfor-
mance is soft and the weighting parameter λ for memory samples implicitly defines a slackness. In
contrast, methods like GEM and A-GEM enforce hard constraints (near-zero slack). While ER’s
implicit soft constraints contribute to its success, the fixed nature of λ and the post-hoc, implicit
definition of this slack present challenges. Considering the optimization-generalization gap in OCL
[Ye and Bors, 2022], it becomes crucial to understand how slack strategies affect the model’s test
performance.

Our empirical analysis (Section 4) further explores this relationship. We find that ER’s approach,
which allows for some beneficial conflicts with memory task gradients, can lead to better gener-
alization than strictly adhering to memory constraints. Specifically, mild violations of memory
constraints do not always lead to poorer test performance. However, ER is not without its flaws.
Firstly, its implicit, post-hoc constraint mechanism means the optimization process can still venture
into regions that yield negative generalization gains. Secondly, even when memory constraints are
satisfied, a fixed λ can suboptimally manage the plasticity-stability trade-off, potentially leading to
overfitting on the memory buffer by excessively minimizing memory loss.

Motivated by these insights, we propose the Gradient-Guided Epsilon Constraint (GEC) method
(Section 5). GEC explicitly adopts a dynamic gradient-based ϵ-constraint optimization approach. At
each learning step, GEC formulates the update as a quadratic program. The core idea is to: (1) When
the constraint on past task forgetting (defined by a permissible slack ε̄) is violated, GEC prioritizes
satisfying this constraint. (2) When the constraint is satisfied, GEC focuses on optimizing the current
task and controls the rate at which the memory constraint can be relaxed (i.e., memory loss can
increase), preventing overfitting to the memory buffer and preserving generalization capacity. The
adjustment mechanism allows GEC to effectively navigate the trade-offs inherent in OCL.

The main contributions of this paper are:

• New perspective: We revisit Experience Replay from an ϵ-constraint optimization view-
point, highlighting its implicit soft constraint nature and the role of its weighting parameter
as a post-hoc slack definition. We also provide empirical evidence suggesting why ER often
outperforms hard constraint-based methods, pointing to the benefits of allowing constraint
violations and leveraging positive transfer from memory.

• Effective algorithm: By identifying key limitations of ER’s fixed and implicit constraint
strategy, we introduce the Gradient-Guided Epsilon Constraint (GEC) method, a novel
OCL algorithm that explicitly enforces and dynamically adjusts forgetting constraints using
gradient information, addressing key limitations of ER’s fixed and implicit strategy.

• Compelling empirical results: We provide theoretical justification for GEC, analyzing its
update dynamics and convergence tendencies within the constrained optimization frame-
work. Comprehensive experiments on standard OCL benchmarks demonstrate that GEC
achieves a superior balance in online continual learning, outperforming existing state-of-
the-art methods.

2 Preliminary

The ϵ-constraint method [Miettinen, 1999] is a widely used technique for finding Pareto optimal
solutions in multi-objective optimization (MOO) [Chankong and Haimes, 2008]. The core idea of
the ϵ-constraint method is to convert a MOO problem into a series of single-objective problems.

2



This is achieved by selecting one of the objective functions to be minimized (or maximized) while
transforming the other objective functions into inequality constraints. Specifically, for a problem
with K objective functions f1(x), f2(x), . . . , fK(x) to be minimized, the ϵ-constraint formulation
for optimizing fs(x) (the s-th objective) is:

min
x

fs(x)

s.t. fj(x) ≤ ϵj , ∀j ∈ {1, . . . ,K}, j ̸= s
(1)

where x is the vector of decision variables and ϵj are predefined upper bounds (tolerances) for the
constrained objectives fj(x). By systematically varying the values of ϵj , one can generate different
pareto optimal solutions [Gunantara, 2018].

In CL, where a model must learn new information while preserving previously acquired knowledge,
the objectives of minimizing current task loss and minimizing forgetting of past tasks are often in
conflict. The ϵ-constraint framework provides a natural way to formulate and manage this trade-off,
as will be explored in subsequent sections. In this paper, objective function of plasticity is selected
to be optimized while stability is converted into constraints by setting an upper bound.

3 Revisiting ER from ϵ-Constraint Perspective

3.1 Problem Setup

We consider an OCL setting where a model f(X; θ) learns from a sequence of tasks
{(X1, Y1), . . . , (XT , YT )}. ℓt(f(Xt; θ), Yt) is the loss for task t. At step k (processing a mini-batch
from the current task t), the model has access to a limited memory buffer M containing samples
{(Xm, Ym)}m<t from past tasks. The goal is to learn the current task while mitigating forgetting of
past tasks. We denote the parameters before the current update as θk−1 and after the update as θk.

3.2 Continual Learning as ϵ-Constraint Optimization

As suggested in [Aljundi, 2019], CL can be viewed as attempts to solve a ϵ-constrained optimization
problem. The primary objective is to minimize the loss on the current task data, ℓc(θ), subject to
constraints on the performance degradation of previous tasks, typically measured on samples from
the memory buffer M . This can be formulated as:

min
θ

ℓc(f(Xc; θ), Yc) s.t. ∆ℓm(θ) ≤ εm(k), ∀m ∈Ms (2)

where Ms could represent individual past tasks or an aggregate. ∆ℓm(θ) = ℓm(f(Xm; θ), Ym) −
ℓm(f(Xm; θk−1), Ym) is the change in loss for a past task m (or memory sample / average memory
loss) relative to its loss before the current update step k. εm(k) is the permissible slack for past task
m at step k.

Methods like GEM [Lopez-Paz and Ranzato, 2017] and A-GEM [Chaudhry et al., 2018] explicitly
enforce such constraints, typically aiming for εm(k) ≈ 0 (non-increasing past task loss). For A-
GEM, this is often a single constraint on the average memory loss:

min
θ

ℓc(f(Xc; θ), Yc) s.t. ℓ̄M (f(XM ; θ), YM )− ℓ̄M (f(XM ; θk−1), YM ) ≤ 0 (3)

where ℓ̄M is the average loss over samples in memory M . Compared with hard constraint of GEM
and A-GEM. ER optimizes a composite loss:

min
θ

(
ℓc(f(Xc; θ), Yc) + λℓ̄M (f(XM ; θ), YM )

)
(4)

where λ > 0. Next we will show that ER also implicitly solves an ϵ-constraint problem with a soft,
data-dependent slack, where λ plays a crucial role in defining this slack post-hoc.
Proposition 1 (ER as ϵ-Constraint Optimization). Let θ∗ be a solution to the Experience Replay
optimization problem in Eq. (4) using parameters θk−1 as the starting point for the optimization
step. Then, θ∗ is also a solution to the following ϵ-constraint optimization problem:

min
θ

ℓc(f(Xc; θ), Yc) s.t. ℓ̄M (f(XM ; θ), YM )− ℓ̄M (f(XM ; θk−1), YM ) ≤ ε∗M (k) (5)

where the slack can be chosen as ε∗M (k) = ℓ̄M (f(XM ; θ∗), YM ) − ℓ̄M (f(XM ; θk−1), YM ). The
magnitude of this effective slack ε∗M (k) is influenced by λ.
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Figure 1: (a): Each choice of ER’s linear weighting parameter λ for memory samples corresponds
to an implicit slack tolerance ε for the stability constraint. The dashed lines in (a) represent the
iso-objective contours for ER’s scalarized loss, where the optimal solution is found at the tangent
point to the Pareto front; (b): Illustration of a trajectory taken by a fixed weighting strategy like
ER. Such strategies potentially leads to suboptimal paths in the objective space; (c): Depiction of
dynamic update adjustment by the proposed GEC method. (d): Comparison of moving trajectories
in the objective space between ER and GEC.

Proposition 2 (ϵ-Constraint Optimization as ER under Convexity). Suppose the assumptions stated
in Appendix hold, where ℓc(θ) and ℓ̄M (θ) are convex and differentiable. Let θ∗ be a solution to:

min
θ

ℓc(f(Xc; θ), Yc) s.t. ℓ̄M (f(XM ; θ), YM )− ℓ̄M (f(XM ; θk−1), YM ) ≤ εM (k) (6)

There exists a weight λ∗ ≥ 0 such that θ∗ also minimizes ℓc(θ) + λ∗(ℓ̄M (θ) − ℓ̄M (θk−1)). Since
ℓ̄M (θk−1) is constant for the current optimization step, this is equivalent to minimizing ℓc(θ) +
λ∗ℓ̄M (θ) plus a constant.

Detailed proofs for Propositions 1 and 2 are provided in Appendix A.1. To help understanding,
Fig. 1(a) is an intuitive demonstration of the above propositions, which illustrates that ER’s weight-
ing parameter λ implicitly defines a constraint slackness ε∗M (k). This means ER operates with a
flexible, soft constraint. This insight motivates a deeper investigation into how different constraint
strategies (different λ values in ER, or the hard constraint of GEM) influence the model’s general-
ization performance.

4 Empirical Evidence for Beneficial Conflicts

To understand why ER often outperforms hard constraint methods like GEM, we analyze the re-
lationship between gradient updates, memory buffer interactions, and generalization. In OCL, the
update direction g is derived based on the current task and memory samples. The interaction with
memory can be quantified.

Definition 1 (Gradient Cosine Similarity (GCS)). Let g be the gradient vector used for the model
update at step k (i.e., θk = θk−1 − ηg). Let gM = ∇θ ℓ̄M (θk−1) be the gradient of the average loss
on the memory buffer M , evaluated at θk−1. The Gradient Cosine Similarity defined as:

GCS = cos(g, gM ) =
g · gM
∥g∥∥gM∥

. (7)

A smaller (more negative) GCS indicates that the update g is more misaligned with the direction
that would decrease memory loss. The change in memory loss is approximately −η⟨g, gM ⟩ under
locally linear assumption. Thus, a smaller GCS (more negative ⟨g, gM ⟩) implies a larger increase in
memory loss (constraint violation).

Definition 2 (Generalization Gain (GG)). Let θ be the model parameters before an update, and
g be the gradient vector for the update. Let P (ϕ) be a performance measure (e.g., accuracy) on
a held-out test set comprising samples from all encountered tasks. η is the learning rate. The
Generalization Gain is:

GG = P (θ − ηg)− P (θ). (8)
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ER (λ = 0.25) ER (λ = 0.5) ER (λ = 0.75) ER (λ = 1.0) GEM

(a) Seq-CIFAR10 (b) Seq-CIFAR100 (c) Seq-TinyImageNet 

Figure 2: Relationship between GCS and GG for ER and GEM on Seq-CIFAR10, Seq-CIFAR100,
and Seq-TinyImageNet.

By analyzing the relationship between GCS (for different λ in ER, and for GEM) and GG in Fig 2,
we observe the following:

Mild gradient conflicts can be tolerable for generalization.

When the model’s update direction g moderately conflicts with the memory gradient gM (i.e., GCS
is negative, indicating an increase in memory loss), this does not necessarily lead to a decrease in
test set performance. ER, by allowing such conflicts via its soft constraint, can find updates that are
beneficial for generalization even if they slightly worsen the loss on the memory buffer. This sug-
gests that strictly preventing any increase in memory loss (as in GEM) might be too restrictive and
discard potentially useful updates for generalization. This helps explain ER’s empirical advantages
over GEM-like methods. However, ER’s approach is not without drawbacks. We also observe that:

Implicit post-hoc constraints risk negative generalization.
Fixed λ limits increasing rate of generalization gain when gradients align.

Firstly, ER’s constraint is implicit and determined post-hoc by λ. During optimization, the model
can still move into regions that yield significant negative generalization gains (left areas). Secondly,
when the memory constraint is already satisfied (i.e., memory loss is low or decreasing), a fixed λ
in ER continues to allocate a portion of the update to minimizing memory loss. This can lead to
overfitting on the memory buffer, as the actual update direction might be driven to further reduce
memory loss beyond what is necessary for preserving past knowledge. This over-correction can
potentially harm overall generalization by not allowing the model to fully exploit plasticity. And
inappropriate λ leads to a strong negative transfer (See Fig 2(c)).

These limitations motivate a method that can: (1) more explicitly manage the constraint on past
task forgetting to avoid severe negative generalization, and (2) dynamically adjust its focus between
current task learning and memory constraint satisfaction, especially by preventing overfitting to the
memory buffer when constraints are met. This dynamic adjustment, illustrated in Fig. 1(b) and (c),
ensures that when the forgetting constraint is violated, the update prioritizes constraint satisfaction,
and when satisfied, the update focuses on the current task while carefully controlling memory loss
increase to maintain generalization.

5 Gradient-Guided Epsilon Constraint Method (GEC)

To address the identified limitations of ER and to explicitly manage the trade-off in OCL, we propose
the Gradient-Guided Epsilon Constraint (GEC) method. GEC treats OCL as an ϵ-constraint opti-
mization problem, where we aim to minimize the current task loss while ensuring that the increase
in average memory loss does not exceed a predefined slack tolerance ε̄.

Let ℓc(θk) be the loss on the current mini-batch at step k with parameters θk, and ∇ℓc(θk) its
gradient. Let ℓ̄m(θk) be the average loss on samples from the memory buffer M , and ∇ℓ̄m(θk) its
gradient. We define a constraint function h(θk) that measures the extent of forgetting relative to the
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slack ε̄:

h(θk) = ℓ̄m(θk)− ℓ̄m(θk−1)− ε̄ (9)

We desire h(θk) ≤ 0. ℓ̄m(θk−1) is the average memory loss before the current update (i.e., using
parameters θk−1). Similar to [Lopez-Paz and Ranzato, 2017], at each update step k, GEC determines
the update direction vk by solving the following quadratic program (QP):

vk = argmin
v∈Rd

{
1

2
∥∇ℓc(θk)− v∥2

}
s.t. ⟨∇ℓ̄m(θk), v⟩ ≥ ϕh(θk) (10)

The objective of this QP is to find an update direction v that is as close as possible to the current
task’s gradient∇ℓc(θk). The constraint ⟨∇ℓ̄m(θk), v⟩ ≥ ϕh(θk) modulates this update based on the
state of the memory constraint h(θk). The term ϕh(θk) is a dynamic barrier function defined as:

ϕh(θk) = α · h(θk) = α
(
ℓ̄m(θk)− ℓ̄m(θk−1)− ε̄

)
(11)

where α > 0 is a hyperparameter controlling the strength of the barrier.

The behavior of this formulation is as follows:

If h(θk) > 0 (Constraint Violated): ϕh(θk) > 0. The QP constraint ⟨∇ℓ̄m(θk), v⟩ ≥ ϕh(θk)
forces the update vk to have a sufficiently positive projection onto ∇ℓ̄m(θk). Since the parameter
update is θk+1 = θk − ηvk, a positive projection ⟨∇ℓ̄m(θk), vk⟩ aims to decrease ℓ̄m (or slow its
increase significantly), thus working to satisfy h(θk) ≤ 0. The update prioritizes reducing constraint
violation.

If h(θk) ≤ 0 (Constraint Satisfied): ϕh(θk) ≤ 0. The QP constraint ⟨∇ℓ̄m(θk), v⟩ ≥ ϕh(θk)
allows vk to have a negative projection onto ∇ℓ̄m(θk) (up to the point dictated by ϕh(θk)), mean-
ing ℓ̄m is allowed to increase. This permits more aggressive optimization of the current task loss
ℓc(θk). The magnitude of ϕh(θk) controls how much ℓ̄m is allowed to increase, preventing excessive
forgetting or overfitting to the memory buffer by trying to decrease ℓ̄m too much.

The solution to the QP in Eq. (10) is:

vk = ∇ℓc(θk) + λk∇ℓ̄m(θk) (12)

where the coefficient λk is:

λk = max

(
ϕh(θk)− ⟨∇ℓc(θk),∇ℓ̄m(θk)⟩

∥∇ℓ̄m(θk)∥2 + δ
, 0

)
(13)

A small constant δ > 0 is added for numerical stability. The model parameters are then updated:
θk+1 ← θk − ηvk, where η is the learning rate. The full GEC algorithm is detailed in Algorithm 1
in Appendix D.

5.1 Theoretical Properties

The GEC method exhibits desirable convergence characteristics within its constrained optimization
framework. We analyze its behavior using a continuous-time analogue dθ/dt = −v(θ), where
v(θ) is the GEC update direction. Let ℓc(θ) be the current task loss and h(θ) = ℓ̄m(θ) − ε̄ be the
constraint violation measure. The dynamic barrier is ϕh(θ) = αh(θ). The gradients are∇ℓc(θ) and
∇h(θ) = ∇ℓ̄m(θ). The update v(θ) = ∇ℓc(θ) + λ(θ)∇ℓ̄m(θ). Then the properties of GEC are:

Constraint Adherence: When the constraint is violated, i.e., h(θ) > 0, the GEC update actively
works to reduce this violation. The measure of constraint violation [h(θ)]+ = max(h(θ), 0) is non-
increasing. Specifically, in continuous time, d

dt [h(θt)]+ ≤ −[ϕh(θt)]+. Since ϕh(θt) = αh(θt) > 0
when h(θt) > 0, this implies [h(θt)]+ decreases, guiding the model towards satisfying the constraint
h(θt) ≤ 0.

Objective Minimization under Satisfied Constraints: When the constraint is satisfied, i.e.,
h(θ) ≤ 0, GEC prioritizes minimizing the current task loss ℓc(θ). The current task loss ℓc(θ) is
non-increasing: d

dtℓc(θt) ≤ −∥v(θt)∥
2 − λ(θt)[−ϕh(θt)]+ ≤ 0. This allows the model to focus on

learning the new task while the dynamic barrier ensures that h(θ) does not grow uncontrollably.

These properties suggest that GEC offers a principled way to dynamically balance learning new
information and preserving past knowledge by adaptively managing the ϵ-constraint based on the
observed forgetting and the slack tolerance ε̄.
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Table 1: Performance comparison (AAA and Acc) with baseline methods on Seq-CIFAR10, Seq-
CIFAR100, and Seq-TinyImageNet using Reduced ResNet-18. Results are averaged over 5 runs.

Method
Seq-CIFAR10 (N=5) Seq-CIFAR100 (N=20) Seq-TinyImageNet (N=20)

|M| = 0.6k |M| = 1k |M| = 1k |M| = 5k |M| = 2k |M| = 5k

AAA Acc AAA Acc AAA Acc AAA Acc AAA Acc AAA Acc

SGD 34.04 16.68 34.04 16.68 9.67 3.24 9.67 3.24 7.63 2.17 7.63 2.17
ER 54.68 39.43 54.91 42.04 17.86 11.89 20.67 14.87 16.27 10.52 16.10 11.89
Refresh CL 62.34 51.42 65.81 55.57 24.32 17.64 35.61 32.33 18.59 12.83 22.68 18.72
DER 49.06 25.80 48.25 23.90 10.96 3.71 10.47 3.68 8.04 2.46 7.65 2.04
DER++ 57.17 47.03 61.01 50.31 17.30 8.72 17.08 8.98 12.42 5.57 11.93 5.26
CLSER 61.64 50.36 63.27 53.06 22.58 15.68 23.25 16.42 18.50 10.03 18.88 11.61

CBA 63.41 51.47 65.47 52.08 22.46 15.54 23.07 15.87 18.79 11.43 18.98 10.98
POCL 63.62 53.42 66.23 58.50 26.68 16.54 36.34 33.36 21.56 12.69 25.48 19.40

EWC 36.51 18.37 36.51 18.37 9.87 2.77 9.87 2.77 7.96 2.43 7.96 2.43
GEM 37.78 18.84 37.00 18.73 13.43 6.04 13.71 6.46 10.17 3.70 10.27 3.81
A-GEM 37.67 18.51 37.62 18.03 10.61 3.75 10.80 3.52 7.66 2.33 7.79 2.40
GEC(Ours) 65.21 54.08 69.42 59.12 29.63 17.78 38.11 34.22 22.45 12.77 27.66 20.25

6 Experiments

6.1 Experiment Setup

Datasets Following [Buzzega et al., 2020, Arani et al., 2022, Lai et al., 2025], we evaluate our
method on three commonly used benchmarks for online continual learning: Sequential CIFAR-10
(Seq-CIFAR10), Sequential CIFAR-100 (Seq-CIFAR100) [Krizhevsky et al., 2009], and Sequen-
tial TinyImageNet (Seq-TinyImageNet) [Buzzega et al., 2020]. For Seq-CIFAR10, the dataset is
split into 5 tasks, each containing 2 classes. We test with memory buffer sizes (|M|) of 0.6k and 1k
samples. For Seq-CIFAR100, the dataset is split into 20 tasks, each with 5 classes, using memory
buffer sizes of 1k and 5k samples. Seq-TinyImageNet is split into 20 tasks (10 classes per task),
with memory buffer sizes of 2k and 5k.

Evaluation Metrics. To comprehensively evaluate performance, let ai,j denote the accuracy of the
model on task i after training sequentially up to task j. Let T be the total number of tasks. We use
the following standard metrics [Soutif-Cormerais et al., 2023]: Average Anytime Accuracy (AAA)
measures the average performance over the learning process: AAA = 1

T

∑T
j=1(

1
j

∑j
i=1 ai,j). Av-

erage Accuracy (Acc) is average accuracy after training T tasks: Acc = 1
T

∑T
i=1 ai,T . Forgetting

Measure (FM) quantifies how much the model forgets past tasks: FM = 1
T−1

∑T−1
i=1 (ai,T −amax

i,i ),
where amax

i,i is the peak accuracy on task i observed after training on task i. A less negative FM
indicates less forgetting.

To further dissect the learning dynamics, particularly for visualizing the trade-off managed by GEC,
we decompose the performance into: Plasticity (Acc-P): The model’s ability to learn the current
task, measured as P = 1

T

∑T
k=1 ak,k. Stability (Acc-S): The model’s ability to retain knowledge of

past tasks, measured as S = 1
T−1

∑T−1
k=1 (aT,k − ak,k).

Implementation Details. Consistent with [Chrysakis and Moens, 2023], we use the Reduced
ResNet-18 [He et al., 2016] as the backbone network for all experiments. Models are trained using
Stochastic Gradient Descent (SGD) with a batch size of 32. All experiments are conducted in the
online class-incremental learning setting, where each task is trained for a single epoch, and task
identity is not available during inference. All reported results are averaged over 5 independent runs.
Further details on the experimental setup and baseline methods can be found in Appendix E.

Baseline Methods. We compare GEC with a comprehensive set of baseline methods, including:
Simple SGD, ER [Rolnick et al., 2019], regularization-based methods like Elastic Weight Consoli-
dation (EWC) [Huszár, 2018], gradient projection methods like Gradient Episodic Memory (GEM)
[Lopez-Paz and Ranzato, 2017] and Averaged GEM (A-GEM) [Chaudhry et al., 2018], and more
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Table 2: Forgetting Measure (FM) comparison with baseline methods on Seq-CIFAR10, Seq-
CIFAR100, and Seq-TinyImageNet using Reduced ResNet-18. Results are averaged over 5 runs.

Method Seq-CIFAR10 (N=5) Seq-CIFAR100 (N=20) Seq-TinyImageNet (N=20)

|M| = 0.6k |M| = 1k |M| = 1k |M| = 5k |M| = 2k |M| = 5k

SGD -61.01±3.30 -61.01±3.30 -54.24±1.20 -54.24±1.20 -43.58±0.58 -43.58±0.58

ER -35.68±3.20 -32.16±5.10 -46.25±0.47 -48.54±1.10 -37.90±0.28 -37.43±0.81

Refresh CL -25.11±1.34 -19.63±0.89 -39.83±1.05 -20.34±2.120 -36.63±1.09 -25.13±1.27

DER -54.60±2.80 -55.22±1.70 -60.58±0.38 -59.94±1.40 -47.11±0.65 -46.27±0.85

DER++ -24.00±1.30 -28.01±1.31 -58.61±0.60 -61.23±0.19 -47.13±2.00 -47.65±0.76

CLSER -29.03±3.70 -31.38±1.70 -45.63±0.62 -50.71±0.86 -44.45±0.32 -44.21±0.14

CBA -27.15±4.70 -27.31±3.70 -44.30±1.53 -50.16±2.76 -38.17±1.56 -40.53±1.34

POCL -23.27±2.50 -16.85±2.80 -37.61±0.63 -17.55±0.36 -31.63±1.60 -20.22±1.20

EWC -64.21±0.86 -64.21±0.86 -56.55±1.30 -56.55±1.30 -44.30±1.70 -44.30±1.70

GEM -58.09±3.90 -57.64±2.70 -45.83±0.69 -50.61±1.90 -42.30±0.11 -42.71±0.03

A-GEM -66.17±1.61 -66.61±1.60 -60.51±0.34 -60.89±0.37 -45.61±0.04 -45.51±0.27

GEC(Ours) -21.52±2.21 -15.69±1.62 -34.49±0.89 -15.12±1.07 -30.13±1.43 -19.54±1.89

advanced rehearsal-based methods such as Dark Experience Replay (DER) [Buzzega et al., 2020],
DER with logits (DER++) [Buzzega et al., 2020], CLSER [Arani et al., 2022], CBA [Wang et al.,
2023], Refresh-CL [Wang et al., 2024], and Pareto Optimized Continual Learning (POCL) [Wu
et al., 2024] . For some of the baseline experimental results, we followed the reported results from
[Wu et al., 2024]. Detailed descriptions of these baselines are provided in Appendix E.

6.2 Experimental Results

To assess the effectiveness of GEC, we perform a comprehensive set of experiments and conduct
ablation studies to address the following key questions:

Question 1: How does GEC perform on OCL benchmarks? Table 1 presents the AAA and
Acc on Seq-CIFAR10, Seq-CIFAR100, and Seq-TinyImageNet. The methods in the bottom row are
the methods that utilize hard and explicit constraints while the middle and top row are the meth-
ods of representative OCL and CL methods, respectively. Our proposed GEC method consistently
demonstrates strong performance across all datasets and memory buffer configurations. Notably,
GEC surpasses other baseline methods, including strong rehearsal-based techniques CLSER and
those designed for specific aspects of online continual learning. This suggests that GEC’s dynamic
constraint manA-GEMent effectively balances learning new tasks and preserving old knowledge. It
is noteworthy that on Seq-CIFAR100 and Seq-TinyImageNet, GEC achieves a significant improve-
ment in AAA compared to most baselines, highlighting its efficacy in more challenging, longer task
sequences.

Question 2: How effective is GEC in preventing catastrophic forgetting? Table 2 shows the
Forgetting Measure (FM). A higher FM (less negative) indicates less forgetting. GEC demonstrates
superior forgetting mitigation compared to many baselines. This underscores GEC’s ability to pre-
serve learned knowledge by explicitly constraining the increase in memory loss when forgetting
exceeds the tolerance ε̄. The superior performance of GEC across these diverse settings on FM val-
idates our hypothesis that explicitly and dynamically managing the epsilon-constraint on memory
loss leads to a more robust and effective OCL strategy. The careful control over constraint relaxation
when performance is within tolerance also prevents overfitting to the buffer, which can indirectly aid
in better long-term retention.

Question 3: How does the adaptive weighting strategy affect stability-plasticity dynamics?
To further investigate how GEC balances learning new information (plasticity) and retaining past
knowledge (stability), we plot the dynamics of Acc-P and Acc-S during the training process on Seq-
CIFAR100 and Seq-TinyImageNet, comparing GEC with ER (Figure 3). GEC demonstrates a more
favorable trajectory in the stability-plasticity space. In the training of the first few tasks when mem-
ory constraints are violated (not shown directly, but implied by potential drops in stability for ER),
GEC’s mechanism to prioritize constraint satisfaction helps maintain better stability (higher Acc-S)
without unduly sacrificing plasticity (Acc-P on the current task). In the later stages of training, when
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Figure 3: Dynamics of Plasticity (Acc-P) and Stability (Acc-S) for GEC and ER on Seq-CIFAR10
and Seq-TinyImageNet with |M| = 1k.

the model stability remains stable, GEC’s focus on plasticity, while controlling the increase rate of
memory loss, allows it to achieve competitive (Seq-CIFAR100) or superior (Seq-TinyImageNet)
plasticity compared to ER, which might overfit to the buffer. This dynamic adjustment contributes
to GEC’s overall better performance.

Question 4: How does the slack tolerance navigates stability-plasticity pareto front? Our GEC
method, by design, allows for exploring different trade-offs between current task learning and past
task retention through the slack tolerance parameter ε̄. Figure 4 qualitatively illustrates how vary-
ing ε̄ can allow GEC to trace out a pareto front in Seq-CIFAR10 with |M|=1k , where each point
represents a different balance. A smaller ε̄ would correspond to a stricter constraint on forgetting,
potentially leading to higher stability at the cost of plasticity, while a larger ε̄ allows for more flex-
ibility. This controllability can successfully provide a set of well-representative Pareto solutions.
Additionally, GEC’s solutions dominate all ER solutions.

Question 5: How does GEC algorithm efficiency compare to other OCL algorithms? Balanc-
ing computational cost and performance is a practical challenge in continual learning, particularly
in online settings [Verwimp et al., 2023]. We analyze the time complexity of GEC by comparing its
training time with other representative OCL methods on the Seq-CIFAR10 dataset, as shown in Ta-
ble. While GEC introduces additional computational steps compared to the simpler ER, it achieves
this superior performance with significantly less overhead than other recent advanced methods like
POCL and CBA, highlighting a favorable trade-off between performance and efficiency.

Table 3: Training time comparison of different OCL
Methods on Seq-CIFAR10.

Method Time (s) AAA Acc FM

ER 86.31 54.91 42.02 -32.16
POCL 474.31 66.23 58.50 -16.85
CBA 274.31 65.47 52.08 -27.31
GEC(Ours) 147.62 69.42 59.12 -15.69

Figure 4: Pareto front achievable
by GEC (Red) and ER (Blue).

7 Related Work

Our work is situated within the extensive body of research on Continual Learning, particularly fo-
cusing on rehearsal-based strategies for OCL setting. CL methods are broadly categorized into
regularization-based, architecture-based, and rehearsal-based approaches [De Lange et al., 2021].
Regularization methods like EWC [Kirkpatrick et al., 2017] and SI [Zenke et al., 2017] penalize
changes to important parameters but can be overly conservative.

Rehearsal-based methods, which are highly relevant to our work, maintain a small memory buffer
of past examples. The foundational method, ER [Rolnick et al., 2019], co-trains on current and
past data, and our work provides a novel ϵ-constraint interpretation of its mechanism. Constraint-
based methods like GEM [Lopez-Paz and Ranzato, 2017] and A-GEM [Chaudhry et al., 2018] use
the buffer to project gradients, enforcing a hard constraint against increasing past task loss. In
contrast, GEC proposes a dynamic, soft-constraint approach, offering a more flexible balance. More
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recent OCL methods like POCL [Wu et al., 2024] and CBA [Wang et al., 2023] also tackle the
stability-plasticity trade-off, with POCL employing multi-objective optimization perspectives. GEC
contributes to this line of work by offering a principled and efficient gradient-guided mechanism
rooted in ϵ-constraint optimization. A more comprehensive review of related literature is available
in Appendix B.

8 Conclusion

This paper revisited Experience Replay (ER) in Online Continual Learning (OCL) from an ϵ-
constraint optimization perspective, highlighting limitations of its implicit and fixed slack strategy.
We introduced the Gradient-Guided Epsilon Constraint (GEC) method, which explicitly formulates
OCL updates as a dynamically adjusted ϵ-constraint problem solved via a quadratic program. GEC
modulates gradient updates based on a predefined slack tolerance ε̄, prioritizing constraint satisfac-
tion when forgetting is high and focusing on current task learning while controlling memory loss
otherwise, thereby mitigating catastrophic forgetting and preventing memory overfitting. Compre-
hensive experiments on standard OCL benchmarks substantiated GEC’s superiority in achieving a
better stability-plasticity trade-off and outperforming state-of-the-art methods.
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In this appendix, we mainly provide:

• Section A.1 and A.2 (Theoretical Analysis): Detailed proofs for the propositions regard-
ing the ϵ-constraint perspective of ER and the theoretical properties of the GEC method.

• Section B (Detailed Related Works): A review of existing literature in Continual Learn-
ing, Online Continual Learning, and relevant Multi-Objective Optimization methods.

• Section C (Additional Results): Supplementary experimental results.
• Section D (Algorithm Details): A pseudo-code implementation of the GEC algorithm.
• Section E (Experimental Setup Details): A comprehensive description of the datasets,

implementation specifics, and baseline methods used in the empirical evaluation.
• Section F (Limitations): A discussion on limitations of the proposed GEC method.
• Section G (Broader Impact): A consideration of the potential broader impact and societal

implications of this research in Online Continual Learning.

A Theoretical Analysis

Notation Throughout this appendix, we use the following notation: vectors are denoted by lower-
case bold letters (e.g., x ∈ Rn), matrices by uppercase bold letters (e.g., X ∈ Rn×d), and functions
by bold letters when they are vector-valued (e.g., f : Rn → Rk). Scalars are denoted by regular
letters. The transpose of a vector or matrix is denoted by (·)⊤.

A.1 Proofs of Propositions

Proof of Proposition 1. Let θ∗ be a solution to the Experience Replay (ER) optimization problem
given by Eq. (4):

min
θ

(
ℓc(f(Xc; θ), Yc) + λℓ̄M (f(XM ; θ), YM )

)
where λ > 0. This means for any θ:

ℓc(f(Xc; θ
∗), Yc) + λℓ̄M (f(XM ; θ∗), YM ) ≤ ℓc(f(Xc; θ), Yc) + λℓ̄M (f(XM ; θ), YM ) (14)

Let f1(θ) = ℓc(f(Xc; θ), Yc) and f2(θ) = ℓ̄M (f(XM ; θ), YM ). The ER objective is to minimize
f1(θ) + λf2(θ).

We want to show that θ∗ is also a solution to the following ϵ-constraint problem as defined in Eq. (5):

min
θ

f1(θ) (15)

s.t. f2(θ)− f2(θk−1) ≤ ε∗M (k)

where the slack is chosen as ε∗M (k) = f2(θ
∗)− f2(θk−1). The constraint can be written as f2(θ) ≤

f2(θ
∗).

Assume, for the sake of contradiction, that θ∗ is not a solution to this ϵ-constraint problem. Then,
there must exist some θ̂ such that:

f1(θ̂) < f1(θ
∗) (16)

f2(θ̂)− f2(θk−1) ≤ ε∗M (k)

Now, consider the ER objective function for θ̂:

f1(θ̂) + λf2(θ̂) < f1(θ
∗) + λf2(θ̂) (17)

≤ f1(θ
∗) + λf2(θ

∗)

This implies f1(θ̂) + λf2(θ̂) < f1(θ
∗) + λf2(θ

∗), which contradicts the assumption that θ∗ is a
solution to the ER optimization problem (Eq. (14)). Therefore, θ∗ must be a solution to the specified
ϵ-constraint problem with ε∗M (k) = ℓ̄M (f(XM ; θ∗), YM )− ℓ̄M (f(XM ; θk−1), YM ).

Assumptions for Proposition 2:
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1. The loss function for the current task, ℓc(f(Xc; θ), Yc), denoted as ℓc(θ), is a convex and
differentiable function of θ.

2. The average loss function on memory samples, ℓ̄M (f(XM ; θ), YM ), denoted as ℓ̄M (θ), is
a convex and differentiable function of θ.

3. A suitable constraint qualification (e.g., Slater’s condition) holds for the ϵ-constraint opti-
mization problem defined in Eq. (6). Slater’s condition implies that there exists a θ̃ such
that ℓ̄M (f(XM ; θ̃), YM )− ℓ̄M (f(XM ; θk−1), YM ) < εM (k).

Proof of Proposition 2. Let θ∗ be a solution to the ϵ-constraint optimization problem given by
Eq. (6):

min
θ

ℓc(f(Xc; θ), Yc)

s.t. ℓ̄M (f(XM ; θ), YM )− ℓ̄M (f(XM ; θk−1), YM ) ≤ εM (k)

Let f1(θ) = ℓc(f(Xc; θ), Yc) and g1(θ) = ℓ̄M (f(XM ; θ), YM )− ℓ̄M (f(XM ; θk−1), YM )− εM (k).
The problem is minθ f1(θ) subject to g1(θ) ≤ 0.

Under the stated assumptions (convexity, differentiability, and constraint qualification), the Karush-
Kuhn-Tucker (KKT) [Boyd and Vandenberghe, 2004] conditions are necessary and sufficient for
optimality. Thus, there exists a Lagrange multiplier λ∗ ≥ 0 such that for θ∗:

1. Stationarity: ∇f1(θ∗) + λ∗∇g1(θ∗) = 0

2. Primal feasibility: g1(θ∗) ≤ 0

3. Dual feasibility: λ∗ ≥ 0

4. Complementary slackness: λ∗g1(θ
∗) = 0

The Lagrangian function for this problem is L(θ, λ∗) = f1(θ)+λ∗g1(θ). Substituting the definitions
of f1(θ) and g1(θ):

L(θ, λ∗) = ℓc(θ) + λ∗(ℓ̄M (θ)− ℓ̄M (θk−1)− εM (k))

The stationarity condition is∇θL(θ
∗, λ∗) = 0:

∇ℓc(θ∗) + λ∗∇ℓ̄M (θ∗) = 0

Since ℓc(θ) and ℓ̄M (θ) are convex, and λ∗ ≥ 0, the function L(θ, λ∗) is convex in θ. For a convex
function, the stationarity condition ∇θL(θ

∗, λ∗) = 0 is sufficient for θ∗ to be a global minimizer
of L(θ, λ∗). Thus, θ∗ minimizes ℓc(θ) + λ∗(ℓ̄M (θ) − ℓ̄M (θk−1) − εM (k)). This is equivalent to
minimizing ℓc(θ)+λ∗ℓ̄M (θ)−λ∗ℓ̄M (θk−1)−λ∗εM (k). Since ℓ̄M (θk−1) and εM (k) are constants
for the current optimization step k, the terms −λ∗ℓ̄M (θk−1) and −λ∗εM (k) are also constants.
Therefore, θ∗ also minimizes the function ℓc(θ) + λ∗ℓ̄M (θ), which is the objective function of
Experience Replay (Eq. (4)).

A.2 Properties of the GEC

We analyze the behavior of the GEC update mechanism by considering a continuous-time analogue,
where the parameter update follows dθt

dt = −vt, with vt being the solution to the QP in Eq. (10).
The GEC update direction is vk = ∇ℓc(θk) + λk∇ℓ̄m(θk). Let h(θt) = ℓ̄m(θt) − ℓ̄m(θk−1) − ε̄
be the constraint function, and ϕh(θt) = αh(θt) be the dynamic barrier. For brevity, we use ℓc(θt),
ℓ̄m(θt), ∇ℓc, ∇ℓ̄m, λt, and vt. The KKT conditions for the QP (Eq. (10)) imply that λt ≥ 0 and
λt(⟨∇ℓ̄m(θt), vt⟩ − ϕh(θt)) = 0.

Following [Gong and Liu, 2021], we define a penalty function Pµ(θt) = ℓc(θt) + µ[h(θt)]+, where
[x]+ = max(x, 0) and µ ≥ 0. The time derivative of Pµ(θt) can be shown to be:

d

dt
Pµ(θt) ≤ −∥vt∥2 − (µ− λt) [ϕh(θt)]+ − λt [−ϕh(θt)]+ (18)

This can be written as d
dtPµ(θt) ≤ −Kµ−λt(θt, λt), where Kν(θt, λt) = ∥vt∥2 + ν [ϕh(θt)]+ +

λt [−ϕh(θt)]+ is a KKT-like score function.
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Property 1: Constraint Violation Reduction. The thresholded constraint function [h(θt)]+ is
non-increasing with time t.

Proof of Constraint Violation Reduction. Consider the derivative of the penalty function Pµ(θt) =
ℓc(θt) + µ[h(θt)]+. If h(θt) > 0, then [h(θt)]+ = h(θt) and ϕh(θt) = αh(θt) > 0, so [ϕh(θt)]+ =
ϕh(θt) and [−ϕh(θt)]+ = 0. The derivative is d

dtPµ(θt) = −⟨∇ℓc(θt) + µ∇ℓ̄m(θt), vt⟩. Using
∇ℓc(θt) = vt − λt∇ℓ̄m(θt):

d

dt
Pµ(θt) = −⟨vt − λt∇ℓ̄m(θt) + µ∇ℓ̄m(θt), vt⟩

= −∥vt∥2 − (µ− λt)⟨∇ℓ̄m(θt), vt⟩
From the QP constraint, ⟨∇ℓ̄m(θt), vt⟩ ≥ ϕh(θt). If λt > 0, KKT implies ⟨∇ℓ̄m(θt), vt⟩ = ϕh(θt).
If λt = 0, then ⟨∇ℓ̄m(θt), vt⟩ ≥ ϕh(θt) still holds. So, d

dtPµ(θt) ≤ −∥vt∥2 − (µ − λt)ϕh(θt) =

−∥vt∥2 − (µ− λt)[ϕh(θt)]+.

If h(θt) ≤ 0, then [h(θt)]+ = 0, so Pµ(θt) = ℓc(θt). Also, ϕh(θt) ≤ 0, so [ϕh(θt)]+ = 0 and
[−ϕh(θt)]+ = −ϕh(θt).

d

dt
Pµ(θt) =

d

dt
ℓc(θt) = −⟨∇ℓc(θt), vt⟩

= −∥vt∥2 + λt⟨∇ℓ̄m(θt), vt⟩
If λt > 0, ⟨∇ℓ̄m(θt), vt⟩ = ϕh(θt). If λt = 0, vt = ∇ℓc(θt), and λt⟨·⟩ = 0 = λtϕh(θt). So this
holds generally. d

dtℓc(θt) = −∥vt∥
2 + λtϕh(θt) = −∥vt∥2 − λt[−ϕh(θt)]+.

Combining both cases (h(θt) > 0 and h(θt) ≤ 0), we obtain the unified inequality in Eq. (18), which
holds for all values of θt. Now, to show [h(θt)]+ is non-increasing, we can analyze its derivative:

d

dt
[h(θt)]+ =

{
d
dth(θt) if h(θt) > 0

0 if h(θt) < 0
(19)

Alternatively, from Eq. (18), dividing by µ and taking µ→ +∞:

lim
µ→∞

1

µ

d

dt
Pµ(θt) =

d

dt
[h(θt)]+

And from the RHS of Eq. (18):

lim
µ→∞

1

µ

(
−∥vt∥2 − (µ− λt) [ϕh(θt)]+ − λt [−ϕh(θt)]+

)
= −[ϕh(θt)]+

Thus,
d

dt
[h(θt)]+ ≤ −[ϕh(θt)]+

Since ϕh(θt) = αh(θt):
If h(θt) > 0, then ϕh(θt) > 0, so [ϕh(θt)]+ > 0. This means d

dt [h(θt)]+ < 0 when h(θt) > 0.
If h(θt) ≤ 0, then ϕh(θt) ≤ 0, so [ϕh(θt)]+ = 0. This means d

dt [h(θt)]+ ≤ 0.
Therefore, [h(θt)]+ is always non-increasing. This implies that if the constraint is violated (h(θt) >
0), the algorithm works to reduce the violation. If the constraint is satisfied (h(θt) ≤ 0), it does not
become violated.

Property 2: Current Task Optimization when Constraint is Satisfied. If the constraint is satisfied
(i.e., h(θt) ≤ 0), the current task objective ℓc(θt) is non-increasing with time t.

Proof of Current Task Optimization when Constraint is Satisfied. When h(θt) ≤ 0, we have
ϕh(θt) ≤ 0. This implies [ϕh(θt)]+ = 0. Consider Eq. (18) with µ = 0. In this case,
P0(θt) = ℓc(θt).

d

dt
ℓc(θt) ≤ −∥vt∥2 − (0− λt) [ϕh(θt)]+ − λt [−ϕh(θt)]+

= −∥vt∥2 + λt · 0− λt [−ϕh(θt)]+

= −∥vt∥2 − λt [−ϕh(θt)]+
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Since λt ≥ 0 by definition (Eq. (13)), ∥vt∥2 ≥ 0, and [−ϕh(θt)]+ ≥ 0 (because ϕh(θt) ≤ 0), it
follows that:

d

dt
ℓc(θt) ≤ 0

Thus, when the memory constraint h(θt) ≤ 0 is satisfied, the loss on the current task ℓc(θt) is
non-increasing, meaning GEC focuses on optimizing the current task.

B Detailed Related Works

B.1 Continual Learning

Continual Learning (CL) aims to enable models to learn sequentially from a stream of data without
catastrophically forgetting previously acquired knowledge [De Lange et al., 2021]. Various strate-
gies have been proposed to address this challenge, broadly categorized into regularization-based,
rehearsal-based, and architecture-based methods. Our work primarily intersects with rehearsal-
based methods in the context of Online Continual Learning (OCL).

B.1.1 Regularization-based Methods

Regularization-based approaches introduce additional terms to the loss function to penalize changes
in parameters deemed important for previous tasks. Elastic Weight Consolidation (EWC) [Kirk-
patrick et al., 2017] computes a Fisher Information Matrix to estimate parameter importance. Synap-
tic Intelligence (SI) [Zenke et al., 2017] calculates importance weights online based on the sensitivity
of the loss function to parameter changes. Learning without Forgetting (LwF) [Li and Hoiem, 2017]
uses knowledge distillation, forcing the model to preserve the outputs of the previous model on
current task data. While effective in some scenarios, these methods can be conservative and may
struggle with long task sequences or significant domain shifts.

B.1.2 Replay-based Methods

Replay-based (or rehearsal-based) methods store a small subset of samples from past tasks in a
memory buffer and interleave them with current task data during training [Rolnick et al., 2019]. Ex-
perience Replay (ER) [Rolnick et al., 2019] is a foundational technique that simply adds the loss on
replayed samples to the current task loss. More advanced methods build upon ER. Dark Experience
Replay (DER) [Buzzega et al., 2020] and its variant DER++ enhance ER by also replaying logits.
CLSER [Arani et al., 2022] focuses on improving sample selection for the replay buffer.

Constraint-based replay methods, such as Gradient Episodic Memory (GEM) [Lopez-Paz and Ran-
zato, 2017] and Averaged GEM (A-GEM) [Chaudhry et al., 2018], use memory samples to constrain
the gradient updates for the current task, aiming to prevent interference with past task knowledge.
These methods typically enforce that the loss on past tasks does not increase. As discussed in our
main paper, our proposed GEC method offers a new perspective by explicitly formulating the OCL
update as an ϵ-constraint optimization problem, dynamically adjusting the trade-off between current
task learning and memory constraint satisfaction, which contrasts with the fixed weighting of ER or
the hard constraints of GEM/A-GEM.

B.1.3 Online Continual Learning

Online Continual Learning (OCL) represents a particularly challenging yet realistic CL scenario
[Mai et al., 2022, Aljundi et al., 2019]. In OCL, data arrives in a stream, often as small mini-
batches, and is typically processed in a single pass. Memory for storing past data is strictly limited.
This setting magnifies the problem of catastrophic forgetting and demands methods that are both
computationally efficient and effective at balancing plasticity (learning new tasks) and stability (re-
taining old knowledge). The significance of OCL lies in its direct applicability to real-world systems
where data is inherently sequential and non-stationary, and computational resources are constrained.
Our GEC method is specifically designed for the OCL setting.
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B.2 Multi-Objective Optimization Methods

Continual learning can be viewed as a multi-objective optimization problem (MOP) where the goals
are to minimize the loss on the current task and to minimize forgetting of past tasks. These objectives
are often conflicting. Our work leverages concepts from MOP, particularly the ϵ-constraint method.

B.2.1 Preliminaries for Multi-Objective Optimization

A general multi-objective optimization problem (MOP) can be formulated as:

minimize {f(x) = (f1(x), f2(x), . . . , fk(x))
⊤} subject to x ∈ S.

Here, k ≥ 2 is the number of objective functions fi : Rn → R. The vector x = (x1, x2, . . . , xn)
T

consists of n decision variables, belonging to a non-empty feasible region S ⊆ Rn. The set Z =
f(S) = {f(x) | x ∈ S} ⊆ Rk is the feasible objective region in the objective space. An element
z = f(x) ∈ Z is an objective vector.

Definition 3 (Dominance). An objective vector z1 = f(x1) is said to dominate another objective
vector z2 = f(x2) (denoted z1 ≺ z2) if fi(x1) ≤ fi(x

2) for all i = 1, . . . , k and fj(x
1) < fj(x

2)
for at least one index j.

Definition 4 (Pareto Optimality). A decision vector x∗ ∈ S is Pareto optimal if there is no other
decision vector x ∈ S such that f(x) dominates f(x∗). Equivalently, x∗ is Pareto optimal if there is
no x ∈ S such that fi(x) ≤ fi(x

∗) for all i = 1, . . . , k and fj(x) < fj(x
∗) for at least one index

j. The corresponding objective vector z∗ = f(x∗) is a Pareto optimal objective vector. The set of
all Pareto optimal objective vectors forms the Pareto front.

Definition 5 (Ideal Objective Vector). The ideal objective vector z⋆ = (z⋆1 , . . . , z
⋆
k)

⊤ is formed by
components z⋆i , where each z⋆i is the minimum value of the i-th objective function fi(x) considered
independently over the feasible region S, i.e., z⋆i = minx∈S fi(x) for i = 1, . . . , k. The ideal
objective vector is generally not attainable simultaneously for all objectives.

Definition 6 (Utopian Objective Vector). A utopian objective vector z⋆⋆ is an infeasible vector
strictly better than the ideal objective vector. Its components are typically defined as z⋆⋆i = z⋆i − δi
for all i = 1, . . . , k, where δi > 0 are small positive scalars.

B.2.2 Scalarization Techniques

Scalarization methods transform a MOP into a single-objective optimization problem (or a series of
them). Common techniques include the linear weighting method, the Chebyshev method, and the
ϵ-constraint method.

Linear Weighting Method This method combines all objective functions into a single scalar ob-
jective by assigning a non-negative scalar weight wi ∈ R to each objective fi(x). The problem is
formulated as:

minimize
k∑

i=1

wifi(x) subject to x ∈ S.

The weights wi ∈ R are non-negative scalars (wi ≥ 0) and are typically normalized such that∑k
i=1 wi = 1. Different weight vectors can yield different Pareto optimal solutions. This method is

simple but may not find all Pareto optimal solutions if the Pareto front is non-convex. As shown in
our paper (Proposition 2), under certain conditions, an ϵ-constraint problem solution can be found
by an ER-like weighted sum.

Chebyshev Method The Chebyshev method [Miettinen, 1999] aims to find a solution that mini-
mizes the maximum weighted deviation from a reference point, often the utopian objective vector
z⋆⋆ (or ideal z⋆). The problem is:

minimize max
i=1,...,k

[wi(fi(x)− zref
i )] subject to x ∈ S.
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Here, wi > 0 are positive weights, and zref is the reference point (e.g., z⋆⋆ or z⋆). If zref = z⋆⋆, then
fi(x)− z⋆⋆i is positive for feasible solutions. This can be reformulated as a differentiable problem:

minimize α

subject to α ≥ wi(fi(x)− zref
i ) for all i = 1, . . . , k,

x ∈ S,

where α ∈ R is an auxiliary variable. The Chebyshev method can find any Pareto optimal solution,
regardless of the convexity of the Pareto front, by varying weights and the reference point.

ϵ-Constraint Method The ϵ-constraint method [Miettinen, 1999], which is central to our GEC
approach, optimizes one objective function fℓ(x) while treating the other k − 1 objective functions
as constraints, bounded by user-defined values εj :

minimize fℓ(x)

subject to fj(x) ≤ εj for all j ∈ {1, . . . , k}, j ̸= ℓ,

x ∈ S.

By systematically varying the choice of fℓ and the values of εj , different Pareto optimal solutions
can be generated. This method is also capable of finding Pareto optimal solutions in non-convex
problems and offers direct control over the trade-offs via the εj values. Our paper (Proposition 1)
shows that ER can be interpreted as implicitly solving an ϵ-constraint problem. GEC makes this
explicit.

C Additional Results

In this section, we provide supplementary results for Average Anytime Accuracy (AAA) and Av-
erage Accuracy (Acc) that include the standard deviations over 5 runs. These tables complement
Table 1 in the main paper, presenting the mean ± standard deviation. To further validate the robust-
ness of GEC, we also conduct experiments in more challenging scenarios, including label noise and
longer task sequences. The results consistently demonstrate GEC’s superior performance.

Table 4: Average Anytime Accuracy (AAA) comparison with baseline methods on Seq-CIFAR10,
Seq-CIFAR100, and Seq-TinyImageNet using Reduced ResNet-18. Results are averaged over 5 runs
(mean ±std).

Method Seq-CIFAR10 (N=5) Seq-CIFAR100 (N=20) Seq-TinyImageNet (N=20)

|M| = 0.6k |M| = 1k |M| = 1k |M| = 5k |M| = 2k |M| = 5k

SGD 34.04±3.10 34.04±3.10 9.67±0.18 9.67±0.18 7.63±0.24 7.63±0.24

ER 54.68±5.11 54.91±1.65 17.86±0.26 20.67±0.68 16.27±0.10 16.10±0.24

Refresh CL 62.34±1.50 65.81±1.00 24.32±0.50 35.61±1.00 18.59±0.60 22.68±0.70

DER 49.06±1.30 48.25±1.95 10.96±0.20 10.47±0.32 8.04±0.20 7.65±0.11

DER++ 57.17±1.08 61.01±1.55 17.30±0.30 17.08±0.79 12.42±0.34 11.93±0.34

CLSER 61.64±1.62 63.27±0.71 22.58±0.42 23.25±1.34 18.50±0.08 18.88±0.59

CBA 63.41±1.67 65.47±0.77 22.46±0.53 23.07±0.58 18.79±0.05 18.98±0.85

POCL 63.62±2.65 66.23±1.73 26.68±0.21 36.34±1.24 21.56±0.44 25.48±0.67

EWC 36.51±0.75 36.51±0.75 9.87±0.28 9.87±0.28 7.96±0.12 7.96±0.12

GEM 37.78±1.98 37.00±0.47 13.43±0.04 13.71±0.23 10.17±0.28 10.27±0.07

A-GEM 37.67±1.76 37.62±1.53 10.61±0.09 10.80±0.15 7.66±0.35 7.79±0.03

GEC(Ours) 65.21±2.20 69.42±1.70 29.63±0.90 38.11±1.10 22.45±1.40 27.66±1.80

D Algorithm Details

This section provides the pseudo-code for the proposed GEC method and a list of key symbols used.

Table 8 lists the key symbols used in the GEC algorithm.
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Table 5: Performance on
40 tasks sequence of Seq-
TinyImageNet.
Method AAA Acc

SGD 4.95±0.16 1.19±0.27

ER 13.75±0.12 6.82±0.11

DER++ 9.39±0.07 3.76±0.81

CLSER 14.93±0.36 7.74±0.91

POCL 18.41±0.14 10.64±0.33

GEC (Ours) 25.37±0.16 11.89±0.31

Table 6: Performance under various label noise settings on Seq-
CIFAR100 (|M| = 5k).

Method Flip1 (0.05) Flip1 (0.2) Flip2 (0.05) Uniform (0.2)

AAA Acc AAA Acc AAA Acc AAA Acc

DER++ 24.16 15.40 21.80 12.84 22.88 14.83 20.94 12.28
CLSER 21.69 13.34 19.18 10.69 21.96 10.53 19.62 10.47
POCL 22.38 15.41 18.99 11.41 21.59 11.30 18.82 10.06

GEC (Ours) 26.76 16.50 22.11 11.37 25.88 15.63 21.05 11.53

Table 7: Average Accuracy (Acc) comparison with baseline methods on Seq-CIFAR10, Seq-
CIFAR100, and Seq-TinyImageNet using Reduced ResNet-18. Results are averaged over 5 runs
(mean ±std).

Method Seq-CIFAR10 (N=5) Seq-CIFAR100 (N=20) Seq-TinyImageNet (N=20)

|M| = 0.6k |M| = 1k |M| = 1k |M| = 5k |M| = 2k |M| = 5k

SGD 16.68±0.27 16.68±0.27 3.24±0.12 3.24±0.12 2.17±0.07 2.17±0.07

ER 39.43±3.79 42.04±4.33 11.89±0.27 14.87±0.60 10.52±0.59 11.89±0.63

Refresh CL 51.42±2.00 55.57±1.50 17.64±1.00 32.33±2.00 12.83±0.80 18.72±1.00

DER 25.80±0.51 23.90±0.47 3.71±0.11 3.68±0.06 2.46±0.06 2.04±0.15

DER++ 47.03±1.03 50.31±1.50 8.72±0.52 8.98±1.05 5.57±0.11 5.26±0.21

CLSER 50.36±4.06 53.06±1.58 15.68±0.62 16.42±1.52 10.03±0.22 11.61±0.19

CBA 51.47±1.37 52.08±0.15 15.54±0.44 15.87±0.75 11.43±0.67 10.98±0.14

POCL 53.42±1.17 58.50±2.43 16.54±0.34 33.36±1.92 12.69±0.47 19.40±0.92

EWC 18.37±0.30 18.37±0.30 2.77±0.27 2.77±0.27 2.43±0.13 2.43±0.13

GEM 18.84±1.17 18.73±0.76 6.04±0.52 6.46±0.93 3.70±0.44 3.81±0.15

A-GEM 18.51±0.07 18.03±0.43 3.75±0.18 3.52±0.13 2.33±0.18 2.40±0.22

GEC(Ours) 54.08±1.80 59.12±2.00 17.78±0.70 34.22±1.80 12.77±1.20 20.25±1.50

Table 8: List of Key Symbols in GEC Pseudo-code.
Symbol Description

θ Model parameters.
η Learning rate.
α Barrier strength parameter for GEC.
ε̄ Slack tolerance for the memory constraint.
δ Stability constant for GEC denominator.
M Memory buffer storing past samples.
T Total number of tasks.
k Index for the current update step/iteration.
(Xc, Yc) Mini-batch of data from the current task.
(Xm, Ym) Mini-batch of data sampled from the memory buffer M .
ℓ(θ;X,Y ) Loss function evaluated on data (X,Y ) with parameters θ.
∇ℓc(θ) Gradient of the loss on the current task batch,∇θℓ(θ;Xc, Yc).
ℓ̄m(θ) Average loss on the memory batch, AvgLoss(θ;Xm, Ym).
∇ℓ̄m(θ) Gradient of the average loss on the memory batch,∇θ ℓ̄m(θ).
ℓ̄ref
m Reference average memory loss (value from the start of the previous update step).
hk Constraint violation measure at step k.
ϕh,k Dynamic barrier value at step k.
λk Dynamically computed coefficient for the memory gradient at step k.
vk Final update direction at step k.

Algorithm 1 outlines the training procedure for the GEC method.
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Algorithm 1 Gradient-Guided Epsilon Constraint (GEC)

Require: Learning rate η, strength parameter α > 0, tolerance ε̄, constant δ > 0.
Ensure: Final model parameters θ.

1: Initialize model parameters θ.
2: Initialize memory buffer M ← ∅.
3: Initialize reference memory loss ℓ̄ref

m ← 0.
4: for each task t = 1, 2, . . . , T do
5: for each incoming batch (Xc, Yc) from task t (denote current step as k) do
6: Compute current task gradient∇ℓc(θ)← ∇θℓ(θ;Xc, Yc).
7: if M is not empty then
8: Sample memory batch (Xm, Ym) from M .
9: Compute current average memory loss ℓ̄m(θ)← AvgLoss(θ;Xm, Ym).

10: Compute average memory gradient∇ℓ̄m(θ)← ∇θ ℓ̄m(θ).
11: Compute constraint violation hk ← ℓ̄m(θ)− ℓ̄ref

m − ε̄. ▷ Refers to Eq. (7)
12: Compute dynamic barrier ϕh,k ← α · hk. ▷ Refers to Eq. (9)

13: Compute coefficient λk ← max
(

ϕh,k−⟨∇ℓc(θ),∇ℓ̄m(θ)⟩
∥∇ℓ̄m(θ)∥2+δ

, 0
)

. ▷ Refers to Eq. (11)

14: Compute update direction vk ← ∇ℓc(θ) + λk∇ℓ̄m(θ). ▷ Refers to Eq. (10)
15: Update reference memory loss for next step: ℓ̄ref

m ← ℓ̄m(θ).
16: else
17: vk ← ∇ℓc(θ).
18: ℓ̄ref

m ← 0. ▷ Reset if memory was empty, for the first constrained step
19: end if
20: Update parameters θ ← θ − ηvk.
21: Add samples from (Xc, Yc) to memory M (e.g., using reservoir sampling).
22: end for
23: end for
24: return θ.

E Experimental Setup Details

E.1 Datasets

We evaluate our GEC method on three standard Online Continual Learning (OCL) benchmarks. The
details of these datasets and their configuration for our experiments are summarized in Table 9. For
all datasets, standard data augmentation techniques are applied during training.

Table 9: Details of datasets
Dataset Total Classes Tasks (N) Classes per Task Training Images Test Images Resolution

Seq-CIFAR10 10 5 2 50,000 10,000 32× 32× 3
Seq-CIFAR100 100 20 5 50,000 10,000 32× 32× 3
Seq-TinyImageNet 200 20 10 100,000 10,000 32× 32× 3

E.2 Implementation Details

Consistent with recent works [Buzzega et al., 2020, Chrysakis and Moens, 2023], we use a Reduced
ResNet-18 [He et al., 2016] as the backbone network for all experiments. The models are trained
using SGD. The learning rate is set to 0.03 for GEC and all baseline methods. The streaming batch
size and replay batch size are set to 32 for all experiments. The memory buffer M is updated using
reservoir sampling. For our GEC method, the key hyperparameters α (barrier strength parameter),
ε̄ (slack tolerance), and δ (stability constant in Eq. (13)) were selected based on preliminary exper-
iments. For α and ε̄, we use 0.5 and 0.05 for GEC implementation. All experiments are conducted
over 5 independent runs with different random seeds, and we report the mean and standard deviation
of evaluation metrics. The experiments were performed on a server equipped with 8 NVIDIA A100
GPUs.

20



E.3 Baseline Method Descriptions

We compare GEC with a comprehensive set of baseline methods. Key rehearsal-based and
constraint-based methods include:

E.3.1 Foundational and Regularization Methods

• SGD: Standard Stochastic Gradient Descent training on current task data without any spe-
cific mechanism to mitigate forgetting. This serves as a lower-bound baseline.

• Elastic Weight Consolidation (EWC) [Kirkpatrick et al., 2017, Huszár, 2018]: EWC
is a regularization-based method that penalizes changes to parameters deemed important
for previously learned tasks. Importance is estimated using the diagonal of the Fisher
Information Matrix.

E.3.2 Replay-based Methods

• Experience Replay (ER) [Rolnick et al., 2019]: ER trains on a combination of current
task data and data sampled from a memory buffer that stores examples from previous tasks.
The model is typically trained on a composite loss, often a weighted sum of the current task
loss and the loss on the replayed memory samples.

• Dark Experience Replay (DER & DER++) [Buzzega et al., 2020]: DER and its variant
DER++ enhance ER by additionally replaying network logits (outputs before the softmax
layer) from past tasks. This is usually achieved by incorporating a knowledge distillation
loss based on the stored logits, aiming to better preserve the previous model’s predictions
on past data.

• CLSER [Arani et al., 2022]: CLSER proposes a dual memory experience replay (ER)
method which maintains short-term and long-term semantic memories that interact with
the episodic memory.

• Refresh CL [Wang et al., 2024]: Refresh CL proposes a general framework for CL and
introduces a refresh learning mechanism (unlearn-relearn) inspired by neuroscience. It
aims to shed outdated information to improve retention of crucial knowledge and facilitate
new learning, acting as a plug-in for existing CL methods.

E.3.3 Constraint-based Methods

• Gradient Episodic Memory (GEM) [Lopez-Paz and Ranzato, 2017]: GEM uses samples
from the memory buffer to constrain the gradient updates of the current task. It aims to
prevent any increase in the average loss on memory samples by projecting the current
task’s gradient if it conflicts with the objective of not increasing memory loss (i.e., if the
dot product between the current task gradient and memory gradient is negative).

• Averaged GEM (A-GEM) [Chaudhry et al., 2018]: A-GEM is a more computationally
efficient variant of GEM. It computes a single constraint based on the average loss over all
samples in the memory buffer, rather than per-task constraints, and projects the current task
gradient if it would increase this average memory loss.

E.3.4 Online Continual Learning Methods

• Continual Bias Adaptor (CBA) [Wang et al., 2023]: CBA introduces a module to adapt
to distribution shifts during training in online CL. It augments the classifier to handle catas-
trophic distribution changes and can be removed during testing, incurring no extra compu-
tational cost at inference.

• Pareto Optimized Continual Learning (POCL) [Wu et al., 2024]: POCL explicitly treats
OCL as a multi-objective optimization problem, aiming to find solutions on the Pareto front
that balance plasticity and stability. It often involves techniques to steer the optimization
towards desired trade-off regions.
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F Limitations

While the GEC method demonstrates strong performance in OCL benchmarks, it has certain limita-
tions. One primary consideration is the computational overhead introduced by solving a QP problem
at each training step to determine the update direction vk. Although the QP is relatively small and
has a closed-form solution as shown in Eq. (13), this still involves additional computations compared
to simpler methods like ER. Future work will focus on investigating more computationally efficient
approximations to achieve dynamic constraint-guided update with reduced overhead, making GEC
even more suitable for resource-constrained online learning scenarios.

G Broader Impact

The proposed GEC method contributes to the field of Online Continual Learning, aiming to develop
AI systems that can learn sequentially and adapt to evolving data streams more effectively. Success
in this area has significant positive implications for real-world applications where data is inher-
ently dynamic and non-stationary. For instance, GEC could enhance the capabilities of autonomous
systems (e.g., robotics, self-driving cars) to learn from new experiences in real-time without forget-
ting previously learned skills. In personalized learning or recommendation systems, it could allow
models to adapt to changing user preferences over time. In healthcare, it could enable diagnos-
tic models to incorporate new medical knowledge or patient data continuously. By improving the
stability-plasticity trade-off, GEC can lead to more robust, reliable, and adaptable AI. While the di-
rect societal risks of this specific algorithmic improvement are low, as with any advancement in AI,
responsible development and deployment are crucial. The goal of this research is to advance AI’s
learning capabilities, which can be a powerful tool for societal benefit when applied thoughtfully
and ethically.
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NeurIPS 2025 Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly articulate the core idea of the GEC
method and its advantages in OCL.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The discussion of computational efficiency and strong assumptions of GEC
methods are in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper presents Propositions 1 and 2 in Section 2, stating that proofs are
provided in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5.1 details the experimental setup, including datasets, evaluation met-
rics, backbone network, optimizer and other Key hyperparameters for GEC implementaion.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided instructions in the paper on data access and we will release
the code implementation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please kindly refer to Section 6.1.

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results include values with ±, implying statistics over multiple runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please kindly refer to Section 6.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research does not involve human subjects, does not directly handle sen-
sitive personal data (uses public, processed datasets), and has no apparent goal of causing
direct societal harm (e.g., weapon development, discriminatory applications).

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have include the discussion of broader impacts in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed model do not fall into the category of pre-trained language
models or image generators with high misuse risk, thus not requiring specific safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have mentioned the datasets used (Seq-CIFAR10, Seq-CIFAR100, Seq-
TinyImageNet) and the backbone network (Reduced ResNet-18), referencing relevant
works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The main contribution of the paper is a new algorithm.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research presented in the paper does not involve human subjects and
therefore does not require IRB approval or equivalent review.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not a component of our core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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