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Abstract
Visual tokenization through auto-encoding en-
hances state-of-the-art image and video genera-
tive models by compressing pixels into a latent
space. However, questions persist regarding how
the design of the auto-encoder affects both recon-
struction and downstream generative performance.
This paper investigates the impact of scaling auto-
encoders for reconstruction and generation by sub-
stituting the convolutional backbone with an en-
hanced Vision Transformer for Tokenization (Vi-
Tok). This paper’s results show that scaling the
auto-encoder bottleneck correlates with improved
reconstruction, though its relationship with gen-
erative performance is more complex. In con-
trast, scaling the encoder does not lead to gains,
while scaling the decoder enhances reconstruc-
tion with minimal effect on generation. These
findings indicate that scaling the existing auto-
encoder paradigm does not significantly improve
generative performance. When paired with Dif-
fusion Transformers, ViTok achieves competitive
image reconstruction & generation performance
on 256p and 512p ImageNet-1K. For videos, Vi-
Tok achieves state-of-the-art in both reconstruc-
tion & generation performance on 128p UCF-101.

1. Introduction
Modern methods for high-fidelity image and video gen-
eration (Brooks et al., 2024; Polyak et al., 2024; Genmo,
2024; Esser et al., 2024) rely on two components: a visual
tokenizer that encodes pixels into a lower-dimensional la-
tent space and subsequently decodes, and a generator that
models this latent representation. While many studies have
improved generators through scaling of Transformer-based
architectures (Vaswani et al., 2017; Dosovitskiy et al., 2021),
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the tokenizers themselves, predominantly based on convo-
lutional neural networks (LeCun et al., 1998) (CNN), have
rarely been the main focus of scaling efforts.

In this paper, we explore whether visual tokenizers require
the same scaling efforts as generators. To do this, we first
examine two potential bottlenecks: model architecture and
data. We begin by replacing convolutional backbones with
a Transformer-based auto-encoder (Vaswani et al., 2017),
specifically adopting the Vision Transformer (ViT) (Doso-
vitskiy et al., 2021) architecture enhanced with Llama (Tou-
vron et al., 2023), which has demonstrated effectiveness at
scale (Gu & Dao, 2023; Sun et al., 2024). Our resulting auto-
encoder design, which we refer to as Vision Transformer To-
kenizer or ViTok, performs well with the generative pipeline
in Diffusion Transformers (DiT) (Peebles & Xie, 2023).
Second, we train our models on large-scale image datasets
that significantly exceed ImageNet-1K (Deng et al., 2009)
and extend our approach to videos, ensuring that our tok-
enizer scaling is not constrained by data limitations. Within
this framework, we investigate three aspects:

• Scaling the auto-encoding bottleneck. Bottleneck
size correlates with reconstruction metrics. However,
when the bottleneck becomes large, the generative per-
formance decreases due to increased channel sizes.

• Scaling the encoder. Scaling the encoder does not im-
prove the generation outcomes and can even be detri-
mental. In particular, more complex latents can be more
difficult to decode and model, reducing overall perfor-
mance.

• Scaling the decoder. Scaling the decoder improves
reconstruction quality, but its influence on downstream
generative tasks remains mixed. We hypothesize that
the decoder acts in part as a generator, filling in local
textures based on limited information.

Collectively, these results indicate that scaling the auto-
encoder tokenizer alone is not an effective strategy to en-
hance generative metrics within the current auto-encoding
paradigm (Esser et al., 2021). We also observe that similar
bottleneck trends apply to video tokenizers. However, Vi-
Tok leverages the inherent redundancy in video data more
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Figure 1. Our learnings from scaling ViTok. We present ViTok, an asymmetric auto-encoder combining Vision Transformers (ViTs)
and an enhanced Llama architecture for reconstruction and generation. Visual inputs are embedded as patches/tubelets, processed by a
compact Llama Encoder, and bottlenecked into latent codes. A larger Llama Decoder reconstructs the input. We detail findings of scaling
the encoder, adjusting the bottleneck size, and expanding the decoder on the right.

effectively, achieving superior reconstruction metrics than
for images at a fixed compression rate of pixels per channel.
We summarize our findings and our method in Figure 1.

We compare our best-performing tokenizers against prior
state-of-the-art methods. ViTok achieves image reconstruc-
tion and generation performance at 256p and 512p resolu-
tions that matches or surpasses current state-of-the-art tok-
enizers on the ImageNet-1K (Deng et al., 2009) and COCO
(Lin et al., 2014) datasets, all while utilizing 2–5× fewer
FLOPs. In video applications, ViTok surpasses current
state-of-the-art methods, achieving state-of-the-art results in
16-frame 128p video reconstruction and class-conditional
video generation on the UCF-101 (Soomro, 2012) dataset.

2. Background
We review background on continuous visual tokenizers and
then describe ViTok to enable our exploration.

2.1. Continuous Visual Tokenization

The Variational Auto-Encoder (VAE) (Kingma & Welling,
2013) is a framework that takes a visual input X ∈
RT×H×W×3 (where T = 1 for images and T > 1 for
videos) is processed by an encoder fθ, parameterized by
θ. This encoder performs a spatial-temporal downsampling
by a factor of q × p × p, producing a latent code. The

encoder outputs parameters for a multivariate Gaussian dis-
tribution—mean zm and variance zv with c channel size.:

z ∼ N (zm, zv) = Z = fθ(X) ∈ R
T
q ×H

p ×W
p ×c

The sampled latent vector z is then fed into a decoder
gψ, with parameters ψ, which reconstructs the input im-
age X̂ = gψ(z). The primary objective of the auto-encoder
is to minimize the mean squared error between the recon-
structed and original images, LREC(X̂,X). To regularize
the latent distribution to a unit Gaussian prior which is
necessary to recover the variational lower bound, a KL di-
vergence regularization term is added, which we refer to
as LKL. Recent advancements in VAEs used for down-
stream generation tasks (Esser et al., 2021; Rombach et al.,
2022) incorporate additional objectives to improve the vi-
sual fidelity of the reconstructions. These include a per-
ceptual loss based on VGG features (Johnson et al., 2016)
LLPIPS and an adversarial GAN objective, LGAN (Goodfel-
low et al., 2014). The comprehensive loss function for the
auto-encoder, LAE(X̂,X,Z), is formulated as:

LAE(X̂,X,Z) = LREC(X̂,X) + βLKL(Z)

+ ηLLPIPS(X̂,X) + λLGAN(X̂,X)
(1)

where β, η, and λ are parameters that control the trade-off
between visual fidelity and quality (Section 3.4).
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Table 1. Model Sizes and FLOPs for ViTok. We describe ViTok variants by specifying the encoder and decoder sizes separately. For
example, ViTok S-B/4x16 refers to a model with an encoder Small (S) and a decoder Base (B), using tubelet size q = 4 and p = 16.

Model Hidden Dimension Blocks Heads Parameters (M) GFLOPs
Small (S) 768 6 12 43.3 11.6
Base (B) 768 12 12 85.8 23.1
Large (L) 1152 24 16 383.7 101.8

2.2. Scalable Auto-Encoding Framework

We develop a visual tokenizer based on a Vision Transformer
(ViT) architecture, replacing CNNs for better scalability.
Building on ViViT (Arnab et al., 2021), our framework
handles both images and videos. A 3D convolution with
kernel and stride size q × p× p tokenizes the input X into
Xembed ∈ RB×L×Cf , where L = T

q × H
p × W

p . A ViT
encoder processes Xembed, and a linear projection produces
a compact representation Z = fθ(Xembed) ∈ RB×L×2c.
Following the VAE formulation, we recover z ∈ RB×L×c

and define the latent space dimensionality as

E = L× c, (2)

which controls the compression ratio. The decoder upsam-
ples z from c to Cg channels via a linear projection, pro-
cesses it with a ViT decoder, and uses a 3D transposed
convolution to recover X̂ . This defines our Vision Trans-
former Tokenizer (ViTok). Figure 1 illustrates the process,
and Table 1 provides ViTok size details for reference.

2.3. Experiment Setup and Training

To address instability in VAE frameworks, we use a two-
stage training approach. Stage 1 trains with MSE, LPIPS,
and KL losses (β = 1 × 10−3, η = 1.0, λ = 0) for stable
auto-encoding. Stage 2 incorporates the GAN, freezes the
encoder, and fine-tunes the decoder with λ = 1.0.

Architecture, datasets, and training details. We use a
Vision Transformer architecture (ViT) for the encoder and
decoder, incorporating SwiGLU and 3D Axial RoPE for
spatiotemporal modeling. We train on large-scale datasets:
Shutterstock (450M images) and ImageNet-1K for images,
and Shutterstock videos (30M videos) for video. Evaluation
is performed on ImageNet-1K, COCO-2017, UCF-101, and
Kinetics-700. Stage 1 runs for 100k steps with batch sizes
of 1024 (images) and 256 (videos). Stage 2 fine-tunes for
another 100k steps. We use AdamW (β1 = 0.9, β2 = 0.95),
a peak learning rate of 1×10−4

256 , weight decay of 1× 10−4,
and a cosine decay schedule. For Stage 2, we use Style-
GAN (Karras et al., 2019) discriminator with a learning rate
of 2× 10−5 and a 25k-step warmup. Training uses bfloat16
autocasting, with EMA (0.9999) introduced in Stage 2.

Reconstruction evaluation metrics. To gauge recon-
struction quality, we use the Fréchet Inception Distance

(FID) (Heusel et al., 2017), Inception Score (IS) (Sali-
mans et al., 2016), Structural Similarity Index Measure
(SSIM) (Wang et al., 2004), and Peak Signal-to-Noise Ratio
(PSNR). For video, we report rFID (frame-wise FID) and
Fréchet Video Distance (rFVD) (Unterthiner et al., 2019).

Generation experiments and metrics. To assess our tok-
enizers in a large-scale generative setting, we train a class-
conditional DiT-L (Peebles & Xie, 2023) with 400M param-
eters for 500,000 steps and a batch size of 256, applying
classifier-free guidance (CFG) (Ho & Salimans, 2022) on
a DDIM sampler (Song et al., 2020) over 250 steps and a
CFG scale of 1.5. We apply the same Llama upgrades to
our DiT as for our tokenizers. We measure generation qual-
ity using gFID and gIS (gInception Score) calculated over
50,000 samples. Since ViTok can directly output continuous
tokens, we can feed the noised latents z + ϵ directly into
DiT without patchifying and predict the noise.

3. Bottlenecks, Scaling, and Trade-offs in
Visual Tokenization

In Section 2, we introduced ViTok and its training pro-
cess. Here, we explore the impact of scaling three key fac-
tors—bottleneck size, encoder size, and decoder size—on
reconstruction and generation performance.

3.1. E as the Main Bottleneck in Image Reconstruction

In prior discrete cases performance depends on the tokens
(L) and the codebook size (Oord et al., 2017; Mentzer et al.,
2023). For ViTok, the analogous factor is E (Equation 2),
which proves to be the critical determinant of reconstruction
performance. As described in Equation 2, E represents the
total number of floating points (also dependent on precision)
and relates to the compression ratio, defined as T×H×W×3

E .
We train ViTok S-B on stage 1 (Section 2.3) on 256p image
reconstruction, sweeping patch sizes p = {32, 16, 8} and
channel widths c = {4, 8, 16, 32, 64}, yielding E values
from 28 to 216. Patch size affects L = H×W

p2 and therefore
FLOPs due to the quadratic nature of attention, while c
controls the bottleneck between encoder and decoder. The
results are summarized in Figure 3, with more details of the
experiment provided in Appendix A.

Figure 3 shows a strong correlation between E and recon-
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Ground Truth Reconstruction with E Floating Points
16384 8192 4096 2048 1024

Figure 2. 256p image reconstruction visualization over floating points E. Example reconstruction for varying E values on ViTok
S-B/16, achieved by adjusting the channel size c = 64, 32, 16, 8, 4 for each image across the row. As E decreases, high-frequency details
diminish, with small colors and fine details gradually lost. When E < 4096, textures merge, and significant detail loss becomes apparent.
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Figure 3. 256p image reconstruction sweep over floating points
E. We evaluate ViTok S-B using combinations of patch sizes
p ∈ 8, 16, 32 and channel widths c ∈ 4, 8, 16, 32, 64 to investigate
how E = 2562

p2
· c influences FID and IS in reconstruction tasks.

This indicates that E is the primary bottleneck for reconstruction,
irrespective of the code shape or FLOPs expended.

struction metrics (rFID/rIS), indicating that E is a key pre-
dictor of reconstruction quality. Performance trends are con-
sistent across datasets, with minor rFID variations due to
validation set sizes (50k for ImageNet-1K vs 5k for COCO).
For a fixed E, varying patch sizes (c = E×p2

H×W ) yields a
similar performance, suggesting that FLOPs do not improve
results for a given E. This establishes E as the primary
bottleneck. Figure 2 visualizes reconstructions for different
E values. As E decreases, high-frequency details are lost;
for E < 4096, textures degrade significantly.

Finding 1: Regardless of code shape or flops ex-
pended in auto-encoding, the total number of float-
ing points in the latent code (E) is the most predic-
tive bottleneck for visual reconstruction.

3.2. The Impact of E in Image Generation

In this section, we explore how E impacts generative perfor-
mance using the tokenizers from Figure 3 and the training
protocol in Section 2.3. Results are shown in Figure 4.

Unlike reconstruction, the generative metrics (log(gFID)
and gIS) do not show a linear correlation with log(E). In-
stead, each patch size has an optimal E: p = 16, c = 16,
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Figure 4. 256p image generation over E. We evaluate each tok-
enizer from Figure 3 on DiT following Section 2.3. Our results
show no strong linear correlation between log(E) and generation
performance. Instead, a second-order trend reveals an optimal E
for each patch size p. This highlights the necessity of optimizing
both E and c to balance reconstruction with generation.

E = 4096; p = 8, c = 4, E = 4096; and p = 32, c = 32,
E = 2048. In particular, gFID and gIS remain poor for
c > 32, indicating that excessive c harms performance.

Low E bottlenecks the generative model due to poor re-
construction, while high E (driven by large c) complicates
convergence and degrades gFID and gIS. This aligns with
recent findings on the trade-off between rFID and gFID in
latent diffusion models (Yao & Wang, 2025). The balance
of E and c is crucial: they must be low enough to aid gen-
eration, but high enough to ensure quality reconstructions.
Generation visualizations are provided in the Appendix B.

Finding 2: Scaling E does not consistently im-
prove generative performance. Instead, optimal re-
sults are achieved by tuning both E and c. A low
E limits the quality of reconstruction, while a high
E and channel size c hinder the generation perfor-
mance.

3.3. Scaling Trends in Auto-Encoding

We explore how scaling impacts auto-encoding in recon-
struction and generation tasks using ViTok, fixing parame-
ters to p = 16, c = 16. We sweep sizes S-S, B-S, S-B, B-B,
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Figure 5. Encoder scaling on 256p image reconstruction. We
evaluate reconstruction metrics of ViTok over model sizes S-S,
B-S, S-B, B-B, B-L, L-L with fixed p = 16, c = 16. There is no
correlation between encoder size and reconstruction performance,
indicating that scaling the encoder is unhelpful.
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Figure 6. Decoder scaling on 256p image reconstruction. Using
the results from Figure 5, we plot various decoder sizes (S, B, L)
over reconstruction performance. There is a strong correlation
between decoder size and reconstruction performance, which in-
dicates scaling the decoder improves reconstruction. Although,
increasing the decoder size from Base to Large does not provide
the same boost of performance as doubling E to 8192 from 4096.

S-L, B-L, L-L, defined in Table 1 following the training
protocol in Section 2.3. Results are in Figures 5 and 6.

Figure 5 shows no correlation between encoder size and
reconstruction performance. In contrast, Figure 6 shows a
correlation between decoder size and reconstruction quality.
However, E remains the dominant factor: Going from Base
to Large reduces rFID from 1.6 to 1.3 for E = 4096, while
doubling E to 8192 with a Base decoder drops rFID to
0.8. Scaling the decoder can be beneficial, but scaling the
encoder provides no significant advantage.

Figures 7 and 8 examine the impact of scaling the encoder
and decoder on generation performance. Figure 7 shows a
slight negative correlation between encoder size and gen-
eration quality, suggesting that larger encoders either have
no benefit or may harm performance. Similarly, Figure 8
indicates that scaling the decoder offers minimal gains for
generation. Unlike reconstruction, scaling the encoder or
decoder does not significantly improve generation quality

26 27 28

Encoder Size (M)

5.8

6.0

6.2

6.4

6.6

6.8

gF
ID

R² = 0.24

26 27 28

Encoder Size (M)

145

150

155

160

165

gI
S

R² = 0.23

Figure 7. Encoder scaling on 256p image generation. We evalu-
ate each tokenizer from Figure 5 on DiT following Section 2.3. We
plot encoder size over generation metric results. There is a weak
negative correlation between encoder size and final performance
indicating that scaling the encoder is harmful for generation.
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Figure 8. Decoder scaling on 256p image generation. Using the
results from Figure 6, we plot various decoder sizes (S, B, L) over
generation performance. We plot decoder size over generation
metric results for CFG scales of 1.5. Unlike reconstruction, there
is no correlation between decoder size and generation performance.
This indicates that scaling the decoder has minimal benefits overall
and most scaling efforts should focus on the generator.

but raises training and inference costs.

Finding 3: Scaling the encoder provides no recon-
struction benefits and may harm generation, while
scaling the decoder improves reconstruction but of-
fers limited generation gains.

With the findings so far, we believe simply scaling the current
auto-encoding (Esser et al., 2021) based tokenizers does
not automatically lead to improved downstream generation
performance. Therefore, for generation tasks, it is more
cost-effective to concentrate scaling efforts on the generator
itself, rather than the visual tokenizer.

3.4. A Trade-Off in Decoding

We compare the manner in which different losses balance
SSIM/PSNR against FID. SSIM/PSNR measure visual fi-
delity or how much of the original information is preserved,
while FID focus on visual quality and how closely outputs
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Figure 9. Metric trade-offs in 256p image reconstruction. We
train ViTok S-B/16 varying the LPIPS (LP in figure) weight λ ∈
{0.0, 0.5, 1.0} and using either L1 or L2 MSE reconstruction loss
(Equation 1). Additionally, we finetune ViTok S-B/16 with GAN
and include the result as L2+LP+GAN. The results indicate that
enhancing rFID scores through increased perceptual and visual
losses requires a trade-off with rSSIM/rPSNR, resulting in loss of
information from the original image.

match the real dataset. This comparison shows how differ-
ent losses choices can change the role of the decoder from
strictly reconstructing to more actively generating content.

We conducted these experiments on ViTok by fixing p = 16,
c = 16, and E = 4096. We then trained with stage 1 and
varied the LPIPS loss weight λ ∈ {0.0, 0.5, 1.0} combined
with the choice of L1 or L2 reconstruction loss (Equation 1).
We also include our Stage 2 results following Section 2.3 to
see the final effect of the generative adversarial objective.

Figure 9 shows a clear trade-off among these losses. With-
out perceptual loss, we get worse rFID scores but better
rSSIM/rPSNR, indicating that a strict MSE-based approach
preserves the most original information. Increasing λ grad-
ually lowers SSIM/PSNR while improving FID/IS. Finally,
fine-tuning the decoder with a GAN pushes these generative
metrics further, achieving an rFID of 0.50 at the cost of a
lower SSIM/PSNR. These results demonstrate that at a fixed
E, aiming for higher visual quality requires sacrificing some
traditional compression fidelity.

Finding 4: There is a trade-off between rFID (vi-
sual quality) and rSSIM/rPSNR (visual fidelity),
influenced by the weights of Equation 1. Conse-
quently, the decoder can be trained as a generation
model, which extends the main generator.

3.5. Video Results

We extend ViTok to video tasks to study the impact of E on
video reconstruction and explore redundancy in video data.
Using 16-frame videos at 8 fps and 256p resolution, we
maintain consistency with image experiments. Furthermore,
tokenizing videos can result in long sequences; for example,
a tubelet size of 4×8 (temporal stride q = 4, spatial stride
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Figure 10. 256p video reconstruction results over E. We train Vi-
Tok S-B on 16×256×256 videos at 8 fps, varying p ∈ {8, 16, 32}
and q ∈ {1, 2, 4, 8} with c = 16. Reconstruction performance
is evaluated using rFID and rFVD on the Kinetics-700, UCF101,
and Shutterstock datasets. The results exhibit a similar trend to im-
age reconstruction in Figure 3, demonstrating a strong correlation
between E and reconstruction performance. Expectantly, videos
are more compressible than a direct scaling from images would
suggest; instead of requiring 16×E, achieving comparable rFID
to 256p image reconstruction only necessitates 4–8×E.

p = 8) for a 16×256×256 video yields 4096 tokens. Based
on Section 3.3, we use a small ViTok S-B variant to reduce
computational costs as scaling the encoder does not aid
performance. We sweep patch sizes p ∈ {8, 16, 32} and
temporal strides q ∈ {1, 2, 4, 8}. Figure 10 shows that
log(E) correlates with reconstruction metrics rFVD/rFID.

Videos require E ≈ 16384 to achieve an rFID of 2.0,
whereas images needE = 4096. The smaller-than-expected
impact of scaling image-derivedE across video frames high-
lights ViTok’s ability to exploit video compressibility.

Finding 5: Videos share the same reconstruction
bottleneck characteristics as images with respect
to E. However, auto-encoding exploits video com-
pressibility, allowing E to scale more efficiently
relative to total pixels than in images.

4. Experimental Comparison
In this section, we compare our auto-encoders to prior work
on image reconstruction at 256p and 512p, as well as video
reconstruction with 16 frames at 128p. We utilize the S-B/16
and S-L/16 variants for images and the S-B/4x8 variant for
videos. Training these tokenizers follows the Stage 1 and
Stage 2 protocol outlined in Section 2.3.

4.1. Image Reconstruction and Generation

We evaluate our models on image reconstruction and class-
conditional generation using ImageNet-1K and COCO-
2017 at 256p and 512p resolutions. For reconstruction,
we compare against state-of-the-art continuous tokenizers,
including SD-VAE 2.x (Rombach et al., 2022), SDXL-
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Table 2. 256p image reconstruction comparison. We assess the reconstruction performance of ViTok on ImageNet-1K and COCO-2017
validation sets, benchmarking them against CNN-based tokenizers with an equivalent compression ratio (48 pixels per channel). Our
ViTok S-B/16 tokenizer achieves state-of-the-art (SOTA) rFID scores on both ImageNet-1K and COCO datasets, outperforming other
CNN-based continuous tokenizers while utilizing significantly fewer FLOPs. Furthermore, ViTok maintains competitive performance in
SSIM and PSNR metrics compared to prior methods. When scaling decoder size to Large, ViTok improves all its reconstruction numbers.

Name Params (M) GFLOPs ImageNet COCO
rFID↓ rPSNR↑ rSSIM↑ rFID↓ rPSNR↑ rSSIM↑

SD-VAE 59.3 162.2 0.78 25.08 0.705 4.63 24.82 0.720
SDXL-VAE - - 0.68 26.04 0.834 4.07 25.76 0.845

OAI - - 0.81 24.43 0.786 4.59 24.19 0.800
Cosmos-CI - - 2.02 31.74 0.700 5.6 31.74 0.703

ViTok S-B/16 129.0 34.8 0.50 24.36 0.747 3.94 24.45 0.759
ViTok S-L/16 426.8 113.4 0.46 24.74 0.758 3.87 24.82 0.771

Table 3. 512p image reconstruction comparison. We assess the reconstruction performance of our top-performing tokenizers on
ImageNet-1K and COCO-2017 validation sets, benchmarking them against a CNN-based tokenizer with an equivalent compression ratio
(48 pixels per channel). Our ViTok S-B/16 tokenizer maintains state-of-the-art (SOTA) results across all metrics.

Name Params(M) GFLOPs ImageNet COCO
rFID↓ rPSNR↑ rSSIM↑ rFID↓ rPSNR↑ rSSIM↑

SD-VAE 59.3 653.8 0.19 - - - - -

ViTok S-B/16 129.0 160.8 0.18 26.72 0.803 2.00 26.14 0.790

VAE (Podell et al., 2023), Consistency Decoder (OpenAI,
2023), and COSMOS (NVIDIA, 2024). Discrete tokenizers
are excluded due to incompatibility with direct comparisons.

As shown in Table 2, our ViTok S-B/16 achieves SOTA
rFID scores on ImageNet-1K and COCO, with competitive
rSSIM and rPSNR metrics. Scaling the decoder to size L fur-
ther improves performance. Notably, ViTok reduces FLOPs
compared to prior CNN-based methods. For 512p recon-
struction (Table 3), ViTok achieves SOTA performance with
significantly fewer FLOPs, outperforming existing methods
in both metrics and computational efficiency.

For class-conditional image generation, we train a DiT-XL
(675M parameters) for 4M steps paired with ViTok S-B/16,
using 256 tokens for 256p and 1024 tokens for 512p genera-
tion. Results in Table 5 show ViTok performs competitively
against SD-VAE. At 512p, ViTok matches other methods,
demonstrating its effectiveness at higher resolutions. Gener-
ated images are visualized in Figures 16 and 17.

4.2. Video Reconstruction and Generation

For our video comparison, our reconstruction metrics are
computed on the UCF-101 training set and compared against
state-of-the-art methods including TATS (Ge et al., 2022),
LARP (Wang et al., 2024a), and MAGViTv1/v2 (Yu et al.,
2023b;a). The results are presented in Table 4. Our tokeniz-
ers demonstrate very competitive performance relative to
prior work. Specifically, S-B/4x8 (1024 tokens) achieves

state-of-the-art (SOTA) rFVD results compared to other
CNN-based continuous tokenizers with the same total com-
pression ratio. Additionally, our approach significantly re-
duces FLOPs compared to Transformer-based prior method
LARP, underscoring the efficiency and versatility of ViTok.

We further evaluate our models on class-conditional video
generation using the UCF-101 dataset. We train a DiT-L
model for 500K steps on the UCF-101 training set, comput-
ing gFID and gFVD metrics. The results are summarized
in Table 6. ViTok achieves SOTA gFVD scores at 1024
tokens. Example video generations using our 1024-token
configuration are illustrated in Figure 21.

5. Related Work
Image tokenization. High-resolution images have been
compressed using deep auto-encoders (Hinton et al., 2012;
Vincent et al., 2008), a process that involves encoding an im-
age into a lower-dimensional latent representation, which is
then decoded to reconstruct the original image. Variational
auto-encoders (VAEs) (Kingma & Welling, 2013) extend
this concept by incorporating a probabilistic meaning to the
encoding. VQVAEs (Oord et al., 2017) introduce a vector
quantization (VQ) step in the bottleneck of the auto-encoder,
which discretizes the latent space. Further enhancing the vi-
sual fidelity of reconstructions, VQGAN (Esser et al., 2021)
integrates adversarial training into the objective of VQVAE.
Finally, FSQ (Mentzer et al., 2023) simplifies the training
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Table 4. 128p Video Reconstruction. We evaluate ViTok S-B/4x8 on video reconstruction for 16×128×128 video on UCF-101 11k train
set and compare to prior that utilizes similar compression ratios. ViTok S-B/4x8 achieves SOTA performance in rFVD, rFVD, rPSNR,
and rSSIM metrics compared to prior work. ViTok also reduces the total FLOPs required from prior transformer based methods.

Method Params(M) GFLOPs Compression # Tokens rFID↓ rFVD↓ rPSNR↑
rSSIM↑
TATS 32 Unk 2048 - 162 - -

MAGViT 158 Unk 1280 - 25 22.0 0.701
MAGViTv2 158 Unk 1280 - 16 - -

LARP-L-Long 174 505.3 1024 - 20 - -

ViTok S-B/4x8 129 160.8 1024 2.13 8 30.11 0.923

Table 5. Class conditional image generation results. We evalu-
ate our tokenizers on class-conditional generation at resolutions
of 256p and 512p on ImageNet-1K compared to prior methods.
ViTok performance is competitive with prior continuous diffusion
generation methods for both 256p and 512p generation.

Method 256p Generation 512p Generation
gFID↓ gIS ↑ gFID↓ gIS ↑

LDM 3.60 247.70 - -
DiT-XL/2 2.27 278.24 3.04 240.82
VQGAN 15.78 - - -
TiTok-B 2.48 - 2.49 -

ViTok S-B/16 2.45 284.39 3.41 251.46

Table 6. 128p class conditional video generation. We evaluate
ViTok S-B 4x8 on class-conditional generation 16×128×128 on
the UCF-101 dataset compared to prior methods. ViTok S-B/4x8
achieves SOTA video generation performance when used with a
comparable compression ratio with prior methods.

Tokenizer Params gFID↓ gFVD↓
TATS 321M - 332

MAGViT 675M - 76
MAGViTv2 177M - 58

W.A.L.T 177M - 46
LARP-L-Long 177M - 57

ViTok S-B/4x8 400M 6.67 27

process of VQVAE by avoiding additional auxiliary losses.

While ConvNets have traditionally been the backbone
for auto-encoders, recent explorations have incorporated
Vision Transformers (Vaswani et al., 2017; Kolesnikov
et al., 2020) (ViT) to auto-encoding. UViM (Kolesnikov
et al., 2022) adopts an asymmetric Vision Transformer
(ViT) encoder–decoder to unify a wide range of vision
tasks, including panoptic segmentation and depth prediction.
ViT–VQGAN (Yu et al., 2022) replaces the convolutional
auto-encoder of VQGAN with ViT blocks, yielding better re-
construction quality and more favorable scaling. TiTok (Yu
et al., 2024) introduces a compact 1-D ViT tokenizer that
distills latents from a VQGAN, freezes the encoder, and

fine-tunes only the decoder for downstream generative tasks.
Causally Regularized Tokenization (CRT) (Ramanujan et al.,
2024) and ElasticTok (Yan et al., 2024) both develop causal
1-D tokenizers tailored for autoregressive image models.
Finally, JetFormer (Tschannen et al., 2025) unifies tokeniza-
tion and generation by training an end-to-end autoregressive
model that directly produces high-resolution images, remov-
ing the need for separate stage-1 and stage-2 components.

Video tokenization. VideoGPT (Yan et al., 2021) pro-
poses using 3D Convolutions with a VQVAE. TATS (Ge
et al., 2022) utilizes replicate padding to reduce temporal
corruption issues with variable-length videos. Phenaki (Vil-
legas et al., 2022) utilizes the Video Vision Trans-
former (Arnab et al., 2021)(ViViT) architecture with a factor-
ized attention using full spatial and casual temporal attention.
MAGViTv1 (Yu et al., 2023a;b) utilizes a 3D convolution
with VQGAN to learn a video tokenizer coupled with a
masked generative portion. Finally, LARP (Wang et al.,
2024a) is a concurrent work that tokenizes videos with ViT
into discrete codes similar to TiTok’s architecture (Yu et al.,
2024), our work differs as we use continuous codes and
don’t concatenate latent tokens to the encoder.

High resolution generation. High resolution image
generation has been done prior from sampling VAEs,
GANs (Goodfellow et al., 2014), and Diffusion Mod-
els (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Song et al., 2020; Ho et al., 2020). While some work per-
form image synthesis in pixel space (Dhariwal & Nichol,
2021), many works have found it more computationally
effective to perform generation in a latent space from an
auto-encoder (Rombach et al., 2022). Typically, the U-Net
architecture (Ronneberger et al., 2015) has been used for
diffusion modeling, although recently transformers have
been gaining favor in image generation. MaskGIT (Chang
et al., 2022) combines masking tokens with a schedule to
generate images and Diffusion Transformers (Peebles &
Xie, 2023) proposes to replace the U-Net architecture with
a ViT. With Some methods use auto-regressive modeling to
generate images (Ramesh et al., 2021; Yu et al., 2023a;b; Li
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et al., 2024). DALL-E (Ramesh et al., 2021) encodes im-
ages with a VQVAE and then uses next token prediction to
generate the images. While most auto-regressive image gen-
erators rely on discrete image spaces, MAR (Li et al., 2024)
proposed a synergized next token predictor that allows for
visual modeling in continuous latent spaces.

6. Conclusion
In this paper, we explored scaling in auto-encoders, intro-
ducing ViTok, a ViT-style auto-encoder. We investigated
scaling bottleneck sizes, encoder sizes, and decoder sizes,
finding a strong correlation between the total number of
floating points (E) and visual quality metrics. Our results
show that scaling the auto-encoder alone does not signifi-
cantly improve generative performance. From our sweep,
we develop SOTA visual tokenizers. ViTok achieves compet-
itive performance with state-of-the-art tokenizers, matching
rFID and rFVD metrics while using fewer FLOPs.

7. Limitations
While ViTok demonstrates strong performance, our find-
ings—particularly the negative results—are constrained by
the experimental setup and assumptions. These limitations
are shared to prevent redundant efforts and to provide valu-
able insights for future work. Despite these constraints, the
lessons learned offer contributions to understanding the core
challenges in image and video generative methods.

Impact Statement
This paper presents work whose goal is to advance the field
of generative modeling and visual compression. There are
many potential societal consequences of our work, none
which we feel must be specifically highlighted here as our
benchmarks are purely academic in nature.

References
Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M.,
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In the appendix section we include more details on experiments, architecture details, and visualizations.

We provide additional details on the implementaiton of ViTok. Our implementation is based on the VideoMAEv2 (Wang
et al., 2023) codebase and inspired by the Big Vision codebase (Beyer et al., 2022). Utilizing PyTorch (Paszke et al., 2019),
we employ Distributed Data Parallel (DDP) for efficient multi-GPU training, along with activation checkpointing, bfloat16
precision, and Torch Compile optimizations. For image models, we train using 8 NVIDIA H100 GPUs, where ViTok S-B/16
requires approximately 6–12 hours for stage 1 and 3–6 hours for stage 2 on 256p and 512p resolutions. In comparison,
DiT image models take around 72–96 hours to train for 4 million steps on the same resolutions. For video models, ViTok
S-B/4x8 is trained on 16 NVIDIA H100 GPUs, taking about 24 hours for stage 1 and 12 hours for stage 2 on 256p, 16-frame
videos, and 12 hours for 128p, 16-frame videos. DiT video models require roughly 48–96 hours to train for 500k steps with
a batch size of 256. Our transformer architecture is based on the Vision Transformer (ViT) (Dosovitskiy et al., 2021) and
modified to incorporate elements from the Llama architecture, including SwiGLU (Shazeer, 2020) activation functions and
3D axial Rotary Position Embeddings (RoPE) (Su et al., 2024). The architecture consists of Transformer blocks (Vaswani
et al., 2017) with multi-head self-attention and MLP layers, enhanced by residual connections (He et al., 2016) and layer
normalization (Ba et al., 2016), closely following the Masked Autoencoder (MAE) design (He et al., 2022). Additionally,
we integrate video processing code from Apollo (Zohar et al., 2024), Unified Masked Diffusion (Hansen-Estruch et al.,
2024), and Video Occupancy Models (Tomar et al., 2024), enabling ViTok to effectively handle and exploit redundancy in
video data, thereby improving both reconstruction metrics and compression efficiency. Overall, ViTok leverages advanced
training techniques and architectural innovations to achieve state-of-the-art performance in image and video reconstruction
and generation tasks.

A. Extra Experiments
A.1. Detailed 256p Image Results
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Figure 11. 256p Detailed Image Reconstruction Results with Fixed Architecture Size. We provide more details for the sweep in
Figure 3 on the just the ImageNet-1K validation set. For 1024 ≤ E ≤ 16384, where intersections of E exist across patch sizes, we see
very little variation in performance for fixed E. This indicates that E is the main bottleneck for visual auto-encoding and is not influence
by increasing FLOPs.

We provide further detail of the ImageNet-1K validation reconstruction results from Figure 3 in Figure 11. Here we show
different patch sizes and channels over E. This shows that regardless of patch size and FLOPs usage, E is highly correlated
with the reconstruction perforance

A.2. E trends on 512p reconstruction.

To examine how resolution size affects E, we scale up the resolution from 256p to 512p. We test ViTok S-B/16 over
p ∈ 8, 16, 32. The results of the sweep are shown in Figure 12. The results follow a trend similar to that in Figure 3, with E
exhibiting consistent correlation relationships. While FID and IS are challenging to compare across resolutions1, achieving
comparable rSSIM and rPSNR performance at 512p requires 4×E from 256p. This suggests that maintaining performance
across resolutions requires preserving the same compression ratio, H×W×3

E .

1The InceptionV3 network used for FID and IS calculations resizes images to 299p before feature computation, leading to potential
information loss during downsampling.
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Figure 12. 512p Image reconstruction over E. We evaluate ViTok S-B trained with stage 1 (Section 2.3) across all combinations of
patch sizes p ∈ 8, 16, 32 and a fixed channel width c = 16, analyzing how the total floating-point operations, calculated as E = 5122

p2
· c,

influence reconstruction metrics such as FID, IS, SSIM, and PSNR. E shows trends similar to 256p results (Figure 3). However, achieving
comparable rPSNR/rSSIM to 256p requires 4× E for 512p reconstruction, which indicates that compression ratio of pixels to channels
should be fixed to maintain performance.

A.3. GAN Fine-tuning Ablation
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Figure 13. Finetuning the Decoder with a GAN. We study the effects of finetuning the decoder in ViTok S-B/16 on 256p images.
We compare: (1) no GAN finetuning, (2) different discriminator learning rates, (3) an increased GAN loss weight (0.1), and (4) a full
finetuning of all model parameters (including the encoder). The best results occur with a discriminator learning rate of 2× 10−5, while
higher rates cause instabilities. We also observe a clear shift toward more generative behavior: as the decoder gains better IS/FID, it
sacrifices some SSIM/PSNR, reflecting its transition into a stronger generative component.

In Figure 13, we study how various loss settings affect finetuning of the GAN decoder. Our goal is to highlight the trade-off
and the transition of the decoder to more generative behavior. We use ViTok S-B/16 on 256p images, following the protocol
in Section 2.3 for stage 2 fine-tuning from a model trained on stage 1.

We compare:

• Finetuning the decoder with the same Stage 1 loss (no GAN).

• Finetuning with discriminator learning rates ({1× 10−5, 2× 10−5, 4× 10−5}) and a GAN weight of 0.05.

• Finetuning the full encoder/decoder with the GAN.

• Using a higher GAN weight of 0.1 with a discriminator learning rate of 1× 10−5.

From Figure 13, the best setting is a GAN weight of 0.05 and a discriminator learning rate of 2×10−5. A higher discriminator
learning rate causes training instabilities, while a lower rate degrades performance. Full fine-tuning produces results, but
slightly underperforms when compared to fine-tuning only the decoder. Fine-tuning without a GAN yields no improvement,
confirming that GAN training is the key factor behind the better results.
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Finally, we see an inherent trade-off: improving FID tends to worsen SSIM/PSNR, indicating that as the decoder focuses on
visual fidelity, it shifts more toward generative outputs. This demonstrates the evolving role of the decoder as a generative
model to improve visual performance.

A.4. Latent ViTok and Masked ViTok

In this section, we describe two variants of ViTok that provide different potential directions for tokenization. First we
describe and evaluate our latent variation that does 1D tokenization and can form more arbitrary code shapes, then we
discuss and evaluate our masking variant that allows for variable, adaptive tokenization.

Latent ViTok Variation. Another variant of ViTok involves utilizing latent codes following Titok (Yu et al., 2024).
Initially, after applying a tubelet embedding, we concatenate a set of 1D sincos initialized latent tokens with dimensions
llatent × Cf to the tubelet token sequence Xembed. This combined sequence is then processed through the encoder and
bottleneck using a linear layer. Subsequently, the tubelet tokens are discarded, and the latent tokens generated by the encoder
form Z = llatent × 2c, from which we sample z ∼ Z. This gives us a 1D code with easy shape manipulation since L and c
are arbitrarily decided and do not depend on p. In the decoder, z is upsampled to Cg , and we concatenate a flattened masked
token sequence of length L × Cg with the upsampled latent code llatent × Cg. The decoder then predicts X̂ in the same
manner as the simple ViTok variation using masked tokens. This approach allows for a more adaptive compression size and
shape using self-attention. In addition, it accommodates arbitrary code shapes of different lengths than L, provided there is
redundancy in the code. A trade-off compared to the simple ViTok is the increased total sequence length and computational
cost (FLOPs) during encoding and decoding. We refer to this variant as Latent ViTok.
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Figure 14. 256p Simple vs Latent ViTok Results. We implement a latent variant of ViTok S-B/16, with p = 16 and L ∈
{64, 128, 256, 512, 1024} latent tokens appended to the original patch embedding, then processed using full self-attention, and subse-
quently bottlenecked to c = 16. Although this latent variant slightly underperforms the simpler version in rFID/rIS, it remains comparable
overall and follows the same rules as E. Consequently, it provides an alternative to Simple ViTok with greater control over the latent
space.

We train latent ViTok on stage 1 (Section 2.3) where we fix c = 16 and sweep the number of latent tokens
L ∈ {64, 128, 256, 512, 1024} to adjust E. The results are shown in Figure 14. Our simple variant outperforms the
latent version for most values of E, although the latent version achieves slightly better rSSIM/rPSNR for certain choices of
E. This indicates that the latent approach is a promising alternative to simple ViTok for more control over the latent space;
however, it comes with an increased computational cost due to the longer sequence of concatenated tokens. We leave this
implementation out of ViTok due to added complexity.

Token Compression via Random Masking. The simplest bottlenecking process in ViTok involves manipulating c, which
does not compress the number of tokens; the token count remains equivalent to the number tokens post-patching (L) or
equivalent to the number of latent tokens (llatent). However, manipulating p does not provide a fine grain control over the
token count.

To form another bottleneck, we can instead manipulate the main sequence of patch tokens by masking a random power
of two number of tokens, starting with tokens at the end of the sequence and masking towards the beginning. This is
similar to the method developed in ElasticTok (Yan et al., 2024). Matryoshka representation learning (Kusupati et al., 2024)
encodes coarse-to-fine information in a single vector, letting any prefix serve as a valid embedding and yielding up to 14×
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compression with no loss in ImageNet accuracy. Learned ordered representations with nested dropout (Rippel et al., 2014)
train networks to rank latent dimensions by importance, so early codes cover low-budget tasks while later codes refine detail.
Adaptive length tokenization via recurrent allocation (Duggal et al., 2024) iteratively refines image patches, producing a
variable 32–256 1-D tokens that scale with entropy and task difficulty. Finally, Visual Lexicon (Wang et al., 2024b) maps
images into the language token space, retaining fine visual detail in just a few tokens that can be mixed seamlessly with
ordinary text prompts. For example, if we randomly select 256 as the masking amount for a sequence of 1024 tokens, then
the last 256 tokens will be masked out and replaced with a learned masked token of dimension c. This directional masking
strategy enforces an ordered structure to the tokens. We set the minimum length to l. The length of the code at inference,
leval, forms another axis to change the code shape (Section 3) and E = leval × 2c.
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Figure 15. 256p Adaptive Masking ViTok Results. We investigate variations of ViTok S-B/16 that apply token masking after encoding.
We consider two approaches: Mask Simple, which masks the patch tokens following encoding, and Mask Latent, which introduces
latent tokens (like the architecture used for Figure 14) and masks them. At stage 1 training time we randomly selected token lengths
{32, 64, 128, 256} with c = 16, then at inference evaluate each model on every token length and compare to the simple ViTok baseline at
similar E. While the masking variations underperform the simple variant, they still perform strongly. Mask Simple tends to perform better
at higher E, while Mask Latent achieves better results at lower E.

We now train our mask ViTok on stage 1 (Section 2.3) and investigate potential adaptive tokenization schemes. We first
apply this masking strategy to the simple version of ViTok, directly masking the patch tokens after they have been processed
by the encoder. We then explore the same approach on the latent version of ViTok. Both methods are trained with token
lengths {32, 64, 128, 256} and c = 16 on ViTok S-B/16 using 256p images.

Figure 15 compares these masking methods with simple ViTok across different E. While all masking variants slightly
underperform the simple ViTok, their overall performance remains strong. In particular, masking patches directly is more
effective for higher E > 4096, whereas masking latent tokens performs better when E < 4096. These findings highlight
how ViTok can be adapted for flexible token lengths during inference, and illustrate how our method can be extended to
learn an ordered structure of tokens. Though more work here is needed to improve performance further.

B. Visualizations
In this section, we provide extra visualizations of generation examples from our various models and sweeps.

B.1. Image Generation

Here provide generation examples from our final models and sweep conducted in Figure 4. The p = 16 visuals are shown in
Figure 18, the p = 32 visuals are shown in Figure 19, and the p = 8 visuals can be found in Figure 20.

Final ViTok model generations. We provide example generations from the DiT models trained in Table 5. Visualizations
are shown in Figure 16 and Figure 17.

B.2. Video Generations

We include more video generation results in this section from Table 6 and show example generations at 1024 tokens in
Figure 21.
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Figure 16. 256p image generation examples. We show randomly selected 256p image generation examples from our DiT-XL trained
using the ViTok S-B/16 variant for 4 million steps at a batch size of 256. Images were sampled with 250 steps using the DDIM sampler
and a CFG weight of 4.0.

Figure 17. 512p image generation examples. We show randomly selected 512p image generation examples from our DiT-XL trained
using the ViTok S-B/16 variant for 4 million steps at a batch size of 256. Images were sampled with 250 steps using the DDIM sampler
and a CFG weight of 4.0.
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Patch Size 8, Channel 4

Patch Size 8, Channel 16

Patch Size 8, Channel 64

Figure 18. Channel size generation visualization 256p for p = 8. We show example generations for various compression ratios on
ViTok S-B/8 from Figure 4. Here c = 4 has the best visuals that look close to good images, while c = 16 generally looks good as well but
not as good. c = 64 looks very poor and the images do not look realistic.
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Patch Size 16, Channel 4

Patch Size 16, Channel 16

Patch Size 16, Channel 64

Figure 19. Channel size generation visualization 256p for p = 16. We show example generations for various compression ratios on
ViTok S-B/16 from Figure 4 Here c = 16 has the best visuals that look close to good images, while c = 64 suffers artifacts that worsen
image quality. c = 4 suffers from poor reconstruction quality from the auto-encoder.
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Patch Size 32, Channel 4

Patch Size 32, Channel 16

Patch Size 32, Channel 64

Figure 20. Channel size generation visualization 256p for p = 32. We show example generations for various compression ratios on
ViTok S-B/32 from Figure 4. Here c = 64 has the best visuals overall but the high channel sizes make the image quality look poor and
jumbled. Both c− 16 and c = 4 suffers from poor reconstruction quality from the auto-encoder.
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Figure 21. 128p video generation examples. We show randomly selected 16×128×128 video generation examples from our DiT-L
trained with ViTok S-B/4x8 variant. Videos are sampled with 250 steps and a CFG weight of 2.0.
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