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Abstract

Inspirational quotes from famous individuals001
are often used to convey thoughts in news ar-002
ticles, essays, and everyday conversations. In003
this paper, we propose a novel context-based004
quote extraction system that aims to predict the005
most relevant quote from a long text. We for-006
mulate this quote extraction as an open domain007
question answering problem first by employing008
a vector-store based retriever and then applying009
a multi-task reader. We curate three context-010
based quote extraction dataset and introduce a011
novel multi-task framework that improves the012
state-of-the-art performance, achieving a maxi-013
mum improvement of 5.08% in BoW F1-score.014

1 Introduction015

Inspirational quotes from famous individuals are016

powerful tools that convey wisdom and insight in017

a concise and often figurative manner. They pro-018

vide a secondary voice that reinforces the author’s019

thoughts and beliefs (Liu et al., 2019). Context-020

aware quote extraction (also known as quote rec-021

ommendation) is crucial in writing news articles,022

blogs, and summaries, as it helps to strengthen023

the expressed ideas. This process involves iden-024

tifying phrases or sentences within a paragraph025

that are quotable and determining their relevance026

and quotability in a given context. Since “con-027

text” can be highly subjective, finding the most028

relevant quotes can be challenging due to the lin-029

guistic nuances involved. Figure 1 demonstrates030

a recommendation for a quotable phrase from a031

source paragraph, based on one context from the032

example of our dataset. It turns out that authors033

have to spend far too much time deciding what-034

to-quote from many source texts analyzing their035

context. Accordingly, it is in significant demand to036

automate the process of extracting quotes from a037

text.038

To tackle the task, Bendersky and Smith (2012)039

attempts to identify “quotable” phrase from books040

Figure 1: Example use-case of context-aware quote extrac-
tion from source document while composing an article. The
highlighted portion from the source document can be a suit-
able quote for the target context in the left.

on the basis of linguistic and rhetorical properties. 041

Unlike this, (Tan et al. (2015), Tan et al. (2016, 042

2018), Qi et al. (2022)), leverage “context” to se- 043

lect the most relevant quote from a list of quotes. 044

(Lee et al. (2016); Wang et al. (2021)) use dialogue 045

history as the context. The task of finding the most 046

relevant quote itself remains challenging. More- 047

over, our task poses inherent difficulty, as we not 048

only attempt to find the most relevant quote for 049

a given context, but also extract the quote from 050

a full source document (containing several hun- 051

dreds of paragraphs). To the best of our knowledge, 052

only (MacLaughlin et al., 2021) attempts to ex- 053

tract context-aware quotes from text documents 054

(US presidential speech transcripts). However, the 055

length of the documents are considerably small (see 056

Table 1 for details) and they only cover the political 057

domain for quote extraction. In addition, none of 058

the experimental dataset apart from Qi et al. (2022) 059

is publicly available. 060

In this research, we focus on bridging the gap by 061

rigorously curating three datasets for context aware 062

quote extraction task, and presenting a novel frame- 063

work that can enhance the task of extracting quotes 064

from a much longer text. 065

Our contributions are as follows. 066

• To better extract quotes based on the context, 067
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we propose a Retrieval Augmented Multi-task068

Reader (RA-MTR) framework that utilizes069

a vector-store for initial retrieval followed070

by Llama-3 based re-ranker, and a multi-task071

framework that leverages two training tasks072

tailored specifically for the quote extraction073

scenario. In addition to the normal span pre-074

diction as suggested by (MacLaughlin et al.,075

2021), we incorporate quotability identifica-076

tion as a sequence classification task.077

• We conduct rigorous experiments using RA-078

MTR and show that our framework outper-079

forms the best-performing baseline by a max-080

imum of 5.08% in terms of BoW F1-score081

while considering the top-ranked paragraph as082

the location of the quote.083

• We also perform analysis with the multi-task084

reader to demonstrate that our fine-tuned085

multi-task framework based on SpanBERT086

⊕ SpanBERT-CRF improves the quote pre-087

dictions over a series of baselines. Specifi-088

cally, we train this multi-task framework us-089

ing the popular QuoteR dataset (where the ma-090

jority of the quotations are from books) (Qi091

et al., 2022) and evaluate on two different092

datasets – Quotus (which comprises politi-093

cal speech quotations) (Niculae et al., 2015)094

and ‘Gandhi’ (which is based on the quotes095

of Mahatma Gandhi)1. Our multi-task frame-096

work outperforms the standard BERT-based097

models by a large margin in a few shot set-098

tings. In particular, we see that even with099

eight data points from the target domain, our100

model beats BERT and SpanBERT by 14%101

and 11% in BoW F1-score respectively. The102

results are listed in Table 5.103

2 Related work104

We present this section subdivided into multiple105

important parts.106

Quotability identification: (Bendersky and Smith,107

2012) developed a quotable phrase extraction pro-108

cess that includes a supervised quotable phrase de-109

tection using lexical and syntactic features. (Wang110

et al., 2021) introduced a transformation matrix111

that directly maps the query representations to quo-112

tation representations. (Koto et al., 2014) gathered113

and examined memorable spoken quotes from TED114

public speaking based on speech duration, the fun-115

1https://www.goodreads.com/author/quotes/
5810891.Mahatma_Gandhi

damental frequency of speech signal (F0), and pop- 116

ularity. 117

Context aware quote recommendation: (Tan 118

et al., 2015) proposed a learning-to-rank frame- 119

work. (Tan et al., 2016) proposed a quote recom- 120

mendation framework by learning the distributed 121

meaning representations for the contexts and the 122

quotes using LSTM. (Lee et al., 2016) built a quote 123

recommender system to predict quotes based on 124

Twitter dialogues as context. (Qi et al., 2022) built 125

a large and the first publicly available dataset of 126

quote recommendation. 127

Quotable paragraph identification: (MacLaugh- 128

lin and Smith, 2021) utilized BERT-based models 129

for ranking the quotable paragraphs evaluating on 130

five different datasets. (Voskarides et al., 2021) dis- 131

cussed challenges of retrieving news articles in the 132

context of developing event-centric narratives. 133

Quote identification and recommendation: To 134

the best of our knowledge (MacLaughlin et al., 135

2021) made the first attempt to simultaneously rank 136

the most quotable paragraphs and predict the most 137

quotable spans from source transcripts modeling 138

quote recommendation as an open-QA problem. 139

The present work: We extend the work of 140

(MacLaughlin et al., 2021), by proposing a novel 141

retriever augmented multi-task reader based quote 142

extraction. The framework employs a vector-store 143

based paragraph retriever followed by a decoder- 144

only transformers based re-ranker and a novel 145

multi-task based reader containing a sequence clas- 146

sification module for identifying quotable phrases 147

along with context aware span prediction. We cu- 148

rate three datasets of different genres and evaluate 149

our approach. Our method outperforms all the 150

previous baselines and generalizes better in a cross- 151

domain few-shot setting. 152

3 Approach 153

We formalize the problem as an open-QA task, sim- 154

ilar to the one described in (MacLaughlin et al., 155

2021). Given a target context (TC), and a source 156

document (SD) which consists of several para- 157

graphs (= {P1, P2, .., Pn}), we require to first iden- 158

tify the most relevant list of paragraphs depend- 159

ing upon TC , and then identify the most quotable 160

phrase from the selected paragraphs. We propose 161

the overall quote extraction approach consisting of 162

a retriever (detailed in section 5.1.1) to select the 163

most relevant paragraph followed by a multi-task 164

reader (detailed in section 5.1) to extract a quote. 165
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4 Dataset curation166

In this section we present the details of the datasets167

first by discussing the quotes that we consider, fol-168

lowed by construction of source paragraph and169

target context for our experiments.170

4.1 Training data171

QuoteR: We primarily consider the English subset172

of the QuoteR dataset proposed by (Qi et al., 2022),173

known to be the largest publicly available dataset174

for the quote recommendation task. The authors of175

the corresponding paper collected several quotes176

from the popular WikiQuote2 project and search177

for the occurrences of these quotes in the Project178

Gutenberg corpus3, the BookCorpus (Zhu et al.,179

2015), and the OpenWebText corpus (Gokaslan180

and Cohen, 2019) respectively, and considered the181

preceding and the following 40 words of a partic-182

ular quote to its left and right context respectively.183

After preprocessing, the authors provided a total of184

6108 unique quotes and around 127k contexts for185

those quotes.186

4.2 Test data187

Gandhi quotes: Websites such as mkgandhi4 has188

made the Collected Works of Mahatma Gandhi189

(CWMG) publicly available, which is a huge text190

corpus consisting of 100 volumes. We collect191

around a total of 800 Mahatma Gandhi quotes in192

English from Goodreads5 and the mkgandhi portal.193

Quotus data: The authors in (MacLaughlin et al.,194

2021) utilizes the Quotus (Niculae et al., 2015)195

dataset for their experiments. The dataset consists196

of two sets of texts — transcripts of US Presidential197

speeches and press conferences from 2009-2014198

(the source document), and news articles that re-199

port on the speeches (the target document). The200

authors crawled the articles and transcripts from201

the provided links in the Quotus data, and prepro-202

cessed them to gather a significant amount of quote,203

contexts, and paragraphs. However, they did not204

make their dataset publicly available. We ourselves205

re-scraped the links from the source Quotus data.206

Curating source paragraph and target context:207

From these three dataset (i.e., QuoteR, Gandhi,208

and Quotus) we get a list of quotes. However, to209

evaluate our retriever and reader, we require to210

2https://en.wikiquote.org/
3https://www.gutenberg.org/
4https://mkgandhi.org/
5https://www.goodreads.com/author/quotes/

5810891.Mahatma_Gandhi?page=35

curate the source paragraph and the target context 211

for each of the quotes. We leverage the Project 212

Gutenberg corpus to construct 4,889 quote-context- 213

paragraph triples (containing 1,708 unique quotes) 214

for QuoteR. We use Gadhipedia6 search engine to 215

curate 737 triples for the Gandhi quotes. For the 216

Quotus, we utilize the Quoting POTUS7 website 217

containing the news articles and align the quotes 218

to source transcript for constructing 2,698 triples. 219

The detailed steps and algorithms are provided in 220

Appendix D. 221

4.3 Dataset statistics 222

Thus, overall we consider three datasets each from 223

a different genre - (i) QuoteR - where most of the 224

quotes are from novels, 2) Gandhi - solely based 225

on the quotes of Mahatma Gandhi, and 3) Quo- 226

tus - quotes from the political speech. The basic 227

statistics of these three datasets are noted in Ta- 228

ble 1. Figure 2 demonstrates the most prominent 229

words present in the three datasets. The quotes in 230

the QuoteR and Gandhi datasets contain positive 231

words like “God”, “good”, “love”, “truth”, “peti- 232

tion” etc. The Quotus dataset on the other hand 233

contains quotes having words “america”, “presi- 234

dent” etc. We also compare our dataset with the 235

dataset used in other similar works (see Table 2). 236

We present the only dataset containing quote, con- 237

text and source paragraph. These datasets will be 238

made publicly available upon acceptance. 239

(a) QuoteR (b) Gandhi (c) Quotus

Figure 2: Most prominent words present in the quotes across
the three datasets.

5 Methodology 240

In this section, we describe the details of our 241

methodology for quote extraction. We propose the 242

overall quote extraction approach as an open-QA 243

framework, which normally consists of a retriever 244

and a reader. The retriever is essential for selecting 245

the top paragraphs relevant to the context from the 246

whole document. We employ a novel multi-task 247

learning framework in the reader, which extracts 248

the most quotable spans from the selected para- 249

graphs and is discussed in detail in section 5.1. The 250

6https://www.gandhipedia150.in
7http://snap.stanford.edu/quotus/vis/
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Dataset # of unique
quotes

# of quote-context-
paragraph triples

Avg. # of tokens
/ quote

Median # of to-
kens / quote

Avg # of para / Src Avg # of tokens /
Src

QuoteR 1708 4889 13.51 11 551 98783.17
Gandhi 737 737 20.42 19 19.54 3812.47
Quotus 2698 2698 20.46 16 86.78 4631.55

Table 1: Statistics for the three datasets. For QuoteR we report the instances that we could find in the Gutenberg corpus.

Dataset Context
based

Context
type

Source para-
graph

Public

Bendersky and
Smith (2012)

✗ writings ✗ ✗

Tan et al. (2015) ✔ writings ✗ ✗
Wang et al.
(2021)

✔ dialogue ✗ ✔

Qi et al. (2022) ✔ writings ✗ ✔
MacLaughlin
et al. (2021)

✔ writings ✔ ✗

Our dataset ✔ writings ✔ ✔

Table 2: Dataset comparison for other related tasks with ours.

overall retriever-reader architecture RA-MTR is251

illustrated in the left part of Figure 3.252

5.1 Retrieval augmented multi-task reader253

(RA-MTR)254

5.1.1 Retriever255

In the preprocessing stage, we divide each book256

into fixed-length paragraphs, and our quote predic-257

tion module attempts to identify the relevant span258

of a quote from the positive paragraph. However, in259

real-world scenarios, we are not provided with the260

positive paragraph, instead, we have a large set of261

paragraphs from which we need to retrieve the pos-262

itive paragraph. Retrieving the positive paragraph263

from a set of non-relevant paragraphs is a challeng-264

ing task. Inspired from RAG (Lewis et al., 2020) ar-265

chitecture, we employ a vector-store based retriever266

to initially retrieve top-k8 (k = 20) paragraph267

based on the given context. We utilize langchain268

API9, to split the source document into several269

chunks (we choose chunk-size of 120010 characters270

and chunk-window of 100), followed by encoding271

of each chunk using sentence-transformers, and272

finally store the embeddings into a vector-store for273

efficient searching. We use ChromaDB11 for stor-274

ing the embeddings of the chunks. In parallel, the275

query context is also embedded using sentence-276

transformers. To extract the relevant inspirational277

quote from the source document we perform a sim-278

ilarity search by comparing the query context em-279

8Increasing k did not change the performance too much
9https://python.langchain.com/docs/modules/

data_connection/
10As we find the maximum length of context + paragraph

is 1005
11https://pypi.org/project/chromadb/

bedding and the embeddings in the vector-store 280

to retrieve top-k chunks. The retrieved chunks 281

are then passed to the more powerful sequence-to- 282

sequence re-ranking module for further processing. 283

Fine-tuning paragraph re-ranking module: Af- 284

ter retrieving initial sets of candidate paragraphs, 285

many past literature leveraged deep neural network 286

based paragraph re-ranking modules to get a final 287

ranked list of paragraphs. Works such as (Dai and 288

Callan (2019); Yilmaz et al. (2019); Nogueira et al. 289

(2019)) exploited BERT for paragraph/document 290

retrieval tasks. Nogueira et al. (2020) used a T5- 291

ased encoder-decoder architecture for document 292

ranking. We apply a more sophisticated decoder- 293

only transformer based model Llama-312 to re-rank 294

the paragraph. Similar to Nogueira et al. (2020) 295

we formulate the problem as a binary classification 296

task, and the input prompt is: 297

Context: {c}
Document: {d}
Is the document relevant to the context? Answer yes/no:

where c and d are the context and paragraph texts, 298

respectively. The model is fine-tuned to produce 299

the words yes or no depending on whether the doc- 300

ument is relevant or not to the query. That is, yes 301

and no are the ‘target words’ (i.e., ground truth 302

predictions in the sequence-to-sequence transfor- 303

mation). To generate training and test examples for 304

the models, we iterate over each context and create 305

(context, source paragraph, label) example triples 306

for each paragraph in the corresponding source 307

document. The label is yes if the author actually 308

quoted from the paragraph (positive triple) and no 309

(negative triple) otherwise. At inference time, to 310

compute probabilities for each query–document 311

pair (in a re-ranking setting), we retrieve the unpro- 312

cessed next-token probabilities for the tokens yes 313

and no. From these, we calculate the yes− score 314

as follows. 315

yes− score(c,di) =
p(yes|P )

p(yes|P ) + p(no|P )
(1) 316

where, c is the context, di is the ith document and P 317

is the prompt. Similarly, as baseline, we also fine- 318

12We apply the chat model from huggingface meta-llama/
Meta-Llama-3-8B-Instruct
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Figure 3: The RA-MTR architecture.

tune encoder-decoder based models (T5, FLAN-319

T5) for the re-ranking task using similar approach.320

Sampling hard negatives: Out of all the negative321

triples obtained we select n hard samples for train-322

ing to make the model more robust. We explore323

two different hard negative sampling methods - a)324

select the paragraphs that are closest next to the325

positive paragraph, and b) select the top ranked326

paragraphs (other than the positive one) returned327

by BM25 retriever model. However, we observe328

that both choices produce similar results (see re-329

sults section for details).330

5.1.2 Multi-task reader for quote extraction331

Motivation for multi-task training: Unlike nor-332

mal spans of text, quotes have certain inherent spe-333

cial properties or some figurative language that334

make them unique (Bendersky and Smith, 2012).335

We believe that identifying such special occur-336

rences of phrases is essential for quote prediction337

from paragraphs. We cast this as a sequence clas-338

sification, i.e., marking only the portions of a text339

that can be recounted as quotable. We attempt to340

optimize two tasks in parallel - quotable sequence341

identification (using SpanBERT-CRF) and context342

awareness (using SpanBERT). In a paragraph, there343

can be multiple spans of text which will be relevant344

to the context. However, not every relevant span is345

quotable. The span prediction module is essentially346

a variant of a question-answering module, which347

might not be good enough to identify quotability348

of the answer. Also, many of the quotes are only349

subparts of a sentence (e.g., “He travels fastest who350

travels alone,...”) while few of the quotes consist of351

more than one sentence (e.g., “In this world there352

are only two tragedies. One is not getting what one353

wants, and the other is getting it.”). To mitigate this354

gap, we use a specific sequence identification mod-355

ule (SpanBERT-CRF) to find quotable sequences.356

Span prediction from paragraph: We train357

the span prediction model using context-quote- 358

paragraph triple as the training example. Simi- 359

lar to (MacLaughlin et al., 2021), we utilize the 360

span-level BERT architecture, which receives the 361

packed sequence of the context and paragraph as 362

input. By utilizing the final hidden vector Ti ∈ Rh 363

as the representation for each wordpiece in a given 364

paragraph, we follow the standard approach of cast- 365

ing span prediction as two classification tasks, i.e., 366

separately predicting the start and end of the span 367

(Devlin et al., 2019). To this purpose, we introduce 368

a start vector, S ∈ Rh, and an end vector, E ∈ Rh. 369

The probability of a word w being the start of the 370

quoted span is the dot product S · Tw followed by 371

a softmax over all wordpieces in the example. We 372

follow the same approach for calculating the proba- 373

bility of word w being the end of the span using E. 374

The loss is calculated as the average NLL (Negative 375

log-likelihoods) of the correct start and end posi- 376

tions, i.e., the tokens in the paragraph the author 377

actually quoted. Following (Devlin et al., 2019), at 378

prediction time, the score of the span from position 379

i to j is S · Ti + E · Tj . We consider a span valid 380

if j > i and i and j occur in the paragraph portion 381

of the input. We retain a mapping from wordpieces 382

to original tokens for prediction. 383

Quotability identification as sequence classifi- 384

cation: We take inspiration from (Portelli et al., 385

2021), which used sequence labeling for the ad- 386

verse drug events (ADE) detection from a given 387

text. Along similar lines, we employ SpanBERT 388

neural model combined with Conditional Random 389

Field (CRF) to identify quotable phrases or words. 390

Each example from the dataset is accompanied by 391

a paragraph, the start and end character positions of 392

the quote in that paragraph. Using this information, 393

we first convert this into the commonly used IOB 394

(Inside, Outside, Beginning) schema using Spacy. 395

Consider the example in Figure 1, every word ex- 396
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cept the bold portion (i.e., the quote) should be397

marked as ‘O’. The word ‘hopeless’ in the quote398

should be labeled as ‘B’ and the rest of the quote399

should be labeled as ’I’. The BIO tagging is il-400

lustrated in Figure 4. Since BERT-based models

Figure 4: Example of BIO tagging.

401
generally employ wordpiece tokenizers to tackle402

the out-of-vocabulary words, which actually break403

such words into multiple subwords, we require to404

decide on a consistent IOB schema for the sub-405

words. We set a rule for the sub-labels which are406

consistent with the IOB schema: words labeled as407

B generate a series of subwords labeled as [B, I, .408

. . , I], while words labeled as I (or O) generate a409

series of identical I (or O) sub-labels. For example,410

if the word ‘resisted’ has the label B, then its corre-411

sponding wordpieces - [‘Resist’, ‘##ed’] would get412

labeled as [B, I].413

Multi-task training: To take advantage of both414

the span prediction model and the quotable phrase415

identification model, we adopt a multi-task based416

framework where we have two independent models417

and they share the same transformer encoder. The418

span prediction model tries to match the start and419

end token of the quote in the paragraph, whereas420

the quotable phrase identification model tries to421

predict the ‘B’, ‘I’, and ‘O’ labels for each token.422

During the backpropagation, we average the losses423

from the two models. The right part in the Fig-424

ure 3 demonstrates the architecture of the multi-425

task framework.426

6 Experiments427

In this section, we discuss the experiments that we428

conduct and the details of the experimental setups.429

Fine-tuning paragraph re-ranking: We pass the430

packed input of context and paragraphs to the re-431

triever model. Out of 4889 data points in the432

QuoteR dataset, and we select 80% for training,433

10% each for dev and test. We choose to fine-tune434

the Llama-3-8b-instruct model for the paragraph435

ranking task. For model implementation details436

and hyper-parameters see Appendix F.437

Fine-tuning reader: We fine-tune the reader by438

randomly selecting 80% QuoteR data for training,439

10% each for dev and test (see Appendix F for im-440

plementation details). To test the generalizability441

of the model in a few-shot setting, we consider ran- 442

dom training samples ∈ {4, 8, 16, 32, 64} from the 443

other two datasets (i.e., Gandhi and Quotus) for 444

further fine-tuning with a slightly lower learning 445

rate (1e−5), and test on the remaining data samples 446

for the respective datasets. 447

Metrics: Since the setup for our span prediction 448

task is identical to QA, we evaluate the span-level 449

models using the two popular QA metrics – (i) 450

exact match (EM), and (ii) macro-averaged bag-of- 451

words (BoW) F1. EM measures if the predicted 452

span exactly matches the positive quote, and BoW- 453

F1 measures their average word overlap. 454

Baselines: Both the retriever and the reader can 455

have many variants which serve as ideal baselines. 456

In the retriever part we use vanilla BM25 as a first 457

baseline. Apart from the simple BM25 retriever, we 458

employ encoder-based (BERT), encoder-decoder 459

based (T5, FLAN-T5) document re-ranking to im- 460

prove paragraph selection. 461

For the reader part, as primitive baselines, we 462

consider using the first and last sentences of each 463

paragraph as potential quotes. To further explore, 464

we also fine-tune the BERT and the SpanBERT 465

pretrained models on the BERT question answer- 466

ing architecture. We keep the same hyperparam- 467

eter settings as the multi-task framework. Addi- 468

tionally, we also observe the ability of different 469

medium sized open-source LLMs such as FLAN- 470

T5-large13, FLAN-T5-XL14, Bloomz-3b15, Falcon- 471

7b16, Llama-3-8b17 models for zero-shot context- 472

aware quote extraction task. For the detailed 473

methodology, refer to Appendix E. 474

7 Results 475

Performance of RA-MTR: To examine the effi- 476

cacy of our entire pipeline, we conduct an end-to- 477

end prediction from our approach. In the retriever- 478

reader based (baseline) approach, we first provide 479

the context and the list of paragraphs segmented 480

from a particular book to the paragraph retrieval 481

module. We initially get a list of 20 top-ranked 482

paragraphs relevant to the context from the RAG 483

model and then re-rank these using the Llama-3 484

model. We take the top three paragraphs further 485

and sequentially pass them with respect to the con- 486

13https://huggingface.co/google/flan-t5-large
14https://huggingface.co/google/flan-t5-xl
15https://huggingface.co/bigscience/bloomz-3b
16https://huggingface.co/tiiuae/falcon-7b
17https://huggingface.co/meta-llama/

Meta-Llama-3-8B-Instruct
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text to our multi-task quote extraction module. This487

span prediction module within the multi-task frame-488

work predicts the top three quotable spans, each489

from one corresponding paragraph. We measure490

the BoW F1-score for these three predictions with491

respect to the ground truth quote and report the492

scores for 1) top-1 prediction - score when we com-493

pare the ground truth with the predicted span from494

the top 1 out of the three ranked paragraphs, and 2)495

top-3 predictions - best score when we compare the496

ground truth with all the three predictions. Table 3497

demonstrates the result for the end-to-end quote498

prediction RA-MTR. We compare the performance499

of our pipeline with two commonly used base-500

lines for open-domain question answering tasks501

– DrQA (Chen et al., 2017) and ParagraphRanker502

(Lee et al., 2018). We also compare RA-MTR503

against (MacLaughlin et al., 2021), which focuses504

on context-based quote extraction. Lastly, we com-505

pare our model with present day LLM variants.506

RA-MTR by far outperforms all the baselines.507

Multi-task reader performance: We show the508

results for span prediction using various methods509

in Table 4 for the QuoteR dataset. The results in the510

first two rows are from two very primitive baselines.511

Scores in the next two rows are from only the span512

selection models, which (MacLaughlin et al., 2021)513

has considered. We can clearly see that our multi-514

task based approach outperforms the other methods.515

The improvements are significant with p < 0.05 as516

per the Mann-Whitney U test (Mann and Whitney,517

1947) and experiment with our three datasets. In518

Table 5, we demonstrate the few-shot performances519

on the Gandhi and the Quotus data for the quote520

prediction task. We can observe that, in the few-521

shot settings, the multi-task framework performs522

much better than the simple span prediction models523

that are normally used for the QA tasks. In fact,524

with only 8 data samples from the target domain,525

our model beats BERT and SpanBERT by 14%526

and 11% for the Gandhi data, and by 7% and 4%527

for the Quotus data respectively. We can infer from528

these results that the addition of the quotable phrase529

identification task actually helps the model learn530

the linguistic properties of the quotes much better531

than the simple span prediction model. Further, the532

multi-task framework generalizes particularly well533

in the cross-domain setting even with the training534

and test paragraphs coming from different genres.535

536

Performance of the sequence classifier: We ana-537

lyze the output generated by the sequence classifier538

head from our multi-task framework. Note that this 539

was an auxiliary task to improve the main task of 540

span prediction. The sequence classifier head typ- 541

ically predicts ‘B’, ‘I’, or ‘O’ tags for each token, 542

and the prediction is independent of the context. 543

We apply the model to instances in the QuoteR test 544

dataset and extract the predicted labels from the se- 545

quence classification head. We find that the model 546

correctly predicts the BIO labels for 48.1% of the 547

instances. In 20.7% of the cases, the model pre- 548

dicts multiple BIO labels within a single paragraph, 549

indicating that one paragraph can contain multiple 550

instances of quotable phrases. 551

Context (in)dependence: We conduct an ablation 552

experiment to observe the impact of context for the 553

quote prediction in the multi-task setting. We re- 554

move the whole context from the inputs in the test 555

set for the quote prediction models while experi- 556

menting with the QuoteR dataset18. Table 6 clearly 557

shows that the baseline models’ performances are 558

drastically reduced, whereas our multi-task frame- 559

work outperforms the two baselines. As the se- 560

quence classification task is independent of the 561

context we observe that the multi-task framework 562

performs better in the absence of context while the 563

two other models that are highly context-sensitive. 564

We can infer that the linguistic boundary identifi- 565

cation for the quotes in terms of the BIO markers 566

enhances the performance and makes it robust to 567

the absence of context. This is one of the prime 568

strengths of the multi-task framework. 569

8 Analysis of the multi-task reader output 570

Analysis of top predicted quotes: Since there may 571

be multiple quotes in a given paragraph for a given 572

context, we also look at the top five predicted spans 573

from our multi-task framework for each of the para- 574

graphs in the test set. We manually annotate the 575

relevance of the predicted spans for the top five 576

predictions. We had two annotators, and each of 577

them was provided with a set of context and the 578

top five predicted spans. They were required to 579

mark 1 if the predicted span is semantically coher- 580

ent with the context, and 0 otherwise. In the case 581

of ambiguity, a third annotator was involved to ad- 582

judicate. We obtain an inter-annotator agreement 583

of Cohen’s κ = 0.64. We take the final relevancy 584

(i.e., 0 or 1) based on majority vote. We achieve 585

a high MAP@5 score of 0.78, indicating that our 586

18The results from the other datasets show similar trends
and hence are not shown.
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Method
Dataset

QuoteR (test) Gandhi Quotus
Top-1 F1 Top-3 F1 Top-1 F1 Top-3 F1 Top-1 F1 Top-3 F1

DrQA (Chen et al., 2017) 7.19 8.22 6.20 8.38 4.26 5.43
ParagraphRanker (Lee et al., 2018) 16.58 21.45 12.17 14.35 11.31 15.11
BM25 + (MacLaughlin et al., 2021)
(Positive only settings)

31.78 37.37 23.70 26.60 32.58 37.68

BM25 + BERT-base + MTR* 37.20 46.28 25.17 27.30 36.15 41.12
BM25 + T5-base + MTR* 34.17 45.21 21.31 23.45 37.13 39.25
BM25 + T5-large + MTR* 39.07 48.29 28.13 30.67 39.29 41.11
BM25 + FLAN-T5-large + MTR* 43.12 51.43 34.46 42.30 42.26 48.21
Vector-store based retriever + LLM
reader (Llama-3-8b-instruct)

14.81 18.76 17.53 23.28 31.38 39.77

RA-MTR (ours) 45.74 57.25 38.71 49.38 43.40 53.45

Table 3: The result for the quote extraction using the different baseline models and our RA-MTR approach. For a fair
comparison, we took the results from the positive-only settings of (MacLaughlin et al., 2021). Note that all the fine-tuned models
are only trained on the QuoteR training data. *MTR: Our fine-tuned multi-task reader.

Method EM BoW-F1
First sentence 0.55 6.31
Last sentence 1.08 5.88
BERT-base 69.1±0.5 76.2±0.9
BERT-large 71±0.3 77.9±0.3
SpanBERT-base 71.7±0.6 77.7±0.4
SpanBERT-large 72.3±0.6 79.2±0.4
Multi-task using SpanBERT-base (Ours) 73±0.8 78.2 ±0.3
Multi-task using SpanBERT-large (Ours) 77±0.4 86.1 ±0.2

Table 4: Reader performance on the QuoteR dataset. We
provide the positive paragraph to predict the quote span.

Test data # training samples Methods
BERT SpanBERT Multi-task (Ours)

Gandhi

8 27.71 30.30 41.32
16 32.60 32.65 50.29
32 38.12 36.85 62.91
64 43.54 44.65 72.08

Quotus

8 33.97 36.82 40.58
16 37.90 41.84 49.33
32 40.56 44.80 55.08
64 47.86 51.27 59.12

Table 5: Few-shot inference performance on the 1) Gandhi
and 2) Quotus datasets. We have used the BoW F1-score as
the metric for comparison here.

Method EM BoW-F1
BERT span prediction 19.20±0.30 30.90±0.80
SpanBERT span prediction 18.30±0.50 29.70±0.40
Multi-task (Ours) 22.00±0.80 38.20±0.70

Table 6: Results for the quote extraction in absence of the
context (for QuoteR dataset).

multi-task framework retrieved ∼ 3.9 (on average)587

meaningful recommendations among the top five588

recommendations.589

Error in the sequence tagger: In order to under-590

stand the reasons behind the incorrect predictions591

made by the model, we review some instances592

where the model failed to predict the correct BIO593

labels. A specific example is depicted in Figure 5,594

where the true quote is highlighted in green, while595

the predicted quotes are highlighted in yellow. De-596

spite the fact that the true quote and the predicted597

quotes come from different portions of the para-598

graph, they all possess high quotability as per hu-599

man experts. We observe many such cases of600

(pseudo) errors that manifest due to the absence 601

of valid additional ground truth quotes. 602

Figure 5: Example of an instance where the sequence classi-
fier wrongly predicts the BIO labels. The true quote is high-
lighted in green, while the predicted quotes are highlighted in
yellow.

Error in the multi-task reader: In this segment, 603

we attempt to analyze the quotes predicted by 604

our multi-task framework. We examine the pre- 605

dicted quotes, which do not entirely match with the 606

ground truth quotes. We observe that in most of 607

the cases (72%), the model predicts a sub-phrase 608

of the original quote. For instance, while the ac- 609

tual quote is ‘Our Father, which art in heaven, hal- 610

lowed be thy name’, the corresponding predicted 611

quote is ‘which art in heaven, Hallowed be thy 612

Name’. In a few cases, the model over-predicts, 613

i.e., predicts a span containing the true quote and 614

some phrases surrounding it. For example, the ac- 615

tual quote ‘Money begets money’, is predicted as 616

‘Money begets money and its offspring’. 617

9 Conclusion 618

In this work, we proposed a method to recommend 619

quotes from large texts given a context. We em- 620

ployed a novel multi-task framework for quote pre- 621

diction, which can in parallel predict the span of 622

text and identify the quotable phrases. We con- 623

structed three datasets of different genres and exper- 624

imented on them. We believe that our methodology 625

and datasets will be beneficial for future research. 626
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Limitations627

In this section we will discuss the limitations of628

our study. While it is evident that the quotes are629

available in different regional languages, all of our630

experiments are conducted for the English version631

of the datasets. Few of the pre-processing steps632

might not be suitable for the languages with differ-633

ent morphosyntactic structures. Further the base634

models will also need to be changed.635

Ethics Statement636

We used three datasets for our experiments. The637

QuoteR dataset was released publicly by the au-638

thors of (Qi et al., 2022). Besides, we extracted639

all the paragraphs from open corpora, including640

free public domain e-books. The quotes of Gandhi641

were collected from the free quote repository and642

the context were extracted from the publicly avail-643

able portal. Both the quotes and the contexts for the644

Quotus data were collected from the open corpora.645

The annotators voluntarily annotated the predic-646

tions for our analysis, and we did not retain any of647

their private information.648
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A Analysis of retriever838

In this section, we attempt to analyse how well839

our vector-store based retriever performed. As we840

cannot directly compare the retrieved chunks with841

the positive paragraph in our dataset (due to vari-842

able word length), we measure the average Jaccard843

similarity between the top predicted chunk with844

the positive paragraph in our dataset for a specific845

context. We present the results in Figure 6. We846

observe that, using Llama-3 based re-ranking, the847

similarity significantly improved for all the three848

datasets.849

Figure 6: Average Jaccard similarity between top predicted
chunk and positive paragraph for a specific context.

B Results using different LLMs as reader850

Extending the Table 3, we demonstrates the results851

while using different other LLMs.852

C Deployment status853

We have deployed the RA-MTR framework in a854

flask (Grinberg, 2018) based web application (link855

will be made public upon acceptance). We plan856

to integrate this system with the publicly available857

and fully searchable historical encyclopedia (e.g.,858

Gandhipedia19). We present an example page of859

our demo system in Figure 7. The figure shows860

the result when a user searches for the query “Find861

the famous quotes that Mahatma Gandhi had made862

about health”. The system extracts the most rele-863

vant quotes from the entire 100 volumes of the Col-864

lected Works of Mahatma Gandhi and highlights865

them in yellow .866

D Data preprocessing details867

QuoteR data : The Project Gutenberg corpus868

comprises more than 73000 e-books in textual869

form. We assign each of these books a unique870

19https://gandhipedia150.in/en/

Figure 7: Example of a real time quote extraction from the
Collected Works of Mahatma Gandhi. The output quote is
highlighted in yellow in the pdf.

bookID and divide each book into fixed-length 871

(i.e., 200 word length) paragraphs, and assign 872

each such paragraph a unique paragraphID. The 873

distribution of the number of paragraphs per book 874

and the number of tokens per quote is presented in 875

Figure 8 and 9. We construct a TF-IDF weighted 876

word-doc sparse matrix (Chen et al., 2017) from 877

all the documents, index, and store this content in 878

the sqlite db. For each of the quotes present in 879

the QuoteR dataset we recursively search for the 880

appearance of the quote in each of these books. 881

Once a search gets a hit, we link the bookID with 882

that particular quote (to be used for training the 883

paragraph retrieval model). Since the authors in 884

(Qi et al., 2022) stored the context from different 885

sources and the correct mapping to the books is 886

not present, we consider the 40 words preceding 887

and following it as its left and right contexts, 888

respectively. Similar to (Qi et al., 2022) the 889

concatenation of the left and right contexts forms a 890

complete context. We then store the context, quote, 891

and positive paragraph (to be used for training the 892

quote prediction model). Out of the 6108 unique 893

quotes, we are able to find the occurrences of 1708 894

quotes from the Project Gutenberg and we finally 895

construct 4889 quote-context-paragraph (one quote 896

may contain multiple contexts) triples as examples 897

for training and evaluating. The algorithm for 898

generating the quote-context-paragraph triples is 899

presented in Algorithm 1. 900

901

Gandhi data : Similarly, for the Gandhi quotes, 902

we search for the quotes in the CWMG and find 903

their appearance in a particular chapter of a book 904

in the CWMG. We utilize the Gandhipedia (Adak 905

et al., 2020) engine, which uses an elasticsearch 906

based search engine to locate the quotes. We con- 907

sider the 40 preceding and following words from 908

11
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Method
Dataset

QuoteR (test) Gandhi Quotus
Vector-store based retriever + LLM reader (FLAN-T5-large) 14.5 19.23 18.2 22.5 25.27 31.2
Vector-store based retriever + LLM reader (FLAN-T5-xl) 13.32 19.4 16.54 24.33 35.0 38.25
Vector-store based retriever + LLM reader (bloomz-3b) 10.33 12.12 9.19 13.48 16.43 21.31
Vector-store based retriever + LLM reader (Falcon-7b) 10.08 13.34 17.05 22.35 29.73 36.73
Vector-store based retriever + LLM reader (Llama-3-8b-instruct) 14.81 18.76 17.53 23.28 31.38 39.77

Table 7: The result for the quote extraction using the different LLMs as reader

(a) QuoteR (b) Gandhi (c) Quotus

Figure 8: # of paragraphs per source documents.

(a) QuoteR (b) Gandhi (c) Quotus

Figure 9: Distributions over source document, paragraphs, and quote lengths.

each quote in the particular chapter as its context.909

In addition, we find that out of all the Gandhi910

quotes, three quotes are already present in the911

QuoteR set. We, therefore, remove them from the912

Gandhi data. Finally, we obtain 737 quote-context-913

paragraph triples.914

Generating target context : Unlike the Quotus915

data, we do not have explicit target documents (i.e.,916

where the quote needs to be recommended from917

source) for the QuoteR and Gandhi dataset. We918

synthesize the target context by paraphrasing the919

original context in the corresponding dataset. This920

is performed to reduce the overlapping words of921

the target context and the source document and to922

effectively evaluate the robustness of the method-923

ology. We use ChatGPT20 API to paraphrase the924

context. The examples of such paraphrased context925

are provided in Appendix G. The prompt used for926

paraphrasing:927

As a paraphrasing expert can you rephrase928

the following input text? Ensure the929

20https://openai.com/blog/chatgpt

rephrased text incorporates a differ- 930

ent range of vocabulary compared to the 931

original text. 932

Input text: {<Input text>} 933

Rephrased text: 934

To analyse the hardness of the generated target con- 935

texts, we measure the word overlap between the 936

original context and the rephrased context. We ob- 937

serve that the average word overlap ratio between 938

the original and the rephrased contexts are - 0.19 939

and 0.18 for QuoteR and Gandhi data respectively. 940

This indicates that the rephrased target context has 941

significantly different words thus making the task 942

of the paragraph retriever harder. 943

Quotus data : For the Quotus dataset, we uti- 944

lize the Quoting POTUS website21 to collect a set 945

of examples for our experiments. They release 946

the transcripts and the collection of aligned quotes, 947

containing the text of the quote in the news arti- 948

cle, its aligned position within the source transcript, 949

and the corresponding news article metadata (title, 950

21http://snap.stanford.edu/quotus/vis/
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url, timestamp). We crawl the provided news ar-951

ticle URLs and extract the body content of each952

news article using BeautifulSoup22. We are able953

to extract 10,114 news articles in this way (some954

of the links were not working and could not be955

crawled). To locate the quotes within the news arti-956

cles, we utilize regular expressions and identify the957

appearance of 2,698 quotes. We then consider the958

40 preceding and following words from each quote959

in the news article as its context. In the released960

dataset, the source transcript is already divided into961

several paragraphs, and the alignment of the quotes962

to the positive paragraph is also provided. As a re-963

sult, we did not need to explicitly create the quote-964

paragraph alignment. This yields a total of 2,698965

quote-context-paragraph triples, which we use for966

our experiments.967

The Algorithm 1 shows the step-by-step proce-968

dure to prepare the dataset for our experiments.969

The auxiliary functions (i.e., Algorithms 3, 4 and970

2) used in the algorithms are depicted in the subse-971

quent algorithms.972

E Baseline methods973

Baselines: Both the retriever and the reader can
have many variants which serve as ideal baselines.
In the retriever part we use vanilla BM25 as a first
baseline. Apart from the simple BM25 retriever,
we employ BERT and T5 based re-ranking to im-
prove paragraph selection. For input to BERT we
tokenize the contexts and source document para-
graphs into wordpieces (Wu et al., 2016) and cap
them at predetermined lengths chosen as hyper-
parameters. BERT uses a special token [SEP] to
separate paragraph from the context. So the final
wordpiece input to the BERT is:

[CLS] context [SEP ] paragraph [SEP ]

Following (Wang et al., 2019), we fine-tune BERT-974

base using the pairwise loss. Thus, a single training975

example for paragraph BERT consists of n+ 1 in-976

stances, i.e., one positive instance plus n negative977

instances. Each of the n+1 packed input sequences978

are fed to BERT independently. We use the final979

hidden vector C ∈ Rh corresponding to the first980

input token [CLS] as the representation for each of981

the n+1 sequences, where h is the size of the final982

hidden layer. In addition, we also fine-tune encoder-983

decoder based (T5, FLAN-T5) and decoder-only984

(Llama-3) re-ranking models in the same way as985

22https://www.crummy.com/software/BeautifulSoup/bs4/doc/

discussed in section 5.1.1. 986

For the reader part, as primitive baselines, we con- 987

sider using the first and last sentences of each para- 988

graph as potential quotes. To further explore, we 989

also fine-tune the BERT and the SpanBERT pre- 990

trained models on the BERT question answering 991

architecture. We keep the same hyperparameter 992

settings as the multi-task framework. Again, we 993

fine-tune on 80% of the QuoteR data, and use 10% 994

for validation before testing on the remaining 10%. 995

In addition, we conduct similar few-shot experi- 996

ments with the Gandhi and the Quotus dataset. 997

LLM based baselines: With the advancement of 998

large language models (LLMs) such as T5 (Raffel 999

et al., 2020), GPT-3 (Brown et al., 2020) it is im- 1000

portant to observe their ability to perform the task 1001

of quote extraction. These models have proven to 1002

be highly valuable for contextual learning when 1003

provided with specific prompts in zero-shot sce- 1004

narios. We replace the multi-task reader with dif- 1005

ferent medium sized open-source LLMs such as 1006

FLAN-T5-large23, FLAN-T5-XL24, Bloomz-3b25, 1007

Falcon-7b26, Llama-3-8b27 models to predict the 1008

most relevant quote given the paragraph and con- 1009

text. We use the below prompt: 1010

You are an AI assistant in recommending
a suitable ’quote’ based on the context and
your task is to extract a relevant quote from
the given pargraph based on the context.
Note that, the context and the paragraph may
contain grammatical errors. DO NOT use any
external information.

Context: "{context}"

Paragraph: "{paragraph}"

Just extract the relevant quote without any
other sentence:

F Model implementation details 1011

Retriever : For retriever we use lagchain API28, 1012

employ recursive_text_splitter29 for splitting the 1013

23https://huggingface.co/google/flan-t5-large
24https://huggingface.co/google/flan-t5-xl
25https://huggingface.co/bigscience/bloomz-3b
26https://huggingface.co/tiiuae/falcon-7b
27https://huggingface.co/meta-llama/

Meta-Llama-3-8B-Instruct
28https://python.langchain.com/docs/modules/

data_connection/
29https://python.langchain.com/docs/modules/

data_connection/document_transformers/recursive_
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Algorithm 1 Paragraph retrieval data generation

Require: list_of_quotes: list of selected quotes; corpus_directory: directory of the corpus (ex. Guten-
berg)

1: quoteid_book_mapping ←
CREATE_QUOTE_TO_BOOK_MAPPING(list_of_quotes, corpus_directory)

2: ctxid← 0 ▷ Initialize Context Id
3: ctxid_to_text← {} ▷ Initialize Context Id to Context text mapping
4: quoteid_to_ctxid← {} ▷ Initialize Quote Id to Context Id mapping
5: for all (quoteid, list_of_book_paths) in quoteid_book_mapping do
6: dataset← [] ▷ Dataset to be used for training and testing paragraph retrieval
7: quoteid_to_ctxid[quoteid]← []
8: for all book_path in list_of_book_paths do
9: paragraphs← SEGMENT_BOOK(book, paragraphlenght = 200) ▷ Segment the book

contents into several paragraphs
10: save(docid_to_text)
11: for all paragraph do
12: if quote in paragraph then
13: ctx← CREATE_CONTEXT(quote, paragraph) ▷ Creating context for a quote
14: ctxid_to_text[ctxid]← ctx
15: dataset.append([ctxid, [pos_para_id], [candidate_id]])
16: ctxid← ctxid+ 1
17: if quoteid in quoteid_to_ctxid.keys() then
18: quoteid_to_ctxid[quoteid].append(ctxid)
19: else
20: quoteid_to_ctxid[quoteid]← [ctxid]
21: end if
22: end if
23: end for
24: save(dataset)
25: end for
26: end for
27: save(ctxid_to_text)
28: save(quoteid_to_ctxid)
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Algorithm 2 Create quote to book mapping

1: function CREATE_QUOTE_TO_BOOK_MAPPING(list_of_quotes, corpus_directory)
2: Input: list_of_quotes, corpus_directory
3: Output: quote_to_book_mapping
4: quote_to_book_mapping← {}
5: for all quote in list_of_quotes do
6: for all book_path in corpus_directory do
7: if quote found in book_path then
8: if quote in quote_to_book_mapping then
9: quote_to_book_mapping[quote].append(book_path)

10: else
11: quote_to_book_mapping[quote]← [book_path]
12: end if
13: end if
14: end for
15: end for
16: return quote_to_book_mapping
17: end function

Algorithm 3 Segment book into paragraphs of fixed length

1: function SEGMENT_BOOK(text_document, paragraph_length)
2: Input: text_document, paragraph_length
3: Output: paragraphs
4: paragraphs← {}
5: current_paragraph← ””
6: current_paragraph_id← 0
7: for word in text_document.split() do
8: current_paragraph← current_paragraph+ ”” + word
9: if len(current_paragraph) ≥ paragraph_length then

10: paragraphs[current_paragraph_id]← current_paragraph.strip()
11: current_paragraph← ””
12: current_paragraph_id← current_paragraph_id+ 1
13: end if
14: end for
15: if len(current_paragraph) > 0 then
16: paragraphs[current_paragraph_id]← current_paragraph.strip()
17: end if
18: return paragraphs
19: end function
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Algorithm 4 Generate context for a quote in a paragraph

1: function CREATE_CONTEXT(quote, paragraph)
2: Input: quote, paragraph
3: Output: context
4: context← ””
5: quote_position← paragraph.find(quote)
6: if quote_position ̸= −1 then
7: preceding_40← paragraph[:quote_position].split(" ")[-40:]
8: following_40← paragraph[quote_position + len(quote):].split(" ")[:40]
9: context← " ".join(preceding_40) " ".join(following_40)

10: end if
11: return context
12: end function

document, chromaDB as vector store. For fine-1014

tuning the reranking models we use huggingface1015

API 30.1016

FLAN-T5: We fine-tune our T5 models (base31,1017

large32) and FLAN-T5-large33 with a learning rate1018

of 2e−5 and a weight decay of 0.01 for a maxi-1019

mum of 10 epochs with a batch size of 4. We use1020

a maximum of 1024 input tokens and one output1021

token. Training T5 base, large, and Flan-T5-large1022

take approximately 2, 5, and 6 hours overall, re-1023

spectively, on a single RTX 4090 GPU. We use1024

greedy decoding during inference and used out-1025

put_logits=True while generating text to retrieve1026

unprocessed probabilities assigned to a token. We1027

use same hyperparameter setting for Llama-3-8b-1028

instruct1029

bert-base: For fine-tuning bert-base34 for the para-1030

graph retrieval task, we search over a batch-size1031

∈ {4, 8, 16}, and set the learning rate of 2e−5. We1032

set the maximum number of epochs to 10. We also1033

perform a search over n ∈ {3, 6, 9, 12} sampled1034

negative paragraphs per positive paragraph for our1035

paragraph ranking model. We select the best model1036

using the dev set and the best paragraph model is1037

trained with 9 negative examples and a batch size1038

of 16. We used single NVIDIA Tesla P100 GPU1039

for training the model.1040

Reader : For the span selection model (the multi-1041

task and other transformers based baseline models),1042

we cap the total length of the context and paragraph1043

to 384 length wordpieces. In case the total length1044

text_splitter
30https://huggingface.co/
31https://huggingface.co/t5-base
32https://huggingface.co/t5-large
33https://huggingface.co/google/flan-t5-large
34https://huggingface.co/bert-base-uncased

exceeds the maximum length (i.e., 384), we only 1045

truncate the paragraph. Similarly, for the quotable 1046

phrase identification model (i.e., the sequence clas- 1047

sification model in the multi-task setting) we se- 1048

lect a maximum length of 384. We fine-tune the 1049

publicly available spanbert-large35, by setting the 1050

batch-size ∈ {4, 8}, learning rate of 2e−5. We 1051

fine-tune the model over 10 epochs and use early 1052

stopping based on the dev set. Again we used 1053

single NVIDIA Tesla P100 GPU for training the 1054

model. For the multi-task framework, the training 1055

process took 3.5 hours to complete. For the LLM 1056

inference we use single NVIDIA Tesla P100 GPU. 1057

Additionally, we applied 4bit quantization while 1058

loading the larger LLMs as those models would 1059

not fit in our GPU. 1060

G Examples of paraphrased context 1061

Table 8 shows one paraphrased example from 1062

QuoteR and Gandi dataset which were used as the 1063

target context. Quotus dataset having a separate 1064

target article, we did not require paraphrasing the 1065

context. 1066

H Examples of LLM generated quotes 1067

In Table 9 we provide examples of quotes extracted 1068

by different LLMs used in our experiments for a 1069

specific context and paragraph. We observe that, 1070

larger models (such as FLAN-T5-XL, Llama-3- 1071

8b) generate better quotes compared to the smaller 1072

models. However, Llama-3 merges some part of 1073

the context (“Sweet dewdrops”) in the predicted 1074

quote. This is one of the precise reasons why stan- 1075

dalone LLMs cannot be reliably used in the quote 1076

35https://huggingface.co/SpanBERT/
spanbert-large-cased
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Dataset Actual Context Paraphrased Context
QuoteR and for the great Peasant Revolt of 1381. John Ball’s famous

rhyme condensed the scorn for the nobles, the longing for just rule,
and the resentment at oppression, of the peasants of that time and
of all times:– " A hundred years after the Black Death the wages
of a common English laborer–we have the highest authority for
the statement–commanded twice the amount of the necessaries of
life which could have been obtained for the wages paid under

For the significant Peasant Revolt of 1381, John Ball’s renowned
rhyme encapsulated disdain for the nobles, the yearning for fair
governance, and resentment towards oppression. A century after
the Black Death, the wages of an ordinary English laborer, as
verified by the highest authority, were double the necessities ob-
tainable with previous wages.

Gandhi For, highest perfection is unattainable without highest restraint.
Suffering is thus the badge of the human tribe. The goal ever re-
cedes from us. The greater the progress, the greater the recognition
of our unworthiness. Full effort is full victory. Therefore, though
I realize more than ever how far I am from that goal, for me the
Law of complete Love is the law of my being. Each time I fail, my
effort shall be

The pinnacle of perfection requires the utmost restraint, and suf-
fering becomes the emblem of the human experience. The goal
remains elusive, and progress accentuates our sense of unworthi-
ness. Full effort equates to complete victory. Despite realizing the
vast distance from the goal, the Law of complete Love governs my
existence. Each failure only strengthens my resolve.

Table 8: Examples of paraphrased contexts for QuoteR and Gandhi datasets.

extraction task, as it may augment the original text1077

which could affect the sanctity of the quote.1078
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Context Paragraph Actual quote Used model Extracted quote

Tonight, the heavens and
the earth will mourn
your passing, as sweet
dewdrops fall from the
sky. Your life is fleeting,
and your time is coming
to an end. The rose, with
its

earth and sky, Sweet dews shall weep thy fall to-
night, For thou must die. Sweet rose, whose hue,
angry and brave, Bids the rash gazer wipe his eye,
Thy root is ever in its grave, And thou must die.
Sweet spring, full of sweet days and roses, a box
where sweets compacted lie , My music shows
you have your closes, And all must die. Only a
sweet and virtuous soul, Like seasoned timber,
never gives But when the whole world turns to
coal, Then chiefly lives. George Herbert. THE
LIE. Go, Soul,

Sweet spring, full of
sweet days and roses, a
box where sweets com-
pacted lie

Bloomz-3b earth and sky, Sweet dews shall
weep thy

FLAN-T5-large rage, is ever in its grave
FLAN-T5-XL Sweet dews shall weep thy fall to-

night, For thou must die. Sweet
rose, whose hue, angry and brave,
Bids the rash

Falcon-7b Sweet dewdrops fall from the sky
Llama-3-8b Sweet dewdrops fall from the sky.

For thou must die. Sweet rose,
whose hue, angry and brave, Bids
the rash gazer wipe his eye, Thy
root is ever in

Table 9: Quotes extracted by different LLMs used for a specific context and paragraph
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