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Abstract

Knowledge-aided dialogue response genera-001
tion aims at augmenting chatbots with rele-002
vant external knowledge in the hope of gen-003
erating more informative responses. The ma-004
jority of previous work assumes that the rele-005
vant knowledge is given as input or retrieved006
from a static pool of knowledge. However,007
this assumption violates the real-world situa-008
tion, where knowledge is continually updated009
and a chatbot has to dynamically retrieve use-010
ful knowledge. In this paper, we propose a di-011
alogue model that can access the vast and dy-012
namic information from any search engine for013
response generation. To this end, we design a014
query producer that generates queries from a015
dialogue context to interact with a search en-016
gine. The query producer is trained without017
any human annotation of gold queries, mak-018
ing it easily transferable to other domains and019
search engines. More specifically, we design a020
reinforcement learning algorithm to train the021
query producer, where rewards are obtained022
by comparing retrieved articles and gold re-023
sponses. Experiments show that our query024
producer can achieve R@1 and R@5 rates of025
62.4% and 74.8% for retrieving gold knowl-026
edge, and the overall model generates better027
responses over a strong BART (Lewis et al.,028
2020) model and other typical baselines.029

1 Introduction030

The task of knowledge-aided dialogue response031

generation aims to find useful knowledge for an032

on-going conversation to help a chatbot generate033

more relevant and engaging responses. This is an034

important direction for dialogue response genera-035

tion due to three advantages: (1) it allows a dia-036

logue model to access a large pool of knowledge037

beyond local conversational contexts; (2) it enables038

a dialogue model to capture the dynamic nature of039

the world (Komeili et al., 2021), where knowledge040

sources are frequently updated; (3) it may enhance041

Figure 1: Previous knowledge-aided dialogue response
generation (up), where related articles are given as in-
put, versus our model (down), which can dynamically
fetch knowledge from a search engine.

the interpretability of dialogue models by examin- 042

ing retrieved knowledge and allows fine-grained 043

interventions by replacing certain pieces of knowl- 044

edge (Adiwardana et al., 2020; Zhang et al., 2020; 045

Roller et al., 2021). 046

Initial efforts (Ghazvininejad et al., 2018; Liu 047

et al., 2018; Wu et al., 2019; Zhou et al., 2020; Tian 048

et al., 2020; Chen et al., 2020; Kim et al., 2020) on 049

knowledge-aided response generation assume that 050

relevant knowledge (e.g., news or movie reviews) is 051

given as input and design dialogue systems that can 052

effectively utilize the provided knowledge. How- 053

ever, as shown in Fig. 1, this static setting violates 054

the dynamic nature of real-world scenarios. This 055

gives rise to approaches that can retrieve and select 056

information from a knowledge source for response 057

generation (Zhao et al., 2020; Dinan et al., 2019; 058

Lee et al., 2019). These projects assume search- 059

ing from a static pool of articles (e.g., a Wikipedia 060

dump). The queries and articles are represented as 061

sparse vectors of n-grams (Dinan et al., 2019) or 062

even dense contextualized vectors (Lee et al., 2019) 063

for retrieval. However, these approaches with a 064

static pool of knowledge still fall short of taking 065
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the dynamic nature of knowledge into account.066

In this paper, we propose a dialogue model that067

can access the vast and dynamic knowledge from068

any search engine for response generation. We069

choose to work with search engines based on two070

reasons. First, search engines like Google store071

continually updating knowledge, which well cap-072

tures the dynamic nature of our world. Second,073

we get rid of the difficulties of building our own074

search engines with n-grams and dense contextual-075

ized vectors, since the ranking algorithms of well-076

established search engines are highly optimized.077

Fig. 2 shows the framework of our model, consist-078

ing of a query producer and a response generator.079

The query producer generates queries from a di-080

alogue context. Then, we send the queries to a081

search engine to obtain relevant articles. The re-082

sponse generator takes both the retrieved articles083

and the dialogue context to generate a response.084

As a key component in our model, the query085

producer determines the quality of fetched knowl-086

edge, which further affects response generation.087

To obtain automatic training signals for our query088

producer, we design a function based on existing089

cheap noisy supervision for scoring queries. It090

compares the retrieved articles of a query with the091

corresponding gold response to estimate the quality092

of the query. The scoring function does not require093

extra annotations, such as gold queries, making094

our model easily transferable to other domains and095

search engines.096

We use Wizard of Wikipedia (WoW, Dinan097

et al. 2019), a well-established benchmark on098

knowledge-aided response generation, for evalu-099

ating our model, taking the publicly free search100

engine from Wikipedia to retrieve knowledge in-101

stead of using the static knowledge provided by102

WoW. Experiments show that our query producer103

can achieve a R@1 (R@5) rate of 62.4% (74.8%)104

for retrieving the correct knowledge on the unseen105

test set of WoW. Besides, our model generates bet-106

ter replies than a strong BART (Lewis et al., 2020)107

model and knowledge-aided baselines with heuris-108

tic algorithms for query acquisition. These results109

indicate the feasibility of using a search engine as110

the knowledge source for response generation.1111

2 Model112

Formally, given a dialogue context of prior t − 1113

turns D<t = {u1, u2, ..., ut−1}, our model first pre-114

1Code will be released upon acceptance.

dicts a query q̃ (optionally from a set of query can- 115

didatesQ = {q1, q2, ..., q∣Q∣} selected by a heuristic 116

algorithm), before sending it to a search engine for 117

retrieving a list of articles Kq̃ = {kq̃1, k
q̃
2, ..., k

q̃
∣Kq̃ ∣}. 118

With the retrieved knowledge Kq̃ and dialogue con- 119

text D<t, a response ut is generated. 120

Fig. 2 visualizes the workflow of our model. 121

In the rest of this section, we introduce the two 122

key components, the query producer (§2.1) and the 123

response generator (§2.2). 124

2.1 Query Production 125

We explore two popular directions based on either 126

extraction (§2.1.1) or generation (§2.1.2) to build 127

our query producer. We further prune the query 128

search space to minimize the number of possible 129

queries and speed up training (§2.1.3). We use 130

cheap noisy supervisions to train the query produc- 131

ers with MLE-based pre-training and reinforcement 132

learning fine-tuning (§2.1.4). 133

2.1.1 Extraction-based Query Producer 134

Extraction-based query producer aims to extract 135

text spans from the dialogue contextD<t as queries. 136

We use a pre-trained language model (PLM) as its 137

backbone and add a linear layer with the softmax 138

activation (MLP-Softmax) as the output layer to 139

predict the probability distribution P over all query 140

candidates Q = [q1, . . . , q∣Q∣]: 141

P = MLP-Softmax([Hq1 , ...,Hq∣Q∣]),
Hqi = MeanPooling(Hbegi∶endi),
H = PLM(D<t),

(1) 142

where H represents the contextualized embeddings 143

produced by PLM, and begi and endi are the begin 144

and end indices for the i-th candidate span in D<t. 145

Each candidate query qi is a continuous span in a 146

turn of D<t. We use MeanPooling over the con- 147

textualized embeddings of its tokens from begi to 148

endi to get its representation Hqi . 149

2.1.2 Generation-based Query Producer 150

Different from the extraction-based model, this 151

generation-based model adopts a seq2seq archi- 152

tecture to construct search queries from scratch. It 153

can produce queries that are not contained in D<t 154

at the cost of a larger search space. We adopt a pre- 155

trained encoder-decoder model (denoted as PGM) 156

to generate queries in an auto-regressive manner, 157

and beam search is adopted during decoding to pro- 158

duce multiple queries at the same time (Meng et al., 159
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Figure 2: The training process using the example in Fig. 1, where solid lines (→) and dashed lines (⇢) indicate
forward and backward pass. First (→), input utterances D<t and (optional) query candidates Q are fed into the
query producer to get search query q̃, and then (→) relevant articles Kq̃ are retrieved from a search engine with q̃.

Next (→), the response generator constructs ut given both D<t and Kq̃ . Finally, both the query producer and the
response generator are trained by the corresponding signals.

2017). The score si for a query qi is the sum of160

the log probabilities for its tokens over the whole161

vocabulary:162

si =
∑∣q

i∣
j=1 log MLP-Softmax(Hqi

j )
√

∣qi∣
,

Hqi

j = PGM(D<t, qi<j),

(2)163

where Hqi

j is the decoder state of the j-th step for164

query qi, and
√

∣qi∣ is the length-based normaliza-165

tion item to ease the preference of short candidates166

(Wu et al., 2016).167

2.1.3 Pruning Query Search Space168

Querying a search engine can be time consuming169

for training a query producer, as the training pro-170

cess can take hundreds of thousands of steps, and171

each query can take more than 0.1 seconds. A172

natural solution for this issue is to create an of-173

fline cache of articles for all possible queries be-174

fore the actual training. However, both extraction-175

based and generation-based models take a large176

search space of candidate queries. Given a dialogue177

of m turns with n words for each turn, there are178

O(m ⋅n2) possible queries for the extraction-based179

model, while the number is exponential to average180

query length for the generation-based model.181

We study different methods to prune the search182

space for query production, so that an offline cache183

can be efficiently established, while the coverage of184

the pruned space is still large enough. In particular,185

we explore the two main directions in the task of186

keyword acquisition (Siddiqi and Sharan, 2015).187

• Dictionary-based: Typical methods in this direc- 188

tion (Ferragina and Scaiella, 2010) consider the 189

overlap between each dialogue context and a pre- 190

defined taxonomy as the search space, where the 191

taxonomy is constructed from a large knowledge 192

source (e.g. Wikipedia). 193

• Metric-based: Approaches in this direction (Rose 194

et al., 2010; Campos et al., 2020) extract key- 195

words from a dialogue context based on metric 196

scores (e.g., TF-IDF) without using any vocabu- 197

lary, and then they merge adjacent keywords into 198

larger spans by heuristic rules. 199

2.1.4 Training with Cheap Noisy Supervision 200

We leverage a cheap noisy supervision signal to 201

train our query producers, which makes it easier to 202

transfer to other domains and search engines com- 203

pared with using human annotations (Komeili et al., 204

2021). The whole training process contains pre- 205

training with cross-entropy loss and reinforcement 206

learning fine-tuning. The reinforcement learning 207

fine-tuning directly uses the supervision signals as 208

reward, while the pre-training uses the signals as 209

gold labels. 210

Cheap noisy supervision for query scoring We 211

design a function f that leverages the correspond- 212

ing gold response u as cheap noisy supervision 213

to assign a score sq for each query q to indicate 214

its quality. In particular, the function f compares 215

the corresponding top articles Kq = {kq1, k
q
2, . . .} 216

retrieved by q with the gold response u for calcu- 217
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lating score sq:218

sq = f(Kq, u). (3)219

We consider this as a type of cheap supervision220

because the function f does not require extra anno-221

tations (e.g., the annotations of gold queries). We222

study different approaches and choose the popular223

BM25 metric (Robertson and Walker, 1994) to im-224

plement f . More specifically, it first calculates the225

score for each article by sqi = BM25(kqi , u), before226

determining the overall score sq as the maximum227

among them: sq = max({sq1, s
q
2, . . .}).228

We introduce two pre-processing methods for229

improving upon the vanilla BM25. The first230

method adopts coreference resolution, which finds231

the actual entity referred by a pronoun. We then232

expand response u by concatenating it with the en-233

tity mentions referred by its pronouns. This is im-234

portant as coreference frequently exists in human235

conversations. The second method drops function236

words from both articles K and response u before237

passing them to the noisy supervision function f .238

This makes f focus more on content words.239

Pre-training with noisy labels At this stage, we240

take the query with the highest score sq by func-241

tion f (Eq. 3) from query candidates Q as pseudo242

ground-truth to train both extraction-based and243

generation-based producers with the standard cross-244

entropy loss:245

Lptext. = − logP (q̄∣D<t, θext.), (4)246

Lptgen. = −
∣q̄∣
∑
i=1

logP (q̄i∣D<t, q̄<i, θgen.), (5)247

where q̄ denotes the pseudo ground-truth, Lptext.248

and Lptgen. are loss terms for extraction-based and249

generation-based models respectively, and θext. and250

θgen. are the parameters for the models.251

Reinforcement learning fine-tuning At fine-252

tuning stage, we adopt the REINFORCE algorithm253

(Williams, 1992) with the cheap noisy supervision254

f as the reward. We subtract a baseline value,255

which is set to the reward of the candidate query256

with the highest model score (calculated by Eq. 1 or257

2) from f to reduce variance. As BM25 scores are258

not bounded, we further normalize them to reduce259

training variance. For each dialog turn with multi-260

ple query candidates, we rescale the reward ri for261

the i-th candidate as ri−min
max−min − 0.5 with the min-262

imum (min) and maximum (max) values within263

the candidates. The losses for both producers at 264

fine-tuning stage are defined as: 265

Lft = −∆(rs, rb) log ps, (6) 266

where ps is the probability of a candidate query 267

sampled from the model output distribution, rs and 268

rb are the rescaled rewards for the sampled and the 269

baseline candidates, respectively. 270

2.2 Response Generation 271

After retrieving relevant articles, the next step of 272

our model is to generate a proper response using the 273

articles and the dialogue context. We implement 274

response generators, Rank-Gen and Merge-Gen, 275

based on two representative research directions. 276

Both models use different strategies to leverage the 277

retrieved articles, and thus we can better study the 278

robustness of our query producer. 279

2.2.1 Rank-Gen 280

Rank-Gen takes an explicit ranker to choose one 281

piece from a set of articles (Lian et al., 2019; Zhao 282

et al., 2020). There are several benefits of this 283

direction, such as improving the explainability and 284

the ability of handling large knowledge set. The 285

ranker first selects a piece of knowledge k̃ from 286

candidates K, then the seq2seq-based generator 287

predicts the response given the dialogue context 288

D<t and selected knowledge k̃: 289

k̃ = argmaxk∈KRanker(D<t, k),
ut = Generator(D<t, k̃).

(7) 290

We adopt reinforcement learning to jointly train 291

the ranker and generator, where the ranker is guided 292

by the signal from the generator via policy gradient, 293

and the generator is trained by cross-entropy loss 294

taking sampled knowledge k̃s from the ranker: 295

LRG = Lrank +Lgen, (8) 296

Lrank = −(Lk̃bgen −Lk̃sgen) logP (k̃s∣D<t,K), (9) 297

Lgen = −
∣ut∣
∑
i=1

log(ut,i∣ut,<i,D<t, k̃s), (10) 298

where k̃b is the baseline knowledge to reduce vari- 299

ance, and Lxgen(x ∈ {k̃b, k̃s}) is the generation loss 300

taking the corresponding knowledge as extra input. 301

Before joint training, we also introduce a warm 302

up stage following Zhao et al. (2020), where the 303

ranker is trained with cross-entropy loss on the 304
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pseudo ground-truth knowledge k̄ that has the high-305

est BM25 score among knowledge candidates, and306

the generator is also trained with cross-entropy loss307

taking k̄ as the additional input:308

k̄ = argmaxk∈KBM25(D<t,K), (11)309

Lptrank = − logP (k̄∣D<t,K), (12)310

Lptgen = −
∣ut∣
∑
i=1

log(ut,i∣ut,<i,D<t, k̄). (13)311

2.2.2 Merge-Gen312

Merge-Gen follows another popular direction (Izac-313

ard and Grave, 2021) by compressing and consum-314

ing all input knowledge. Particularly, each knowl-315

edge piece ki in knowledge pool K is first paired316

with the dialogue context D<t. Then, these pairs317

{D<t, ki}ki∈K are compressed into dense vectors318

independently before being concatenated as inputs319

to the decoder for response generation:320

ut = Decoder([H1;H2; ...;H∣K∣]),
Hi = Encoder(D<t, ki).

(14)321

Comparing with Rank-Gen, Merge-Gen does not322

suffer from the risk of selecting wrong knowledge323

by a ranker. However, it lacks explainability and324

may potentially lose information when compress-325

ing input knowledge into dense vectors. The train-326

ing signal is based on the standard cross-entropy327

loss over gold response ut:328

LMG = −
∣ut∣
∑
i=1

log(ut,i∣ut,<i,D<t,K). (15)329

3 Experiment330

We study the effectiveness of our model, especially331

the usefulness of knowledge retrieval using search332

queries for response generation.333

3.1 Dataset334

We choose the Wizard-of-Wikipedia (WoW, Dinan335

et al. 2019) dataset for evaluation. The dataset336

is split into 18,430/967/968 for train/dev/test, re-337

spectively. For each dialogue, it includes relevant338

knowledge (e.g., the titles of ground-truth articles)339

annotated by human. Therefore, we can use WoW340

to measure the performance of query production by341

comparing retrieved knowledge and ground-truth342

knowledge. We use its unseen test set for evalua-343

tion. We remove the first turn of each dialogue, be-344

cause the first turn reveals the title of the Wikipedia345

article for discussion, which will expose the main346

topic of the dialogue.347

3.2 Setting 348

We choose the hyperparameters by following pre- 349

vious work or development experiments. 350

Query production We take an ELECTRA- 351

base (Clark et al., 2020) model2 and a BART- 352

base (Lewis et al., 2020) model3 as the back- 353

bones for our extraction and generation-based 354

query producers, respectively. We use AdamW 355

(Loshchilov and Hutter, 2019) as the optimizer 356

with learning rate 1e-5. The batch size is set to 357

64. The extraction-based producer is pre-trained 358

for 1 epoch, while the generation-based producer 359

is pre-trained for 5 epochs. To prune the search 360

space of query production, we adopt two keyword 361

acquisition tools, TagMe (dictionary-based) and 362

YAKE! (metric-based). We use recall, denoted as 363

R@x (x ∈ {1,3,5}), which compares the top x 364

retrieved candidates with ground-truth knowledge 365

to evaluate the performance of query producers. 366

Response generation Both Rank-Gen and 367

Merge-Gen use a BART-base model for response 368

generation. All models are trained using AdamW 369

with learning rate 1e-5 and batch size 64. The 370

warm-up stage for ranker in Rank-Gen takes 2 371

epoch. We perform early stopping based on the 372

perplexity (PPL) on the development set. Follow- 373

ing previous work, We adopt PPL and Unigram F1 374

to evaluate response generation. 375

Search engine As most commercial search en- 376

gines are not publicly free, we adopt Wikipedia 377

search.4 We retain the top 5 retrieved Wikipedia 378

articles of each query for evaluation. The summary 379

of each article (the first paragraph for a Wikipedia 380

article) is extracted as external knowledge. 381

3.3 Development Experiments 382

We explore the design choices for query space prun- 383

ing (§2.1.3) and the scoring function f (Eq. 3), as 384

they determine the quality of query production, 385

which in turn affects response generation. 386

Different choices of space pruning and query 387

scoring algorithms Table 1 shows the develop- 388

ment results of several popular query scoring al- 389

gorithms with TagMe and YAKE! for search space 390

pruning. We consider the following scoring algo- 391

rithms: 392

2https://huggingface.co/google/
electra-base-discriminator

3https://huggingface.co/facebook/bart-base
4https://en.wikipedia.org/wiki/Special:Search

5
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Pruning Query Scoring R@1 R@3 R@5

TagMe

Random 12.55 31.27 44.19
TF-IDF 39.30 61.28 67.26
BM25(q, u) 36.09 58.73 65.89
BM25 53.36 65.25 69.46
BM25++ 60.59 69.81 72.49

YAKE!

Random 14.21 33.96 46.00
TF-IDF 36.92 58.63 64.78
BM25(q, u) 28.01 52.94 62.59
BM25 50.70 65.32 69.91
BM25++ 57.97 69.15 72.03

Table 1: Development results of various search-space
pruning methods and query scoring algorithms.

• Random: It randomly picks a query from the393

candidate pool.394

• TF-IDF: It averages the TF-IDF scores of all395

words within each candidate query as its ranking396

score. This algorithm only considers the query397

information.398

• BM25(q,u): It measures the similarity between q399

and u using BM25 without considering the actual400

retrieved knowledge by q.401

• BM25: It is our proposed scoring function f (Eq.402

3) with standard BM25.403

• BM25++: It is also based on f using BM25 but404

equipped with pre-processing methods: corefer-405

ence resolution and function words dropping.406

Regarding search-space pruning, the average407

candidate number and the ceiling performance408

(R@M in Fig. 3) using TagMe are 17.45 and409

75.47%, respectively, while the corresponding num-410

bers are 21.64 and 75.04% for YAKE!. First, the411

upper bound does not reach 100% because: (1) the412

pruning method fails to keep some good search413

queries; (2) some dialogue turns (4.7%) do not re-414

quire any external knowledge; (3) speakers change415

the topics in some turns, which requires queries that416

are not contained in the dialogue context. Overall,417

we get a decent number of around 75%. Second,418

most ranking algorithms using TagMe outperform419

their corresponding ones using YAKE!. Besides,420

TagMe reaches higher upper bound (75.47% vs421

75.04%) with less candidates (17.45 vs 21.64) than422

YAKE!. Based on the results, we choose TagMe423

for query space pruning in further experiments.424

Regarding query scoring, BM25++ outperforms425

all other algorithms, demonstrating the effective-426

ness of coreference resolution and function words427

dropping. BM25 is the second best method, which428

shows that the retrieved articles provide more in-429

1 2 3 4 5 6 7 8 ≥9

50

60

70

Turns

R
@
x

(%
)

R@1
R@3
R@5
R@M

Figure 3: Development results of BM25++ and the ceil-
ing performances (R@M) given keyword candidates
from the last k turns.

formation beyond the query and the response. We 430

choose BM25++ for future experiments. 431

The number of dialogue turns for obtaining 432

candidate queries With the pruning method and 433

query scoring algorithm determined, the next step 434

is to choose the number (k) of turns for obtain- 435

ing candidate queries. Intuitively, considering 436

more turns will increase the ceiling performance on 437

knowledge retrieval with extra noise on the query 438

scoring algorithm. As shown in Fig. 3, the perfor- 439

mance of BM25++ consistently improves with the 440

increase of k. This demonstrates that the benefit of 441

considering longer dialogue context for candidate 442

queries exceeds the cost (extra noise). Therefore, 443

we choose to consider all turns for the remaining 444

experiments. 445

3.4 Main Results 446

Table 2 shows the main testing results including 447

the performance on search query production and re- 448

sponse generation. We compared our models with 449

typical baselines with different query acquisition 450

techniques: (1) no external knowledge is used (line 451

1); (2) using all search queries extracted from the 452

last k turns5 (line 2-4); (3) using search queries 453

produced by different techniques (line 5-7). 454

We can draw the following conclusions: First, 455

models leveraging external knowledge perform bet- 456

ter than the baseline (line 1) without using external 457

knowledge, verifying that using retrieved knowl- 458

edge is generally helpful for response generation. 459

Merge-Gen based models surpass all Rank-Gen 460

based ones, as it avoids the error propagation from 461

the ranker. This demonstrates the effectiveness of 462

5They are based on the heuristic that people tend to keep
talking the topics just mentioned in the last few turns.
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Line Query Production
Method

Avg. Num. of
Querying

Query Ranking Rank-Gen Merge-Gen
Num. R@1 R@3 R@5 PPL↓ Uni. F1 PPL↓ Uni. F1

1 None None – – – 25.26 16.53 25.13 16.64
2 All from last 2 turns 8.29 – – – 22.77 17.43 20.04 17.55
3 All from last 4 turns 13.38 – – – 22.86 17.38 19.89 17.72
4 All from all history turns 17.45 – – – 23.03 17.32 19.79 17.71
5 TF-IDF 1 43.41 61.63 66.65 22.86 17.28 21.53 17.64
6 Extraction-based 1 62.41 72.91 74.87 21.60 17.81 20.20 18.15
7 Generation-based 1 56.77 66.08 68.22 21.65 17.51 20.69 17.95

Table 2: Main results of query production and response generation on WoW unseen testset, where “PPL↓” and
“Uni. F1” indicates perplexity and unigram F1, respectively.

System R@1 R@3 R@5

Extraction-based 62.41 72.91 74.87
w/o pre-train 61.97 71.84 73.77
w/o fine-tune 61.36 73.08 74.94
w/o prune search space 60.65 67.68 69.97

Generation-based 56.77 66.08 68.22
w/o pre-train 38.14 54.91 59.83
w/o fine-tune 51.91 65.82 69.75
w/ prune search space 60.67 71.55 73.52

Table 3: Ablation study on both extraction-based and
generation-based query producers.

incorporating multiple pieces of knowledge. Sec-463

ond, for the baselines using multiple queries (line 2-464

4), Rank-Gen and Merge-Gen show opposite trends465

when the number of turns for obtaining queries in-466

creases with Merge-Gen being consistently better.467

This confirms the advantage of Merge-Gen over468

Rank-Gen by preventing the error propagation from469

a ranker. However, the time of knowledge gather-470

ing (querying a search engine and retrieving pages)471

also grows linearly with the query number. Finally,472

our models using either of the proposed query pro-473

ducers perform better than all baselines for most sit-474

uations, indicating that our query producer trained475

with cheap noisy supervision signals can retrieve476

useful contents for response generation. The base-477

lines (line 2-4) using multiple queries show slightly478

better perplexity values than our models when com-479

bined with Merge-Gen. But, their knowledge fetch-480

ing process is at least 8-time slower than ours. Be-481

sides, our models still manage to get better Uni. F1482

scores with fewer times of search-engine querying.483

3.5 Analysis484

Ablation study Table 3 shows the ablation485

study on our query producers. We can draw the486

following conclusions. First, both pre-training487

with cross-entropy loss and reinforcement learn-488

ing fine-tuning are helpful for query producers.489

For extraction-based approach, pre-training (w/o490
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Figure 4: Performance of different query producers at
different dialogue turns.

fine-tune) mainly helps the performance on R@3 491

and R@5, while fine-tuning (w/o pre-train) mostly 492

helps the performance on R@1. In general, fine- 493

tuning provides more robust performances than 494

pre-training, as it can better handle the noisy super- 495

vision. For generation-based method, both train- 496

ing stages are very crucial, probably due to its 497

large search space. In this case, pre-training-alone 498

(w/o fine-tune) outperforms the fine-tuning-alone 499

counterpart (w/o pre-train). This is because RL- 500

based fine-tuning from scratch is slow to converge 501

(Paulus et al., 2018; Wang et al., 2018). Second, 502

adding search space pruning brings in significant 503

performance gains on both extraction-based and 504

generation-based methods, proving the importance 505

of limiting the search space to high-quality candi- 506

date queries. 507

Performances of query producers at differ- 508

ent turns We further compare the R@1 of 3 509

query producers at various turns. Among them, the 510

TF-IDF baseline only takes the information from a 511

query and ignores the retrieved articles, while Ext. 512

based and Gen. based are our proposed producers 513

based on extraction and generation, respectively. 514

Generally, the last several turns yield more query 515

candidates than the first ones, causing larger search 516
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Model Query Article Response
Soundness Knowledge Coverage Naturalness Knowledgeable

BART – – 2.39 1.89
w/ query extract 2.79 2.76 2.65 2.39
w/ query generate 2.65 2.59 2.58 2.44

Table 4: Human evaluation results.

spaces. As shown in Fig. 4, the performance of517

all producers drops rapidly when a dialogue con-518

tinues. Our extraction-based producer consistently519

outperforms all others, with its performance being520

roughly 45% at the last turn, which is 15% higher521

than TF-IDF.522

3.6 Human Evaluation523

We conduct human evaluation on 100 test samples,524

and we choose Merge-Gen as the response genera-525

tor, because it shows better performance than Rank-526

Gen on automatic metrics. The models are rated527

regarding both query production and response gen-528

eration. For query production, we measure Sound-529

ness, which means whether the query is sound by530

itself6, and Knowledge Coverage, which means531

how relevant is the retrieved knowledge. For re-532

sponse generation, we follow previous work to mea-533

sure Naturalness, indicating how fluent and rele-534

vant a response is, and Knowledgeable, represent-535

ing how much knowledge is used in a response. We536

ask 3 annotators capable of fluent English commu-537

nication to score each aspect with 3-point schema7,538

and we average their scores as the final score of the539

aspect. The inner-annotator agreement (Fleiss’ κ)540

is 0.5461, which is in the moderate level.541

As shown in Table 4, our models improve (+0.50542

for “w/ query extract” and +0.55 for “w/ query gen-543

erate” over 3) the BART baseline on the Knowl-544

edgeable aspect. We see moderate gains (+0.26 for545

“w/ query extract” and +0.19 for “w/ query gener-546

ate” over 3) regarding Naturalness, because BART547

can already generate fluent replies with large-scale548

pre-training on text generation. Note that general549

replies like “Sorry, I don’t know” are considered550

natural in certain context like “Do you know Mike551

Tyson?”. Generally, we observe positive correlation552

between query production and response generation,553

and thus we can expect another improvement on554

response generation if query production can be fur-555

ther enhanced. We list typical examples from our556

human study in Appendix.557

6Sometimes, a sound query may not retrieve good knowl-
edge due to search-engine mistake.

7We attach detailed guidelines in Appendix.

4 Related Work 558

Internet-aided dialogue response generation 559

One related preprint draft in parallel (Komeili et al., 560

2021) studies using Bing8 as the knowledge source 561

for dialogue response generation. We both share 562

a similar motivation of using a search engine as 563

the knowledge source. However, Komeili et al. 564

(2021) manually annotate 48K queries to train their 565

query generator. Thus the supervision signals are 566

expensive to obtain and may not be transferable to 567

other domains and search engines. On the other 568

hand, our model is search-engine agnostic and the 569

training signals are cheaper to obtain. 570

Keyword production As a longstanding task, 571

keyword production was initially proposed to au- 572

tomatically create keywords for articles. Clas- 573

sic techniques (e.g., TF-IDF and TextRank) have 574

been widely used over decades. In the past few 575

years, deep learning has made notable progress 576

on this task. Initially, neural keyword produc- 577

ers (Zhang et al., 2016; Luan et al., 2017) are 578

extraction-based that extract keywords from inputs. 579

Recently, generation-based methods (Meng et al., 580

2017; Chen et al., 2018, 2019; Meng et al., 2021) 581

using a seq2seq model are gaining popularity. We 582

produce keywords as queries to a search engine and 583

study both extraction-based and generation-based 584

methods on our task in conversational domain. 585

5 Conclusion 586

We have introduced a model that leverages a gen- 587

eral search engine for knowledge-aided response 588

generation. To effectively interact with the search 589

engine, it adopts a query producer to generate 590

search queries. We design cheap noisy supervi- 591

sion signals to train our query producer, so that 592

no extra human annotation is needed, making our 593

model easily transferable to other search engines 594

and domains. Experimental results under both au- 595

tomatic metrics and human judges show the superi- 596

ority of our model over a pre-trained BART model 597

and other baselines. 598

8https://www.bing.com/
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#1

Context A: One of my favorite bands despite usual protests is Nickelback. How about you or who is one
of your favorites?
B: I like Nickelback too. They are my favorite Canadian rock band and I’ve liked them since 1995
they started.
A: Speaking of Canadian rock bands, my absolute all time favorite band is Rush. I have every
album by them!

Ref response Yes Rush! They formed in 1968 and took their first United States tour in 1974.

Vanilla
BART Rush is one of my favorite bands too. They are from Hanna, Alberta.

TF-IDF
Seach query Nickelback

Retrieved passages Nickelback; Rockstar (Nickelback song); Nickelback discography; Chad Kroeger; Dark Horse
(Nickelback album)

Knowledge fragment ...Nickelback is one of the most commercially successful Canadian rock bands, having sold more
than 50 million albums worldwide...

Rank-Gen Rush is one of my favorite bands too. They have sold more than 50 million albums worldwide.
Merge-Gen Rush is one of my all time favorite bands. They have sold more than 50 million albums worldwide.

Extraction-based
Seach query Rush

Retrieved passages Rush (Rush album); Into the Rush; Rush (band)
Knowledge fragment ...Rush was a Canadian rock band formed in Toronto in 1968, consisting of Geddy Lee (bass,

vocals, keyboards, composer), Alex Lifeson (guitars, composer), and Neil Peart (drums, percussion,
lyricist)...

Rank-Gen Rush is one of my favorite bands too. They were formed in 1968 in Toronto.
Merge-Gen Rush was formed in 1968 by Geddy Lee, Alex Lifeson, and Neil Peart.

#2

Context A: Do you like Elvis Presley? he was a famous american singer
B: He is pretty good, I am from Nashville, So i’ve even been to graceland.

Ref response Presley was born in Tupelo, Mississippi, and then to memphis

Vanilla
BART He was born and raised in Nashville, TN

TF-IDF
Seach query graceland

Retrieved passages Graceland; Graceland (album); Graceland (TV series); Graceland University
Knowledge fragment ...Graceland is located at 3764 Elvis Presley Boulevard in the vast White haven community,

about nine miles (14 kilometers) from Downtown and less than four miles (6.4 km) north of the
Mississippi border.It was opened to the public as a museum on June 7, 1982. The site was listed
in...

Rank-Gen Yes, it was opened to the public as a museum in 1982
Merge-Gen I’ve been to Graceland a few times. It was opened to the public as a museum in 1982

Extraction-based
Seach query Elvis Presley

Retrieved passages Elvis Presley; Elvis Presley (album); Priscilla Presley; Elvis Presley albums discography; Lisa
Marie Presley

Knowledge fragment ...Presley was born in Tupelo, Mississippi, and relocated to Memphis, Tennessee with his family
when he was 13...

Rank-Gen He was born in Tupelo, Mississippi and moved to Memphis when he was 13
Merge-Gen He was born in nashville and moved to Memphis when he was 13

Table 5: Two examples on query production and response generation from WoW test set.
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A Annotation Guidelines786

All aspects are based on a 3-point scheme: 3 means787

flawless; 2 means containing minor flaw; 1 means788

having major flaw but with values; 0 means being789

completely wrong.790

Query Soundness It considers if the selected791

topic is active (the one being discussed).792

• The score can be 3 if the active topic is selected,793

otherwise the score can be 2, 1 or 0 depends on794

how close the selected topic is to the active one.795

• If the active topic (e.g., “plants vs zombie”) is796

emerged from a parent topic (e.g., “zombie”), the797

score can be 2 if the parent topic is chosen.798

Article Knowledge Coverage It measures how799

relevant (and useful) are the retrieved articles re-800

gardless of the query (sometimes a bad query can801

yield good articles).802

• If the article talks about something (e.g., guitars)803

close to the dialogue topic (e.g., a guitarist), then804

the score can be 2.805

• If the article is slightly relevant to the dialogue806

topic (e.g., a musician or an album), the score807

can be 1.808

• The score can be 0 if no article is retrieved (some-809

times this is due to bad queries).810

Naturalness How sound a reply is to the dia-811

logue context. A sound reply should be consistent812

both in purpose and in topic to the context. But it813

does not reflect the knowledge aspect.814

• If there is a question like “Do you like ...?”,815

a sound reply should contain something like816

“Yes...”, “No, I don’t...” or “I do...”817

Knowledgeable A knowledgeable reply should818

contain new stuff, so examples like “Oh, that’s819

cool!” is not knowledgeable. In this situation,820

scores can range from 0 to 1, where 1 can be chosen821

if the reply actually does not require knowledge.822

Besides, knowledgeable replies should not vio-823

late factoid statements in both dialogue context and824

in retrieved knowledge. For instance, if the context825

mentions “the band sold 500 million albums world-826

wide”, it is not knowledgeable if the reply says “the827

band sold 400 million albums worldwide”.828

• For replies that violate existing factoid state-829

ments, the score can be 1.830

• For replies that cannot be determined true or false 831

given dialogue context and retrieved knowledge, 832

the score can be 2. 833

• For replies that can be found true given dialogue 834

context and retrieved knowledge, the score can 835

be 3. 836
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