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ABSTRACT

Gradient-based meta-learning methods have primarily focused on classical ma-
chine learning tasks such as image classification and function regression, where
they were found to perform well by recovering the underlying common represen-
tation among a set of given tasks. Recently, PDE-solving deep learning methods,
such as neural operators, are starting to make an important impact on learning
and predicting the response of a complex physical system directly from observa-
tional data. Since the data acquisition in this context is commonly challenging and
costly, the call of utilization and transfer of existing knowledge to new and unseen
physical systems is even more acute.
Herein, we propose a novel meta-learnt approach for transfer-learning knowledge
between neural operators, which can be seen as transferring the knowledge of
solution operators between governing (unknown) PDEs with varying parameter
fields. With the key theoretical observation that the underlying parameter field can
be captured in the first layer of the neural operator model, in contrast to typical
final-layer transfer in existing meta-learning methods, our approach is a provably
universal solution operator for multiple PDE solving tasks. As applications, we
demonstrate the efficacy of our proposed approach on PDE-based datasets and a
real-world material modeling problem, demonstrating that our method can handle
complex and nonlinear physical response learning tasks while greatly improving
the sampling efficiency in new and unseen tasks.

1 INTRODUCTION

Few-shot learning is an important problem in machine learning, where new tasks are learned with a
very limited number of labelled datapoints (Wang et al., 2020). In recent years, significant progress
has been made on few-shot learning using meta-learning approaches (Koch et al., 2015; Vinyals
et al., 2016; Snell et al., 2017; Finn et al., 2017; Santoro et al., 2016; Antoniou et al., 2018; Ravi &
Larochelle, 2016; Nichol & Schulman, 2018; Raghu et al., 2019; Tripuraneni et al., 2021; Collins
et al., 2022). Broadly speaking, given a family of tasks, some of which are used for training and
others for testing, meta-learning approaches aim to learn a shared multi-task representation that
can generalize across the different training tasks, and result in fast adaptation to new and unseen
testing tasks. Although most of meta-learning learning developments focus on conventional machine
learning problems such as image classification, function regression, and reinforcement learning,
studies on few-shot learning approaches for complex physical system modeling problems have been
limited. The call of developing a few-shot learning approach for complex physical system modeling
problems is just as acute, while the typical understanding of how multi-task learning should be
applied on this scenario is still nascent.

As a motivating example, we consider the scenario of new material discovery in the lab environment,
where the material model is built based on experimental measurements of its responses subject to
different loadings. Since the physical properties (such as the mechanical and structural parame-
ters) in different material specimens vary, the model learnt from experimental measurements on one
specimen would have a large generalization error on future specimens. That means, the data-driven
model has to be trained repeatedly with a large number of material specimens, which makes the
learning process inefficient. Further, experimental measurement acquisition of these specimens is
often challenging and expensive. In some problems, a large amount of measurements are not even
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feasible. For example, in the design and testing of biosynthetic tissues, performing repeated load-
ing would potentially induces the cross-linking and permanent set phenomenon, which notoriously
alter the tissue durability (Zhang & Sacks, 2017). As a result, it is critical to learn the physical re-
sponse model of a new specimen with samples sizes as small as possible. Furthermore, since many
characterization methods to obtain underlying material mechanistic and structural properties would
require the use of destructive methods (Misfeld & Sievers, 2007; Rieppo et al., 2008), in practice
many physical properties are not measured and can only be treated as hidden and unknown variables.
We likely only have limited access to the measurements on the complex system responses caused by
the change of these physical properties.

Supervised operator learning methods are typically used to address this class of problems. They
take a number of observations on the loading field as input, and try to predict the corresponding
physical system response field as output, corresponding to one underlying PDE (as one task). Herein,
we consider the meta-learning of multiple complex physical systems (as tasks), such that all these
tasks are governed by a common PDE with different (hidden) physical property or parameter fields.
Formally, assume that we have a distribution p(T ) over tasks, each task T η ∼ p(T ) corresponds
to a hidden physical property field bη(x) ∈ B(Rdb) that contains the task-specific mechanistic
and structural information in our material modeling example. On task T η , we have a number of
observations on the loading field gη

i (x) ∈ A(Rdg ) and the corresponding physical system response
field uη

i (x) ∈ U(Rdu) according to a hidden parameter field bη(x). Here, i is the sample index, B,
A and U are Banach spaces of function taking values in Rdb , Rdg and Rdu , respectively. For task
T η , our modeling goal is to learn the solution operator Gη : A → U , such that the learnt model can
predict the corresponding physical response field u(x) for any loading field g(x). Without transfer
learning, one needs to learn a surrogate solution operator for each task only based on the data pairs
on this task, and repeat the training for every task. The learning procedure would require a relatively
large amount of observation pairs and training time for each task. Therefore, this physical-based
modeling scenario raises a key question: Given knowledge on a number of parametric PDE solving
tasks with different unknown parameters, how can one efficiently learn the best surrogate solution
operator for a new and unknown parameter, with only a small set of training data pairs1?

To address this question, we introduce MetaP, a novel meta-learnt approach for transfer-learning
knowledge between neural operators, which can be seen as transferring the knowledge of solution
operators between governing (unknown) PDEs with varying hidden parameter fields. Our main
contributions are:

• MetaP is the first neural-operator-based approach for multi-task learning, which not only
preserves the generalizability to different resolutions and input functions from its integral
neural operator architecture, but also improves sampling efficiency on new tasks – for com-
parable accuracy, MetaP saves the required number of measurements by ∼90%.

• With rigorous operator approximation analysis, we made the key observation that the hid-
den parameter field can be captured by adapting the first layer of the neural operator model,
in contrast to typical final-layer transfer in existing meta-learning methods. By construc-
tion, MetaP serves as a provably universal solution operator for multiple PDE solving tasks.

• From synthetic, benchmark, to a real-world biological tissue datasets, the proposed method
consistently outperforms existing baseline gradient-based meta-learning methods.

2 BACKGROUND AND RELATED WORK

In this section we introduce the relevant materials on hidden physics learning, neural operators, and
gradient-based meta-learning methods, which will later complement the definition of our method.

2.1 HIDDEN PHYSICS LEARNING AND NEURAL OPERATORS

For many decades, physics-based PDEs have been commonly employed for predicting and moni-
toring complex system responses, then traditional numerical methods were employed to solve these

1In some meta-learning literature (e.g., (Xu et al., 2020)), these small sets of labelled data pairs on a new
task (or any task) is also called the context, and the learnt model will be evaluated on an additional set of
unlabelled data pairs, i.e., the target.
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PDEs and provide predictions for desired system responses. However, three fundamental challenges
present. First, the choice of governing PDE laws is often determined a priori and free parameters
are often tuned to obtain agreement with experimental data. This fact makes the rigorous calibration
and validation process challenging. Second, traditional numerical methods are solved for specific
boundary and initial conditions, as well as loading or source terms. Therefore, they are not gen-
eralizable for other operating conditions and hence not effective for real-time prediction. Third,
complex PDE systems such as turbulence flows and heterogeneous materials modeling problems
usually require a very fine discretization, and therefore very time-consuming for traditional solvers.

To provide an efficient surrogate model for physical responses, machine learning methods may hold
the key. Recently, there has been significant progress in the development of deep neural networks
(NNs), focusing on learning the hidden physics of a complex system (Ghaboussi et al., 1998; 1991;
Carleo et al., 2019; Karniadakis et al., 2021; Zhang et al., 2018; Cai et al., 2022; Pfau et al., 2020;
He et al., 2021; Besnard et al., 2006). Among these methods, the neural operators show particular
promises in resolving the above challenges. Neural operators aim to learn maps between inputs of a
dynamical system and its state, so that the network can serve as a surrogate for a solution operator
(Li et al., 2020a;b;c; You et al., 2022a; Ong et al., 2022; Gupta et al., 2021; Lu et al., 2019; 2021b;
Goswami et al., 2022a).

Comparing with the classical NNs, the most notable advantages of neural operators are resolu-
tion independence and generalizability to different input instances. Moreover, comparing with the
classical PDE modeling approaches, neural operators require only data with no knowledge of the
underlying PDE. All these advantages make neural operators promising tools to PDE learning tasks.
Examples include modeling the unknown physics law of real-world problems (Yin et al., 2022a;
Goswami et al., 2022a; Yin et al., 2022b), and providing efficient solution operator for PDEs (Li
et al., 2020a;b;c; Lu et al., 2021c;a). On the other hand, data in scientific applications are often
scarce and incomplete. Utilization of other relevant data sources could alleviate such a problem, yet
no existing work have addressed the transferability of neural operators. Through the meta-learning
techniques, our work fulfills the demand of such a transfer setting, with the same type of PDE system
but different (hidden) physical properties.

2.2 GRADIENT-BASED META-LEARNING METHODS

One highly successful meta-learning algorithm has been Model Agnostic Meta-Learning (MAML)
(Finn et al., 2017), which led to the development of a series of related gradient-based meta-learning
(GBML) methods (Raghu et al., 2019; Nichol & Schulman, 2018; Antoniou et al., 2018; Hospedales
et al., 2020). Almost-No-Inner-Loop algorithm (ANIL) (Raghu et al., 2019) modifies MAML by
freezing the final layer representation during local adaptation. Recently, theoretical analysis (Collins
et al., 2022) found that the driving force causing MAML and ANIL to recover the general repre-
sentation is the adaptation of the final layer of their models, which harnesses the underlying task
diversity to improve the representation in all directions of interest.

Although MAML and the general meta-learning approaches have achieved impressive performance
in some machine-learning applications such as the image classification and reinforcement learning
scenarios, a few work has studied the hidden physics learning under meta (Mai et al., 2021; Zhang
et al., 2022; Yin et al., 2021; Wang et al., 2021) or even transfer setting (Kailkhura et al., 2019;
Goswami et al., 2022b). Among these meta-learning works, (Mai et al., 2021; Zhang et al., 2022)
are designed for specific physical applications, while (Yin et al., 2021; Wang et al., 2021) focus on
on dynamics forecasting by learning the temporal evolution information directly (Yin et al., 2021)
or learning time-invariant features (Wang et al., 2021). Hence, none of these works have provided a
generic approach nor theoretical understanding on how to transfer the multi-task knowledge between
a series of complex physical systems, such that all these tasks are governed by a common parametric
PDE with different physical parameters.

3 META-LEARNT NEURAL OPERATOR

3.1 INTEGRAL NEURAL OPERATORS

Here, we first state the base model of this work without the meta aspect. The integral neural oper-
ators, first proposed in (Li et al., 2020a) and further developed in (Li et al., 2020b;c; You et al.,
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Figure 1: The architecture of MetaP based on an integral neural operator model.

2022a;c) comprises of three building blocks. First, the input function, g(x) ∈ A, is lifted to
a higher dimensional representation via h(x, 0) = P[g](x) := P (x)[x,g(x)]T + p(x). Here,
P (x) ∈ R(s+dg)×dh and p(x) ∈ Rdh define an affine pointwise mapping, which are often
taken as constant parameters, i.e., P (x) ≡ P and p(x) ≡ p. Then, the feature vector func-
tion h(x, 0) goes through an iterative layer block where the layer update is defined via the ac-
tion of the sum of a local linear operator, a nonlocal integral kernel operator, and a bias function:
h(·, (l+1)∆t) = Jl+1[h(·, l∆t)], for l = 0, · · · , L−1. Here, h(·, j∆t), j = 0, · · · , L := T/∆t, is
a sequence of functions representing the values of the network at each hidden layer, taking values in
Rdh . J1, · · · ,JL are the nonlinear operator layers, defined by the particular choice of networks. In
this work, we employ the implicit Fourier neural operator (IFNO) as the base model, because of its
theoretical universal approximation property in PDE solving tasks (You et al., 2022c) and robustness
in complex physical response modeling tasks (You et al., 2022b)2. In this case, the iterative layers
are taken as J1 = · · · = JL = J , where

h(x, (l + 1)∆t) = J [h(x, l∆t)]

:= h(x, l∆t) + ∆tσ
(
Wh(x, l∆t) + F−1[F [κ(·;v)] · F [h(·, l∆t)]](x) + c(x)

)
. (1)

Here, F and F−1 denote the Fourier transform and its inverse, respectively. In practice, F and F−1

are computed using the FFT and its inverse to each component of h separately. Also, c ∈ Rdh

defines a constant bias, W ∈ Rdh×dh is the weight matrix, and F [κ(·;v)] := R is a circulant
matrix that depends on the convolution kernel κ. σ is an activation function, which is oftenly taken
to be the popular rectified linear unit (ReLU) function. Finally, the output u(·) ∈ U is obtained
through a projection layer. In particular, we project the last hidden layer representation h(·, T ) onto
U as: u(x) = Q[h(·, T )](x) := Q2(x)σ(Q1h(x, T ) + q1(x)) + q2(x). Here, Q1(x) ∈ RdQ×dh ,
Q2(x) ∈ Rdu×dQ , q1(x) ∈ RdQ and q2(x) ∈ Rdu are the appropriately sized matrices and vectors
that are part of the parameter set that we aim to learn. Similarly as for the lifting layer, Q1(x),
Q2(x), q1(x) and q2(x) are also often taken as constant parameters, which will be denoted as Q1,
Q2, q1 and q2, respectively. In the following, we denote the set of trainable parameters in the lifting
layer as θP , the set from the iterative layer block as θI , and the set in the projection layer as θQ.

The neural operator can be employed to learn an approximation for the solution operator, G. Given
D := {(gi,ui)}Ni=1, a labelled (context) set of observations, where the input {gi} ⊂ A is a set of
independent and identically distributed (i.i.d.) random fields from a known probability distribution
µ on A, and ui(x) ∈ U , possibly noisy, is the observed corresponding solution, let Ω ⊂ Rs be the
domain of interests, we assume that all observations can be modeled with a parametric PDE form

Kb(x)[ui](x) = gi(x), x ∈ Ω. (2)
Here, Kb is the operator representing the possibly unknown governing law, e.g., balance laws.
Then, the system response can be learnt by constructing a surrogate solution operator of equation 2:
G̃[g; θ](x) := QθQ ◦ (JθI )L ◦ PθP [g](x) ≈ u(x), where the parameter set θ = [θP , θI , θQ] is
obtained by solving the optimization problem:

min
θ∈Θ
LD(θ) = min

θ∈Θ
Ef∼µ[C(G̃[g; θ],G[g])] ≈ min

θ∈Θ

N∑
i=1

[C(G̃[gi; θ],ui)]. (3)

Here C denotes a properly defined cost functional which is often taken as the the mean square error.
2We also point out that the proposed multi-task strategy is generic and hence also applicable to any other

integral neural operators (Li et al., 2020a;b;c; You et al., 2022a).
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3.2 BASE META MODEL WITH MAML AND ANIL

To transfer the multi-task knowledge between a series of complex systems governed by different hid-
den physical parameters, we proposed to leverage the integral neural operator with a meta-learning
setting. Herein, assume that for each training task T η ∼ p(T ) we have a set of observations of
loading field/respond field data pairs Dη := {(gη

i (x),u
η
i (x))}N

η

i=1, and each task can be modeled
with a parametric PDE form

Kbη(x)[u
η
i ](x) = gη

i (x), x ∈ Ω, (4)

where bη(x) is the hidden task-specific physical parameter field for the common governing
law. Given a new and unseen test task, T test, and a context set of labelled samples Dtest :=

{(gtest
i (x),utest

i (x))}N test

i=1 on it, our goal is to obtain the approximated solution operator model on
the test task as G̃[g; θtest].

A straightforward approach would be to simply apply MAML and ANIL to a neural operator archi-
tecture, which will be treated as the baselines of our studies. Here we formally state our implemen-
tation of ANIL and MAML for the problem described above.

MAML. The MAML algorithm proposed in (Finn et al., 2017) aims to find an initialization, θ̃,
across all tasks, so that new tasks can be learnt with very few examples. First, we draw a batch
{T η}Hη=1 of H tasks from p(T ). For each task T η , we split the available set of loading field/response
field data pairs Dη to a support set of samples, Sη , which will be used for inner loop updates, and a
target set of samples, Zη , for outer loop updates. Then, for the inner loop we let θη,0 := θ̃ and θη,i

be the task-wise parameter after i gradient updates. During each inner loop update, we compute

θη,i = θη,i−1 − α∇θη,i−1LSη (θη,i−1), for η = 1, · · · , H, (5)

where LSη (θη,i−1) is the loss on the support set of the η-th task, and α is the step size. After m
inner loop updates, we update the initial parameter θ̃ with a fixed step size β:

θ̃ ← θ̃ − β∇θ̃Lmeta(θ̃), where the meta-loss Lmeta(θ̃) :=

H∑
η=1

LZη (θη,m). (6)

Then, on the test task, T test, we perform inner loop adaptation based on few labelled samples Dtest

until convergence, and obtain the approximated solution operator model on the test task as G̃[g; θtest].

ANIL. In (Raghu et al., 2019), ANIL was proposed as a modified version of MAML with inner loop
updates only for the final layer. The inner loop update formulation equation 5 is modified as

θη,iQ = θη,i−1
Q − α∇θη,i−1

Q
LSη (θη,i−1

Q ), for η = 1, · · · , H, (7)

where θη,iQ is the task-wise parameter on the projection layer after i gradient updates. Then, we
perform the same outer loop updates following equation 6.

3.3 METAP: A NOVEL META-LEARNT NEURAL OPERATOR ARCHITECTURE

We now propose MetaP, which applies task-wise adaptation only to the first layer, i.e., the lift-
ing layer, with the full algorithm outlined in Algorithm 1. Similar as in other meta-learning ap-
proaches (Yoon et al., 2018; Vanschoren, 2018; Yang & Kwok, 2022; Kalais & Chatzis, 2022), the
algorithm consists of two phases: (1) a meta-train phase which learns shared iterative layers pa-
rameters θI and projection layer parameters θP from existing tasks; (2) a meta-test phase which
transfers the learned knowledge and rapidly learning surrogate solution operators for unseen tasks
with unknown physical parameter field, where only a few test samples are required.

To see the inspiration of the proposed architecture, without loss of generality, we assume that the
underlying task parameter field bη(x), modeling the physical property field, is normalized and sat-
isfying

∣∣∣∣bη(x)− b(x)
∣∣∣∣
L2(Ω)

≤ 1 for all η ∈ {1, · · · , H}, where b := ET η∼p(T )[b
η]. Denoting

Fu[b] := Kb[u] as a function from physical parameter fields B to loading fields A, we can take the
Fréchet derivative of F with respect to b− b and obtain:

Kbη [u] = Fu[b] +DFu[b](b
η − b) + o(

∣∣∣∣bη − b
∣∣∣∣
L2(Ω)

).
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Meta-Train Phase:
Require: a batch {T η}Hη=1 of known tasks and available data pairs Dη := {(gη

i (x),u
η
i (x))}N

η

i=1
on each task
Output: common parameters θ∗I and θ∗Q across all tasks
1. randomly initialize θI , θQ, and {θηP }Hη=1
2. solve the optimization problem:

{θ∗I , θ∗Q, {θ
η,∗
P }

H
η=1} = argmin

{θI ,θQ,{θη
P }H

η=1}

H∑
η=1

LDη ([θηP , θI , θQ])

Meta-Test Phase:
Require: a test task T test and few labelled data pairs Dtest := {(gtest

i (x),utest
i (x))}N test

i=1

Output: the task-wise parameter θtest,∗
P and the corresponding surrogate PDE solution operator

G̃[g; [θtest,∗
P , θ∗I , θ

∗
Q]](x) for the test task

3. solve for the lift layer parameter from the optimization problem:

θtest,∗
P = argmin

θtest
P

LDtest([θtest
P , θ∗I , θ

∗
Q])

Algorithm 1: MetaP for Few-Shot Learning of New PDE Solver with Hidden Physical Parameters

Substituting the above formulation into equation 4, we obtain

Fuη
i
[b] +DFuη

i
[b](bη − b) ≈ gη

i .

Denoting F1[b
η] := [1,bη − b] and F2[u

η
i ] := [Fuη

i
[b], DFuη

i
[b]], we can actually reformulated

equation 4 into a more generic form:

F1[b
η](x) · F2[u

η
i ](x) = gη

i (x), x ∈ Ω. (8)

We point out that this parametric PDE form is indeed very general and finds applications in many
science and engineering applications – besides our motivating example on material modeling, ex-
amples also include the monitoring of tissue degeneration problems (Zhang & Sacks, 2017), the
detection of subsurface flows (Dejam et al., 2017), the nondestructive inspection in aviation (Fallah
et al., 2019), and the prediction of concrete structures deterioration (Wei et al., 2021), etc.

In the following, we show that MetaP are universal solution finding operators for the multi-task
PDE solving problem in equation 8, in the sense that they can approximate a fixed point method to a
desired accuracy. For simplicity, we consider a 1D domain Ω, and scalar functions F1[b

η], F2[u
η
i ].

These functions are assumed to be sufficiently smooth and measured at uniformly distributed nodes
χ := {x1,x2, . . . ,xM}, with F1[b

η](xj) ̸= 0 for all η and j. Then, equation 8 can be formulated
as an implicit system of equations:

H(Uη,∗
i ; G̃η

i ) :=

 F2[u
η
i ](x1)− gη

i (x1)/F1[b
η](x1)

...
F2[u

η
i ](xM )− gη

i (xM )/F1[b
η](xM )

 = 0, (9)

where Uη,∗
i := [uη

i (x1),u
η
i (x2), . . . ,u

η
i (xM )] is the solution we seek, G̃η

i :=
[gη

i (x1)/F1[b
η](x1),g

η
i (x2)/F1[b

η](x2), . . . ,g
η
i (xM )/F1[b

η](xM )] is the reparameterized
loading vector, and Gη

i := [gη
i (x1),g

η
i (x2), . . . ,g

η
i (xM )] is the original loading vector. Here,

we notice that all task-specific information are encoded in G̃η
i and can be captured in the lifting

layer parameter. Therefore, when seeing equation 9 as an implicit problem of Uη,∗
i and G̃η

i , it is
actually independent of the task parameter field bη , i.e., this problem is task-independent. In the
later contents we refer to equation 9 without the task index, asH(U∗; G̃) for notation simplicity.

To solve for U∗ from the nonlinear system H(U∗; G̃) = 0, a popular approach would be to use
fixed-point iteration methods such as the Newton-Raphson method. In particular, with an initial
guess of the solution (denoted as U0), the process is repeated to produce successively better approx-
imations to the roots of equation 9, from the solution of iteration l (denoted as Ul) to the solution of
iteration l + 1 (denoted as Ul+1) as:

Ul+1 = Ul − (∇H(Ul; G̃))−1H(Ul; G̃) := Ul +R(Ul, G̃), (10)

6



Under review as a conference paper at ICLR 2023

until a sufficiently precise value is reached. In the following, we show that as long as Assumptions 1
and 2 hold, i.e., there exists a converging fixed point method, then MetaP can be seen as an re-
semblance of the fixed point method in equation 10 and hence acts as an universal approximator of
the solution operator for equation 8. Assumptions 1 and 2 ensure the hidden PDEs to be numer-
ically solvable with a converging iterative solver, which is a required condition of most numerical
PDE solving problems. Then, taking U0 := [x1, · · · ,xM ] as the initial guess, we aim to show
that for any desired accuracy ε > 0, one can find a sufficiently large L > 0 and sets of parame-
ters θη = {θηP , θI , θQ}, such that the resultant MetaP model acts as a fixed point method and its
prediction satisfies

∣∣∣∣∣∣QθQ ◦ (JθI )
L ◦ Pθ

η
P
([U0,Gη]T)−Uη,∗

∣∣∣∣∣∣
l2(RM )

≤ ε for all tasks and samples.

Assumption 1. There exists a fixed point equation, U = U + R(U, G̃) for the implicit problem
equation 9, such that R : R2M 7→ RM is a continuous function satisfying R(U, G̃) = 0 and
||R(Û, G̃) − R(Ũ, G̃)||l2(RM ) ≤ m||Û − Ũ||l2(RM ) for any two vectors Û, Ũ ∈ RM . Here,
m > 0 is a constant independent of G̃.
Assumption 2. With the initial guess U0 := [x1, · · · ,xM ], the fixed-point iteration Ul+1 = Ul +

R(Ul, G̃) (l = 0, 1, . . . ) converges, i.e., for any given ε > 0, there exists an integer L such that

||Ul −U∗||l2(RM ) ≤ ε, ∀l > L,

for all possible input instances G̃ ∈ RM and their corresponding solutions U∗.

Then, we have our universal approximation theorem as below, with proof provided in Appendix A:
Theorem 1 (Universal approximation). Given Assumptions 1-2, let the activation function σ for all
iterative kernel integration layers be the ReLU function, and the activation function in the projection
layer be the identity function. Then for any ε > 0, there exist sufficiently large layer number L > 0
and feature dimension number dh > 0, such that one can find a parameter set for the multi-task
problem, θη = [θηP , θI , θQ], such that the corresponding MetaP model satisfies∣∣∣∣∣∣QθQ ◦ (JθI )L ◦ Pθη

P
([U0,Gη]T)−Uη,∗

∣∣∣∣∣∣ ≤ ε, ∀Gη ∈ RM ,

for all tasks.

4 EXPERIMENTS

In this section, we demonstrate the empirical effectiveness of the proposed MetaP approach. Specif-
ically, we conduct experiments on a synthetic dataset from a nonlinear PDE solving problem, a
benchmark dataset of heterogeneous materials subject to large deformation, and a real-world dataset
from biological tissue mechanical testing, and compare the proposed method against competitive
GBML baselines. All of the experiments are tested using PyTorch with Adam optimizer, with de-
tailed settings provided in the Appendix B. In all tests we considered the averaged relative error,
||ui,pred − ui||L2(Ω)/||ui||L2(Ω), as the error metric (lower means better). We have repeated each
experiment for 5 times, and reported the averaged errors and their standard errors.

4.1 SYNTHETIC DATA SETS AND ABLATION STUDY

We first consider the PDE solution finding problem of the Holzapfel-Gasser-Odgen (HGO)
model (Holzapfel et al., 2000), which describes the deformation of hyperelastic, anisotropic,
and fiber-reinforced materials. Different tasks correspond to different material parameter sets,
{k1, k2, E, ν, α}, where k1 and k2 are fiber modulus and the exponential coefficient, respectively, E
is the Young’s modulus, ν is the Poisson ratio, and α is the fiber angle direction from the reference di-
rection. In this example the physical response of interests is the displacement field u : [0, 1]2 → R2

subject to different traction loadings applied on the top edge of this material. Therefore, we take the
input function g(x) as the padded traction loading field, and the output function as the corresponding
displacement field.

To investigate the performance of MetaP in few-shot learning, we generate 60 tasks for training, val-
idation, and 1 in-distribution (ID) test task by sampling the physical parameters k1, k2 ∼ U [0.1, 1],
E ∼ U [0.5, 1.5], ν ∼ U [0.1, 0.49], and α ∼ U [π/10, π/2]. Here U stands for uniform distribution.
To further evaluate the generalizability when the physical parameters in test tasks are outside the
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Figure 2: Results on a synthetic data set. Left: The ablation study comparison on test errors in the
in-distribution test. Right: The relative error of MetaP in in-distribution and out-of distribution tests.

training regime, we also generate 2 out-of-distribution (OOD) test tasks with physical parameters
from different distributions. For the first OOD task we sample E ∼ U [1.5, 2], while for the sec-
ond OOD task E ∼ U [0.3, 0.5]. As show in Figure 5 of Appendix B, the first OOD task (denoted
as “OOD Task1”) corresponds to a stiffer material sample and smaller deformation for each given
loading, while the second OOD task (denoted as “OOD Task2”) generates a softer material sample
and larger deformation. For each training task, we generate 500 data pairs Dη := {(gη

i ,u
η
i )}500i=1,

by sampling the vertical traction loading from a Gaussian random field. Then, the corresponding
ground-truth displacement field is obtained using the finite element method implemented in FEniCS
(Alnæs et al., 2015). For the test tasks, we train with N test = {2, 4, 8, 12, 20, 100, 300} numbers of
labelled data pairs (the context set), and evaluate the resultant model on an additional dataset with
200 data pairs (the target set). An 8-layer IFNO is employed as the base model.

Ablation Study. We first conduct an ablation study with three settings. 1) Follow the meta-train and
meta-test phases as in Algorithm 1, with task-wise adaptation only to the lifting layer in both phases
(denotes as “MetaP”). 2) After MetaP, perform an additional fine-tuning step to all parameters in
the meta-test phase (denotes as “MetaP+”). With this test, we aim to investigate if our algorithm
has successfully identified all the common features in the iterative and projection layers. 3) Apply
task-wise adaptation only to the projection layer in both meta-train and meta-test phases (denoted
as “MetaLast”). With this test, we study if the successful “adapting last layers” strategy in image
classification problems would also apply for our PDE solving problem. Besides these three settings,
we also report the few-shot learning results with four baseline methods: 1) Learn a neural operator
model only based on the context data set on the test task (denoted as “Single”), 2) Pretrain a single
neural operator model based on all training task data sets, then fine-tune it based on the context test
task data set (denoted as “Single+”), 3) MAML, and 4) ANIL. As shown in the left plot of Figure 2,
MetaP and MetaP+ are both able to quickly adapt with few data pairs – to achieve a test error below
5%, “Single” and “Single+” require 100 data pairs, while MetaP and MetaP+ requires only 4 data
pairs. On the other hand, MetaLast, MAML and ANIL have similar performance. They all require
100 data pairs to achieve a < 5% test error. This observation verifies our theoretical analysis: on the
multi-task parametric PDE solution operator learning problem, one should adapt the first layer, not
the last ones. Moreover, when comparing MetaP and MetaP+ we can see that the additional fine-
tune step barely improves the performance, especially in the few-sample regime. This fact verifies
the efficacy of MetaP, and indicates that our method has successfully capture the underlying task
diversity by adapting the first layer, so no further fine-tuning is required.

In-Distribution and Out-Of-Distribution Tests. On the right plot of Figure 2, we demonstrate the
relative test error of MetaP in both ID and OOD tasks. We can see that these three test errors are
both in a similar scale as the error on training tasks. The error from OOD task1 is slightly smaller
than the ID test task error, while the error from OOD task2 is much larger, probably due to the fact
that the solutions in OOD task1 generally have smaller magnitude and hence its solution operator
lies more in a linear regime, which makes the solution operator learning task easier. These results
validates the good generalization performance of MetaP.

4.2 BENCHMARK MECHNICAL MNIST DATASETS

To further test the capability of MetaP on benchmark datasets, we test MetaP and four baseline
methods on Mechanical MNIST (Lejeune, 2020). Mechanical MNIST is a dataset of heterogeneous
material undergoing large deformation. It contains 70,000 heterogeneous material specimens, and
each specimen is governed by the Neo-Hookean material with a varying modulus converted from
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Figure 3: Comparison of MetaP and four baseline methods on the benchmark dataset (MechnicalM-
NIST, left plot) and the real-world dataset (heart valve tissue, right plot).

the MNIST bitmap images. On each specimen, 32 loading/response data pairs are provided3. Here
in, we randomly select 101 specimens for training and validation, and a new and unseen specimen
as the test task. On the meta-test phase, we reserve 20 data pairs on the test task as the target set
for evaluation, then train each model under the few-shot learning setting with N test = {2, 4, 8, 12}
labelled data pairs as the context set. All approaches are developed based on an 8-layer IFNO model.

We present the results in the left plot of Figure 3. The neural operator model learned by MetaP again
outperforms the state-of-the-art GBML models. Our MetaP model achieves 1% when using only 2
labelled data pair on the test task, while the “Single” model has around 100% error even using 8
labelled data pairs, due to overfitting. This fact highlights the importance of learning across multi-
tasks in engineering applications – when the total number of measurements on each specimen is
limited, it is necessary to transfer the knowledge across specimens. Moreover, we notice that in this
example ANIL is the least effective GBML method, which is even less efficient than the pretrained
model (“Single+”), probably due to the inefficacy of the adapting last layers strategy.

4.3 APPLICATION ON REAL-WORLD DATA SETS

We now take a step further to demonstrate the performance of our method on a real-world physical
response dataset which is NOT generated by sovling PDEs. We consider the problem of learning
the mechanical response of multiple biological tissue specimens from DIC displacement tracking
measurements. As demonstrated in Figure 1, we measure the biaxial loading of tricuspid valve ante-
rior leaflet (TVAL) specimens from a porcine heart, such that each specimen (as a task) corresponds
to a different region of the leaflet. Due to the material heterogeneity of biological tissues, these
specimens are with different mechanical and structural properties.

In this task, we aim to model the tissue response by learning a neural operator mapping the boundary
displacement loading to the interior displacement field on each tissue specimen. On each specimen,
we have 500 available data pairs. Due to the challenges of obtaining the experimental tissue, only
14 specimens are available in total. This example also stands for a common challenging setting
in real-world applications: we not only have the few-shot learning challenge, but also suffer from
the difficulty from limited available training tasks. With a 4-layer IFNO as the base model, we
train each model based on N test ∈ [2, 300] samples, then evaluate the performance on another 200
samples. The results are provided on the right plot of Figure 3. MetaP performs the best with low
data samples among all the methods, and still beat our MAML and ANIL variants when N test = 300.
Interestingly, MAML and ANIL did not even beat the “Single+” method, possibly due to the low
efficacy of the adapting last layers strategy and the small number of training tasks.

5 CONCLUSION

In this paper we propose MetaP, the first neural-operator-based meta-learning approach that are de-
signed to achieve good transferability in learning complex physical system responses with significant
improvement in sample efficiency. The first layer adaption used by our method is theoretically mo-
tivated and shown to be the universal solution operator for multiple parametric PDE solving tasks.
We demonstrate the effectiveness of our proposed MetaP algorithm on various synthetic and real-
world datasets, showing promises over baseline methods. For future work, we will investigate the
applicability of the proposed approach to other neural operators.

3We have excluded small deformation samples with the maximum displacement magnitude ≤ 0.1.
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A PROOF OF THEOREM 1

In this section we provide the detailed proof for Theorem 1, based on Assumptions 1 and 2. Intu-
itively, that means the underlying implicit problem is solved with a converging fixed point method.
This condition is a basic requirement by numerical PDEs, and it generally holds true in many appli-
cations governed by nonlinear and complex PDEs, such as in our three experiments.

Here, we prove that the MetaP is universal, i.e., give a fixed point method satisfying Assumptions
1-2, one can find parameter sets θη whose output approximates Uη,∗ to a desired accuracy, ε > 0,
for all η = 1, · · · , H tasks. For the task-wise parameters, with a slight abuse of notation, we denote
P η ∈ RdhM×(dg+s)M as the collection of the pointwise weight matrices at each discretization point
in χ for the η-th task, and pη ∈ RdhM for the bias in the lifting layer. Then, for the parameters
shared among all tasks, in the iterative layer we denote C = [c(x1), · · · , c(xM )] ∈ RdhM as the
collection of pointwise bias vectors c(xi), W ∈ Rdh×dh for the local linear transformation, and
R = F [κ(·;v)] ∈ Cdh×dh×M ∈ Cdh×dh×M for the Fourier coefficients of the kernel κ. For
simplicity, here we have assumed that the Fourier coefficient is not truncated, and all available
frequencies are used. Then, for the projection layer we seek Q1 ∈ RdQM×dhM , Q2 ∈ RduM×dQM ,
q1 ∈ RdQM and q2 ∈ RduM . For the simplicity of notation, in this section we organize the feature
vector H ∈ RdhM in a way such that the components corresponding to each discretization point are
adjacent, i.e., H = [H(x1), · · · ,H(xM )] and H(xi) ∈ Rdh .

We point out that under this circumstance, we have the (discretized) iterative layer can be written as

J [H(l∆t)] =H(l∆t) + ∆tσ
(
W̃H(l∆t) + Re(F−1

∆x(R · F∆x(H(l∆t)))) +C
)

=H(l∆t) + ∆tσ (VH(l∆t) +C) ,

with

V := Re



M−1∑
n=0

Rn+1 +W
M−1∑
n=0

Rn+1 exp(
2iπ∆xn

M
) . . .

M−1∑
n=0

Rn+1 exp(
2iπ(M−1)∆xn

M
)

M−1∑
n=0

Rn+1 exp(
2iπ∆xn

M
)

M−1∑
n=0

Rn+1 +W . . .
M−1∑
n=0

Rn+1 exp(
2iπ(M−2)∆xn

M
)

...
...

. . .
...

M−1∑
n=0

Rn+1 exp(
2iπ(M−1)∆xn

M
)

M−1∑
n=0

Rn+1 exp(
2iπ(M−2)∆xn

M
) . . .

M−1∑
n=0

Rn+1 +W


.

Here, R ∈ CM×dh×dh with Ri ∈ Cdh×dh being the component associated with each discretization
point xi ∈ χ, V ∈ RdhM×dhM , C ∈ RdhM , W̃ := W ⊕W ⊕ · · · ⊕W is a dhM × dhM block
diagonal matrix formed by W ∈ Rdh×dh , F∆x and F−1

∆x denote the discrete Fourier transform and
its inverse, respectively. By further taking R2 = · · · = RM = W = 0, a dh × dh matrix with all its
elements being zero, it suffices to show the universal approximation property for an iterative layer
as follows:

J (H(l∆t)) := H(l∆t) + ∆tσ
(
ṼH(l∆t) +C

)
where Ṽ := 1[M,M ] ⊗ V with V ∈ Rdh×dh and 1[m,n] being an m by n all-ones matrix.

To be more precise, we will prove the following theorem:

Theorem 1 (Universal approximation). Let Uη,∗ = [uη(x1),u
η(x2), . . . ,u

η(xM )] be the ground-
truth solution of η-th task that satisfies Assumptions 1-2, the activation function σ for all iterative
kernel integration layers be the ReLU function, and the activation function in the projection layer
be the identity function. Then for any ε > 0, there exist sufficiently large layer number L > 0 and
feature dimension number dh > 0, such that one can find a parameter set for the multi-task problem,
θη = [θηP , θI , θQ] with the corresponding MetaP model satisfies∣∣∣∣∣∣QθQ ◦ (JθI )L ◦ Pθη

P
([U0,Gη]T)−Uη,∗

∣∣∣∣∣∣ ≤ ε, ∀Gη ∈ RM .

For the proof of this main theorem, we need the following approximation property of a shallow
neural network, with its detailed proof provided in You et al. (2022c):
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Lemma 1. Given a continuous function T : R2M 7→ RM , and a non-polynomial and continuous
activation function σ, for any constant ε̂ > 0 there exists a shallow neural network model T̂ :=
Sσ (BX+A) such that

||T (X)− T̂ (X)||l2(RM ) ≤ ε̂, ∀X ∈ R2M ,

for sufficiently large feature dimension d̂ > 0. Here, S ∈ RM×d̂M , B ∈ Rd̂M×2M , and A ∈ Rd̂M

are matrices/vectors which are independent of X.

We now proceed to the proof of Theorem 1:

Proof. Since all Uη,∗ satisfies Assumptions 1-2, for any ε > 0, we first pick a sufficiently large
integer L such that the L-th layer iteration result of this fixed point formulation satisfies ||UL −
Uη,∗||l2(RM ) ≤ ε

2 for all tasks. By taking ε̂ := mε
2(1+m)L

in Lemma 1, there exists a sufficiently

large feature dimension d̂ and one can find S ∈ RM×d̂M , B ∈ Rd̂M×2M , and A ∈ Rd̂M , such that
R̂(Uη, G̃η) := Sσ(B[Uη, G̃η]T +A) satisfies

||R(Uη, G̃η)−R̂(Uη, G̃η)||l2(RM ) = ||R(Uη, G̃η)−Sσ(B[Uη, G̃η]T+A)||l2(RM ) ≤ ε̂ =
mε

2(1 +m)L
,

where m is the contraction parameter of R, as defined in Assumption 1. By this construction, we
know that S has independent rows. Denoting d̃ := d̂ + 1 > 0, there exists the right inverse of S,
which we denote as S+ ∈ R(d̃−1)M×M , such that

SS+ = IM , S+S := Ĩ(d̃−1)M ,

where IM is the M by M identity matrix, Ĩ(d̃−1)M is a (d̃ − 1)M by (d̃ − 1)M block matrix

with each of its element being either 1 or 0. Hence, for any vector Z ∈ R(d̃− 1)M , we have
σ(Ĩ(d̃−1)MZ) = Ĩ(d̃−1)Mσ(Z). Moreover, we note that S has a very special structure: from the

((i − 1)(d̃ − 1) + 1)-th to the (i(d̃ − 1))-th column of S, all nonzero elements are on its i-th row.
Correspondingly, we can also choose S+ to have a special structure: from the ((i−1)(d̃−1)+1)-th
to the (i(d̃−1))-th row of S+, all nonzero elements are on its i-th column. Hence, when multiplying
S+ with U, there will be no entanglement between different components of U. That means, S+ can
be seen as a pointwise weight function.

We now construct the MetaP as follows. In this construction, we choose the feature dimension as
dh := d̃M . With the input [U0,Gη] ∈ R2M , for the lift layer we set

P η := 1[M,1] ⊗
[
S+ 0
0 Dη

]
=

[
S+ 0 S+ 0 · · · S+ 0
0 Dη 0 Dη · · · 0 Dη

]T
︸ ︷︷ ︸

repeated for M times

∈ RdhM×2M ,

and pη := 0 ∈ RdhM . Here, Dη := diag[1/F1[b
η](x1), · · · , 1/F1[b

η](xM )]. As such, the initial
layer of feature is then given by

H(0) = P η([U0,Gη]T) = 1[M,1] ⊗ [S+U0, DηGη]T = 1[M,1] ⊗ [S+U0, G̃η]T ∈ RdM .

Here, we point out that P η and pη can be seen as pointwise weight and bias functions, respectively.

Next we construct the shared iterative layer J , by setting

V :=

[
Ĩ(d̃−1)MB/M

0

] [
S/∆t 0
0 IM/∆t

]
, Ṽ := 1[M,M ]⊗V, and C := 1[M,1]⊗

[
Ĩ(d̃−1)MA/∆t

0

]
.

Note that Ṽ is independent of η, and falls into the formulation of V , by letting R1 = V and
R2 = R2 = · · · = RM = W = 0. For the l + 1-th layer of feature vector, we then arrive
at

H((l + 1)∆t) = H(l∆t) + ∆tσ
(
ṼH(l∆t) +C

)
=H(l∆t) +

(
IM ⊗

[
S+S 0
0 IM

])
σ

((
1[M,1] ⊗

[
B/M
0

])(
1[1,M ] ⊗

[
S 0
0 IM

])
H(l∆t) + 1[M,1] ⊗

[
A
0

])
,
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where H(l∆t) = [ĥl∆t
1 , ĥl∆t

2 , . . . , ĥl∆t
2M−1, ĥ

l∆t
2M ]T denotes the (spatially discretized) hidden layer

feature at the l−th iterative layer of the IFNO. Subsequently, we note that the second part of the
feature vector, ĥl∆t

2j ∈ RM , satisfies

ĥ
(l+1)∆t
2j = ĥl∆t

2j = · · · = ĥ0
2j = G̃η, ∀l = 0, · · · , L− 1,∀j = 1, · · · ,M

Hence, the first part of the feature vector, ĥl∆t
2j−1 ∈ R(d̃−1)M , satisfies the following iterative rule:

ĥ
(l+1)∆t
2j−1 = ĥl∆t

2j−1 + S+Sσ(B[Sĥl∆t
2j−1, G̃

η]T +A), ∀l = 0, · · · , L− 1,∀j = 1, · · · ,M,

and
ĥ
(l+1)∆t
1 = ĥ

(l+1)∆t
3 = · · · = ĥ

(l+1)∆t
2M−1 .

Finally, for the projection layer Q, we set the activation function in the projection layer as the
identity function, Q1 := IdhM (the identity matrix of size dhM ), Q2 := [S,0] ∈ RM×dhM ,
q1 := 0 ∈ RdhM , and q2 := 0 ∈ RM . Denoting the output Uη := QθQ◦(JθI )L◦Pθη

P
([U0,Gη]T),

we now show that Uη can approximate Uη,∗ with a desired accuracy ε:
||Uη −Uη,∗|| ≤ ||Uη −UL||l2(RM ) + ||UL −Uη,∗||l2(RM )

≤ ||SĥL∆t
1 −UL||l2(RM ) +

ε

2
(by Assumption 2)

≤ ||Sĥ(L−1)∆t
1 −UL−1||l2(RM ) + ||R̂(Sĥ

(L−1)∆t
1 , G̃)−R(UL−1, G̃)||l2(RM ) +

ε

2

≤ ||Sĥ(L−1)∆t
1 −UL−1||l2(RM ) + ||R̂(Sĥ

(L−1)∆t
1 , G̃b)−R(Sĥ

(L−1)∆t
1 , G̃b)||l2(RM )

+ ||R(Sĥ
(L−1)∆t
1 , G̃b)−R(UL−1, G̃b)||l2(RM ) +

ε

2

≤ (1 +m)||Sĥ(L−1)∆t
1 −UL−1||l2(RM ) +

mε

2(1 +m)L
+

ε

2
(by Lemma 1 and Assumption 1)

≤ mε

2(1 +m)L
(1 + (1 +m) + (1 +m)2 + · · ·+ (1 +m)L−1) +

ε

2

≤ ε

2
+

ε

2
= ε.

B DATA GENERATION AND TRAINING DETAILS

In the following we briefly describe the empirical process of generating datasets,
and the settings employed in running of each algorithm. For a fair comparison,
for each algorithm, we tune the hyperparameters, including the learning rate from
{0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001}, the decay rate from {0.5, 0.7, 0.9}, the weight
decay parameter from {0.01, 0.001, 0.0001, 0.00001, 0.000001}, and the inner loop learning rate
for MAML and ANIL from {0.01, 0.001, 0.0001, 0.00001, 0.000001}, to minimize the error on a
separate validation dataset. In all experiments we decrease the learning rate with a ratio of learning
rate decay rate every 100 epochs. The code and the processed datasets will be publicly released at
github for readers to reproduce the experimental results.

B.1 EXAMPLE 1: SYNTHETIC DATA SETS

B.1.1 DATA GENERATION

In the synthetic data example, we consider the modeling problem of a hyperelastic, anisotropic,
fiber-reinforced material, and seek to find its displacement field u : [0, 1]2 → R2 under different
boundary loadings. In this problem, the specimen is assumed to be subject to a uniaxial tension
Ty(x) on the top edge (see Figure 4(a)). To generate training and test samples, the Holzapfel-Gasser-
Odgen (HGO) model (Holzapfel et al., 2000) was employed to describe the constitutive behavior of
the material in this example, with its strain energy density function given as:

η =
E

4(1 + ν)
(I1 − 2)− E

2(1 + ν)
ln(J)

+
k1
2k2

(
exp (k2⟨S(α)⟩2) + exp (k2⟨S(−α)⟩2)− 2

)
+

E

6(1− 2ν)

(
J2 − 1

2
− ln J

)
.
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Figure 4: Problem setup of example 1: the synthetic data sets. (a) A unit square specimen subject to
uniaxial tension with Neumann-type boundary condition. (b) & (c) Visualization of an instances of
the loading field Ty(x), and the corresponding ground-truth solutions uη(x) from the in-distribution
and out-of-distribution tasks, showing the solution diversity across different tasks, due to the change
of underlying hidden material parameter set.
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Here, ⟨·⟩ denotes the Macaulay bracket, and the fiber strain of the two fiber groups is defined as:

S(α) =
I4(α)− 1 + |I4(α)− 1|

2
.

where k1 and k2 are fiber modulus and the exponential coefficient, respectively, c10 is the moduli for
the non-fibrous ground matrix, E is the Young’s modulus, and ν is the Poisson ratio. Moreover, I1 =
tr(C) is the is the first invariant of the right Cauchy-Green tensor C = FTF, F is the deformation
gradient, and J is related with F such that J = detF. For the fiber group with angle direction α from
the reference direction, I4(α) = nT (α)Cn(α) is the fourth invariant of the right Cauchy-Green
tensor C, where n(α) = [cos(α), sin(α)]T . To generate samples for different specimens,different
specimens (tasks) correspond to different material parameter sets, {k1, k2, E, ν, α}. For the training
tasks, the validation task, and the in-distribution (ID) test task, their physical parameters are sampled
from: k1, k2 ∼ U [0.1, 1], E ∼ U [0.55, 1.5], ν ∼ U [0.01, 0.49], and α ∼ U [π/10, π/2]. For the two
out-of-distribution (OOD) test tasks, we sample their parameters following k1, k2 ∼ U [1, 1.9], E ∼
U [1.5, 2]∪U [0.5, 0.55], ν ∼ U [0.01, 0.49]4, and α ∼ U [π/2, 3π/4]∪[0, π/10]. To generate the high-
fidelity (ground-truth) dataset, we sampled 500 different vertical traction conditions Ty(x) on the top
edge from a random field, following the algorithm in Lang & Potthoff (2011); Yin et al. (2022b). In
particular, Ty(x) is taken as the restriction of a 2D random field, ϕ(x) = F−1(γ1/2F(Γ))(x), on the
top edge. Here, Γ(x) is a Gaussian white noise random field on R2, γ = (w2

1 +w2
2)

− 5
4 represents a

correlation function, and w1, w2 are the wave numbers on x and y directions, respectively. Then, for
each sampled traction loading, we solved the displacement field on the entire domain by minimizing
potential energy using the finite element method implemented in FEniCS (Alnæs et al., 2015). In
particular, the displacement filed was approximated by continuous piecewise linear finite elements
with triangular mesh, and the grid size was taken as 0.025. Then, the finite element solution was
interpolated onto χ, a structured 41 × 41 grid which will be employed as the discretization in our
neural operators.

To visualize the domain characteristics for tasks, the distribution of each parameter for training,
validation and test tasks are demonstrated in Figure 5, and the corresponding solution fields are
plotted in Figure 4(c), showing the diversity across different tasks due to the change of underlying
hidden material parameter set, {k1, k2, E, ν, α}. From Figures 5 and 4(c), one can see that OOD
Task1 corresponds a stiffer material (with large Young’s modulus E) and hence smaller deformation
subject to the same loading Ty(x). On the other hand, OOD Task2 corresponds a softer material
(with small Young’s modulus E) and larger deformation. Therefore, the material response of OOD
Task1 specimen is more likely to lie in a linear region, which is easier to learn and explains the
relatively small test error on this task. On the other hand, the material response of OOD Task2 is
more nonlinear and hence complex due to larger deformation, as shown in Figure 4(c), and results
in the relatively larger test error in Figure 2.

B.1.2 ALGORITHM SETTINGS

Base model: As the base model for all algorithms, we construct an architecture for IFNO (You
et al., 2022c) as follows. First, the input loading field instance g(x) ∈ A is lifted to a higher
dimensional representation via lift layer P[g](x), which is parameterized as a 1-layer feed for-
ward linear layer with width (3,32). Then for the iterative layer in equation 1, we implement
F−1[F [κ(·;v)] · F [h(·, l∆t)]](x) with 2D fast Fourier transform (FFT) with input channel and
output channel widths both set as 32 and the truncated Fourier modes set as 8. The local lin-
ear transformation parameter, W , is parameterized as a 1-layer feed forward network with width
(32,32). In the projection layer, a 2-layer feed forward network with width (32,128,2) is employed.
To accelerate the training procedure, we apply the shallow-to-deep training technique to initialize
the optimization problem. In particular, we start from the NN model with depth L = 1, train until
the loss function reaches a plateau, then use the resultant parameters to initialize the parameters for
the next depth, with L = 2, L = 4, and L = 8. In the synthetic experiments, we set the layer depth
as L = 8.

MetaP: We split the total 60 training tasks to two groups: 59 tasks for the purpose of training and 1
task for the purpose of validation. During the meta-train phase, we train for the task-wise parameters

4Here we sample both ID and OOD tasks from the same range of ν, due to the fact that [0.01, 0.49] is the
range of Poisson ratio for common materials (Bischofs & Schwarz, 2005).
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Figure 5: Distribution of physical parameters of different tasks, and the resultant magnitude of
material response, ||uη(x)||L2(Ω), on an exemplar loading instance shown in Figure 4(b).

19



Under review as a conference paper at ICLR 2023

θηP and the common parameters θI and θQ on all 59 tasks, with the context set of 500 samples on
each task. After meta-train phase, we load θI and θQ and the averaged θηP among all 59 tasks as
initialization, then tune the hyperparameters based on the validation task. In particular, the 500
samples on the validation task is split into two parts: 300 samples are reserved for the purpose of
training (as the context set) and the rest 200 samples are used for evaluation (as the target set). Then
we train for the lift layer on the validation task, and tune the learning rate, the decay rate, and the
weight decay parameter for different context set sizes (N test), to minimize the loss on the target set.
Based on the chosen hyperparameters, we perform the test on the test task by training for the lift
layer on different numbers of samples on its context set, then evaluate and report the performance
based on its target set. We repeat the procedure on the test task with selected hyperparemeters with
different 5 random seeds, and calculate means and standard errors for the resultant test errors on
target set.

MAML&ANIL: For MAML and ANIL, we use the same architecture as the base model, and also
split the training tasks for the purpose of training and validation as in MetaP. During the meta-
train phase, for each task we randomly split the available 500 samples to two sets: 250 samples
in the support set used for inner loop updates, and the rest in the target set for outer loop updates.
During the inner loop update, we train for the task-wise parameter with one epoch, following the
standard settings of MAML and ANIL (Finn et al., 2017; Raghu et al., 2019). Then, the model
hyperparameters, including the learning rate, weight decay, decay rate, and inner loop learning rate,
are tuned. In the meta-test phase, we load the initial parameter and train for all parameters (in
MAML) or the last-layer parameters (in ANIL) until the optimization algorithm converges. Similar
as in MetaP, we first tune the hyperparameters on the validation task, then evaluate the performance
on the test task.

B.2 EXAMPLE 2: MECHNICAL MNIST

B.2.1 DATA SETTINGS

Mechanical MNIST is a benchmark dataset of heterogeneous material undergoing large deformation,
modeld by the Neo-Hookean material with a varying modulus converted from the MNIST bitmap
images (Lejeune, 2020). In this example, we randomly select 102 specimens corresponding to the
hand-written number “1”. On each specimen, we have 32 loading/response data pairs on a structured
27 by 27 grid, under the uniaxial extension, shear, equibiaxial extension, and confined compression
load scenarios, respectively. All 102 specimens are splitted into three groups: 100 specimens for the
purpose of training in the meta-train stage, 1 specimen for validation, and 1 specimen for test. On
the validation and test tasks, we reserve a target set consisting of 20 data pairs for the purpose of
evaluation, then use the rest as the context set.

B.2.2 ALGORITHM SETTINGS

Base model: As the base model for all algorithms, we construct two IFNO architectures, for the
prediction of ux and uy , the displacement fields in the x- and y-directions, respectively. On each
architecture, the input loading field instance g(x) ∈ A is mapped to a higher dimensional repre-
sentation via a lifting layer P[g](x) parameterized as a 1-layer feed forward linear layer with width
(4,64). Then for the iterative layer in equation 1, we set the number of truncated Fourier mode as 13,
and parameterize the local linear transformation parameter, W , as a 1-layer feed forward network
with width (64,64). In the projection layer, a 2-layer feed forward network with width (64,128,1) is
employed. In this example we also apply the shallow-to-deep technique to accelerate the training,
and set the layer depth as L = 8.

MetaP: During the meta-train phase, we train for the task-wise parameters θηP and the common
parameters θI and θQ on all 100 training tasks, with the context set of 32 samples on each task. After
the meta-train phase, we load θI and θQ and the averaged θηP among all 100 tasks as initialization,
then train for θP on the validation task. In particular, the 32 samples on the validation task is split
into two parts: 12 samples are reserved for the purpose of training (as the context set) and the rest
20 samples are used for the purpose of evaluation (as the target set). Then we train for the lift layer
on the validation task, and tune the learning rate, the decay rate, and the weight decay parameter
for different context set sizes (N test), to minimize the loss on the target set. Based on the chosen
hyperparameters, we perform the meta-test phase on the test task by training for the lift layer on
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Figure 6: Visualization of the processed dataset in example 3: learning the biological tissue re-
sponses. Subject to the same loading instance, different columns show the corresponding ground-
truth solutions uη(x) from different tasks, showing the solution diversity across different tasks due
to the change of underlying hidden material parameter field.

different numbers of samples on its context set, then evaluate and report the performance based on
its target set.

MAML&ANIL: For MAML and ANIL, we use the same architecture as the base model, and also
split the training tasks for the purpose of training and validation as in MetaP. During the meta-train
phase, for each task we randomly split the available 32 samples to two sets: 16 samples in the
support set used for inner loop updates, and the rest in the target set for outer loop updates. During
the inner loop update, we also follow the standard settings of MAML and ANIL (Finn et al., 2017;
Raghu et al., 2019), and tune the hyperparameters following the same procedure as elaborated above
for Example 1.

B.3 EXAMPLE 3: EXPERIMENTAL MEASUREMENTS ON BIOLOGICAL TISSUES

B.3.1 DATA GENERATION

We now briefly provide the data generation procedure for the tricuspid valve anterior leaflet (TVAL)
response modeling example. In this problem, the constitutive equations and material microstructure
are both unknown, and the dataset has unavoidable measurement noise. To generate the data, we
firstly followed the established biaxial testing procedure, including acquisition of a healthy porcine
heart and retrieval of the TVAL Ross et al. (2019); Laurence et al. (2019). Then, we sectioned the
leaflet tissue and applied a speckling pattern to the tissue surface using an airbrush and black paint
Zhang & Arola (2004); Lionello & Cristofolini (2014); Palanca et al. (2016). The painted specimen
was then mounted to a biaxial testing device (BioTester, CellScale, Waterloo, ON, Canada). To
generate samples for each specimen, we performed 7 protocols of displacement-controlled testing
to target various biaxial stresses: P11 : P22 = {1 : 1, 1 : 0.66, 1 : 0.33, 0.66 : 1, 0.33 : 1, 0.05 :
1, 1 : 0.1}. Here, P11 and P22 denote the first Piola-Kirchhoff stresses in the x- and y-directions,
respectively. Each stress ratio was performed for three loading/unloading cycles. Throughout the
test, images of the specimen were captured by a CCD camera, and the load cell readings and actuator
displacements were recorded at 5 Hz. After testing, the acquired images were analyzed using the
digital image correlation (DIC) module of the BioTester’s software. The pixel coordinate locations
of the DIC-tracked grid were then exported and extrapolated to a 21 by 21 uniform grid.

In this example, we have the DIC measurements on 14 specimens, with 500 data pairs of loadings
and material responses from the 7 protocols on each specimen. These specimens are divided into
three groups: 12 for the purpose of meta-train, 1 for validation, and 1 for test. To demonstrate the
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diversity of these specimens due to the material heterogeneity in biological tissues, in Figure 6 we
plot the processed displacement field of two exemplar training specimens and the validation and test
specimens.

B.3.2 ALGORITHM SETTINGS

Base model: As the base model, we first construct the lifting layer as a 1-layer feed forward linear
layer with width (4,16). Then for the iterative layer in we keep 8 truncated Fourier modes and pa-
rameterize the local linear transformation parameter, W , a 1-layer feed forward network with width
(16,16). In the projection layer, a 2-layer feed forward network with width (16,64,1) is employed.
We construct two 4-layer IFNO architectures, for the prediction of ux and uy , the displacement
fields in the x- and y-directions, respectively.

MetaP: During the meta-train phase, we train for the task-wise parameters θηP and the common
parameters θI and θQ on all 12 tasks, with the context set of 500 samples on each task. After meta-
train phase, we load θI and θQ and the averaged θηP among all 12 tasks as initialization, then tune the
hyperparameters based on the validation task. In particular, the 500 samples on the validation task is
splited into two parts: 300 samples are reserved for the purpose of training (as the context set) and
the rest 200 samples are used for evaluation (as the target set). Based on the chosen hyperparameters,
we perform the test on the test task by training for the lift layer on different numbers of samples on
its context set, then evaluate and report the performance based on its target set.

MAML&ANIL: For MAML and ANIL, we use the same architecture as base model, and also split
the training tasks for the purpose of training and validation as in MetaP. During the meta-train phase,
for each task we randomly split the available 500 samples to two sets: 250 samples in the support
set used for inner loop updates, and the rest in the target set for outer loop updates. During the inner
loop update, we train for the task-wise parameter with one epoch, following the standard settings of
MAML and ANIL (Finn et al., 2017; Raghu et al., 2019).

22


	Introduction
	Background and Related Work
	Hidden Physics Learning and Neural Operators
	Gradient-Based Meta-Learning Methods

	Meta-Learnt Neural Operator
	Integral Neural Operators
	Base Meta Model with MAML and ANIL
	MetaP: A Novel Meta-Learnt Neural Operator Architecture

	Experiments
	Synthetic Data Sets and Ablation Study
	Benchmark Mechnical MNIST Datasets
	Application on Real-World Data Sets

	Conclusion
	Proof of Theorem 1
	blueData Generation and Training Details
	blueExample 1: Synthetic Data Sets
	blueData Generation
	blueAlgorithm Settings

	blueExample 2: Mechnical MNIST
	blueData Settings
	blueAlgorithm Settings

	blueExample 3: Experimental Measurements on Biological Tissues
	blueData Generation
	blueAlgorithm Settings



