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Abstract

Subset or core-set selection offers a data-efficient
way for training deep learning models. One-shot
subset selection poses additional challenges as
subset selection is only performed once and full
set data become unavailable after the selection.
However, most existing methods tend to choose
either diverse or difficult data samples, which fail
to faithfully represent the joint data distribution
that is comprised of both feature and label in-
formation. The selection is also performed in-
dependently from the subset size, which plays
an essential role in choosing what types of sam-
ples. To address this critical gap, we propose
to conduct Feature similarity and Label variabil-
ity Balanced One-shot Subset Selection (BOSS),
aiming to construct an optimal size-aware subset
for data-efficient deep learning. We show that a
novel balanced core-set loss bound theoretically
justifies the need to simultaneously consider both
diversity and difficulty to form an optimal subset.
It also reveals how the subset size influences the
bound. We further connect the inaccessible bound
to a practical surrogate target which is tailored
to subset sizes and varying levels of overall diffi-
culty. We design a novel Beta-scoring importance
function to delicately control the optimal balance
of diversity and difficulty. Comprehensive experi-
ments conducted on both synthetic and real data
justify the important theoretical properties and
demonstrate the superior performance of BOSS
as compared with the competitive baselines.

1. Introduction

The success of deep learning (Brown et al., 2020; Liu
et al., 2019; Ramesh et al., 2021; Dosovitskiy et al., 2021;
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Tan & Le, 2019; Chen et al., 2020) comes at the cost of
large amounts of data and increased resource consumption
(Schwartz et al., 2020; Strubell et al., 2019). Subset or core-
set selection aims to find candidate data points from a large
pool of data such that the model trained on the subset has
comparable performance to that of the model trained on the
full set (Feldman, 2020), which in turn helps decrease the
resources consumed by training on large amounts of data.

Intuitively, subsets can be chosen dynamically during each
training epoch (Mirzasoleiman et al., 2020; Killamsetty
et al., 2021b;a; Pooladzandi et al., 2022). However, the
selection algorithm is usually time-consuming and can sig-
nificantly increase the overall training duration (Shin et al.,
2023). Such a process also requires a forward pass through
the entire dataset each time a subset is chosen, which incurs
a high cost for a large dataset. Additionally, there are some
important applications such as continual learning (Nguyen
et al., 2018), where the full set data is only available once
such that the dynamic subset selection is not possible. Thus,
contrary to the dynamic selection, one-shot subset selection
only picks the subset once and uses that subset for the entire
training process (Zheng et al., 2023; Paul et al., 2021; Feld-
man & Zhang, 2020; Sorscher et al., 2022). While it may
still be essential to initialize a model using the full dataset
for a few epochs to obtain the training dynamics employed
for subset selection, one-shot subset selection offers the ad-
vantage that the time required for this selection is accounted
for only once. Furthermore, we are not required to store the
large full-set data after selecting the subset.

Subset selection have been used for classical problems such
as regression (Madigan et al., 2002), classification (Tsang
et al., 2005), and clustering (Har-Peled & Kushal, 2005).
Recent works have started exploring applications of core-
set selection for data-efficient deep learning (Guo et al.,
2022; Wan et al., 2022; Killamsetty et al., 2021c). Two
categories of methods have been explored to incorporate the
most important examples into the selected subset, including
1) diversity based, which selects a diverse set of samples to
cover the entire feature (or gradient) space (Mirzasoleiman
et al., 2020; Killamsetty et al., 2021a;b; Pooladzandi et al.,
2022; Shin et al., 2023; Welling, 2009; Agarwal et al., 2020;
Sener & Savarese, 2018), and 2) difficulty-based, which
selects the most difficult samples to best characterize the
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decision boundary (Toneva et al., 2019; Feldman & Zhang,
2020; Paul et al., 2021; Sorscher et al., 2022). More specifi-
cally, diversity-based methods leverage the facility location
objective (Farahani & Hekmatfar, 2009) to select the opti-
mal subset such that the distance between the subset and full
set in the feature (Sener & Savarese, 2018; Welling, 2009;
Agarwal et al., 2020) or gradient space (Mirzasoleiman
et al., 2020; Killamsetty et al., 2021a; Pooladzandi et al.,
2022; Shin et al., 2023) is minimized. In contrast, difficulty-
based methods (Toneva et al., 2019; Paul et al., 2021) score
examples based on a difficulty metric where a high score
corresponds to a higher difficulty. (Paul et al., 2021) shows
that by removing the easier examples, a large portion (i.e.,
25%—-50%) of a full dataset can be pruned without obviously
compromising the model’s generalization performance.

However, the existing methods as described above are funda-
mentally limited as they are inadequate to select the optimal
subset of samples. This is due to the fact that the selection
criterion does not align with the ultimate goal of subset
selection, which is to represent a joint distribution P(x,y)
(as instantiated by a full set) using a small subset of data
samples. Consequently, solely relying on the feature (i.e.,
x) or the label side (i.e., y) will lead to a suboptimal se-
lection result. Furthermore, the subset size also plays a
crucial role in determining what types of samples should be
selected, which has been largely ignored by most existing
works. Some recent efforts try to explore different difficulty
metrics or new sampling strategies to improve one-shot se-
lection performance (Zheng et al., 2023; Xia et al., 2023).
Nevertheless, a principled way is still lacking to properly
balance diversity and difficulty given a subset size for choos-
ing a subset that can faithfully represent the underlying joint
distribution. As Figure 1 (a) shows, the subset chosen by
CCS (Zheng et al., 2023), as highlighted in red, misses some
critical regions in the full set, as annotated by the circles,
leading to a suboptimal subset with a lower generalization
performance (due to a less accurate decision boundary).

To address the key limitations of existing approaches, we
propose to perform Feature similarity and Label variabil-
ity Balanced One-shot Subset Selection (BOSS) aiming to
construct an optimal subset to achieve data-efficient deep
learning. BOSS performs subset selection guided by a bal-
anced core-set loss bound that reveals an important trade-off
between feature similarity (i.e., diversity) and label variabil-
ity (i.e., difficulty). In particular, the balanced loss bound is
comprised of two key components as a natural result of the
joint impact from the feature and label sides, respectively.
This theoretical result further confirms the need to properly
model the joint data distribution in subset selection as solely
relying on the feature or label sides will result in a signifi-
cantly loose loss bound that will compromise the learning
process. Furthermore, the novel loss bound also uncovers
important relationship between the type of data samples to

CCS (93.25%) BOSS (96.0%)

(@ (b)

Figure 1: CCS (a) Vs. BOSS (b): Decision boundary
learned using the selected subset shown in red circles by
CCS and BOSS, where the subset is 10% of the full set. The
recent methods like CCS miss critical regions as highlighted
by green and blue circles. They do not consider the balance
between difficulty and diversity with respect to the subset
size. Such a size-agnostic control of the diversity-difficulty
balance may result in a suboptimal selection which affects
the decision boundary in some cases, such as the edge of
the moon-shaped boundary.

be selected (i.e., diverse or difficult) and the size of the sub-
set (as determined by the available computing budget). For
a small subset size, focus should be placed on representative
(i.e., diverse) samples as feature similarity will dominate the
bound. As the size increases, the large label variability from
certain (i.e., difficult) regions in the joint distribution will
contribute more significantly to the overall loss bound. This
will force the selection of samples from these regions so that
the decision-boundary can be further refined to reduce the
label loss. Since directly minimizing the bound in infeasible,
we connect the inaccessible bound to a practical surrogate
target which is tailored to subset sizes and varying levels of
overall difficulty. Building on this connection, we design a
novel Beta-scoring importance function to delicately control
the optimal balance of diversity and difficulty.

Figure 1 (b) visualizes the subset chosen by the proposed
BOSS method. As compared with CCS, BOSS adequately
covers the entire feature space while attending to all critical
regions, which ensures that an accurate decision boundary
can be learned from the chosen subset with a much improved
prediction performance than CCS. Our main contribution is
threefold: (1) a novel balanced core-set loss bound which
not only justifies the necessity of simultaneously consid-
ering both diversity and difficulty for subset selection but
also unveils the key relationship between the type of data
samples to be included in the subset and the subset size, (2)
design of an expressive importance function to optimally
balance diversity and difficulty for subset selection given the
subset size, and (3) a comprehensive evaluation using both
synthetic and real-world data to verify the key theoretical
results and empirical performance of the proposed method.

2. Related Work
2.1. Diversity-Based Subset Selection
Gradient-based subset selection (GB-SS). GB-SS aims to
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find a subset such that the difference between the sum of the
gradients of the full set and the weighted sum of the gradi-
ents of the subset is minimized. As a representative GB-SS
method, CRAIG (Mirzasoleiman et al., 2020) shows the
gain for convex optimization or simple classification tasks
but becomes less competitive for complex deep learning
models and difficult learning tasks. GradMatch (Killam-
setty et al., 2021a) improves on CRAIG by regularizing the
weight values such that large weight values are penalized
while selecting the subset. Adacore (Pooladzandi et al.,
2022) leverages a Hessian pre-conditioned gradient to cap-
ture the curvature information of gradient and exponential
moving average of gradients to smooth out the local gra-
dient information. In addition to minimizing the gradient
difference, LCMAT (Shin et al., 2023) also minimizes the
difference of maximum eigenvalue obtained from the in-
verse of Hessian of full set and subset in order to capture
the curvature information of the loss landscape. Although
these methods improve the performance, the calculation
of inverse Hessian approximation is time-consuming and
computationally expensive (Pearlmutter, 1994).

Feature-based subset selection (FB-SS). FB-SS aims to
find a representative subset in the feature space. K -center
(Farahani & Hekmatfar, 2009) is a mini-max facility lo-
cation problem where the subset is selected such that the
maximum distance between a point in the original dataset
closest to the chosen center is minimized. Herding (Welling,
2009) selects the subset such that the distance between the
centroid of the full set and the subset is minimized. The
centroid is found using the feature of the input. Contex-
tual Diversity (Agarwal et al., 2020) improves the visual
diversity in the feature space and uses KL divergence for
calculating the pairwise distance. Although these methods
leverage input features to select the subset, they do not con-
sider the sample difficulty. However, the difficulty level of
the samples is important because even if two samples are
close in the feature space, they can have distinct difficulty
scores, especially for those close to the decision boundary.

2.2. Difficulty-Based Subset Selection

Difficulty-based subset selection scores each example based
on some difficulty metric that measures how difficult it is to
learn the sample or how much impact the sample has on the
generalization. (Toneva et al., 2019) count the number of
times an example is learned and then forgotten to identify
which examples are difficult. The most difficult samples are
chosen as the subset. (Paul et al., 2021) introduce the EL2N
score which stands for Ls norm of a prediction error. Unlike
forgetting scores, EL2N can be calculated early on during
the training such that the time to find the subset is signif-
icantly lower. (Sorscher et al., 2022) compare the EL2N
score with other scores such as the influence score (Feldman
& Zhang, 2020) to select the subset. The influence score of
a sample is the measure of how much the generalization per-

formance of a model suffers if that sample is removed from
the training dataset. Samples with high influence scores
are deemed more difficult. However, this method is com-
putationally expensive because it needs to train the model
multiple times on the full dataset. Although difficulty-based
methods prove to be effective for larger subset sizes, they
tend to choose suboptimal solutions when the subset size
is small. Our theoretical results reveal the key underlying
reason for this behavior. One very recent work (Xia et al.,
2023) defines a new difficulty metric based on the distance
of each example with the center of the related class such
that we can select the samples with smaller distances to
their class center. However, it ignores the diversity in the
feature space. Another recent work (Zheng et al., 2023)
develops a new sampling method that can utilize different
difficulty scores to achieve better performance compared to
only selecting the most difficult samples. It selects samples
randomly among different strata of difficulty scores and
allocates an equal budget among the strata. Our theoretical
results show that the diversity and difficult components need
to be carefully balanced to avoid a loose loss bound that
can misguide the subset selection process. (He et al., 2023)
incorporates subset selection together with data condensa-
tion. However, it focuses on pruning already condensed data
where the resulting final subset size is very small and also
does not consider representative samples. In contrast, our
method can perform size-aware subset selection, which is
much more flexible and broadly applicable to more applica-
tion scenarios.

3. Methodology

Consider a deep learning model with parameters 6 and
a training dataset V = {x;, yi}gll from which we want
to select a subset S C V. We use one-hot vectors for
the labels y. The training objective is to find the set of
parameters 6 that gives us the lowest training error [ =

ﬁ Zlnlll ln(M(xn),¥n;0), where T could be either the

full set or the subset and n(x,,) = (n,..nENT is the
model prediction for x,, given 6. To obtain the optimal
model that can be trained over S, we first train a model for
a few epochs on the full dataset (i.e., 7 = V) to select the
subset S from V using the model information. A newly
initialized model @¢ is then trained on the subset (7 =
S). The size |S| is limited by the amount of budget or
resources available. We want to find a subset such that the
model trained on the subset has a comparable generalization
capability to that of the model trained on the full set.

3.1. Balanced core-set Loss Bound - Subset Size Matters
Our goal is to find the optimal subset that generalizes sim-
ilarly to the model trained on the full set. Following the
core-set based formulation (Sener & Savarese, 2018), the
true generalization loss of the model 65 is closely related to
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the full set loss:
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The first term in the above equation is the difference between
true generalization loss and the full set empirical loss which
is inaccessible. Thus, we focus on the full set loss given
model 8s. We assume that for every input x; in the full set,
there exists an x; in the subset such that the training loss on
x; is 0 due to the optimization of the model on S.

Theorem 1 (Balanced Core-set Loss Bound). Given the
full set' V and the subset S, for each x; € V, we can
locate a corresponding x; € S, such that |x; — x;|| =
ming, es ||x, — x;|| and I(n(x

])73J) = 0. j/le’l, we have
g l X7, yl,H

i€V
log(1/7)
g (A"|x; ANy,
|V‘ =~ ”X X]H + ”y YJ“) 2|V|
(2)

with the probability of 1 — -y, where A" and \Y are Lipschitz
parameters, L is the maximum possible loss and -y is the
probability of the Hoeffding’s bound not holding true.

Proof Sketch. To obtain the inequality, we utilize Hoeffd-
ing’s bound. The problem then becomes finding the ex-
pectation of the full set loss (E[r5 V] Y iy l(n(xi), ¥4 05))).
Note that unlike in the active learning case where the la-
bels of the full set are unknown, we have access to both
the inputs and labels in the subset selection scenario. Thus,
we treat the model O as the variable and convert all dif-
ference terms to ||x; — x| or |ly; — y;| using Lipschitz
conditions. The proof mainly involves the following step
where we utilize the triangle inequality and the assumption
that [(n(x;),y,;0s) =0,Vx; € S:

l(n(x:),yi; 6
|V|Z (xi), yi; 0s)

%
S Elin(x). yi:0s) ~ 1(n(x;). vi: 65)
‘V| %
+1(n(x;),yi;0s) = l(n(x;),y;;05)l]
‘V|ZE|Z szas)_l( ( j)7yi;98)|
eV
+ l(n(x;), ¥ 0s) — Un(x;), ¥, 05)l] ()

O

Remark. Theorem 1 provides an upper bound of the train-
ing loss. Ideally, for a subset with a fixed size, a good subset
should keep both terms small in order to obtain a tight loss
bound. However, this bound can not be directly evaluated
due to the unknown Lipschitz parameters associated with
the feature difference (i.e., ||x; — x;||) and the label vari-
ability (i.e., ||y; — y; . To overcome this
hindrance, we aim to find a practical surrogate target instead
of directly minimizing the Lh.s. of (2). Besides the dataset
itself, an important known factor in the selection process is
the desired size of the subset |S|. A fundamental property
of the feature similarity is that ) _;,, [|x; — x;|| monotoni-
cally decreases as the size |S| increases. This allows us to
build upon the diversity-based approach, which naturally
minimizes the feature objective. The challenge lies in how
to further integrate the label variability objective that can
adapt to the size of the subset. To this end, we first show the
theoretical connection between the label variability and dif-
ficulty score and then introduce a novel importance function
to adapt the label variability according to the subset size.

Bridging label variability with difficulty score. Here, we
show that a difficulty-based approach can account for the
label objective. For the purpose of integrating the label
variability objective into the diversity-based approach in a
size-aware manner, we look for a surrogate that can be eval-
uated easily for V and characterized given varying subset
sizes. In fact, a difficulty score such as the EL2N score
(defined as E [||n(x) — y||]) lower bounds the ||y; — y;||
objective in the difficult regions of the joint data distribution,
as we show in the following theorem:

Theorem 2 (EL2N lower bounds the label variability). As-
suming a subset sample (x;,y;) € S is located in a diffi-
cult region (e.g., near the decision boundary), where (i) the
neighborhood Nj is dense (||x; —x;|| < 05,V(x;,y:) € Nj
for |Nj| closest points) and (ii) the label variability is high
(p(|lyi — y;ll > 0) > &), the EL2N score produced by a
smooth model (e.g., the initial model 1y (x;V)) will lower
bound the label variability in this neighborhood N;.

Proof. For the initial model trained for a few epochs on
the full set V, we denote it as 1,. Given a difficult region
as specified by the theorem, we consider the closest neigh-
bors x; and x;, which implies J, ~ 0. Assume that x; is
correctly predicted: ||y; — 1y(x;)|| ~ 0. Then, we have

lyi = y;ill = llyi — vl + A0,
> |lyi =y — mo(xi) +mo(x;)
= [|(yi = mo(x:)) — (¥ — m0(x5))l
~ |y —mo(xi)| 4

If x; is from a difficult region as specified by the theorem,
then two conditions (i) and (ii) are satisfied. Consider an-
other data sample x; from the dense neighborhood where
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Figure 2: (a) The difficulty level of the samples for the
synthetic dataset is computed using the EL2N score. The
darker points refers to the difficult samples with higher value
of EL2N score. The EL2N score is computed at epoch 10.
(b) The expected label variability ||y; —y ;|| in the 10-sample
neighborhood (scaled value).

I — il < 6. we have mg(x;) — mo(x)[| < A6
Since d; — 0, we have ny(x;) ~ ny(x;). On the other
hand, condition (ii) implies y; # y;, so x; is likely to
be wrongly predicted by the model. Then, the ||y; — y;||
term can be lower bounded by the difference between the
model prediction and label of the wrongly classified sam-
ple for the pair (x;,%;): [|y; — mo(x;)||. This way, in
the most difficult region, we can approximate the overall
ly: —y ;| by the expected difference between the prediction
and the label. More importantly, if the subset is populated in
the most difficult region, this lower bound will not change
if we permute (x;,y;) and (x;,y;) in the same neighbor-
hood N (as long as p(|ly; — y;|| > 0) > &) even if the
wrongly classified samples are exchanged. We can then
average the expected difference between the prediction and
the label, which resembles the definition of the EL2N score
EL2N = E[||ny(z) — yl|], where the expectation is taken

over several undertrained initial models 05}5). O

Remark. The connection between the EL2N score and
the label variability is consistent with the typical behav-
ior, where data samples with high difficulty scores are dis-
tributed near the difficult region of the decision boundary.
Figure 2 demonstrates this behavior. The dataset consists of
four moon-shaped classes, with slight overlapping (noises)
as visualized in the figure. Figure 2 (a) shows the EL2N
scores with a color map and the boundary points have the
highest difficulty scores. In Figure 2 (b), we show the aver-
aged label variability | >, - [lyi — ;lll/ || in a random
10-sample neighborhood setting (the values are scaled for
visualization purpose). We can see that the trend of label
variability matches the EL2N scores well in the difficult
regions as shown in Figure 2 (a).

3.2. Feature Similarity-Label Variability Balanced
One-shot Subset Selection

We have shown that we can account for the feature sim-

ilarity objective by building upon the diversity-based ap-

proach and also establish lower bound for label variability

via the difficulty score. However, as the subset size changes,
the contribution from the two components may vary sig-
nificantly, which in turn will affect the optimal balancing
mechanism. In particular, when the subset size is small, the
feature term tends to dominate the entire bound because if
some major clusters in the data distribution are completely
missed, then all the data samples in the entire cluster will be
represented by some dissimilar data samples from different
clusters. This will accumulate a large feature difference that
leads to a very loose bound. As the subset size increases and
representative samples are properly chosen from all major
clusters, the label variability starts to make a more obvious
contribution to the overall bound. As revealed in our proof
of Theorem 2, completely missing a difficult region will
lead to a large label variability, which will result in a larger
loss bound. Intuitively, missing samples from these regions
makes the model lose the opportunity to learn a fine-grained
decision boundary to further improve the generalization
performance.

Impact of the subset size to the balanced core-set bound.
To illustrate the impact of subset size on the balanced core-
set loss bound, we quantify and visualize the two major
components in the loss bound: ), ||x; —x;||and >, ||y —
y;||, which essentially captures the feature distance and
label distance between the selected subset and the full set,
respectively. As shown in Figure 3 (a), for a small subset
size, choosing the subset based on the label variability (or
difficulty) can help to quickly reduce the label distance.
However, it also leads to a large feature distance, making
the overall bound large. Figure 3 (b) further confirms this
because the selected samples miss major data distribution
regions. In contrast, focusing on the first component (i.e.,
diversity), the feature distance drops significantly as shown
in Figure 3 (c), which implies that the selected subset can
represent the entire data distribution well. Figure 3 (d),
visualizes the distribution of the selected data samples based
on feature distance. As more samples are selected, they start
to cover the difficult regions, which effectively reduces the
label distance as shown in Figure 3 (c).

Balancing diversity-difficulty through an importance
sampling function. While the desired behavior of a se-
lected subset given a fixed size can be derived from the
balanced loss bound, the exact contribution of each of the
two components with respect to the subset size remains un-
known in practice. In order to achieve a fine-grained balance
between them, we utilize the two key pieces of information:
subset size |S| and the overall level of difficulty that can
be evaluated using the average difficulty score D from the
full set. We leverage |S| and D to construct a special Beta
distribution as an importance sampling function, where D
and |S| help to determine the Peak and the Sharpness of the
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Figure 3: Trend of the two major components in the balanced core-set loss bound: (a) feature and label distance trends by
label variability based selection; (b) first 16 samples selected based on label variability; (c) feature and label distance trends
by focusing on diversity first; (d) first 16 samples selected based on feature similarity.

desired sampling distribution, respectively:

I(Xj,yj) = Beta(Dj|a, b)
_ T(a+0)

= T(@)T () ©)

DI~ (1— Dy’
where D; € [0, 1] is the difficulty score such that D; — 0
(resp. D; — 1) denotes easy (resp. difficult) samples,
and a, b are parameters of the beta distribution Beta(+|a, b)
determined by |S| and D to meet some important properties
that are summarized in the following proposition.

Proposition 1 (Setting a and b for desired Mode and
Variance for the importance sampling function). By
setting a = 1+ D + ¢,|S| and b = 2 + ¢}|S|, where
cq > cp > 0, the importance function meets the following
three properties:

s Py: Mode increases with |S| and D;

s P,: Mode > D generally holds true;

 Py: Variance decreases with |S| and D under mild
conditions (cq < cpb).

Proof of the proposition is given in Appendix B.4. The three
key properties of the specially designed Beta distribution
allow us to assign desired importance scores to support sub-
set selection according to the subset size. In particular, P;
ensures that with the increase of the subset size and the
general difficulty of the dataset, data samples with a high
difficulty score will more likely to be selected as being close
to the mode of the distribution. P» guarantees that trivial
data samples (i.e., those very easy ones) are less likely to
be included into the subset as they may not significantly
contribute to the learning process. Finally, Ps; shows that a
small subset (i.e., |S| is small) leads to a more flat distribu-
tion since the variance is large. As a result, more diverse
samples can be selected. In contrast, with the increase of
|S|, the distribution becomes more concentrated and the
mode also moves along with the average difficulty score
D, which allows the subset to select data samples with a
higher difficulty score to learn a more challenging decision
boundary. While determining a universal set of ¢, and ¢,

T
— a,b=2,2

2.5 . — ab=2,2

~ ab=33 -~ %5 a,b=4,2.5

2201 —. ap=4.535_ ° 250/ —: ab=553
a,b=6,5 1 <+++ a,b=7.5,4 .’/

0.8 0.8 1.0

0.4 0.6 .2 04 0.6
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(a) CIFAR 10 (b) TinyImageNet

Figure 4: Importance functions with different combination
of a and b. The corresponding subset sizes are Blue (solid)
= 10%, Orange (dash) = 20%, Green (dash-dot) = 30%, and
Red (dot) = 50%

may seem difficult, we further show that as long as we in-
crease a and b in an approximately linear fashion with some
trivial constraints such as c,|S| > 1 — D, ¢, ~ (1 — D)cq,
all these properties almost always hold true in practice.

Figure 4 visualizes the importance sampling function for
both CIFAR10 and TinyImageNet. In both cases, as the
subset sizes increase, the mode of the function shifts to
the right that allows the selection of more difficult sam-
ples. Meanwhile, the mode is on the right side of D, which
avoids choosing relatively trivial samples. As the subset
size increases, the distribution becomes more concentrated
that further improves the chance of choosing difficult sam-
ples. Finally, since TinyImageNet is a more difficult dataset
than CIFAR 10 (with a higher D), the mode of its importance
sampling function is further shifted towards the right as com-
pared with CIFAR10. Consequently, more samples with a
higher difficulty scores will be included into the subset.

We also conduct experiments on a synthetic dataset to
demonstrate how the importance function can perform an
optimally balanced subset selection as the size of the sub-
set varies. The results are shown in Figure 5. Given the
extremely small subset size (1%), it is preferred to let the
model choose more diverse (and representative) samples to
cover a wide range of the data space by setting a,b = 1, 1.
As the subset increases (3% — 10%), the peak of Z can be
shifted to higher difficulty levels by increasing both a and b
where a > b. As can be seen, by training the model using
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Acc=91.25% a,b=1,1 Acc=94.5% a,b=2,2

X1 X1

(a) 1% Subset (b) 3% Subset
Acc=96.0% a,b=7,2.5 Acc=98.25%

X1 X1

(c) 10% Subset (d) Full Set

Figure 5: Visualization of subset selection for a synthetic
moon-shaped dataset using BOSS. For different subset sizes,
the respective test performance and the optimal values for pa-
rameters a and b are shown. The decision boundary learned
for different subset sizes is compared with the full set.

a subset that is only 10% of the full set, it can discover a
decision boundary as shown in (c) really close to the one
using a model trained using the full set, as shown in (d).

Balanced subset selection Function. Combining the mini-
mization of the diversity objective using the maximization
of the similarity between the full set and the subset, and the
minimization of the difficulty objective using our control-
lable importance function, we propose the balanced subset

selection function as:
F(S) = rJr_leag{ Sim(x;, x;)I(x;4,y;) 6)

i€V

where we use multiplication since we remain agnostic about
the Lipschitz coefficients. Even with our fine-grained diffi-
culty control, there is still the risk of selecting noises espe-
cially when we target the most difficult. To this end, we will
adopt the cutoff mechanism as in (Zheng et al., 2023). In
Eq. (6), the range of the beta distribution ensures the non-
negativity of Z. Thus, F'(S) is a monotonically increasing
function and can be shown to be submodular. This allows us
to use a lazy greedy algorithm to approximate the optimum
subset that can minimize F'(S). The greedy algorithm starts
with an empty set S = ¢ and keeps on adding samples
(x;,y;) to subset S that maximizes the gain:

F((x5,y7)I8) = F(SU(x;,55)) = F(5) (D

The pseudo code summarizing our implementation is de-
scribed in Appendix C.

4. Experiments

We conducted experiments on both synthetic and real data,
aiming to verify our proposed theoretical results through the
former and demonstrate the superior empirical performance
through the latter. Limited by space, the synthetic exper-
imental results are presented in Appendix D.1. Our real
data experiments are conducted using four datasets: SVHN,
CIFAR10, CIFAR100, and Tiny-ImageNet. We present both
comparison result and a detailed ablation study.

Comparison baselines. We compare BOSS with eight
baselines: 1) Random: The samples are selected uniformly.
2) CRAIG: CRAIG is one of the first representative-based
subset selections developed for classical models as well as
deep learning models. It selects the subset by matching the
gradient update signals of the full set and the subset (Mirza-
soleiman et al., 2020). 3) GradMatch: GradMatch uses
orthogonal matching pursuit algorithm to match the gradient
of subset and training set (Killamsetty et al., 2021a). 4)
Adacore: Adacore uses hessian preconditioned gradient
instead of gradient (Pooladzandi et al., 2022). 5) LCMAT:
LCMAT selects the subset such that they match the loss cur-
vature of the full set and the subset by matching the gradient
and maximum eigenvalue of hessian between the full set
and the subset (Shin et al., 2023). 6) Moderate: Moderate
core-set introduces distance-based scores such that samples
with features closer to the median of the features of the
related class is more important such that they keep the most
important samples and prune the unimportant ones (Xia
et al., 2023). 7) CCS: CCS is coverage-centric core-set
selection, which choose data samples randomly across dif-
ferent strata of importance scores giving priority to sparse
strata (Zheng et al., 2023). 8) YOCO: YOCO selects a
subset using a Logit-Based Prediction Error (LBPE) score
to give importance to easier samples (He et al., 2023). As it
primarily performs subset selection on already condensed
data resulting in a much smaller subset size, we compare
with YOCO separately in Appendix D.3.

Experimental setup. Our experiment setup follows ex-
isting approaches, such as (Shin et al., 2023; Guo et al.,
2022; Zheng et al., 2023), where to select the subset, we
first initialize a model by training it using the full dataset
for a limited number of epochs. Then using the training
dynamics obtained from the initialized model, we obtain the
difficulty score for each sample which is used to select the
subset. We then evaluate the selected subset by keeping the
subset fixed and using the subset to train a new randomly
initialized model. For the difficulty score, we mainly ex-
periment using the EL2N score because it can be computed
efficiently early on during the training. The features, gradi-
ents, and Hessians are computed from the second-last layer
of the network. The baselines vary in the way they select
the subset. For the model, we train the ResNet18 model
(He et al., 2016) using SGD with a learning rate decay of
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Table 1: Comparison results on subsets with different sizes

Dataset Subset Random CRAIG GradMatch  Adacore LCMAT  Moderate CCS BOSS(Ours)
10%  24.11+1.9 24.61+09 23.68 +15 24.12+15 23.26+1.9 24.16+1.3 29.59+0.9 32.54+0.9
Tiny ImageNet  20%  37.67+03 37.76+06 3820 +1.3 37.94+06 36.71+0s 37.57+11 40.42+0.6 44.49+0.2
30%  45.12+0.9 44.63+05 4493 106 4472105 44.06x0.38 4530+04 47.11x05 51.21+0.3
50% 53.07+0.7  53.03+0.6  53.81 +0.2  53.37+04  53.10+0.4  53.31+0.a 55.11+o03 57.77+0.5
10% 37.35+1.0 38.67+13  36.68 +o.6  37.65+0s 37.23+t0s 37.76+009 40.26+1.6 46.54+0.9
CIFAR 100 20%  51.55+2.6 5144417 53.16 22 52.79x0s 53.11x03 50.90+19 5548+1s 61.76+0.5
30% 62.89+06 62.92+07  63.02 1.2 62.28+12  62.25+0s8 62.55+t0.6 64.61+05 67.73+0.01
50%  70.67+0.3 70.69+05 70.68 0.4  71.19x03 70.53x04 71.13+02 71.53x03 73.93+0.2
10% 70.69+1.2  70.96+1.6  72.26 0.5  72.65+09 71.03+26 72.04+07  T74.78+1s 78.27+0.9
CIFAR 10 20%  83.27+1.2 83.36x15 84.30 0.0 84.30x12 83.98:t13 83.6410s 86.45+21 88.1411.2
30%  88.89+0.6 88.98+1.2 88.47 +o.6 88.37+12 88.54+07 88.46+05 91.49+05 92.1410.2
50%  92.69x0.2 9275103 91.89 x04  92.67:r05 92.58x02 92.6lx02 9345105 94.46-0.1
8% 84.98+1.9 84.30+1.1 8431 +1.5 82.31x26 84.05t1.5 84.51+07 86.69+15 88.8311.5
SVHN 12%  87.16+2.4 88.491+04 88.99 1.0 88.41+13 8749113 88.97+06 92.16+0.9 93.16+0.9
16%  90.47+07 8992109 9042 t0s 90.34:10s 90.16x0.6 90.35+1.1  93.87+x05 94.51+0.5
20% 91.64+07 9213103  91.56 0.4 91.95+0s8 91.36x0.4 91.30+0.9 94.38+05 95.15+0.2

5 x 1074, starting learning rate of 0.1, and momentum of
0.9. We use ResNet34 for the Tiny ImageNet dataset. We
use a batch size of 256. To compute the EL2N score, we
use the training dynamics up to the first 10 epochs of the
initial training. Similarly, we use the feature representations,
gradients, and Hessians of epoch 10 of the initial training.
The reported results are averaged over five runs. For our
method, we sample the subset in a class-balanced fashion.
Additional details can be found in the Appendix.

Performance comparison. Table 1 show the result for the
four datasets as compared to the baselines. Our method
systematically integrates both diversity and difficulty while
performing a balanced selection according to the subset size
and the nature of dataset. It significantly outperforms all the
competitive baselines, especially on the low budget regime.
The performance difference decreases as the subset size
increases because there is less room for improvement.

To show the behavior of the importance function, we run
experiments over different values of a and b and present the
optimal values in Figure 6 (a) and (b). These values depend
on the subset size S and the complexity of the dataset D
according to the theoretical analysis. To satisfy the general
constraints, ¢, and ¢, should not make a and b deviate too
much from 2. Given the total sizes of the real-world datasets,
the optimal ¢, lies close to 0.0002, while the optimal c;, is
around 0.0001. This also satisfies the condition ¢, > ¢, as
we want to place the mode of the specially designed beta
distribution greater than D. For each dataset, the ratio ‘;—‘; is
actually close to ﬁ, which also aligns with our analysis
for the variance of the beta distribution.

To ensure a fair comparison with CCS, we also leverage the
cutoff rate parameter /3. Figure 6(c) shows that 3 should be
set higher for a small subset size to avoid choosing noisy
or outlier samples. This can ensure a more robust subset of
data samples to be selected.

Ablation study. Our ablation study investigates the follow-
ing parts: 1) the Diversity component, where we minimize
the distance between x; and x;; 2) the Difficulty component,
where we select samples based on their difficulty scores;
3) Diversity+Difficulty, which performs sample selection
based on the proposed balanced subset selection function F7;
and 4) Diversity+Difficulty+Cutoff, where we further prune
the potential noisy examples while balancing diversity and
difficulty. Table 2 shows the ablation study results. Only
using the Diversity component, which selects the represen-
tative samples has sub-optimal performance since it does
not consider any difficulty-level information of the datasets.
Furthermore, only using the Difficulty component has the
worst performance, especially for the low budget regime.
This is because the selection is highly biased towards those
difficult samples, which causes a large feature difference,
leading to a very loose loss bound, as our analysis shows.
When combining difficulty and diversity through the pro-
posed importance function, the performance improves by a
large margin. Integrating the cutoff mechanism can slightly
improve the performance, especially for those more com-
plex datasets, such as Tiny ImageNet. This is because those
datasets may likely contain noisy or outlier samples, which
if selected, could negatively impact the quality of the subset.

Comparison with Additional Submodular Functions. In
Table 3, we compare two additional submodular functions
(Kaushal et al., 2022) with BOSS. BOSS (Graph Cut) in-
dicates using Graph Cut as the submodular function for
our method and is similar for Log Determinant and Facility
Location. As the Log Determinant submodular function
focuses on diversity, we suspect it is susceptible to selecting
difficult points making it suffer for a smaller subset size.

Other difficulty metrics. Table 4 shows the comparison
between CCS and BOSS while using EL2N (Paul et al.,
2021), Forgetting (Toneva et al., 2019), and Accumulated
Margin(AUM) (Pleiss et al., 2020) for the difficulty met-
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Table 2: Ablation study results

Dataset Subset  Diversity  Difficulty (EL2N)  Diversity + Difficulty  Diversity + Difficulty + Cutoff
10% 24.04+1.1 3.39+03 31.23+0.9 32.54+0.9
Tiny ImageNet  20%  37.63+0.9 7.75x0.5 41.56+0.4 44.49 0.2
30%  44.4710.9 20.92+1.9 46.30+0.4 51.21+03
50% 52.78+0.2 44.42+0.6 52.51+0.4 57.77+05
10% 36.69+0.6 T.11+0.4 47.41+06 46.54+0.9
CIFAR 100 20%  52.04+o0.9 14.78+0.5 60.01+0.4 61.76+0.5
30%  62.41+0s3 3199411 66.40+0.5 67.73+0.01
50% 70.18+0.1 65.73+1.0 71.97+0.5 73.9310.2
10%  72.17x0.9 22.2640.4 76.1942.3 78.27+0.9
CIFAR 10 20% 84.10+1.0 41.95+1.9 87.09+0.5 88.14+1.2
30% 88.63+0.4 78.75+6.4 89.14+0.3 92.14+0.2
50%  92.52+0.5 94.41+0.2 94.23+0.1 94.460.1
8% 83.96+2.5 63.00+1.9 85.86+1.8 88.83+1s
SVHN 12% 89.02+1.2 77.68+1.2 89.14115 93.16-+0.9
16% 89.8310.9 81.83+1.7 91.32+05 94.51+05
20% 91.27+0.6 84.84+1.1 92.82+0.7 95.15+0.2
8 8
- —— CIFAR 100 07 S~ —~ CIFAR 100
7 < 7 CIFAR 10 06 ~. CIFAR 10
. //4,/ . — - Tiny-ImageNet Zi ~\~\~~§ —_ Tm)ﬂrf\ig.eie.t’
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Figure 6: The change in the best value of key parameters a (left), b (middle), and 3 (right) with respect to the subset size for
CIFAR 100 (blue), CIFAR 10 (orange), and Tiny-ImageNet (green) dataset.

Table 3: CIFAR-100 Submodular Functions Comparison

Subset Size  Graph Cut BOSS (Graph Cut) Log Determinant BOSS (Log Determinant) BOSS (Facility Location)
10% 35.98+0.8 46.54+1.5 12.61+0.8 40.78+1.1 46.54+0.9
20% 52.59+0.9 61.35+0.5 24.80+0.5 59.30+0.9 61.76+0.5
30% 61.67+1.7 67.52+1.2 43.22+0.9 65.74+0.3 67.73+0.01
50% 70.34+0.4 72.31+0.2 66.99+0.6 71.89+0.3 73.93+0.2

ric. For a fair comparison, we compare CCS and BOSS
for each difficulty metric separately. Our method (BOSS)
outperforms CCS for every difficulty metric.

Additional ablation is in Appendix D.4 including imbal-
anced dataset, other models, and computational cost.

5. Conclusion

Subset selection is a promising direction in solving the prob-
lem of increasing resource consumption by large deep learn-
ing models. Existing subset selection methods have limita-
tions because their selection criteria do not consider a joint
distribution of data diversity and difficulty. We propose a
novel subset selection strategy that systematically integrates
both diversity and difficulty supported by a balanced core-
set loss bound. The novel loss bound also suggests important

Table 4: Comparison of CCS and BOSS for Tiny ImageNet
while using different difficulty metrics

EL2N Forgetting AUM
Subset CCS BOSS CCS BOSS CCS BOSS
10% | 29.59+0.9 32.54+0.9 | 30.44+1.7 33.78+13 | 31.51+1.2 33.47+0.7
20% | 40.42+0.6 44.49+0.2 | 42.75+0.9 45.56+0.6 | 42.05+0.4 45.80+0.6
30% | 47.11+05 51.21+0.3 | 48.61+0.7 51.81+0.2 | 48.92+01 52.11+0.3
50% | 55.11+0.3 57.77+0.5 | 5591+05 57.82+0.3 | 55.74+04 57.79+0.3

relationship between the difficulty of the selected sample
and the subset size, which leads to an expressive importance
function that enables us to select appropriate samples ac-
cording to the subset size. Our theoretical analysis along
with the empirical results on synthetic and real-world data
demonstrate the greater effectiveness of BOSS compared
with the competitive baselines.
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Impact Statement

In this paper, we have proposed a balanced one-shot subset
selection method (BOSS). While using the subset reduces
the resource consumption by large deep learning models,
we should consider the change of information from the full
set to the subset and the potential biases the selection might
introduce. We should also carefully deploy the balanced
selection method as data diversity and informativeness (dif-
ficulty) are being explicitly controlled. In real-world appli-
cations, only preserving the subset could be beneficial if
the above aspects are well-considered, and can prove to be
useful in scenarios such as continual learning and various
socially impactful deep learning applications.
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Appendix
Appendix A summarizes the major notations used in the main paper. Appendix B provides detailed proofs of our main

theoretical results. Appendix C describes our subset selection algorithm. Appendix D provides additional experimental
details, link to the source code, results for synthetic data, and ablation studies on real-world data.

A. Summary of Notations

Table 5: Summary of Notations

Symbol [ Description

1% Set of all the training samples (Full Set)

S Set of samples that are selected (Subset)
A Lipschitz parameter
n Neural network regression function

X; Input feature of a sample in the Full-set

Vi True label of a sample in the Full-set

X Input feature of a sample in the Subset

Y True label of a sample in the Subset

Os Model trained on the Subset

1) Loss function
o1 Probability for Hoeffding’s inequality
L Upper bound for the loss function
C Number of classes

F() Balanced subset selection function

Sim Similarity function

Z(x4,y;) | Importance score of sample j

D; Difficulty score of sample j
c Parameter controlling peak of importance function
Q@ Parameter controlling the sharpness of importance function
I54 Hard cut-off rate

B. Proofs of Theoretical Results

In this section, we provide detailed proofs for the proposed theorems in the main paper. We have introduced the balanced
core-set loss bound in Section 3.1. Here we first expand the loss bound derivation and analysis and then provide detailed
proofs for Theorem 1.

B.1. Our Take on the core-set Loss Bound

In (Sener & Savarese, 2018), the authors proposed the classic core-set cover loss bound, in the active learning setting. The
first step is to upper bound the true expectation of generalization loss by the full set loss, which is shown in:

]E:my W"(X)Q’» 0)} = ELy [Z(W(X)a% 0 |V‘ Zl Xz yYis 08 |V| Zl Xz yYis 03)

i€V i€V
< Ex,y [l(’l’]( 7 |V| Zl YM 05 ‘V| Zl Xz yYis 08) (8)
eV eV

Same as (Sener & Savarese, 2018) and (Zheng et al., 2023), we adopt this approach and focus on the expectation of the
full set loss. However, differently from their approach, we formally tailor the problem in the known full set setting. In
our case, all data samples (x;,y;) € V are treated as known, and the unknown is the model 85 trained on the subset (and
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the corresponding outputs 1(x;)), which corresponds accurately to the subset selection problem. For the same reason,
we denote the loss function by [(n(x;),y:; 0s). Next, we also apply the Hoeffding’s bound to analyze the full set loss.
However, unlike (Sener & Savarese, 2018) and (Zheng et al., 2023) which reached loose conclusions by bounding the feature
difference ||x; — x| using the core-set cover, we consider the joint effect over both the feature and the label, arriving at a
balanced core-set loss bound which will be explained below.

B.2. Proof for Theorem 1
Proof. We obtain the inequality in Eq. (2) by applying the Hoeffding’s bound:
If X7, Xo, ..., X, are independent and a; < X; < b; almost surely, then the sum S,, = X7 + ... + X, satisfy

P(S, —E[Sy] > t) < exp (_z"_l(%btg—ay> v

In Theorem 1, we apply the above inequality to the full set loss ZZGV (n(x;),y:;60s) by substituting S,, =
> iev l(m(x:),yi;0s) and using 0 < I[(n(x;), y4; 0s) < L (L being the maximum loss value):

212
< | Zl Xz ylaBS [|V Zl yz,es) |V|> €xXp <_W) (10)

i€V %
Let v = exp ( o 2‘t2 ) then with probability 1 — ~,
t
y7,05 y%ves) N (11)
VI Zv Bl ZV =W
Rearranging and solving for ¢, we get
log(1
Zl n(x:),yi; 0s) — Zl n(x:),yi0s)| < Ly ]84 (12)
= M 2Vl
Next, we explain the expectation of the full set loss and obtain the balanced combination result:
‘V| Zl X7, Yl708)]
%
‘V| ZE |l (xi) YZ705) - l( (XJ) ywas) + l( (XJ) }’1,98) - l( (XJ) yj705)|]
%
\V| ZE [l(n(xi),yi;0s) — Un(x;), yi:05) + [l(n(x;), yi; 0s) — Un(x;),y;;05)l]
%
Z [1(n(x:),yi:0s) — Un(x;), v 65)]]
VI
i€V
(), 05) ~ (7). 5,051 (13)

which has been broken into two terms.

For the first term E[|{(n(x;),y:;05s) — 1(n(x;),y:; 0s)|], we utilize the Lipschitzness of the model combined with the
Lipschitzness of the loss function to get E[|l(n(x;), yi; 0s) —l(n(x;),y:; 0s)|] < E[A?||x; —x;||]. The expectation should
be taken over the model prediction 1(¥)(x;), and will result in a class-irrelevant term for 3°, n*)(x;) = 1 if we use loss

functions like the cross-entropy loss so that A7 is the same for all k.

For the second term E[|I(n(x;),y:;0s) — l(n(x;),y;; 0s)|] we directly use the Lipschitzness of the loss function w.r.t. y
and it is independent from 1(x;) so we have X\ |ly; — y;||.

Substituting all the above terms back and we will obtain Eq. (2). O]
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B.3. Analysis of Theorem 2

In Theorem 2, we connect the EL2N score to the expected label variability in a neighborhood A of a subset point (x;,y).
Unlike Theorem 1, which is more general about the loss on full set V, this connection is specifically made in the difficult
region.

Remark (2.1). Why is it important to consider the difficult region?

We have defined the difficult region as dense and having high label variability. This is because we really focus on the
disadvantage of only considering the diversity aspect or the difficulty aspect. Intuitively, if the true distribution of (x,y) is
clearly separated and smooth, using a few samples can perfectly explain the classification problem as long as all classes
are represented. However, if there exists a difficult region such that ||x; — x;|| < d, and p(||y; — y;|| > 0) > &, then it
poses a challenge for both single-sided approaches: a diversity-only approach can not identify informative data samples
that help learn the decision boundary in this difficult region, while a difficulty-only approach will be highly biased towards
this region and won’t be able to efficiently represent the majority of samples which are easy to classify. We will present
more visualizations using the synthetic dataset in Appendix D.1. Thus, it takes a delicate balancing to improve the overall
objective in (2) when the difficult region exists.

Remark (2.2). How do we utilize the EL2N score to explain the label variability?

In the proof of Theorem 2, we present an approximately lower bounding relationship between the label difference between
y; and y; and the EL2N score of the wrongly classified sample (x;,y;). If we assume that the neighborhood ; includes
(x4,¥i), (x5,y;5), and {(xn,yn)}g\ﬁl‘*z. With p > £, we have y; # y;, thus flipping them will likely flip the model
prediction for all x,,. When we take the expectation over all samples in N}, the averaged |ly; — y;|| will be connected to the

distribution of the EL2N scores of these data samples which is the expectation over a series of models 0$ ),

B.4. Proof and analysis of Proposition 1

Proof. For the Beta function, we have

Mod o=l i ab (14)
ode = ——— ariance =
a+b—2 (a+b)2(a+b+1)
Given the setting of a and b, we have
Mode = 7D+ca\8| Variance = (1+D+Ca|8|)(2+cb|8|) (15)
- E B (E+2)2(E+3)
where E = D + (¢, + ¢)|S| + 1. By taking the first derivative w.r.t D and |S|, we get abg%ie = cgfl > 0 and
aglogi‘e — Ca TECQZ’D > 0. Thus, Mode increases as either D or |S| increases.

As for Variance, it is related to how the numerator and denominator increase with D and |S|. Generally speaking, for a
Beta distribution Beta(a, b), if a 1,b 1, § ~ Constant, Variance clearly decreases because the numerator is second-order
dependent on a and b while the denominator is third-order dependent. In our setting, the dependency on D is clear as it
only appears once in the numerator and three times in the denominator. For |S], it also generally holds true because a 1,5 1
as |S| 1 linearly. The only exception is when ¢ drastically changes and goes to extreme values, for example, if ¢, > c;b.
Adding the constraint ¢, < c;b, we ensure that Variance should steadily decrease. L]

Remark (3.1). In most cases, Mode > D can be inferred from the function shape.

We can investigate this problem by defining a function of D: f(D) = Mode — D = . Since we only
care about the sign of f (D), we focus on the numerator, which is a quadratic function of D with parameters S, ¢4, ¢p. On
a real-world dataset, the mean difficulty score D usually lies between 0.3 and 0.7 (CIFAR-10: 0.311986, CIFAR-100:
0.444376, Tiny-ImageNet: 0.597217). In our experiments, we have 1 < ¢,§ < 8,1 < ¢,S < 5. In these ranges, we can
see that f(D) > 0 holds true. Mathematically, if we set ¢;, = (1 — D)c,, we can also show that it even holds true over
D € [0, 1]. Combining with the fact that D 1, Mode 1, we ensure the control of the selection peak given D.

ca,S—Dz—(c,,,+cb)SD
E
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C. Algorithm

Algorithm 1 BOSS (Balanced One-Shot Subset Selection)
Initial Training

Input: Dataset V
Output: Difficulty score D;, feature vector x;

Initialize full set model 6y,

Train 6y, on V

From 6y, obtain n(x!), y! for each epoch ¢ € [1, Tp]
From 6y, obtain x; for epoch T.
Compute EL2N Score D; using n(x!), y
return D;, x;

t

i

SANEAN

Subset Selection
Input: Dataset V, Subset size B, difficulty score D;, input feature x;
Parameter: Hard example prune rate 3, importance function parameters a and b
Output: Subset S

I; < Beta(D;,a,b) {Convert difficulty score to importance score}

V'« V\{|V|+*B8 hardest samples} {Prune hardest samples}

S + ¢ {Start with an empty subset and add to the subset until we reach the budget for the subset: }

while |S| < B« |V| do
F(S) < > ;cpmaxjes Sim(x;,x;)I; {Compute the facility location function from the feature similarity and
sample importance}

6: j € argmax.cy\sF(e|S) {Using lazy-greedy algorithm, select sample j which gives us the maximum conditional

gain F(e|S)}

7: S8+ SU{j} {Update the subset with the new element}

end while

9: return S

EANEE A

o]

Our method has three main components, 1) Initial training where we first train a model to generate training dynamics from
which we can compute the importance scores, 2) Generating importance score from the training dynamics, and 3) Selecting
Subset and evaluating the subset by training a new model using the selected subset. Details are provided in Algorithm 1.

D. Additional Experimental Details and Results

We perform our experiments on machines with GPUs: A100, V100, and P4. In our experiments, when combining the
difficulty and diversity, we show the results for using the EL2N score (Paul et al., 2021) as a difficulty metric. The EL2N
score is calculated in the initial training phase by averaging the error norm over the first 10 epochs. To leverage the cutoff,
the Accumulated Margin (AUM) metric (Pleiss et al., 2020) is leveraged, for which we need to train the model for the full
epoch (200 epoch for CIFAR10 and CIFAR100, and 100 epoch for Tiny ImageNet and SVHN). Our implementation details
and source code can be found here.

D.1. Synthetic Data Experiments

We create the synthetic data to include four moons with two input features such that we can visualize and simulate the
complex decision boundary. The synthetic data is visualized in the Figure 4. The dataset has 2000 samples which are split
into 80/20 train/test sets. For the model, we use a fully connected neural network with two hidden layers each containing
100 neurons. To train the neural network we use Adam optimizer with a learning rate of 0.001, € = 1e-08, and weight decay
= 0. For the full set, we train the model for 100 epochs. The model reaches a test accuracy of 98.25% while training on the
full data.

15


https://github.com/ritmininglab/BOSS

Balancing Feature Similarity and Label Variability for Optimal Size-Aware One-shot Subset Selection

Epoch 0

Epoch 1 Epoch 2 Epoch 3

-2 0 2 4
Epoch 20

=2 0

-2 0 2 4
Epoch 99

-2 0

-2 0 2 4 -2 0 2 4
Figure 7: Decision Boundary Evolution

Decision boundary evolution. Figure 7 shows the evolution of the decision boundary along with the difficulty level of each
data point for every epoch. The difficulty is calculated using the EL2N score which is the L2 norm of prediction and the
onehot label and averaged over the previous epochs. As we train the model for a higher number of epochs, the model is able
the learn complex decision boundaries or the curved region and most of the samples become easier or has low EL2N score.
However, the difficulty score computed at the earlier epochs, for instance at epoch 10, truly captures the difficulty level of
samples along the decision boundary. This agrees with the past methods which compute the EL2N score at epoch 10.

10 2 3 1.0
08 £
2
0.6 g 0.8
£ X1
0.4 H 06
02 _ 0
H
0= 0.4
(a) Difficulty Score (b) Feature Distance (c) Label Variability 1 (d) Label Variability 2

Figure 8: Difficulty score, feature distance, and label variability comparison. All values are scaled to 0 to 1 for better
visualization. (c) Label variability 1 and (d) Label variability 2 are permutations of Figure 2(b) by randomly changing the
data samples included in the 10-sample neighborhood.

Label variability visualization Following Appendix B.3, we visualize the terms that have been discussed in our theoretical
results using the synthetic dataset.

In Figure 8, we visualize the difficulty score, feature distance, and label variability with random permutations to the anchor
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points being used as (x;,y;) in the 10-sample neighborhood case. From Figure 8 (a) and (b), we see that the difficulty score
does not correlate with the feature distance, and the feature distance is not informative in the difficult region, where the
distance is consistently low because it is the denser area. From Figure 2 (b) and Figure 8 (c) and (d), we can see that even
with different permutations, the label variability shares the same trend as the difficulty score near the decision boundary.
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2 AN a4
, T 08 N o A?“ "‘A‘ 5 Te 2 A ;&A 3.
% ey % 5% 4
k% 74 O £ 7 4| IR 5~ | N & F
N1 . VI U 8 e . £ 81 y
,i.. ° e i‘ At A-A‘A A 2 oi’ "'; s R o
0 2% of Ay WA casa o A - o M% ¥
0.2 3 Ax&z:# \ oo “od
H ~
- 0 2 s 0T -1 0 V) 2 0 1 o ) 2 0 -1 3 2 0
x1 X1 X1 X1
(a) Difficulty Score (b) Subset 1 (c) Subset 2 (d) Subset 3

Figure 9: Difficulty score and 1(y; # y;; j = arg max,ecs Sim(Xy,X;)) comparison, where red triangles represent data
samples in S.

In Figure 9, we show a different visualization presenting the actual label differences between the full set and the subset if we
choose from different regions. Figure 9 (b) shows a diverse selection, while Figure 9 (c) and (d) show two different biased
selections. In all cases, the data samples near the decision boundary have a different label from the nearest sample in S
(1(y; # y;;J = arg maxpes Sim(xp,X;))=1). This further supports our motivation as allocating the budget to cover the
more difficult region does not guarantee the reduction of the label variability objective in the loss bound given in (2) unless
we can cover all these samples. Thus, it is important that we propose the balanced selection function.

BOSS Subset selection comparison. Here we include the subset selection visualization and comparison for the synthetic
dataset. The red circles are the samples selected in the subset. We already saw the comparison of CSS and BOSS for the 10%
subset in Figure 1. Here we further compare these methods for 1% and 3% subset sizes. In all the cases, BOSS outperforms
CCS.

Figure 10 compares the subset selected by CCS and BOSS for 1% subset size. In this case, BOSS can select the diverse
samples by setting a = b = 1. Although the model cannot learn the complex decision boundary because of the lack of
enough data, the CSS misses samples from the important regions and learns an even worse decision boundary.

CCS (79.0%) BOSS (91.25%)
3 3
2 2 3
0 01
_1 _1,
-2 0 2 a4 -2 0 2 4
X1 X1

Figure 10: CCS vs BOSS for 1% Subset Size for the synthetic data. For CCS, § = 0.1. For BOSS,f =0anda=0=1
which is the same as only using representative-based selection.

Similarly, Figure 11 compares CCS and BOSS for a 3% subset size. This figure also verifies that the CCS misses the samples
from the critical region that our method is able to capture. In turn our method learns the complex decision boundary to
achieve better performance than the CCS baseline.
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CCS (89.5%)
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Figure 11: CCS vs BOSS for 3% Subset Size for the synthetic data. For CCS, f = 0.1. For BOSS, 8 =0,a =b=2

Figure 12 shows the comparison of the subset selected by the representative-based method which matches the feature of the
subset and the full set (Diverse) compared with the subset selected by our method. The representative-based subset selection
does not consider the sample difficulty which leads it to ignore samples from a very difficult region. However, our method is
able to give more emphasis on the difficult region to better learn the decision boundary.

Diverse (94.25%) BOSS (96.0%)

X1 X1

Figure 12: Visualization of representative-based subset selection compared with our method. The red circles are the points
selected for the subset. The subset size is 10% and 8 = 0. For Diverse, a = b = 1 and for BOSS, a =7, = 2.5

D.2. Comparison with YOCO

We conducted additional experiments to compare our model with YOCO (He et al., 2023) on CIFAR100 and ImageNet-1k
datasets. Tables 6 and 8 show the result for CIFAR-100 and ImageNet-1k (described in D.3) respectively. As can be seen,
our model has a clear advantage over YOCO. The improvement is mainly because YOCO only gives priority to the easiest
samples but does not consider the diversity of samples. However, our method considers both difficulty and diversity.

Table 6: CIFAR100 Comparison with YOCO

Subset Size EL2N CCS YOCO BOSS (Ours)
10% T.11t04 40.26+16 38.86+0.6 46.54:0.9
20% 14.78+05 55.48+1.8 53.53+05 61.76+0.5
30% 31.99+11  64.61+t05 62.98+05 67.73+0.01
50% 65.73+1.0 71.53+0.3 70.59+0.02 73.93+0.2

In Tables 7 and 9 we further compare our model with the YOCO baseline in their paper’s experimental setting. Here, the
dataset is first condensed to the point where we have IPCyr number of images per class. Then the data is further pruned into
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IPCr number of images per class. Here we compare our pruning method (BOSS) with three other pruning methods: EL2N,
CCS, and YOCO. We select two major datasets, CIFAR-100 and ImageNet-10 as used by the YOCO baseline. We follow
the same experiment settings as that of the YOCO baseline for a fair comparison. We show that even for a very small subset
size, our method is competitive or better compared to the recent baseline YOCO.

Table 7: CIFAR100 YOCO’s setting

Subset Size EL2N CCS YOCO BOSS (Ours)
IPCy—IPCr
50—1 421+0.02  19.05+0.08 23.47+0.11 24. 71101
50—2 5.01x0.05 24.3210.07 29.59+0.11 30.69-+0.3
50—5 7241011 31.9310.06 37.52+0.00 38.86+0.16
50—10 11.72+0.06  38.05+0.00 42.79+0.06 43.16+0.07

D.3. Experiments on large scale dataset

We conducted additional experiments to compare our model with the recent and most competitive methods on the ImageNet-
1k dataset which is shown in Table 8. For ImageNet-1k, we use the pre-trained EffecientNet-BO model to generate the
embedding. We freeze the entire network before and up to the second last layer and only train the final classification layer
for the experiments. As can be seen, the proposed method clearly outperforms all the baselines on this large-scale dataset,
which further confirms its effectiveness.

Table 8: Experiments on large scale ImageNet-1K dataset

Subset Size EL2N CCS YOCO BOSS (Ours)
10% 30.78+0.03 59.10+0.01  54.93+0.04 68.53+0.1
20% 5491+01 64.77+0.01 62.19+0.01 69.74+0.02
30% 66.41+0.1  67.93+0.02 65.71+0.01 70.54+0.03
50% 73.79+0.04 73.95+0.04 69.76+0.02 74.28+0.02

Table 9: ImageNet-10 YOCO'’s setting

Subset Size EL2N CCS YOCO  BOSS (Ours)
IPCy—TIPCy
20—1 24.09+0.7 34.641t02 53.07103 53.80+0.3
20—2 33.16+0.4 4222102 58.96+0.4 58.93+1.5
20—5 46.02+0.2 57.11x02 64.38+0.4 65.73+1.1

D.4. Additional Ablation Study

Figure 13 further presents a performance-subset size plot for our proposed method and baseline methods to demonstrate the

size-aware nature of our method.
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Figure 13: Demonstration of the size-aware nature of our main result compared to the baselines.
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Table 10: EfficientNet-BO results for CIFAR100

Subset Random  Moderate CCS BOSS

10% 30.51+1.0 32.59+13 3691122 42.641056
20%  43.52+19 42.04+122 4653137 53.3910s3
30%  55.48+07 55.26+1.7 56.89+03 60.37+0.4
50%  64.05+07 6391103 63.59+05 68.27+0.5

Table 11: ViT-B16 results for CIFAR100

Subset Random  Moderate CCS BOSS

10% 7849107 5041x07 78.62+t03 7997104
20% 81.87+0.7 69.81+05 81.95+0s 83.19+0.1
30% 83.98+02 77.66+05 8493101 85.08+0.1
50% 85.88+0.1 84.19+0.0 85.88+01 86.55+0.1

D.4.1. RESULTS FOR OTHER MODELS

In Tables 10 and 11, we evaluate our method on two additional models: EfficientNet-BO (Tan & Le, 2019) and a vision
transformer ViT-B16 (Dosovitskiy et al., 2021). For EfficientNet, we use our previously mentioned setting. For ViT, we use
pre-trained weights, batch size of 128, learning rate of 0.01, and train for 12 epochs. We compare with the two most recent
and competitive baselines: CCS (Zheng et al., 2023), Moderate (Xia et al., 2023) and Random. Our method performs better
than the baselines for both models. The performance margin for ViT is lower because we are using pre-trained weights and
the room for improvement is small. Nonetheless, we show the usefulness of our method for other models than ResNet.

D.4.2. IMBALANCED DATASETS

Table 12 and 13 presents evaluation on imbalanced data. We consider two different methods to generate an imbalanced
dataset. The first one is an exponential imbalance where the number of samples per class decreases with the factor of
N, x e %9 and N,, is the number of samples for class c;. The second one is the step-wise imbalance where 80% of data
is removed from the 20% of classes. We compare our method with the most recent and competitive baselines such as CCS
and Moderate. Our method can consistently outperform under both class imbalance settings.

Table 12: Imbalanced data result for CIFAR100 (Exponential)

Subset Random  Moderate CCS BOSS

10% 27.39+09 25.37+17 29.41+05 35.98+0s
20% 42.82+1.1  40.57+06 44.36+1.7 49.74+0.4
30% 52.51+07 50.00+3.0 50.87+1.4 55.34+18
50% 63.03+06 61.76+0.2 61.86+0.5 66.37+0.4

Table 13: Imbalanced data result for CIFAR100 (Step)

Subset Random  Moderate CCS BOSS

10% 31.66+0.7 27.02+0.7 33.60+09 40.41+0.3
20% 47.36+09 41.77+2.9 46.82+06 54.62+0.7
30%  56.64+t02 52.31+06 52.81+11 58.5910.1
50% 62.19+09 59.96107 60.25+02 65.71+0.4

D.5. Time Comparison

In Table 14, we compare the time taken by our method for Subset Selection and Subset Training. The Subset Selection time
is shown for both One-Shot and Dynamic subset selection. The One-Shot Selection consists of time for initial training for 10
epochs on the full data which is fixed, and the time for the lazy greedy algorithm to select the subset that changes with the
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Table 14: Time comparison in seconds

Dataset Subset Size One-Shot Selection Dynamic Selection Subset Training  Full Set Training
(Initial Training)  (Selection) (Training Dynamics) (Selection)

10% 9 450 346

CIFAR100 20% 219 13 450 650 587 4387
30% 14 700 800
50% 15 750 1816
10% 11 550 342

CIFAR10 20% 173 19 350 950 571 3468
30% 22 1100 801
50% 27 1350 1244

subset size. The One-Shot Selection time is shorter compared to training on the subset (Subset Training) and also takes a
very short time compared to training on the full set (Full Set Training). In the case of One-Shot Selection, the time for the
subset selection algorithm (time excluding the initial training) is significantly small compared to the initial training time and

also does not require GPU computation.

In contrast, there is no initial training for Dynamic Selection but the subset is selected every n epoch. For the comparison,
we assume the subset is selected every 4 epochs for 200 epochs. Thus, the time required to get the features (Training
Dynamics) using a single forward pass over the entire dataset along with the time required to select the subset (Selection) is
multiplied by 200. The time comparison is further visualized in Figure 14. Given these results, dynamic selection is much

more inefficient compared to one-shot since tens of selections can amount to a similar time cost to full training.

We measure the time in seconds using NVIDIA RTX A6000 GPU for CIFAR10 and CIFAR100 datasets.
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Figure 14: Total selection time comparison between dynamic and one-shot subset selection.
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