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Abstract

Learning to optimize (L20) has received a lot of
attention recently because of its potential to lever-
age data to outperform hand-designed optimiza-
tion algorithms such as Adam. However, they can
suffer from high meta-training costs and memory
overhead. Recent attempts have been made to
reduce the computational costs of these learned
optimizers by introducing a hierarchy that enables
them to perform most of the heavy computation at
the tensor (layer) level rather than the parameter
level. This not only leads to sublinear memory
cost with respect to number of parameters, but
also allows for a higher representation capacity
for efficient learned optimization. To this end, we
propose an efficient transformer-based learned op-
timizer which facilitates communication among
tensors with self-attention and keeps track of opti-
mization history with recurrence. We show that
our optimizer converges faster than strong base-
lines at a comparable memory overhead, thereby
suggesting encouraging scaling trends.

1. Introduction

There has been immense progress in artificial intelligence
through the use of deep neural networks which can learn fea-
tures directly from the data. It has been empirically shown
in various domains (Yan et al., 2015; Krizhevsky et al.,
2017; Sutskever et al., 2014; Cho et al., 2014) that these
data-driven features significantly outperform hand-crafted
features in specific tasks. Training these neural networks
can be challenging, and the scale of datasets and models
continues to increase (Kaplan et al., 2020). However, the
dominant optimizers used to train these neural networks to
date like SGD (Robbins & Monro, 1951), Adam (Kingma
& Ba, 2015), RMSProp (Graves, 2013), etc, are all hand-
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Figure 1. Recurrent hierarchical transformer architecture for
learned optimization. We propose a novel learned optimizer
based on a recurrent transformer which utilizes optimizee net-
work structure for optimization. Optimizee network is assumed
to have a stack of IV neural modules or layers with parameters
¢1,¢2,. .., 0n. After backpropagation with loss £ on an input
batch X, our optimizer takes as input tensor features like the mean
of tensor gradients d¢1, 02, . .., ¢,, momentum, etc. along
with a global hidden state H. This enables inter-tensor communi-
cation through self-attention after which weight updates for each
parameter in a tensor are obtained by applying an MLP on top of
these transformed tensor features. Finally, the weight updates are
applied to the optimizee network to continue optimization.

designed, and often heuristic. Hence, much remains to be
explored when it comes to the “automation” of these un-
derlying optimization algorithms. To this end, there has
been significant interest in the area of learned optimiza-
tion (Andrychowicz et al., 2016; Metz et al.; 2019; Almeida
et al., 2021; Metz et al., 2022b), which aims to learn these
underlying optimization algorithms themselves and outper-
form the hand-designed ones. These learned optimizers
are typically meta-learned on “optimization tasks”(Metz
et al., 2020a;b; 2022a) with each task specifying an ob-
jective function, neural network architecture and dataset.
Moreover, since the learned optimizers are typically param-
eterized by neural networks, in principle, they could learn
more complex optimization functions than the ones speci-
fied by hand-designed algorithms in order to optimize faster.

Several learned optimizers (Metz et al.; Almeida et al., 2021;
Metz et al., 2020a) have been proposed in the past which
can be broadly classified into two categories: hierarchical
and non-hierarchical. Non-hierarchical optimizers (Metz
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et al.; 2022a) typically operate at the parameter level and do
not take into account the in-built structure of optimizee neu-
ral networks. Since the non-hierarchical optimizers apply
a complex function to each parameter independently, their
memory overhead scales linearly with the number of param-
eters. Thus, to keep the memory overhead small, they are of-
ten parameterized by simple functions such as MLPs (Metz
et al., 2022a; Harrison et al., 2022). This limits the represen-
tation capacity and hence the scalability of these optimizers.

On the other hand, hierarchical optimizers (Wichrowska
et al., 2017; Metz et al., 2020a; 2022b; Peebles et al., 2022;
Knyazev et al., 2021) have the potential to move beyond
parameter level and process groups of parameters (layers or
tensors) to learn more complex functions for faster optimiza-
tion. Peebles et al. (2022) propose a diffusion transformer
which takes all parameters along with the desired loss as
input and returns the evolved parameters that achieve the
desired loss in one step. This single-step paradigm, how-
ever, suffers from a generalization issue in that it can not be
applied to new problems after being learned on a specific
task. Metz et al. (2020a) propose a hierarchical RNN-based
optimizer that maintains hidden states for tensors which also
communicate among themselves and give per parameter up-
dates through an MLP conditioned on these tensor states.
This approach has been shown to generalize to unseen tasks.

In this work, we propose a novel hierarchical learned op-
timizer based on a transformer for modelling interactions
among tensors while also maintaining a low compute over-
head similar to prior work (Metz et al., 2020a). Our pro-
posed optimizer (Fig. 1) performs a majority of the compu-
tation at the level of tensors (layers or structured groups of
parameters), leading to a sub-linear memory cost in terms of
the number of parameters. Moreover, it keeps track of opti-
mization history with a single global hidden state instead of
per-tensor hidden states as in prior work (Metz et al., 2020a;
2022b). We show that our optimizer outperforms strong
baselines including both hand-designed and prior-learned
optimizers. To the best of our knowledge, this is the first
application of transformers in the learned optimization do-
main for neural network tasks and paves the way forward
for future work.

2. Architecture

Our proposed architecture is hierarchical and recurrent at
its core in order to do faster optimization within a limited
computing budget (Fig. 1). It employs a transformer
encoder (Vaswani et al., 2017; Devlin et al., 2019) with
bi-directional attention to model interactions among tensor
features to give parameter updates. Specifically, it takes
input parameter values, gradients, and current state and
gives updated state and parameter updates. It constructs
tensor features which are derived from parameter values

and gradients such as the mean of gradient values in a
tensor, momentum, second-moment accumulation, shape
of tensor, etc. We refer the reader to (Metz et al., 2020a)
for a full description of these features. These tensors
tensor features are encoded as tokens with a simple linear
projection. A hidden state (whose initial value is also
learned) is additionally concatenated with these tokens and
fed into a transformer encoder model which synthesizes
communication and gives transformed tokens.

These transformed tensor tokens are then passed through a
linear layer individually to give a small conditioning embed-
ding specific to each tensor. Finally, per parameter values
along with their gradients, conditioning embedding and
other derived features such as momentum, etc are passed
through an MLP to give parameter updates (Metz et al.,
2020a). Note that the same conditioning embedding is
passed to the MLP for all parameters in a single tensor
since it is specific to the tensor. A hidden state output from
the transformer is simply passed as input to the next timestep
without any additional processing.

Implementation details. Our transformer encoder consists
of 4 layers with 4 attention heads and bi-directional
masking. We embed all the tensor features and hidden
state to size 64 and we use key size of 32 in multi-head
attention for faster throughput without losing performance.
Following (Metz et al., 2020a), we construct a total of 18
tensor features utilizing tensor gradients and parameter
values; following the self-attention step, we obtain a
conditional tensor embedding of size 17 through a linear
projection of transformed tensor tokens which is then
passed as input to the MLP. We implement our optimizer in
JAX (Bradbury et al., 2018) using the learned optimization'
open-source library (Metz et al., 2022a).

3. Training

Following prior work (Metz et al., 2022a; Harrison et al.,
2022), we use Persistent Evolutionary Strategies (PES) (Vi-
col et al., 2021) to meta-train our optimizer and all the
learned optimizer baselines evaluated in this work. For a fair
comparison with prior work (Metz et al., 2022a; Harrison
et al., 2022), we meta-train on the same two tasks, namely
Fashion MNIST with 2 hidden layers of 128 size each and a
CIFAR-10 task with a 3-layer ConvNet with 32, 64, and 64
filters. Both these tasks use batch size of 128. We refer the
reader to (Metz et al., 2022a) for all details about these tasks.
In total, we do 100,000 outer iterations of meta-training with
each outer iteration consisting of <2000 inner iterations of
learned optimizer rollout and we use the mean training loss
over these inner iterations as our meta-objective. The inner
rollout length during meta-training is log uniformly sampled
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Figure 2. Comparing our optimizer with strong learned and hand-designed optimizer baselines. We meta-train all learned optimizers
on a Fashion MNIST task with a 2-layer MLP (left) or a CIFAR-10 task with a ConvNet (right) with the maximum unroll length of
2K iterations. We test all optimizers on these tasks for 10K iterations, which is well beyond the meta-training length (2K) of our and
baseline learned optimizers (see more details in Section 3). Our optimizer outperforms baseline learned optimizers (lopt) and performs
competitively with hand-designed baselines heavily tuned on 10-1000s of tasks.

between 100 and 2000. We meta-train on 4 Nvidia RTX
8000 GPUs with a learning rate of 1e-4 and use truncation
length of 50 with a standard deviation of 0.01 in PES.

4. Experiments

Following prior work (Harrison et al., 2022; Metz et al.,
2022a), we meta-train our learned optimizer on each of
the aforementioned Fashion MNIST (Xiao et al., 2017) and
CIFAR-10 (Krizhevsky et al., 2009) tasks separately. We
compare with the three recent learned optimizers: STAR
LOpt (Harrison et al., 2022), RNN LOpt (Metz et al.,
2020a), and MLP LOpt (Metz et al., 2022a). Although
Velo (Metz et al., 2022b) is another recent learned optimizer,
training it has an extremely large computational cost for
meta-training (four thousand TPU months in the original
work) in part due to using a full ES algorithm rather than the
truncated PES one which we and the other learned baselines
use. In our preliminary experiments, truncated PES could
not stably train Velo. Therefore, we omit this comparison
in this work and leave this direction for future work.

We also compare with strong hand-designed baselines,
namely Adam (Kingma & Ba, 2015) and NAdamW (Metz
et al.), which were tuned well for the Fashion MNIST and
CIFAR-10 tasks in (Metz et al.; Harrison et al., 2022; Metz
et al., 2022a). Specifically, Adam was tuned with 15 differ-
ent learning rates sampled logarithmically and NAdamW
was tuned with 1000 random trials with different hyperpa-
rameter settings serving as an extremely strong baseline for
these tasks. For both of these baselines, we compare to the
hyperparameters corresponding to the lowest training loss
after 10K iterations (the maximum number of iterations we
and the baseline learned optimizers typically consider). Fol-
lowing prior work (Harrison et al., 2022; Metz et al., 2022a),

we focus on the training loss since that is the meta-objective
with which we train our optimizer. We test each optimizer
with 5 random seeds and show the training plots in Fig. 2.

4.1. Results

We benchmark our learned optimizer for 10K inner itera-
tions after meta-training as done in (Harrison et al., 2022)
and show training plots in Fig. 2. As evident from the plots,
our learned optimizer achieves the lowest training loss and
optimizes faster than all the other learned optimizers. It
is important to note that unrolling the learned optimizers
for 10K iterations is a strong test of generalization, since
our approach and all the learned optimizer baselines were
meta-trained for a maximum of 2K iterations. Moreover, we
do not add any extra features (as in (Harrison et al., 2022))
which could help our learned optimizer generalize better,
so this is purely a zero-shot generalization of our learned
optimizer to longer context lengths.

In order to be fair in comparison, we do not use weight decay
in any learned optimizer as used in some prior works (Harri-
son et al., 2022; Metz et al., 2022b). Without weight decay,
we found that STAR optimizer (Harrison et al., 2022) over-
fits more than the MLP baseline and consequently performs
slightly poorly in benchmarking. It is also interesting that
the RNN baseline with per-tensor hidden states generalizes
well beyond its meta-training length of 2K iterations on the
simple Fashion MNIST task, but performs poorly on the
CIFAR-10 ConvNet task. In contrast, our optimizer em-
ploying a global hidden state with tensor-level self-attention
is able to generalize on both tasks. Our optimizer outper-
forms Adam on the CIFARI1O0 task and achieves a similar
loss as Adam at the end on the Fashion MNIST task. A
well-tuned NAdamW achieves the lowest training loss at the



Learning to Optimize with Recurrent Hierarchical Transformers

Scaling params

10-1 4 tx_lopt (ours)
—e— rnn lopt
5 —e— mlp lopt
fwi —8— adam
E 10-2 { —@— sgd
[Z)
—
@
o
[
E.
2 1077 4
=1
—~
104

S T I T
params

Figure 3. Runtime of our optimizer scales linearly with the

number of parameters demonstrating negligible transformer

cost. Since our optimizer is hierarchical, the per-parameter update

cost heavily dominates the runtime cost of the recurrent trans-

former leading to linear scale-up like all the other baselines.

end (slightly below ours), but we note this is a strong hand-
crafted optimizer baseline tuned on thousands of tasks (Metz
et al.; 2022b). On the other hand, our optimizer achieves the
strongest performance in the 2K step window for which it is
meta-trained. By scaling meta-training to more tasks and a
longer training horizon, it could be possible to substantially
outperform this NAdamW baseline for longer time horizons.

4.2. Runtime Analysis

We analyze the runtime of our proposed optimizer along
two axes: (1) scaling the number of parameters, (2) scaling
the number of layers, i.e. depth in the underlying task. We
perform these runtime experiments on the CIFAR10 task
with an MLP and measure runtime per step (in seconds). In
this section, we analyze how the runtime of our proposed
optimizer scales with respect to others.

Scaling parameters. We perform the first scaling experi-
ment on the CIFAR10 task with a 2-layer MLP with 128
units. We scale the number of parameters by increasing the
width in this MLP by a factor of 2 till we reach the width
of 4096 and show runtime for all the considered optimizers
in Fig. 3. As expected, in all the optimizers, runtime per
step scales linearly with the number of parameters. Our
optimizer shows negligible overhead over the RNN LOpt
baseline and its runtime matches the runtime of RNN LOpt
at scale. Since both these optimizers are hierarchical, their
runtime can be roughly broken down into parts (Metz et al.,
2022b): (1) fixed overhead, (2) per-parameter update cost
which scales linearly with the number of parameters. The
per-parameter cost becomes dominant with the increase in
the number of parameters, hence leading to identical run-
times of our approach and RNN LOpt at scale.

Scaling depth. We increase the number of layers in the
aforementioned CIFARI10 task from 4 to 128 (keeping the
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Figure 4. Runtime gap between our optimizer and RNN dimin-
ishes as the depth increases. This allows us to do heavy com-
putation at tensor-level (self-attention with quadratic complexity
instead of RNN) for better performance without sacrificing runtime
at scale. Even at the lowest depth of 2, the absolute difference in
runtime between RNN and ours is still minimal (0.6ms per step).

width of 256 fixed) and compare the runtime of our opti-
mizer with the hierarchical RNN baseline in Fig. 4. The
key result here is that although we use a transformer whose
runtime cost scales quadratically with the increase in the
number of layers (depth), we still observe vanishing over-
head with respect to RNN LOpt. Due to the hierarchical
structure of our optimizer, the additional cost of our recur-
rent transformer diminishes in comparison with the update
cost of parameters by the MLP resulting in overall similar
runtimes. This shows that the runtime of our hierarchical
optimizer only depends on per-parameter cost at scale and
hence the cost of our proposed recurrent transformer be-
comes negligible. The maximum gap between the runtimes
of our approach and the RNN baseline across depths is still
quite low (0.6ms per step at depth 2).

Overall, our learned optimizer enjoys similar runtime and
memory overhead as the RNN LOpt baseline while main-
taining superior performance.

5. Conclusion

We propose an efficient learned optimizer which uses a trans-
former with recurrence and leverages the structure of neural
networks to perform optimization. We test our optimizer on
two image recognition tasks and show that it outperforms
prior learned approaches and is on par or better than heavily
tuned hand-designed baselines. In addition, we show that
the recurrent transformer in our optimizer architecture has
minimal overhead and its runtime cost vanishes at scale,
due to its hierarchical structure. To the best of our knowl-
edge, this is the first work which utilizes a transformer in
a learned optimizer for neural network tasks and paves the
way forward for future work in this direction.
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