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Accurate and robust protein sequence 
design with CarbonDesign

Milong Ren1,2, Chungong Yu1,2,3, Dongbo Bu    1,2,3  & Haicang Zhang    1,2,3 

Protein sequence design is critically important for protein engineering. 
Despite recent advancements in deep learning-based methods, achieving 
accurate and robust sequence design remains a challenge. Here we present 
CarbonDesign, an approach that draws inspiration from successful 
ingredients of AlphaFold and which has been developed specifically 
for protein sequence design. At its core, CarbonDesign introduces 
Inverseformer, which learns representations from backbone structures 
and an amortized Markov random fields model for sequence decoding. 
Moreover, we incorporate other essential AlphaFold concepts into 
CarbonDesign: an end-to-end network recycling technique to leverage 
evolutionary constraints from protein language models and a multitask 
learning technique for generating side-chain structures alongside designed 
sequences. CarbonDesign outperforms other methods on independent test 
sets including the 15th Critical Assessment of protein Structure Prediction 
(CASP15) dataset, the Continuous Automated Model Evaluation (CAMEO) 
dataset and de novo proteins from RFDiffusion. Furthermore, it supports 
zero-shot prediction of the functional effects of sequence variants, making it 
a promising tool for applications in bioengineering.

Protein sequence design, also referred to as inverse protein folding, 
is to identify amino acid sequences that can fold into a given protein 
backbone structure while exhibiting desired functions. It serves as 
a crucial step in computational protein design, which has recently 
made significant advancements in the engineering of therapeutics1,2, 
enzymes3,4 and more applications5. Typically in de novo protein design, 
determining the optimal sequences became essential once the back-
bone structures are derived from either energy-based methods6 or 
recent diffusion generative models7–9.

Recent advancements in deep learning-based sequence design 
methods have demonstrated promising results in generating highly 
accurate candidate sequences10–15. These approaches differ from 
one another in their strategies for encoding the protein structure 
and decoding the associated sequences. Typically, ProteinMPNN10 
and ESM-IF11 utilize neural networks to encode the entire backbone 
structure and subsequently decode the sequences in an end-to-end 
autoregressive manner. On the other hand, methods such as 3DCNN12, 

ABACUS-R13 and ProDESIGN-LE14 individually encode the structural 
context of each residue and iteratively refine the designed sequences, 
starting from a randomly initialized sequence.

Protein structure prediction and protein sequence design are 
closely intertwined, with advancements in one field benefiting the other. 
Inspired by the remarkable success of AlaphFold16 and RoseTTAFold17 
in addressing the protein folding problem, we adapt their key concepts 
to the inverse folding and propose CarbonDeisgn, aiming to improve 
sequence design through enhancing the encoder and decoder architec-
ture, leveraging more efficient features and refining the training strategy.

At its core, CarbonDesign explores a network architecture called 
Inverseformer to transform three-dimensional structural features 
into single and pair representations through a series of node updates 
and triangular edge updates, following a Markov random field (MRF) 
module for sequence decoding. Intuitively, the Inverseformer inverts 
the information flow compared to AlphaFold’s Evoformer, primarily 
focusing on learning representations from backbone structures.
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based on evolutionary and structural constraints. To convert protein 
three-dimensional structures to one-dimensional sequences, we invert 
and adapt the network architecture employed in AlphaFold, which was 
originally developed for three-dimensional structure prediction from 
one-dimensional sequences (Fig. 1 and Table 1).

The network comprises two main stages. First, we use an Inverse-
former module to progressively update the single and pair representa-
tions, which are initialized with local orientations and residue–residue 
distances. Second, we use a Markov random fields (MRF)-sequence 
module to decode the sequence, with its pair coupling terms and site 
bias terms parameterized based on the learned pair and single repre-
sentations, respectively (Methods).

Inverseformer aims to learn the single and pair representations 
from which single-site and pairwise amino acids can be decoded 
(Fig. 1b). Single and pair representations interact and undergo refine-
ment through a series of blocks. Specifically, single representations 
are updated through row aggregation and column aggregation layers 
with pair presentations as inputs, enabling information flows from 
two-dimensional to one-dimensional representations. Subsequently, 
pairwise representations are revised through an outer product layer 
and four triangular attention layers.

In protein structure prediction, triangular edge updates are  
intuitively motivated by the need to satisfy the triangle inequality  
constraints on residue–residue distances. On the other hand, for 
sequence design, we establish an intuitive connection between 

We also introduce two other crucial concepts. First, we adopt the 
network recycling strategy16,18,19 to recycle the entire network with 
shared weights in an end-to-end manner. During the recycling stages, 
we incorporate sequence embedding from the protein language model 
ESM2 (ref. 20), enabling CarbonDesign to fuse evolutionary and struc-
tural constraints effectively. Second, we leverage multitask learning 
with several auxiliary losses to directly guide the learning of single and 
pair representations and predict the sequences and corresponding 
side-chain structures.

We extensively evaluate CarbonDesign using diverse datasets, 
including the Continuous Automated Model EvaluatiOn (CAMEO) 
dataset21, the 15th Critical Assessment of protein Structure Predic-
tion (CASP15) dataset22 and the predicted structures from AlphaFold.  
Additionally, in the context of de novo protein design, we further assess 
the utility of CarbonDesigin in reconstructing sequence for the de novo 
structures derived from diffusion generative methods such as RFdiffu-
sion7 and FrameDiff8. Furthermore, we demonstrate that CarbonDesgin 
serves as a reliable zero-shot predictor of mutational effects on protein 
function, with its performance evaluated using deep mutational scanning 
datasets encompassing millions of missense variants.

Results
Model architecture
CarbonDesign improves protein sequence design by incorporating 
Inverseformer neural network architectures and training procedures 
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Fig. 1 | CarbonDesign architecture. a, The arrows illustrate the flow of 
information in the network, designing a one-dimensional protein sequence 
from a three-dimensional (3D) backbone structure. b, The Inverseformer blocks 
update the single and pair representations through node aggregation and 

triangular edge update layers. c, CarbonDesign employs multitask learning with 
various training losses, including single and pair amino acid losses and losses for 
side-chain structures. χ represents the side chain torsion angles.
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Inverseformer’s triangular updates and the edge message updates 
in the Belief Propagation (BP) algorithm, which is commonly used for  
learning and inference in probabilistic graphical models such as  
MRF and Bayesian networks23,24. In the BP algorithm, node and edge 
messages are updated alternately to aggregate probability mass  
from neighbouring variable nodes. Each edge message ij is updated 
through a triangular edge updates operation, involving all other edge 
messages jk related to variable node j (Supplementary Fig. 1). Based on 
this intuition, we hypothesize that the triangular edge updates encour-
age representations that generate sequences with higher likelihoods 
under the MRF model in the following MRF-sequence module.

The MRF-sequence module constructs a probabilistic model  
for the sequences conditioned on learned single and pair repre-
sentations. MRFs are widely utilized in direct coupling analysis to  
model sequence likelihoods25–27. In the context of CarbonDesign, 
the learned single and pair representations naturally parameterize  
the coupling and site bias terms in MRF. Subsequently, a simple ad hoc 
algorithm is used to sample the candidate amino acid sequences from 
the MRF model (Methods).

End-to-end network recycling with a protein language model
The end-to-end network recycling technique enhances model  
capacity by stacking and reusing the same model architecture with 
shared weights. Rather than making direct predictions in a single step, 
this technique employs a self-correcting mode to progressively refine 
an initial solution by incorporating feedback from error predictions. It 
has been successfully applied within the field of computer vision18,19, 
as well as in AlphaFold for protein structure prediction.

Network recycling enables the model to extract additional features 
as error feed-backs from the intermediate predictions. In the case  
of CarbonDesign, learned single and pair representations from the 
previous recycling rounds serve as features for the next round.

Furthermore, the recycling technique enables CarbonDesign to 
leverage evolutionary constraints encoded in protein language models 
such as ESM2 in an end-to-end manner. Specifically, the intermediate 
sequence is first predicted using the single representations, and its 
embedding is extracted from the language model ESM2 as additional 
recycling features. Protein language models can learn efficient repre-
sentations from millions of sequences and have been successfully 
applied in predicting protein functions and structures20. In the context 
of CarbonDesign, the language model serves as a prior for the gener-
ated sequences.

Multitask learning with sequence design
We employ a cross-entropy loss for individual amino acids and an  
auxiliary cross-entropy loss for pairwise amino acid identities to directly 
guide the learning of the single and pair representations, respectively. 
To approximate the exact likelihood of the sequences in the MRF 
model25, we utilize a composite likelihood during training. Moreover, we 

incorporate a side-chain torsional angle loss and a side-chain structure 
loss in training16, enabling CarbonDesign to predict both the sequences 
and the corresponding side-chain structures (Fig. 1c).

Evaluating CarbonDesign on independent testing sets
We extensively evaluated CarbonDesign on two prominent data-
sets: the CAMEO test set21 and the CASP15 test set. We compared our 
approach with representative methods in protein sequence design, 
including ProteinMPNN10, ESM-IF11, ABACUS-R13, Rosetta software28 
and ProDESIGN-LE14.

We evaluated the performance of CarbonDesign using two key 
metrics: sequence recovery rate and the BLOcks SUbstitution Matrix 
(BLOSUM) score29. The sequence recovery rate assesses the model’s 
ability to design sequences that closely match the target structure, 
while the BLOSUM score measures the similarity between the designed 
sequences and the native sequences.

On both CAMEO and CASP datasets, CarbonDesign’s sequence 
recovery rate and the BLOSUM score metrics outperform the other 
comparative methods (Fig. 2a,b). Remarkably, we have observed  
that utilizing a larger language model, ESM-3B, leads to a further 
improvement in sequence design accuracy (Fig. 2e).

We further evaluated CarbonDesign using a dataset of orphan 
proteins characterized by limited or no homologous sequences and 
a lack of structure templates. These proteins pose a significant chal-
lenge for existing structure prediction methods due to the scarcity of 
evolutionary information16,17,20,30,31. They also serve as a rigorous test 
set for protein sequence design, as they lack homologous information 
in existing sequence and structure databases. In our evaluation on the 
orphan proteins from CASP15, CarbonDesign still demonstrated robust 
performance, achieving a sequence recovery rate of 49.1% and outper-
forming all other representative methods (Supplementary Table 6).

Recent advancements in diffusion-based methods have enabled 
the design of long backbone structures, which pose a challenge for 
protein sequence design. We curated a dataset of long proteins (>800 
amino acids) from CASP15 and CAMEO test sets to evaluate Carbon-
Design’s performance. Notably, CarbonDesign achieved a sequence 
recovery rate of 55.1%, surpassing the compared methods. As an illustra-
tive example, we evaluated CarbonDesign on the multidrug-resistant 
protein T1158 (Bos taurus MRP4) with a length of 1,340 amino acids 
(Fig. 2f and Supplementary Table 5). CarbonDesign demonstrated a 
sequence recovery rate of 58.1% and a template modelling (TM) score 
of 0.97 when comparing the predicted structure via ESMFold with the 
native structure.

As a case study, we examine the protein dual-wield NTPase  
(dwNTPase) (Fig. 2g)32, which exhibits a highly novel architecture 
discovered through data mining of predicted structures in the Alpha-
Fold DataBase33. CarbonDesign successfully generates a sequence 
with a high sequence recovery rate of 70.2%. This case highlights the 
robustness of CarbonDesign with predicted backbone structures and 
its strong model generalization, enabling accurate designs for novel 
fold types.

Improving de novo protein design with CarbonDesign
Recent diffusion-based methods, such as RFdiffusion, have revolution-
ized de novo protein design by generating novel backbone structures 
across diverse fold types that have never been observed in nature. In 
light of these advancements, we evaluate the efficacy of CarbonDesign 
in enhancing protein de novo design by generating more accurate 
sequences for these backbone structures.

Since native sequences are unavailable for evaluating sequence  
recovery rate and BLOSUM similarity score, we employ the self- 
consistency TM (scTM) score as an alternative measure. Specifically, 
we first utilize ESMFold to predict the structures of the designed 
sequences corresponding to the backbone structures generated by 
RFdiffusion. We then use the TM score to measure the consistency 

Table 1 | Key concepts of CarbonDesign inspired by 
AlphaFold

Method AlphaFold CarbonDesign

Direction of 
information flow

One dimension to three 
dimensions

Three dimensions to one 
dimension

Architecture Evoformer and structure 
modules

Inverseformer and Markov 
random fields-sequence 
module

Additional features 
in recycling stage

Distance map of 
predicted structures

Embeddings of 
intermediate sequence 
from language model ESM2

Multitask learning Folding head, distogram 
head, confidence head 
and so on.

Sequence head, pairwise 
amino acid head, side-chain 
head.
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Fig. 2 | Evaluation of CarbonDesign with the CAMEO and CASP15 independent 
testing sets. a,b, Evaluation with sequence recovery rate (a) and BLOSUM score 
(b). c,d, Head-to-head comparisons with other representative methods on 
CAMEO (c) and CASP15 (d) testing sets, with colour intensity indicating sequence 
lengths. e, Evaluation of CarbonDesign with various protein language models 

based on sequence recovery rate. f, Illustrative case of a long protein T1158 
(length, 1,340 amino acids) showing the native structure (blue) and the predicted 
structure of the designed sequence (orange). g, Illustrative case of the novel fold 
protein dwNTPase mined from AlphaFold DataBase, with the predicted structure 
of native sequence (blue) and designed sequence (orange).
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between predicted and original structures. We also note that while the 
scTM score is commonly used as a surrogate when native sequences 
and crystal structures are unavailable, its reliability is contingent upon 
the accuracy of protein structure prediction.

Following ProteinMPNN and ESM-IF, we introduced noise into  
the crystal structures during training. This approach accounts for  
the fact that in practical applications, de novo-generated structures 
or predicted structures may not exhibit the same level of precision 
as crystal structures commonly used in training. We generated 2,560 
backbone structures of variable lengths (ranging from 200 to 600 
amino acids) using RFdiffusion and evaluated the performance of 
CarbonDesign and ProteinMPNN with different noise levels.

Our results highlight two main findings. First, CarbonDesign con-
sistently outperforms ProteinMPNN in terms of the scTM score at 
each noise level (Fig. 3b). Second, we observed that higher noise levels 
improve the performance of both CarbonDesign and ProteinMPNN, 
indicating the beneficial role of noise in generating sequences for 
de novo structures. More specifically, CarbonDesign demonstrates 
superior performance over the existing representative methods, 
including ProteinMPNN and ESM-IF, across all different lengths (Fig. 3a).

To assess the broad applicability of CarbonDesign in enhancing  
protein de novo design, we extend our evaluation to include  
FrameDiff, another recent diffusion-based method. CarbonDesign 
still out performs all other comparison methods. (Supplementary 
Fig. 3), demonstrating the efficacy of CarbonDesign in enhancing the  
performance of FrameDiff.

Moreover, we present a successful example of a generated back-
bone structure consisting of 500 residues. CarbonDesign achieves 
a scTM score of 0.98, which is significantly higher than ESM-IF 
(scTM = 0.24) and ProteinMPNN (scTM = 0.69) (Fig. 3c). Furthermore, 
we demonstrate other successful examples of designed sequences of 
variable lengths (Fig. 3d).

To generate a group of diverse sequences for a given backbone 
structure in various downstream design tasks, we introduce the tem-
perature parameter T during inference to control the diversity of the 
designed sequences (Methods). As T increases, CarbonDesign can 
sample a group of more diverse sequences (Supplementary Tables 10 
and 11). Additionally, we observe that a more constrained structural 
context leads to a decrease in residue-level diversity of the designed 
sequences (Supplementary Fig. 6).
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Predicting functional effects of variants via CarbonDesign
The accurate interpretation of the functional effects of variants is  
crucial in directed evolution-based protein engineering34,35, as well as in 
the context of human genetic studies and clinical testing36,37. Pretrained 
language models have emerged as effective zero-shot predictors, allevi-
ating the issue of limited labelled data and mitigating potential human 
biases in variant annotation38. We now show that CarbonDesign also sup-
ports zero-shot learning for functional effects prediction, indicating its 
ability to capture the inherent sequence–structure–function relations.

We first use AlphaFold to predict the protein structures for the test-
ing sequences, which serve as inputs of CarbonDesign. Subsequently, 
to score the mutational effects of variants on a particular sequence,  
we calculate the ratio between the likelihoods of the mutated and 
wild-type sequences based on the CarbonDesign model (Methods).

We evaluate CarbonDesign on deep mutational scanning datasets 
with experimentally determined functional scores39. CarbonDesign 
achieves a Spearman correlation of 0.43, outperforming pure language 
model-based approaches including ESM-1v and ProGen2 (Fig. 4a).  
Furthermore, integrating the scores of CarbonDesign and the other  
two methods improves the performance, resulting in a Spearman  
correlation of 0.47. This highlights that CarbonDesign, as a structure- 
based method, can improve the interpretation of functional effects in 
combination with purely language model-based methods.

We also compared CarbonDesign with multiple sequence align-
ment (MSA)-based methods, such as EVE37 and MSA-Transformer40, as 
well as the ensemble methods (Supplementary Table 14). Notably, when 
combined with the MSA-based method EVE, CarbonDesign achieved a 
Spearman correlation of 0.50, surpassing the current leading ensemble 
method EVE+Tranception (MSA retrieval)39. This observation sug-
gests that CarbonDesign, integrating structural information, can  
also enhance the performance of MSA-based methods in variant  
effects prediction.

We next assess CarbonDesign in predicting the pathogenicity 
of human genetic variants. Specifically, we focus on four well-known  
disease risk genes (BRCA1 (ref. 41), TP53 (ref. 42), PTEN (ref. 43) and 
MSH2 (ref. 44)) that have a substantial number of high-quality clinical 
labels in ClinVar. CarbonDesign achieves good separation of benign 
and pathogenic variants for TP53 and PTEN, with area under the receiver 
operating characteristic curve values exceeding 0.95 (Fig. 4b). Addi-
tionally, CarbonDesign outperforms pure language model-based 
approaches on average in this context (Supplementary Table 7).

Furthermore, we observed a correlation between the predicted 
amino acid distribution and the protein structures. We utilize the 
entropy of the predicted amino acid distribution as a metric of con-
servation, with lower entropy indicating higher conservation. As a 
proof of concept, we examine two proteins, Nav1.4–β1 (ref. 45) (Fig. 4c) 
and indole-3-glycerol phosphate synthase46 (Fig. 4d). In both cases, 
regions with lower entropy coincide with hydrophobic core regions 
associated with functional regions such as the sodium channel and 
phosphate binding sites.

Interpreting the CarbonDesign
We trained and evaluated several ablation models to evaluate the rela-
tive contributions of the key architecture to CarbonDesign accuracy.

CarbonDesign utilizes the side-chain head to generate side-chain 
structures of all possible amino acids at each position. We evaluated 
the prediction accuracy of side chains using the CAMEO and CASP15 
datasets and investigated the contribution of side-chain heads for 
sequence design accuracy.

CarbonDesign achieves an average root mean squared distance 
(RMSD) of 0.805. Moreover, the side-chain prediction accuracy strongly 
correlates with the structural context constraints, measured by the 
number of Cβ atoms within an 8 Å radius around each residue. Higher 
side-chain prediction accuracy was observed for more constrained 
residues (Fig. 5a). For example, the side-chain head of CarbonDesign 

demonstrated higher prediction accuracy with an RMSD of 0.683 for 
the protein T1159 (PDB ID, 7PTZ (ref. 47)) (Fig. 5c).

There also exhibits a strong correlation between the side-chain 
prediction accuracy and sequence design accuracy, with a Pearson 
correlation of 0.73 (Fig. 5b). The more constrained structural context 
leads to improved prediction accuracy for both side-chain prediction 
and sequence design tasks, consistent with prior studies8,10. Addition-
ally, training a modified model with the side-chain head removed  
demonstrates the beneficial effect of the side-chain head in enhancing 
the accuracy of designed sequences (Supplementary Table 1).

Network recycling allows the model to incorporate the protein 
language model in an end-to-end manner. We further assess the con-
tribution of network recycling and the additional sequence embedding 
from the language models during the recycling stages. Increasing 
the number of recycling iterations results in an improved sequence 
recovery rate of designed sequences (Fig. 5d).

Additionally, network recycling and the protein language model 
enhance de novo protein design evaluated on the backbone structures 
from the diffusion generative model (Fig. 5e). We also investigate the 
ablation model of CarbonDesign without using pretrained language 
models for the task of predicting variant effects, and we observe that 
the language models can enhance the performance (Supplementary 
Tables 15 and 16).

We next explore the accuracy of sequence design at protein core 
and surface regions. CarbonDesign demonstrates notably higher 
accuracy at core regions compared to surface regions (Supplementary 
Fig. 4), in line with previous research10.

The pair amino acid head in CarbonDesign directly guides the 
learning of pair representations in Inverseformer and the pair couplings  
term in the MRF-sequence module. We trained a modified model exclud-
ing the pair head to evaluate its contribution. Notably, the pair head sig-
nificantly improves performance for both crystal structures (Fig. 5h) and 
de novo structures (Fig. 5i). Furthermore, we investigated the differences 
between the amino acid distribution in the designed and native sequences, 
measured as Kullback–Leibler (KL) divergence. The model with the pair 
head can generate sequences with a closer amino acid distribution to the 
native sequences (Fig. 5f and Supplementary Fig. 5). We also observed a 
slight improvement in predicting the functional effects of the variants 
with the deep mutational scanning (DMS) testing dataset (Fig. 5g). These 
findings underscore the efficacy of the pair head in CarbonDesign.

Discussion
We present CarbonDesign, an approach for protein sequence design 
that incorporates key concepts from recent successful methods in 
protein structure prediction. Specifically, CarbonDesign utilizes the 
inverseformer architecture, network recycling technique and multitask 
learning strategy to enhance sequence design. Our results demon-
strate that CarbonDesign outperforms existing methods in generat-
ing candidate sequences for crystal structures, predicted structures  
and de novo structures derived from diffusion generative models, 
showing its utility in the de novo protein design scenario. Moreover, 
CarbonDesign supports zero-shot learning for predicting the func-
tional effects of sequence variants, highlighting its ability to capture the 
intrinsic relationships between protein sequences and their functions.

We utilize diverse metrics, including the sequence recovery rate, 
BLOSUM score, scTM score and Rosetta energy, to assess the quality of 
the designed sequences. The choice of computational metrics varies 
depending on the nature of the testing sets. For crystal structures with 
known sequences such as the independent testing set of CASP15 and 
CAMEO, we use more exact metrics including the sequence recovery 
rate and BLOSUM similarity score10. For de novo backbone structures 
generated from RFDiffusion or other computational methods in prac-
tical applications, where the true sequences are unknown, the scTM 
score acts as a proxy measure, assessing the deviation between the 
provided backbone structures and the predicted structures of the 
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designed sequences8,15,48. We note that this proxy is limited by the capac-
ity of the protein structure prediction methods. While recent deep 
learning-based methods such as CarbonDesign, ProteinMPNN10 and 
ABCUS-R (ref. 13) have significantly improved protein sequence design, 

capable of generating more exact sequences in a high-throughput 
manner, classical energy-based methods such as Rosetta software 
have their distinct advantages. For example, Rosetta software exhibits 
a remarkable performance in terms of Rosetta energy49, outperforming 
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Fig. 4 | Evaluation of CarbonDesgin in interpreting functional effects of 
variants. a, Evaluation on variants from 49 deep mutational scanning essays. The 
x axis represents the names of the proteins in the essays and the y axis represents 
the Spearman correlation coefficient. b, Evaluation on clinical labelled variants 
in ClinVar for four well-known disease risk genes, BRCA1, TP53, PTEN and MSH2. 
The x axis represents the positions of variants on the proteins and the y axis 
represents the functional scores predicted by CarbonDesign. c, Entropy variation 

of protein Nav1.4–β1, with each position colour-coded based on the level of 
entropy. Blue regions indicate areas of low entropy, white regions indicate areas 
of high entropy and red indicates other binding peptides. d, Entropy variation of 
protein indole-3-glycerol phosphate synthase, with each position colour-coded 
based on the level of entropy. Blue indicates areas of low entropy, red indicates 
areas of high entropy and red ions represent phosphate ions. AUC, the area under 
the receiver operating characteristic curve.
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all other deep learning-based methods. They do not rely on extensive 
training data, thereby avoiding biases introduced by training data.

CarbonDesign can leverage evolutionary constraints from 
large-scale pretrained protein language models. Several previous 
studies have also demonstrated the utility of language models in vari-
ous computational protein design scenarios. For example, ProGen2 
employs a generative pretrained transformer model to generate 
sequences with control tags specifying protein properties50. Ref. 51 
utilizes general protein language models to efficiently evolve human 
antibodies, leading to a substantial improvement in antibody binding 
affinity. Our CarbonDesign adopts the network recycling technique to 
seamlessly integrate language models into structure-based protein 
design in an end-to-end manner.

Our work is limited in focusing solely on the in silico evaluation 
of the designed sequences. While in silico metrics provide empiri-
cal evidence of whether the designed sequences can fold correctly  
and exhibit the desired function and are commonly used in the  
existing methods10,11,15, wet-lab experimental validation is crucial for 
a comprehensive evaluation of CarbonDesign. It could offer valuable 
insights and opportunities for improvement and remains our main 
future work.

Methods
Evaluation datasets
CAMEO testing set. We compiled a test set of 728 proteins from the 
recent CAMEO campaign (between February 2022 and February 2023). 
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Fig. 5 | Evaluation of ablation models of CarbonDesign. a, Correlation between 
RMSD error of side-chain structure prediction and the number of Cβ atoms within 
an 8 Å radius around each residue. b, Correlation between sequence design 
accuracy and side-chain structure prediction accuracy on CAMEO and CASP15 
datasets. The x axis represents the sequence recovery rate and the y axis represents 
the RMSD between predicted and native side-chain structures. c, Illustrative case 
of protein T1159 with predicted side-chain structures. Positions of LEU3, GLY7, 
THR8, ALA11, TYR47, TYR50, PHE58, LEU61 and THR62 are shown, with predicted 
structures in orange and native structures in blue. d, Evaluation of CarbonDesign 

with varying recycling times, measured by sequence recovery rate on CAMEO  
and CASP15 testing sets. e, Evaluation of CarbonDesign with varying recycling 
times, measured by scTM score on the backbone structures from RFdiffusion.  
f, KL divergence of the amino acid distribution between designed sequences and 
the sequences from CAMEO and CASP15 datasets. g–i, Evaluation of the effects of 
pair head in MRF modelling on performance in deep mutational scanning testing 
set (g), CAMEO and CASP15 testing sets (h), and de novo backbone structures 
from RFdiffusion (i). Blue represents the default CarbonDesign model and red 
represents the model with the pair head in the MRF model excluded.
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After excluding short proteins with fewer than 80 amino acids, the final 
test set consisted of 642 proteins.

CASP15 testing set. We included all available proteins from CASP15 
that were not cancelled and excluded proteins with lengths less than 80 
amino acids, resulting in a test set of 65 proteins (Supplementary Table 2).

Testing set of long proteins. To benchmark the performance of long 
proteins, we collected proteins with more than 800 amino acids from 
the CAMEO and CASP15 testing sets. We then used MMseqs to filter 
overlaps between the two sets with a sequence identity of 40% and 
selected the representative protein from each cluster. The final test 
set comprises 13 proteins, with an average length of 1,239 amino acids 
(Supplementary Table 3).

Testing set of orphan proteins. We curated a testing set of nine 
orphan proteins from the CASP15 set. Following the criteria of orphan  
proteins in previous work20, we first perform the standard AlphFold 
MSA search process against UniProt Reference Clusters (UniRef)52, 
MGnify53 and BFD54 databases using HHBlits55 and Jackhmmer56. Our 
selection was ultimately narrowed down to proteins that have fewer 
than 100 homologous sequences and failed to produce a template  
with a TM score surpassing 0.5 (Supplementary Table 4).

De novo backbone structures. We employ RFdiffusion to generate 
de novo backbone structures with variable lengths (200, 300, 400, 500 
and 600 amino acids), producing 512 structures for each length. We also 
utilize FrameDiff to generate another set of de novo backbone structures.

Deep mutational scanning dataset. To evaluate CarbonDesign’s effi-
cacy in predicting the functional effects of variants, we compiled the 
experimentally validated variants from DMS essays. For the proteins 
lacking solved crystal structures or with incomplete structures, we 
use AlphaFold to predict their structures as inputs for CarbonDesign.  
Due to the limited prediction accuracy of AlaphaFold and other  
prediction methods for long protein sequences, and the substantial 
computational resources required, we restrict our analysis to proteins 
with fewer than 600 amino acids from the ProteinGym DMS dataset. 
The final testing dataset consists of 179,023 variants on 49 genes.

Genetic variants on disease genes. To access CarbonDesign’s per-
formance in prioritizing human disease-related variants, we collected 
the clinically labelled variants from the ClinVar database for four 
well-studied disease risk genes: TP53, PTEN, BRCA1 and MSH2. Each 
variant in this dataset is annotated as either pathogenic or benign. 
This data includes 118 pathogenic (positives) and 175 benign (nega-
tives) variants for BRCA1, 111 positives and two negatives for PTEN, 130 
positives and 33 negatives for TP53, and 69 positives and 31 negatives 
for MSH2, respectively.

Training dataset
We trained CarbonDesign on protein chains in the Protein Data Bank 
(PDB) released before 1 January 2020, determined by X-ray crystallo-
graphy or cryogenic electron microscopy. We only include the struc-
tures with a resolution better than 5.0 Å and with more than 50 amino 
acids. Sequences were clustered at 40% sequence identity cutoff using 
MMseqs2, resulting in 30,828 clusters.

Input features
CarbonDesgin incorporates inter-residue distances as edge features 
and local orientations of four consecutive Cα atoms as node features.

Edge features. Following ProteinMPNN10, we calculate the distances 
between N, Cα, C and O atoms, and virtual Cβ atoms for each residue 
pair. We then divide the distances from 0 Å to 15 Å into 20 bins. The bin 

indices are then one-hot encoded and mapped through a feed-forward 
layer to initialize the pair representations. We note that we mask all the 
edges whose distance exceeds 15 Å. Additionally, following AlphaFold, 
we incorporate relative positional encoding for edge features.

Node features. For each residue at position i, we employ the Gram–
Schmidt process to calculate the local frame defined by the Ci−2

α ,  
Ci−1
α  and Ci

α atoms. In this frame, Ci
α serves as the origin, the direction 

of Ci−1
α  as the x axis, and Ci−2

α  determines the x–y plane. Specifically,  
its basis [a, b, c] is obtained as follows:

a = Ci−1
α −Ci

α
‖
‖C

i−1
α −Ci

α
‖
‖

b = a×(Ci−2
α −Ci

α)
‖
‖a×(C

i−2
α −Ci

α)‖‖

c = a × b

(1)

Subsequently, the orientation of Ci+1
α  is represented using its local 

coordinate with respect to this frame (Supplementary Fig. 2). Similarly, 
we calculate the local orientation of Ci−1

α  with respect to the Ci
α, Ci+1

α   
and Ci+2

α  atoms.

Inverseformer architecture
We utilize a series of Inverseformer blocks to learn representations 
from the input backbone structures (Algorithm 1). Each block has a 
single representation si of nodes and a pair representation zij of edges 
as its input and output and processes them through several layers.

We leverage row and column aggregation layers to update the 
single representations from the pair representations (equation (2)). 
We note that the aggregation layers are specifically tailored to incorpo-
rate edge information directly. The original row and column attention 
layers in the AlaphaFold Evformer architecture are unsuitable for our 
purpose, as they primarily focus on aggregating information on nodes, 
with only a bias on edges.

si ← si + (
L
∑
i=0

Transition(zij))
T

si ← si + (
L
∑
j=0

Transition(zij))

(2)

We adopt a similar approach as AlphaFold for updating pair repre-
sentations. We use an ‘Outer product mean’ block to integrate the single 
representations, followed by triangular update blocks. Furthermore, we 
introduce residual connections and dropout layers to prevent overfitting.

The final Inverseformer block produces a highly processed single 
representation si for individual residues and a pair representation zij 
for residue–residue pairs, which contain the necessary information 
for the MRF-sequence module to decode the sequences. These repre-
sentations are crucial for accurately predicting the protein sequences.

Algorithm 1: Inverseformer

function Inverseformer(si, zij)
si ← si + Dropout(RowAgreggation(zij)) ▷ Node update
si ← si + Dropout(ColumnAgreggation(zij))
zij ← zij + OuterProductMean(si) ▷ Communication
 zij ← zij + Dropout(TriangularMultiplicativeOutgoing(zij))  
▷ Edge update
zij ← zij + Dropout(TriangularMultiplicativeIncoming(zij))
zij ← zij + Dropout(TriangleAttentionStartingNode(zij))
zij ← zij + Dropout(TriangleAttentionEndingNode(zij))
zij ← zij + Dropout(PairTransition(zij))
return si, zij

end function
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MRF-sequence module
We employ an MRF(Markov random field)-sequence module to decode 
the sequence from the learned representations. We denote a protein 
sequence of length L as x and the type of the i-th amino acid as xi. And 
we use the random variable X to denote the predicted amino acid 
sequence.

MRFs have proven effective in modelling the distributions of 
sequences within a protein family26,27. In CarbonDesign, we adopt an 
amortized MRF model to describe the distribution of the designed 
sequences (equation (3)), which is conditioned on the learned single 
representations s and pair representations z:

P(X = x | s, z) = 1
Z exp [

L
∑
i=1

hi(xi | si) +
L
∑
i=1

L
∑
j=i+1

eij(xi, xj | zij)] (3)

Here, hi and eij are the conversation bias term and pairwise coupling 
term, respectively, in the vanilla MRF model, and Z is the partition  
function. For CarbonDesign, we employ a feed-forward layer to  
project the learned single representation si and pair representation  
zij to hi and eij, respectively. The training and inference of the MRF  
model are interconnected with other modules in CarbonDesign and 
will be elaborated on in the subsequent sections.

Training losses
The network is trained end-to-end, with gradients coming from the 
losses for reconstructing native sequences and predicting side-chain 
atomic coordinates. The total per-example loss can be defined as 
follows:

ℒ = ℒsingle + ℒpair + 0.2ℒsidechain (4)

To restore native sequences, we utilize single cross-entropy loss 
ℒsingle and pairwise cross-entropy loss ℒpair as direct supervision for the 
conservation bias term hi(xi | si) and the pairwise coupling term 
eij(xi, xj | zij), respectively. To calculate ℒsingle, we linearly project the 
single representations si to obtain logits and then compute the 
cross-entropy loss using the native sequence as labels. For ℒpair, we use 
a pairwise pseudo-likelihood (equation (5)) to approximate the full 
likelihood of the sequence under the MRF model, following our previ-
ous work on residue–residue contacts prediction25. For each pair of 
amino acids in the sequence, its pseudo-likelihood conditioned on 
other amino acids is given by:

ℒpseudo(xi, xj) = log P (Xi = xi,Xj = xj |X⌝{i, j} = x⌝{i, j}; s, z)

= log 1
Zij

exp {hi (xi| si) + hj (xj| sj) + eij (xi, xj | zij)

+ ∑
k∉{i, j}

[eik (xi, xk | zik) + ejk (xj, xk | zjk)]}

(5)

Here, Zij is the local partial function. This pseudo-likelihood produces 
the predicted distribution of amino acid pairs, and ℒpair is computed 
with pairwise amino acid identities as the labels. We note that ℒpair  
can directly supervise eij in the MRF-sequence module and pair repre-
sentation zij in the inverseformer. Additionally, we added a 0.01 factor 
of L1 and L2 regularization terms into ℒpair.

The side-chain loss consists of three components:

ℒsidechain = ℒmse + ℒtorsion + 0.01ℒanglenorm (6)

ℒmse is the mean squared error (MSE) for predicted side-chain atomic 
coordinates. Additionally, following AlphaFold, we incorporate the 
loss terms ℒtorsion  and ℒanglenorm  to evaluate the error of side-chain  
torsion angles16.

Additional training details
For training, we utilize the Adam57 optimizer with a β1 value of 0.9 and 
a β2 value of 0.99, where β1 and β2 represent coefficients used for com-
puting running averages of the gradient and its square, respectively. 
The base learning rate is set to 3 × 10−4 with a warm-up period of 1,000 
steps, starting from 1 × 10−5, and the training proceeds for an additional 
20,000 steps. We randomly crop very long proteins during training 
with a crop size of 400. The network architecture and training pipeline 
are implemented in PyTorch58, and training is performed on 16 NVIDIA 
A40 Graphics Processing Units.

We trained several ablation models to assess the contribu-
tions of different mechanisms utilized in CarbonDesign. Following  
ProteinMPNN10 and ESM-IF15, we add noises to structures during train-
ing to deal with noises in de novo and predicted backbone structures 
in practical applications. In the default CarbonDesin model, we added 
a 0.2 Å noise to half of the training samples (referred to as small noise). 
To further investigate the effects of noise levels on the performance 
with de novo backbone structures, we trained two additional models: 
one without any noise (referred to as no noise), and another with a 0.2 Å 
noise applied to all training samples (referred to as large noise). For 
more details on other ablation studies, please refer to Supplementary 
Table 9.

Score for predicting functional effects of variants
In CarbonDesign, each variant is scored using the log odds ratio 
between the mutated and wild-type sequences. The variant score is 
defined as:

variant score = P(X = xxxmt |s, z)
P(X = xxxwt |s, z)

(7)

Here, P(X = xmt|s, z) and P(X = xwt|s, z) represents likelihood of the 
mutated (mt) and wild-type (wt) sequence, respectively, under the 
amortized MRF model (equation (3)).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The training data were obtained from the PDB website (http://www.
rcsb.org/). The testing sets were acquired from CASP15 (https://pre-
dictioncenter.org/casp15/) and CAMEO (https://www.cameo3d.org). 
Other datasets supporting the findings of this study are available in the 
paper and the Supplementary Information. Source data are provided 
with this paper.

Code availability
The CarbonDesign software is available on both GitHub (https://github.
com/zhanghaicang/carbonmatrix_public) and Code Ocean (https://
codeocean.com/capsule/5915382/tree)59.
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