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Protein sequence designis criticallyimportant for protein engineering.
Despite recent advancements in deep learning-based methods, achieving
accurate and robust sequence design remains a challenge. Here we present
CarbonDesign, an approach that draws inspiration from successful
ingredients of AlphaFold and which has been developed specifically

for proteinsequence design. At its core, CarbonDesign introduces
Inverseformer, which learns representations from backbone structures

and an amortized Markov random fields model for sequence decoding.
Moreover, we incorporate other essential AlphaFold conceptsinto
CarbonDesign: an end-to-end network recycling technique to leverage
evolutionary constraints from protein language models and a multitask
learning technique for generating side-chain structures alongside designed
sequences. CarbonDesign outperforms other methods onindependent test
setsincluding the 15th Critical Assessment of protein Structure Prediction

(CASP15) dataset, the Continuous Automated Model Evaluation (CAMEO)
dataset and de novo proteins from RFDiffusion. Furthermore, it supports
zero-shot prediction of the functional effects of sequence variants, making it
apromising tool for applications in bioengineering.

Protein sequence design, also referred to as inverse protein folding,
is to identify amino acid sequences that can fold into a given protein
backbone structure while exhibiting desired functions. It serves as
a crucial step in computational protein design, which has recently
made significant advancements in the engineering of therapeutics'?,
enzymes** and more applications’. Typically in de novo protein design,
determining the optimal sequences became essential once the back-
bone structures are derived from either energy-based methods® or
recent diffusion generative models’’.

Recent advancements in deep learning-based sequence design
methods have demonstrated promising results in generating highly
accurate candidate sequences'* ™. These approaches differ from
one another in their strategies for encoding the protein structure
and decoding the associated sequences. Typically, ProteinMPNN
and ESM-IF" utilize neural networks to encode the entire backbone
structure and subsequently decode the sequences in an end-to-end
autoregressive manner. On the other hand, methods suchas 3DCNN*,

ABACUS-R" and ProDESIGN-LE" individually encode the structural
context of eachresidue anditeratively refine the designed sequences,
starting from a randomly initialized sequence.

Protein structure prediction and protein sequence design are
closelyintertwined, withadvancementsinone field benefiting the other.
Inspired by the remarkable success of AlaphFold'® and RoseTTAFold”
inaddressingthe protein folding problem, we adapt their key concepts
to the inverse folding and propose CarbonDeisgn, aiming to improve
sequence design through enhancing the encoder and decoder architec-
ture, leveraging more efficient features and refining the training strategy.

Atits core, CarbonDesign explores a network architecture called
Inverseformer to transform three-dimensional structural features
into single and pair representations through a series of node updates
and triangular edge updates, following a Markov random field (MRF)
module for sequence decoding. Intuitively, the Inverseformer inverts
the information flow compared to AlphaFold’s Evoformer, primarily
focusing on learning representations from backbone structures.
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Fig.1| CarbonDesign architecture. a, The arrows illustrate the flow of
information in the network, designing a one-dimensional protein sequence
from a three-dimensional (3D) backbone structure. b, The Inverseformer blocks
update the single and pair representations through node aggregation and
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triangular edge update layers. ¢, CarbonDesign employs multitask learning with
various training losses, including single and pair amino acid losses and losses for
side-chain structures. X represents the side chain torsion angles.

Wealsointroduce two other crucial concepts. First, we adopt the
network recycling strategy'®'®" to recycle the entire network with
shared weightsin an end-to-end manner. During the recycling stages,
weincorporate sequence embedding from the protein language model
ESM2 (ref.20), enabling CarbonDesign to fuse evolutionary and struc-
tural constraints effectively. Second, we leverage multitask learning
with several auxiliary losses to directly guide the learning of single and
pair representations and predict the sequences and corresponding
side-chain structures.

We extensively evaluate CarbonDesign using diverse datasets,
including the Continuous Automated Model EvaluatiOn (CAMEO)
dataset?, the 15th Critical Assessment of protein Structure Predic-
tion (CASP15) dataset® and the predicted structures from AlphaFold.
Additionally, inthe context of de novo protein design, we further assess
the utility of CarbonDesigin inreconstructing sequence for the de novo
structures derived from diffusion generative methods such as RFdiffu-
sion’ and FrameDiff®, Furthermore, we demonstrate that CarbonDesgin
serves as areliable zero-shot predictor of mutational effects on protein
function, withits performance evaluated using deep mutational scanning
datasets encompassing millions of missense variants.

Results

Model architecture

CarbonDesign improves protein sequence design by incorporating
Inverseformer neural network architectures and training procedures

based on evolutionary and structural constraints. To convert protein
three-dimensional structures to one-dimensional sequences, weinvert
and adapt the network architecture employedin AlphaFold, whichwas
originally developed for three-dimensional structure prediction from
one-dimensional sequences (Fig.1and Table 1).

The network comprises two main stages. First, we use an Inverse-
former module to progressively update the single and pair representa-
tions, which areinitialized with local orientations and residue-residue
distances. Second, we use a Markov random fields (MRF)-sequence
module to decode the sequence, with its pair coupling terms and site
bias terms parameterized based on the learned pair and single repre-
sentations, respectively (Methods).

Inverseformer aims to learn the single and pair representations
from which single-site and pairwise amino acids can be decoded
(Fig.1b). Single and pair representations interact and undergo refine-
ment through a series of blocks. Specifically, single representations
areupdated through row aggregation and column aggregation layers
with pair presentations as inputs, enabling information flows from
two-dimensional to one-dimensional representations. Subsequently,
pairwise representations are revised through an outer product layer
and four triangular attention layers.

In protein structure prediction, triangular edge updates are
intuitively motivated by the need to satisfy the triangle inequality
constraints on residue-residue distances. On the other hand, for
sequence design, we establish an intuitive connection between
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Table 1| Key concepts of CarbonDesign inspired by
AlphaFold

Method AlphaFold CarbonDesign

Three dimensions to one
dimension

One dimension to three
dimensions

Direction of
information flow

Inverseformer and Markov
random fields-sequence
module

Evoformer and structure
modules

Architecture

Additional features
in recycling stage

Distance map of
predicted structures

Embeddings of
intermediate sequence
from language model ESM2

Multitask learning Folding head, distogram
head, confidence head

and soon.

Sequence head, pairwise
amino acid head, side-chain
head.

Inverseformer’s triangular updates and the edge message updates
inthe Belief Propagation (BP) algorithm, which is commonly used for
learning and inference in probabilistic graphical models such as
MRF and Bayesian networks?**. In the BP algorithm, node and edge
messages are updated alternately to aggregate probability mass
from neighbouring variable nodes. Each edge message ij is updated
through atriangular edge updates operation, involving all other edge
messages jk related to variable nodej (Supplementary Fig.1). Based on
thisintuition, we hypothesize that the triangular edge updates encour-
age representations that generate sequences with higher likelihoods
under the MRF model in the following MRF-sequence module.

The MRF-sequence module constructs a probabilistic model
for the sequences conditioned on learned single and pair repre-
sentations. MRFs are widely utilized in direct coupling analysis to
model sequence likelihoods>™. In the context of CarbonDesign,
the learned single and pair representations naturally parameterize
the coupling and site bias termsin MRF. Subsequently, asimple ad hoc
algorithmis used to sample the candidate amino acid sequences from
the MRF model (Methods).

End-to-end network recycling with a protein language model
The end-to-end network recycling technique enhances model
capacity by stacking and reusing the same model architecture with
shared weights. Rather than making direct predictionsinasingle step,
thistechnique employs aself-correcting mode to progressively refine
aninitial solution by incorporating feedback fromerror predictions. It
has been successfully applied within the field of computer vision'®",
aswell as in AlphaFold for protein structure prediction.

Network recycling enables the model to extract additional features
as error feed-backs from the intermediate predictions. In the case
of CarbonDesign, learned single and pair representations from the
previous recycling rounds serve as features for the next round.

Furthermore, the recycling technique enables CarbonDesign to
leverage evolutionary constraints encoded in protein language models
such as ESM2in an end-to-end manner. Specifically, the intermediate
sequence is first predicted using the single representations, and its
embeddingis extracted from the language model ESM2 as additional
recycling features. Protein language models can learn efficient repre-
sentations from millions of sequences and have been successfully
appliedinpredicting protein functions and structures®. In the context
of CarbonDesign, the language model serves as a prior for the gener-
ated sequences.

Multitask learning with sequence design

We employ a cross-entropy loss for individual amino acids and an
auxiliary cross-entropy loss for pairwise amino acididentities to directly
guide thelearning of the single and pair representations, respectively.
To approximate the exact likelihood of the sequences in the MRF
model®, we utilize acomposite likelihood during training. Moreover, we

incorporate aside-chain torsional angle loss and aside-chain structure
loss in training', enabling CarbonDesign to predict both the sequences
and the corresponding side-chain structures (Fig. 1c).

Evaluating CarbonDesign onindependent testing sets

We extensively evaluated CarbonDesign on two prominent data-
sets: the CAMEO test set™ and the CASP15 test set. We compared our
approach with representative methods in protein sequence design,
including ProteinMPNN'?, ESM-IF", ABACUS-R", Rosetta software®®
and ProDESIGN-LE™,

We evaluated the performance of CarbonDesign using two key
metrics: sequence recovery rate and the BLOcks SUbstitution Matrix
(BLOSUM) score”. The sequence recovery rate assesses the model’s
ability to design sequences that closely match the target structure,
while the BLOSUM score measures the similarity between the designed
sequences and the native sequences.

On both CAMEO and CASP datasets, CarbonDesign’s sequence
recovery rate and the BLOSUM score metrics outperform the other
comparative methods (Fig. 2a,b). Remarkably, we have observed
that utilizing a larger language model, ESM-3B, leads to a further
improvement in sequence design accuracy (Fig. 2e).

We further evaluated CarbonDesign using a dataset of orphan
proteins characterized by limited or no homologous sequences and
alack of structure templates. These proteins pose a significant chal-
lenge for existing structure prediction methods due to the scarcity of
evolutionary information'®"”?°*%3! They also serve as a rigorous test
set for protein sequence design, as they lack homologous information
inexisting sequence and structure databases. In our evaluation on the
orphan proteins from CASP15, CarbonDesign still dlemonstrated robust
performance, achieving asequence recovery rate of49.1% and outper-
forming all other representative methods (Supplementary Table 6).

Recent advancements in diffusion-based methods have enabled
the design of long backbone structures, which pose a challenge for
proteinsequence design. We curated a dataset of long proteins (>800
amino acids) from CASP15 and CAMEO test sets to evaluate Carbon-
Design’s performance. Notably, CarbonDesign achieved a sequence
recoveryrate of 55.1%, surpassing the compared methods. As anillustra-
tive example, we evaluated CarbonDesign on the multidrug-resistant
protein T1158 (Bos taurus MRP4) with a length of 1,340 amino acids
(Fig. 2f and Supplementary Table 5). CarbonDesign demonstrated a
sequence recovery rate of 58.1% and a template modelling (TM) score
of 0.97 when comparing the predicted structure viaESMFold with the
native structure.

As a case study, we examine the protein dual-wield NTPase
(dwNTPase) (Fig. 2g)*, which exhibits a highly novel architecture
discovered through data mining of predicted structures in the Alpha-
Fold DataBase*. CarbonDesign successfully generates a sequence
with a high sequence recovery rate of 70.2%. This case highlights the
robustness of CarbonDesign with predicted backbone structures and
its strong model generalization, enabling accurate designs for novel
fold types.

Improving de novo protein design with CarbonDesign

Recent diffusion-based methods, such as RFdiffusion, have revolution-
ized de novo protein design by generating novel backbone structures
across diverse fold types that have never been observed in nature. In
light of these advancements, we evaluate the efficacy of CarbonDesign
in enhancing protein de novo design by generating more accurate
sequences for these backbone structures.

Since native sequences are unavailable for evaluating sequence
recovery rate and BLOSUM similarity score, we employ the self-
consistency TM (scTM) score as an alternative measure. Specifically,
we first utilize ESMFold to predict the structures of the designed
sequences corresponding to the backbone structures generated by
RFdiffusion. We then use the TM score to measure the consistency
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between predicted and original structures. We also note that while the
scTM score is commonly used as a surrogate when native sequences
and crystal structures are unavailable, its reliability is contingent upon
the accuracy of protein structure prediction.

Following ProteinMPNN and ESM-IF, we introduced noise into
the crystal structures during training. This approach accounts for
the fact that in practical applications, de novo-generated structures
or predicted structures may not exhibit the same level of precision
as crystal structures commonly used in training. We generated 2,560
backbone structures of variable lengths (ranging from 200 to 600
amino acids) using RFdiffusion and evaluated the performance of
CarbonDesign and ProteinMPNN with different noise levels.

Our results highlight two main findings. First, CarbonDesign con-
sistently outperforms ProteinMPNN in terms of the scTM score at
eachnoiselevel (Fig.3b). Second, we observed that higher noise levels
improve the performance of both CarbonDesign and ProteinMPNN,
indicating the beneficial role of noise in generating sequences for
de novo structures. More specifically, CarbonDesign demonstrates
superior performance over the existing representative methods,
including ProteinMPNN and ESM-IF, across all different lengths (Fig. 3a).

To assess the broad applicability of CarbonDesign in enhancing
protein de novo design, we extend our evaluation to include
FrameDiff, another recent diffusion-based method. CarbonDesign
still outperforms all other comparison methods. (Supplementary
Fig.3), demonstrating the efficacy of CarbonDesign in enhancing the
performance of FrameDiff.

Moreover, we present a successful example of a generated back-
bone structure consisting of 500 residues. CarbonDesign achieves
a scTM score of 0.98, which is significantly higher than ESM-IF
(scTM = 0.24) and ProteinMPNN (scTM = 0.69) (Fig.3c). Furthermore,
we demonstrate other successful examples of designed sequences of
variable lengths (Fig. 3d).

To generate a group of diverse sequences for a given backbone
structure in various downstream design tasks, we introduce the tem-
perature parameter T during inference to control the diversity of the
designed sequences (Methods). As T increases, CarbonDesign can
sample agroup of more diverse sequences (Supplementary Tables 10
and 11). Additionally, we observe that a more constrained structural
context leads to a decrease in residue-level diversity of the designed
sequences (Supplementary Fig. 6).
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Predicting functional effects of variants via CarbonDesign

The accurate interpretation of the functional effects of variants is
crucial indirected evolution-based protein engineering®***, aswell asin
the context of human genetic studies and clinical testing®**. Pretrained
language models have emerged as effective zero-shot predictors, allevi-
ating theissue of limited labelled data and mitigating potential human
biasesin variantannotation®*. We now show that CarbonDesign also sup-
ports zero-shot learning for functional effects prediction, indicating its
ability to capture the inherent sequence-structure-functionrelations.

Wefirstuse AlphaFold to predict the proteinstructures for the test-
ing sequences, which serve as inputs of CarbonDesign. Subsequently,
to score the mutational effects of variants on a particular sequence,
we calculate the ratio between the likelihoods of the mutated and
wild-type sequences based on the CarbonDesign model (Methods).

We evaluate CarbonDesign on deep mutational scanning datasets
with experimentally determined functional scores®. CarbonDesign
achieves aSpearman correlation of 0.43, outperforming pure language
model-based approaches including ESM-1v and ProGen2 (Fig. 4a).
Furthermore, integrating the scores of CarbonDesign and the other
two methods improves the performance, resulting in a Spearman
correlation of 0.47. This highlights that CarbonDesign, as a structure-
based method, canimprove the interpretation of functional effectsin
combination with purely language model-based methods.

We also compared CarbonDesign with multiple sequence align-
ment (MSA)-based methods, such as EVE” and MSA-Transformer*’, as
wellas the ensemble methods (Supplementary Table 14). Notably, when
combined withthe MSA-based method EVE, CarbonDesign achieved a
Spearman correlation of 0.50, surpassing the current leading ensemble
method EVE+Tranception (MSA retrieval)®. This observation sug-
gests that CarbonDesign, integrating structural information, can
also enhance the performance of MSA-based methods in variant
effects prediction.

We next assess CarbonDesign in predicting the pathogenicity
of human genetic variants. Specifically, we focus on four well-known
disease risk genes (BRCAI (ref. 41), TP53 (ref. 42), PTEN (ref. 43) and
MSH2 (ref. 44)) that have a substantial number of high-quality clinical
labels in ClinVar. CarbonDesign achieves good separation of benign
and pathogenic variants for TP53and PTEN, with areaunder thereceiver
operating characteristic curve values exceeding 0.95 (Fig. 4b). Addi-
tionally, CarbonDesign outperforms pure language model-based
approaches on average in this context (Supplementary Table 7).

Furthermore, we observed a correlation between the predicted
amino acid distribution and the protein structures. We utilize the
entropy of the predicted amino acid distribution as a metric of con-
servation, with lower entropy indicating higher conservation. As a
proof of concept, we examine two proteins, Navl.4-p, (ref. 45) (Fig. 4c)
and indole-3-glycerol phosphate synthase*® (Fig. 4d). In both cases,
regions with lower entropy coincide with hydrophobic core regions
associated with functional regions such as the sodium channel and
phosphate binding sites.

Interpreting the CarbonDesign
We trained and evaluated several ablation models to evaluate the rela-
tive contributions of the key architecture to CarbonDesign accuracy.

CarbonDesign utilizes the side-chain head to generate side-chain
structures of all possible amino acids at each position. We evaluated
the prediction accuracy of side chains using the CAMEO and CASP15
datasets and investigated the contribution of side-chain heads for
sequence design accuracy.

CarbonDesign achieves an average root mean squared distance
(RMSD) of 0.805. Moreover, the side-chain prediction accuracy strongly
correlates with the structural context constraints, measured by the
number of C atoms within an 8 A radius around each residue. Higher
side-chain prediction accuracy was observed for more constrained
residues (Fig. 5a). For example, the side-chain head of CarbonDesign

demonstrated higher prediction accuracy with an RMSD of 0.683 for
the protein T1159 (PDBID, 7PTZ (ref. 47)) (Fig. 5¢).

There also exhibits a strong correlation between the side-chain
prediction accuracy and sequence design accuracy, with a Pearson
correlation of 0.73 (Fig. 5b). The more constrained structural context
leads toimproved prediction accuracy for both side-chain prediction
and sequence design tasks, consistent with prior studies®'°. Addition-
ally, training a modified model with the side-chain head removed
demonstrates the beneficial effect of the side-chain head in enhancing
the accuracy of designed sequences (Supplementary Table1).

Network recycling allows the model to incorporate the protein
language model in an end-to-end manner. We further assess the con-
tribution of network recycling and the additional sequence embedding
from the language models during the recycling stages. Increasing
the number of recycling iterations results in an improved sequence
recovery rate of designed sequences (Fig. 5d).

Additionally, network recycling and the protein language model
enhance de novo protein design evaluated on the backbone structures
from the diffusion generative model (Fig. 5e). We also investigate the
ablation model of CarbonDesign without using pretrained language
models for the task of predicting variant effects, and we observe that
the language models can enhance the performance (Supplementary
Tables15and 16).

We next explore the accuracy of sequence design at protein core
and surface regions. CarbonDesign demonstrates notably higher
accuracy at coreregions compared to surface regions (Supplementary
Fig.4), inline with previous research',

The pair amino acid head in CarbonDesign directly guides the
learning of pair representationsin Inverseformer and the pair couplings
terminthe MRF-sequence module. We trained amodified model exclud-
ing the pair head to evaluate its contribution. Notably, the pair head sig-
nificantlyimproves performance for bothcrystalstructures (Fig. 5h) and
denovostructures (Fig. 5i). Furthermore, weinvestigated the differences
betweentheaminoaciddistributionin the designed and native sequences,
measured as Kullback-Leibler (KL) divergence. The model with the pair
head cangenerate sequences withacloser aminoacid distributiontothe
native sequences (Fig. 5f and Supplementary Fig. 5). We also observed a
slight improvement in predicting the functional effects of the variants
withthe deep mutational scanning (DMS) testing dataset (Fig. 5g). These
findings underscore the efficacy of the pair head in CarbonDesign.

Discussion
We present CarbonDesign, an approach for protein sequence design
thatincorporates key concepts from recent successful methods in
protein structure prediction. Specifically, CarbonDesign utilizes the
inverseformer architecture, network recycling technique and multitask
learning strategy to enhance sequence design. Our results demon-
strate that CarbonDesign outperforms existing methods in generat-
ing candidate sequences for crystal structures, predicted structures
and de novo structures derived from diffusion generative models,
showing its utility in the de novo protein design scenario. Moreover,
CarbonDesign supports zero-shot learning for predicting the func-
tional effects of sequence variants, highlighting its ability to capture the
intrinsic relationships between protein sequences and their functions.
We utilize diverse metrics, including the sequence recovery rate,
BLOSUM score, scTM score and Rosetta energy, to assess the quality of
the designed sequences. The choice of computational metrics varies
depending onthe nature of the testing sets. For crystal structures with
known sequences such as the independent testing set of CASP15 and
CAMEO, we use more exact metrics including the sequence recovery
rate and BLOSUM similarity score'. For de novo backbone structures
generated from RFDiffusion or other computational methodsin prac-
tical applications, where the true sequences are unknown, the scTM
score acts as a proxy measure, assessing the deviation between the
provided backbone structures and the predicted structures of the
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Fig. 4| Evaluation of CarbonDesgin in interpreting functional effects of
variants. a, Evaluation on variants from 49 deep mutational scanning essays. The
X axis represents the names of the proteins in the essays and the y axis represents
the Spearman correlation coefficient. b, Evaluation on clinical labelled variants
in ClinVar for four well-known disease risk genes, BRCA1, TP53, PTEN and MSH2.
Thexaxis represents the positions of variants on the proteins and the y axis
represents the functional scores predicted by CarbonDesign. ¢, Entropy variation

of protein Nav1.4-f,, with each position colour-coded based on the level of
entropy. Blue regions indicate areas of low entropy, white regions indicate areas
of high entropy and red indicates other binding peptides. d, Entropy variation of
proteinindole-3-glycerol phosphate synthase, with each position colour-coded
based on the level of entropy. Blue indicates areas of low entropy, red indicates
areas of high entropy and red ions represent phosphate ions. AUC, the area under
thereceiver operating characteristic curve.

designed sequences®"*$, We note that this proxy is limited by the capac-
ity of the protein structure prediction methods. While recent deep
learning-based methods such as CarbonDesign, ProteinMPNN' and
ABCUS-R (ref. 13) have significantly improved protein sequence design,

capable of generating more exact sequences in a high-throughput
manner, classical energy-based methods such as Rosetta software
have their distinct advantages. For example, Rosetta software exhibits
aremarkable performancein terms of Rosetta energy®, outperforming
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Fig. 5| Evaluation of ablation models of CarbonDesign. a, Correlation between
RMSD error of side-chain structure prediction and the number of Cf atoms within
an 8 A radius around each residue. b, Correlation between sequence design
accuracy and side-chain structure prediction accuracy on CAMEO and CASP15
datasets. The x axis represents the sequence recovery rate and the y axis represents
the RMSD between predicted and native side-chain structures. ¢, lllustrative case
of protein T1159 with predicted side-chain structures. Positions of LEU3, GLY7,
THRS, ALA11, TYR47, TYR50, PHES8, LEU61 and THR62 are shown, with predicted
structures in orange and native structures in blue. d, Evaluation of CarbonDesign

Length (amino acids)

with varying recycling times, measured by sequence recovery rate on CAMEO
and CASP15 testing sets. e, Evaluation of CarbonDesign with varying recycling
times, measured by scTM score on the backbone structures from RFdiffusion.

f, KL divergence of the amino acid distribution between designed sequences and
the sequences from CAMEO and CASP15 datasets. g-i, Evaluation of the effects of
pair head in MRF modelling on performance in deep mutational scanning testing
set (g), CAMEO and CASP15 testing sets (h), and de novo backbone structures
from RFdiffusion (i). Blue represents the default CarbonDesign model and red
represents the model with the pair head in the MRF model excluded.

all other deep learning-based methods. They do not rely on extensive
training data, thereby avoiding biases introduced by training data.

CarbonDesign can leverage evolutionary constraints from
large-scale pretrained protein language models. Several previous
studies have also demonstrated the utility of language modelsin vari-
ous computational protein design scenarios. For example, ProGen2
employs a generative pretrained transformer model to generate
sequences with control tags specifying protein properties®. Ref. 51
utilizes general protein language models to efficiently evolve human
antibodies, leading to asubstantialimprovementinantibody binding
affinity. Our CarbonDesign adopts the network recycling technique to
seamlessly integrate language models into structure-based protein
designinanend-to-end manner.

Our work is limited in focusing solely on the in silico evaluation
of the designed sequences. While in silico metrics provide empiri-
cal evidence of whether the designed sequences can fold correctly
and exhibit the desired function and are commonly used in the
existing methods'*", wet-lab experimental validation is crucial for
acomprehensive evaluation of CarbonDesign. It could offer valuable
insights and opportunities for improvement and remains our main
future work.

Methods

Evaluation datasets

CAMEO testing set. We compiled a test set of 728 proteins from the
recent CAMEO campaign (between February 2022 and February 2023).
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After excluding short proteins with fewer than 80 amino acids, the final
test set consisted of 642 proteins.

CASP15 testing set. We included all available proteins from CASP15
thatwere not cancelled and excluded proteins with lengthsless than 80
aminoacids, resultingin atest set of 65 proteins (Supplementary Table2).

Testing set of long proteins. Tobenchmark the performance of long
proteins, we collected proteins with more than 800 amino acids from
the CAMEO and CASP15 testing sets. We then used MMseqs to filter
overlaps between the two sets with a sequence identity of 40% and
selected the representative protein from each cluster. The final test
set comprises 13 proteins, with an average length of 1,239 amino acids
(Supplementary Table 3).

Testing set of orphan proteins. We curated a testing set of nine
orphan proteins fromthe CASP15 set. Following the criteria of orphan
proteins in previous work?’, we first perform the standard AlphFold
MSA search process against UniProt Reference Clusters (UniRef)*,
MGnify>® and BFD** databases using HHBIits* and Jackhmmer®. Our
selection was ultimately narrowed down to proteins that have fewer
than 100 homologous sequences and failed to produce a template
witha TMscore surpassing 0.5 (Supplementary Table 4).

De novo backbone structures. We employ RFdiffusion to generate
denovobackbonesstructures with variable lengths (200,300,400, 500
and 600 amino acids), producing 512 structures for eachlength. We also
utilize FrameDiffto generate another set of de novo backbone structures.

Deep mutational scanning dataset. To evaluate CarbonDesign’s effi-
cacy in predicting the functional effects of variants, we compiled the
experimentally validated variants from DMS essays. For the proteins
lacking solved crystal structures or with incomplete structures, we
use AlphaFold to predict their structures asinputs for CarbonDesign.
Due to the limited prediction accuracy of AlaphaFold and other
prediction methods for long protein sequences, and the substantial
computational resources required, we restrict our analysis to proteins
with fewer than 600 amino acids from the ProteinGym DMS dataset.
The final testing dataset consists 0f 179,023 variants on 49 genes.

Genetic variants on disease genes. To access CarbonDesign’s per-
formancein prioritizinghuman disease-related variants, we collected
the clinically labelled variants from the ClinVar database for four
well-studied disease risk genes: TP53, PTEN, BRCA1 and MSH2. Each
variant in this dataset is annotated as either pathogenic or benign.
This data includes 118 pathogenic (positives) and 175 benign (nega-
tives) variants for BRCA1,111 positives and two negatives for PTEN, 130
positives and 33 negatives for TP53, and 69 positives and 31 negatives
for MSH2, respectively.

Training dataset

We trained CarbonDesign on protein chains in the Protein Data Bank
(PDB) released before 1January 2020, determined by X-ray crystallo-
graphy or cryogenic electron microscopy. We only include the struc-
tures with a resolution better than 5.0 A and with more than 50 amino
acids. Sequences were clustered at 40% sequence identity cutoffusing
MMseqs2, resulting in 30,828 clusters.

Input features
CarbonDesgin incorporates inter-residue distances as edge features
and local orientations of four consecutive Ca atoms as node features.

Edge features. Following ProteinMPNN', we calculate the distances
between N, Ca, C and O atoms, and virtual Cf3 atoms for each residue
pair. Wethen divide the distances from 0 Ato15 Ainto 20 bins. The bin

indices are then one-hot encoded and mapped through a feed-forward
layer toinitialize the pair representations. We note that we mask all the
edges whose distance exceeds15 A. Additionally, following AlphaFold,
we incorporate relative positional encoding for edge features.

Node features. For each residue at position i, we employ the Gram-
Schmidt process to calculate the local frame defined by the Ci2,
Ci-tand Ci atoms. In this frame, C, serves as the origin, the direction
of Ci-' as the x axis, and Ci2 determines the x-y plane. Specifically,
its basis [a, b, c] is obtained as follows:

ci-l_ci

b= ax(Ci2-Cl) Q)
”ax(ci;tcﬁ,)H

c=axb

Subsequently, the orientation of Cif! is represented using its local
coordinate with respect to this frame (Supplementary Fig. 2). Similarly,
we calculate the local orientation of Ci-! with respect to the C, Ci!
and Cir?atoms.

Inverseformer architecture
We utilize a series of Inverseformer blocks to learn representations
from the input backbone structures (Algorithm 1). Each block has a
single representation s;of nodes and a pair representation z; of edges
asitsinput and output and processes them through several layers.
We leverage row and column aggregation layers to update the
single representations from the pair representations (equation (2)).
Wenote that the aggregation layers are specifically tailored to incorpo-
rate edge information directly. The original row and column attention
layers inthe AlaphaFold Evformer architecture are unsuitable for our
purpose, asthey primarily focus on aggregating information on nodes,
with only abias on edges.

T

L
S —S; + (E Transition(z,»j))
i=0

2)

L
S <8 + ( D Transition(Zy))
=

We adopt asimilar approach as AlphaFold for updating pair repre-
sentations. We use an ‘Outer product mean’block tointegrate the single
representations, followed by triangular update blocks. Furthermore, we
introduce residual connections and dropout layersto prevent overfitting.

Thefinal Inverseformer block produces a highly processed single
representation s; for individual residues and a pair representation z;
for residue-residue pairs, which contain the necessary information
for the MRF-sequence module to decode the sequences. These repre-
sentations are crucial for accurately predicting the protein sequences.

Algorithm 1: Inverseformer

function INVERSEFORMER(S;, Z;)
s; < s;+ Dropout(RowAgreggation(z;)) > Node update
s; < s;+ Dropout(ColumnAgreggation(z;))
z; < z;+OuterProductMean(s,) > Communication
z; < z; + Dropout(TriangularMultiplicativeOutgoing(z;))
> Edge update
z; < z;+ Dropout(TriangularMultiplicativelncoming(z;))
z; < z;+ Dropout(TriangleAttentionStartingNode(z;))
z; < z;+Dropout(TriangleAttentionEndingNode(z;))
z; < z;+Dropout(PairTransition(z;))
returns; z;
end function
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MRF-sequence module

We employ an MRF(Markov random field)-sequence module to decode
the sequence from the learned representations. We denote a protein
sequence of length L as x and the type of the i-th amino acid as x;. And
we use the random variable X to denote the predicted amino acid
sequence.

MRFs have proven effective in modelling the distributions of
sequences within a protein family?*”. In CarbonDesign, we adopt an
amortized MRF model to describe the distribution of the designed
sequences (equation (3)), which is conditioned on the learned single
representations s and pair representations z:

1 L Lot
PX=x|s,2) = > exp Dhx;Is)+Y) Y ei(xiX;]Zy) 3
=

i=1j=i+1

Here, h;and e; are the conversation bias term and pairwise coupling
term, respectively, in the vanilla MRF model, and Zis the partition
function. For CarbonDesign, we employ a feed-forward layer to
project the learned single representation s; and pair representation
z;to h;and ey, respectively. The training and inference of the MRF
model are interconnected with other modules in CarbonDesign and
will be elaborated onin the subsequent sections.

Training losses

The network is trained end-to-end, with gradients coming from the
losses for reconstructing native sequences and predicting side-chain
atomic coordinates. The total per-example loss can be defined as
follows:

L= 'Csingle + Lpair + O-ZLSideChain “4)

To restore native sequences, we utilize single cross-entropy loss
Lingle and pairwise cross-entropy loss £, asdirect supervision for the
conservation bias term h;(x;| s;) and the pairwise coupling term
e;(x;, x;1z), respectively. To calculate £pge, We linearly project the
single representations s, to obtain logits and then compute the
cross-entropy loss using the native sequence aslabels. For £ ,;,, we use
a pairwise pseudo-likelihood (equation (5)) to approximate the full
likelihood of the sequence under the MRF model, following our previ-
ous work on residue-residue contacts prediction®. For each pair of
amino acids in the sequence, its pseudo-likelihood conditioned on
other amino acidsis given by:

LpseudoXi» X)) = 10g P (X; = X;, X; = X; | X+ jy = X 338, 2)

= log zi exp {hi (il + by (x51'8)) + e (X3 %7 Z7) )

+ X [ew O xe Zi) + e (X5 Xk | Zjx) |
ki

Here, Z;is thelocal partial function. This pseudo-likelihood produces
the predicted distribution of amino acid pairs, and £, is computed
with pairwise amino acid identities as the labels. We note that £,
candirectly supervise ¢;in the MRF-sequence module and pair repre-
sentationz;in the inverseformer. Additionally, weadded a 0.01factor
of L1and L2 regularization terms into £

The side-chain loss consists of three components:

'Csidechain = Lmse + Ltorsion + O-Olﬁanglenorm (6)

Lmse i the mean squared error (MSE) for predicted side-chain atomic
coordinates. Additionally, following AlphaFold, we incorporate the
loss terms Liorsion aNd Langlenorm tO €valuate the error of side-chain
torsion angles®.

Additional training details

For training, we utilize the Adam* optimizer with a 8, value of 0.9 and
afB,value of 0.99, where 8, and 3, represent coefficients used for com-
puting running averages of the gradient and its square, respectively.
Thebase learning rate is set to 3 x 10~ with awarm-up period 0f 1,000
steps, starting from1 x 107%, and the training proceeds for an additional
20,000 steps. We randomly crop very long proteins during training
withacrop size of 400. The network architecture and training pipeline
areimplemented in PyTorch®®, and training is performed on16 NVIDIA
A40 Graphics Processing Units.

We trained several ablation models to assess the contribu-
tions of different mechanisms utilized in CarbonDesign. Following
ProteinMPNN'’ and ESM-IF", we add noises to structures during train-
ing to deal with noises in de novo and predicted backbone structures
inpractical applications. In the default CarbonDesin model, we added
a0.2 Anoiseto half of the training samples (referred to as small noise).
To further investigate the effects of noise levels on the performance
withde novobackbone structures, we trained two additional models:
onewithout any noise (referred to as no noise), and another witha 0.2 A
noise applied to all training samples (referred to as large noise). For
more details on other ablation studies, please refer to Supplementary
Table9.

Score for predicting functional effects of variants

In CarbonDesign, each variant is scored using the log odds ratio
between the mutated and wild-type sequences. The variant score is
defined as:

P(X =x™|s,z)

variantscore = ———————=
PX=x""1s,2)

@

Here, P(X =x™s, z) and P(X = x"'|s, z) represents likelihood of the
mutated (mt) and wild-type (wt) sequence, respectively, under the
amortized MRF model (equation (3)).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The training data were obtained from the PDB website (http:/www.
rcsb.org/). The testing sets were acquired from CASP15 (https://pre-
dictioncenter.org/casp15/) and CAMEO (https://www.cameo3d.org).
Other datasets supporting the findings of this study are availablein the
paper and the Supplementary Information. Source data are provided
with this paper.

Code availability

The CarbonDesign software is available on both GitHub (https://github.
com/zhanghaicang/carbonmatrix_public) and Code Ocean (https://
codeocean.com/capsule/5915382/tree)*’.

References

1. Cao, L. etal. De novo design of picomolar SARS-CoV-2
miniprotein inhibitors. Science 370, 426-431(2020).

2. Bryan, C. M. et al. Computational design of a synthetic PD-1
agonist. Proc. Natl Acad. Sci. USA 118, 2102164118 (2021).

3.  Yeh, A. H.-W. et al. De novo design of luciferases using deep
learning. Nature 614, 774-780 (2023).

4. Dou, J. et al. De novo design of a fluorescence-activating
beta-barrel. Nature 561, 485-491(2018).

5. Vorobieva, A. A. et al. De novo design of transmembrane beta
barrels. Science 371, 8182 (2021).

6. Kuhlman, B. et al. Design of a novel globular protein fold with
atomic-level accuracy. Science 302, 1364-1368 (2003).

Nature Machine Intelligence | Volume 6 | May 2024 | 536-547

545


http://www.nature.com/natmachintell
http://www.rcsb.org/
http://www.rcsb.org/
https://predictioncenter.org/casp15/
https://predictioncenter.org/casp15/
https://www.cameo3d.org
https://github.com/zhanghaicang/carbonmatrix_public
https://github.com/zhanghaicang/carbonmatrix_public
https://codeocean.com/capsule/5915382/tree
https://codeocean.com/capsule/5915382/tree

Article

https://doi.org/10.1038/s42256-024-00838-2

10.

mn

12.

13.

4.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Watson, J. L. et al. De novo design of protein structure and
function with RFdiffusion. Nature https://doi.org/10.1038/
s41586-023-06415-8 (2023).

Yim, J. et al. SE(3) diffusion model with application to protein
backbone generation. In Proc. of the 40th International
Conference on Machine Learning (eds Krause, A. et al.)
40001-40039 (PMLR, 2023).

Ingraham, J. et al. Illuminating protein space with a programmable
generative model. Nature 623, 1070-1078 (2023).

Dauparas, J. et al. Robust deep learning-based protein sequence
design using ProteinMPNN. Science 378, 49-56 (2022).

Hsu, C. et al. Learning inverse folding from millions of predicted
structures. In Proc. of the 39th International Conference on
Machine Learning (eds Chaudhuri, K. et al.) 8946-8970

(PMLR, 2022).

Anand, N. et al. Protein sequence design with a learned potential.
Nat. Commun. 13, 746 (2022).

Liu, V. et al. Rotamer-free protein sequence design based on
deep learning and self-consistency. Nat. Comput. Sci. 2, 451-462
(2022).

Huang, B. et al. Accurate and efficient protein sequence design
through learning concise local environment of residues.
Bioinformatics 39, 122 (2023).

Ingraham, J. et al. Generative models for graph-based protein
design. In Proc. of Advances in Neural Information Processing
Systems (eds Wallach, H. et al) 15820-15831 (NeurlPS, 2019).
Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583-589 (2021).

Baek, M. et al. Accurate prediction of protein structures and
interactions using a three-track neural network. Science 373,
871-876 (2021).

Carreira, J. et al. Human pose estimation with iterative error
feedback. In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (eds Bajcsy, R. et al.) 4733-4742 (IEEE,
2016).

Tu, Z. & Bai, X. Auto-context and its application to high-level vision
tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 32, 1744-1757 (2010).

Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein
structure with a language model. Science 379, 1123-1130 (2023).
Robin, X. et al. Continuous Automated Model EvaluatiOn
(CAMEO)—perspectives on the future of fully automated
evaluation of structure prediction methods. Proteins 89,
1977-1986 (2021).

CASP15. Critical Assessment of Techniques for Protien Structure
Prediction, 15th Round. Abstract Book (Protein Structure Prediction
Center, 2022); https://predictioncenter.org/casp15/doc/CASP15_
Abstracts.pdf

Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference (Morgan Kaufmann, 1988).

Wainwright, M. J. & Jordan, M. I. Graphical models, exponential
families, and variational inference. Found. Trends Mach. Learn. 1,
1-305 (2008).

Zhang, H. et al. Predicting protein inter-residue contacts

using composite likelihood maximization and deep learning.
BMC Bioinform. 20, 537 (2019).

Ekeberg, M., Lévkvist, C., Lan, Y., Weigt, M. & Aurell, E. Improved
contact prediction in proteins: using pseudolikelihoods to infer
Potts models. Phys. Rev. E 87, 012707 (2013).

Morcos, F. et al. Direct-coupling analysis of residue coevolution
captures native contacts across many protein families. Proc. Natl
Acad. Sci. USA 108, 1293-1301 (2011).

Alford, R. F. et al. The Rosetta all-atom energy function for
macromolecular modeling and design. J. Chem. Theory Comput.
13, 3031-3048 (2017).

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from
protein blocks. Proc. Natl Acad. Sci. USA 89, 10915-10919 (1992).
Wang, W., Peng, Z. & Yang, J. Single-sequence protein structure
prediction using supervised transformer protein language
models. Nat. Comput. Sci. 2, 804-814 (2022).

Chowdhury, R. et al. Single-sequence protein structure prediction
using a language model and deep learning. Nat. Biotechnol. 40,
1617-1623 (2022).

Sakuma, K., Koike, R. & Ota, M. Dual-wield NTPases: a novel protein
family mined from AlphaFold DB. Protein Science. 33, e4934 (2024).
Varadi, M. et al. AlphaFold Protein Structure Database: massively
expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic Acids Res. 50, 439-444 (2022).
Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided
directed evolution for protein engineering. Nat. Methods 16,
687-694 (2019).

Shin, J.-E. et al. Protein design and variant prediction using
autoregressive generative models. Nat. Commun. 12, 2403 (2021).
Lek, M. et al. Analysis of protein-coding genetic variation in
60,706 humans. Nature 536, 285-291 (2016).

Frazer, J. et al. Disease variant prediction with deep generative
models of evolutionary data. Nature 599, 91-95 (2021).

Meier, J. et al. Language models enable zero-shot prediction of
the effects of mutations on protein function. In Proc. of Advances
in Neural Information Processing Systems (eds Ranzato, M. et al.)
29287-29303 (NeurlPS, 2021).

Notin, P. et al. Tranception: protein fitness prediction with
autoregressive transformers and inference-time retrieval. In

Proc. of the 39th International Conference on Machine Learning
(eds Chaudhuri, K. et al.) 16990-17017 (PMLR, 2022).

Rao, R. M. et al. MSA transformer. In Proc. of the 38th International
Conference on Machine Learning (eds Meila, M and Zhang, T.)
8844-8856 (PMLR, 2021).

Findlay, G. M. et al. Accurate classification of BRCA1 variants with
saturation genome editing. Nature 562, 217-222 (2018).

Kotler, E. et al. A systematic p53 mutation library links differential
functional impact to cancer mutation pattern and evolutionary
conservation. Mol. Cell 71,178-1908 (2018).

Mighell, T. L., Evans-Dutson, S. & O'Roak, B. J. A saturation
mutagenesis approach to understanding PTEN lipid phosphatase
activity and genotype-phenotype relationships. Am. J. Hum. Genet.
102, 943-955 (2018).

Jia, X. et al. Massively parallel functional testing of MSH2
missense variants conferring Lynch syndrome risk. Am. J. Hum.
Genet. 108, 163-175 (2021).

Pan, X. et al. Structure of the human voltage-gated sodium
channel Nav1.4 in complex with betal. Science 362, 2486 (2018).
Hennig, M., Darimont, B., Sterner, R., Kirschner, K. & Jansonius,
J.N. 2.0A structure of indole-3-glycerol phosphate synthase

from the hyperthermophile Sulfolobus solfataricus: possible
determinants of protein stability. Structure 3, 1295-1306 (1995).
Banerjee, S. et al. Protonation state of an important histidine

from high resolution structures of lytic polysaccharide
monooxygenases. Biomolecules https://doi.org/10.3390/
biom12020194 (2022).

Watson, J. L. et al. De novo design of protein structure and
function with RFdiffusion. Nature 620, 1089-1100 (2023).

Leman, J. K. et al. Macromolecular modeling and design in rosetta:
recent methods and frameworks. Nat. Methods 17, 665-680 (2020).
Madani, A. et al. Large language models generate functional
protein sequences across diverse families. Nat. Biotechnol.
https://doi.org/10.1038/s41587-022-01618-2 (2023).

Hie, B. L. et al. Efficient evolution of human antibodies from
general protein language models. Nat. Biotechnol. https://doi.org/
10.1038/s41587-023-01763-2 (2023).

Nature Machine Intelligence | Volume 6 | May 2024 | 536-547

546


http://www.nature.com/natmachintell
https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.1038/s41586-023-06415-8
https://predictioncenter.org/casp15/doc/CASP15_Abstracts.pdf
https://predictioncenter.org/casp15/doc/CASP15_Abstracts.pdf
https://doi.org/10.3390/biom12020194
https://doi.org/10.3390/biom12020194
https://doi.org/10.1038/s41587-022-01618-2
https://doi.org/10.1038/s41587-023-01763-2
https://doi.org/10.1038/s41587-023-01763-2

Article

https://doi.org/10.1038/s42256-024-00838-2

52. Suzek, B. E. et al. UniRef clusters: a comprehensive and
scalable alternative for improving sequence similarity searches.
Bioinformatics 31, 926-932 (2015).

53. Mitchell, A. L. et al. MGnify: the microbiome analysis resource in
2020. Nucleic Acids Res. 48, 570-578 (2020).

54. Mirdita, M. et al. Uniclust databases of clustered and deeply
annotated protein sequences and alignments. Nucleic Acids Res.
45, 170-176 (2017).

55. Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits:
lightning-fast iterative protein sequence searching by HMM-HMM
alignment. Nat. Methods 9, 173-175 (2012).

56. Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov
model speed heuristic and iterative HMM search procedure.
BMC Bioinform. 11, 431 (2010).

57. Kingma, D. P. & Ba, J. Adam: a method for stochastic
optimization. In Proc. of the International Conference on Learning
Representations (eds Bengio, Y. et al.) 210-219, (ICLR 2015).

58. Paszke, A. et al. PyTorch: an imperative style, high-performance
deep learning library. In Proc. of Advances in Neural Information
Processing Systems (eds Wallach, H. et al.) 8024-8035 (NeurlPS,
2019).

59. Ren, M., Yu, C., Bu, D. & Zhang, H. Accurate and robust protein
sequence design with Carbondesign. Code Ocean https://doi.org/
10.24433/C0.5915382.v2 (2024).

Acknowledgements

We acknowledge the financial support from the National Natural
Science Foundation of China (grant no. 32370657) and the Project

of Youth Innovation Promotion Association CAS to H.Z. We also
acknowledge the financial support from the Development Program of
China (grant no. 2020YFA0907000) and the National Natural Science
Foundation of China (grant nos. 32271297 and 62072435). We thank
Beijing Paratera Co., Ltd and the ICT Computing-X Center, Chinese
Academy of Sciences, for providing computational resources.

Author contributions

H.Z. conceived the ideas and implemented the CarbonDesign
model and algorithms. H.Z. and M.R. designed the experiments, and
M.R. conducted the main experiments and analysis. M.R. wrote the
manuscript. H.Z., D.B. and CJ. revised the manuscript.

Competinginterests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s42256-024-00838-2.

Correspondence and requests for materials should be addressed to
Dongbo Bu or Haicang Zhang.

Peer review information Nature Machine Intelligence thanks Haiyan Liu
and Dong Xu for their contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited
2024

Nature Machine Intelligence | Volume 6 | May 2024 | 536-547

547


http://www.nature.com/natmachintell
https://doi.org/10.24433/CO.5915382.v2
https://doi.org/10.24433/CO.5915382.v2
https://doi.org/10.1038/s42256-024-00838-2
http://www.nature.com/reprints

nature portfolio

Corresponding author(s): Haicang Zhang

Last updated by author(s): Apr 1, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

>
Q
Q
c
@
O
]
=
o
=
—
®
©O
]
=
S
(e}
wv
c
3
3
Q
<

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] A description of all covariates tested

|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

X XX X OO 5

D A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

[T X X

|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection | We use RFdiffusion and FrameDiff to generate de novo protein structures. We use MMseqs2 to cluster the training data.

Data analysis PyMOL (version 2.5.0) was used to display the 3D structures, TM-score (version 1.0) was used to evaluate the predicted structures.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Our training set can be download from PDB website (http://www.rcsb.org/). Our testing sets are from CASP15 (https://predictioncenter.org/casp15/) and CAMEO
(https://www.cameo3d.org).




Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

>
QO
L
c
)
e,
o)
=
o
=
—
@
S,
o)
=
>
Q
wv
C
3
3
QO
<

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample sizes. We did not choose any specific sample sizes.
Data exclusions  None (no data were excluded from the analyses.)

Replication We have run our code three times, and each time it repeated successfully.

Randomization N/A (all analyses are automated, so all data is generated through calculations with default settings.)

Blinding N/A (all programs and analyses are preconfigured, so there was no user intervention that could have introduced bias.)

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern

XXX XXX s
oo




	Accurate and robust protein sequence design with CarbonDesign

	Results

	Model architecture

	End-to-end network recycling with a protein language model

	Multitask learning with sequence design

	Evaluating CarbonDesign on independent testing sets

	Improving de novo protein design with CarbonDesign

	Predicting functional effects of variants via CarbonDesign

	Interpreting the CarbonDesign


	Discussion

	Methods

	Evaluation datasets

	CAMEO testing set
	CASP15 testing set
	Testing set of long proteins
	Testing set of orphan proteins
	De novo backbone structures
	Deep mutational scanning dataset
	Genetic variants on disease genes

	Training dataset

	Input features

	Edge features
	Node features

	Inverseformer architecture

	MRF-sequence module

	Training losses

	Additional training details

	Score for predicting functional effects of variants

	Reporting summary


	Acknowledgements

	Fig. 1 CarbonDesign architecture.
	Fig. 2 Evaluation of CarbonDesign with the CAMEO and CASP15 independent testing sets.
	Fig. 3 Evaluation of CarbonDesign on de novo backbone structures from RFdiffusion.
	Fig. 4 Evaluation of CarbonDesgin in interpreting functional effects of variants.
	Fig. 5 Evaluation of ablation models of CarbonDesign.
	Table 1 Key concepts of CarbonDesign inspired by AlphaFold.




