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ABSTRACT

Domain experts possess valuable knowledge and insights that can help improve
the accuracy and relevance of the machine learning (ML) models. By incorpo-
rating expert opinions, the models can capture important nuances and factors that
may not be captured by data-driven methods alone. The integration of machine
learning models with human experts has become increasingly common in real-
world applications. In this paper, we propose a Bayesian framework for human-
in-the-loop pipelines. We consider the scenario where the final decision is a amal-
gamation of algorithm and expert opinions and deferral systems are a special case.
We finally show that updating expert opinion priors with information sharing be-
tween experts is key to achieving superior performance.

1 INTRODUCTION

The paper discusses the challenges of facilitating communication and cooperation between machine
learning models and human users in the context of healthcare. One approach to address this chal-
lenge is to prioritize interpretability and explanation in machine learning models, in particular where
decision-making involves uncertainty. By creating simple models and explaining model outcomes,
healthcare professionals and patients can better understand the decisions made by the model and
make more informed decisions themselves (Wilson & Daugherty, 2018; Han et al., 2011). To ex-
plore this approach, we propose a Bayesian framework for human-in-the-loop systems (Wu et al.,
2022) and leverage collaborative intelligence (Wilson & Daugherty, 2018). Our framework is de-
signed to tackle these situations with ease; we demonstrate this by designing an experiment where
the expert models were trained on subsets of features, mimicking the real-life experts who have do-
main knowledge in specific subfields of medical science. Our framework provides an optimal way
to estimate the posterior probabilities for the model parameters and an optimal way to combine the
inference of the experts. We also show that deferral systems (Keswani et al., 2021) are a special case
where the combining expert opinions follows a categorical distribution.

2 WHY IS HUMAN EXPERTISE STILL RELEVANT?

In healthcare, human emotions and connections are crucial, and the patient’s voice should be at the
center of concern (Jeffrey, 2016). Although machine learning algorithms may outperform humans
in many tasks, humans still have an advantage in multi-tasking and transfer learning. Human-in-
the-loop machine learning is necessary to monitor and control algorithms, and data limitations or
biases can affect the accuracy of algorithm outputs. Specialists and their domain expertise can
provide valuable information beyond what is captured in the data. Qualitative data, such as in-depth
interviews, can be important in understanding the etiology of a patient’s condition. Rare events may
not be included in a dataset, which can be problematic for rare disease diagnoses.

3 METHODOLOGY

In this Section, we consider a retrospective sample of 462 males in a heart-disease high-risk region of
the Western Cape, South Africa (Rossouw, 1983; Hastie et al., 2009). The goal is to predict whether
the patient has a coronary heart disease (“CHD”). The data was transformed by standardising the
clinical metrics.
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Model We suppose that a patient has CHD if the patient’s propensity (s) is high enough (i.e.,
s > τ for an inobservable threshold τ ). We refer the reader to Section A for the full mathematical
formulation. Ours is a simplistic example but extensions are easy to imagine, including more experts
(both human and algorithmic), more tasks, and learning. Moreover, to preserve some diversity, the
mixture itself can be hierarchical. The overall learning process is best described in Figure 1.

Scenarios In short, we consider one algorithm and four human experts, under five scenarios. In
the first four scenarios we consider the joint decision taken by the experts and the algorithm, while
in the last scenario we have a deferral system, with the system choosing to defer to one or more
human experts in cases of input where the classifier has low confidence. (1) The algorithm and
expert influence each other’s decision during training which we refer to as information sharing.
(2) The algorithm and expert influence each other’s decision and update their beliefs as new data
becomes available which we refer to as information sharing with dynamic priors. (3) The algorithm
and expert do not influence each other during training which we refer to as independent learners. (4)
The algorithm and expert do not influence each other but update their beliefs as new data becomes
available which we refer to as independent learners with dynamic priors. (5) The algorithm and
expert do not influence each other and a tertiary model selects an expert to infer from which we
refer to as deferral system.

Results We provide the results of our experiments in Table 1. As seen in our approach, the model
performs better when information sharing is possible between the experts and the algorithm and
outperforms when priors are dynamically updated.

Methodology AUC ROC F1 score
Deferral system 78.91 64.28

Independent learners with dynamic priors 75.37 57.63
Independent learners 72.85 58.82

Information sharing with dynamic priors 78.15 64.86
Information sharing 74.24 64.51

Table 1: Model performance

Figure 1: High-level view of human/machine collaboration with learning.

4 CONCLUSION

We hope to have shown, that it is possible to include human domain expertise into algorithms and
estimation processes. Our experiments conclude that information sharing between the experts during
estimation outperforms other scenarios and we hypothesise this corresponds to the experts learning
from errors made by themselves and their peers. Managing human feedback loop for is the key to
improving the quality of hybrid systems. Finally, our framework incorporates the real world scenario
where experts priors update as new observations become available.
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A MATHEMATICAL SET-UP

A.1 GENERAL SETTING

Throughout this paper, ϕµ,σ2 refers to the probability density function of a Gaussian variable with
mean µ and variance σ2 (i.e., N(µ, σ2)). Similarly, Φ denotes the standard Gaussian cumulative
distribution function. Geometric mixtures of experts can be found in Williams et al. (2001); Hinton
(2002). In this case study, we look at the problem of

• C different categories, c = 1, · · · , C,

• P different experts, j = 1, · · · , P .

Latent model We suppose that a user i is a member of class c if their propensity (or “interest”) sci
is above an (unknown) threshold, τ . In other words, for every i in category c,

Classci = 1{sci>τ}. (1)

In addition, we assume that the latent propensity can be expressed as sci = µc +σcεi, where the εi’s
are identically and independently distributed standard Gaussian variables. In other words, propensi-
ties are independent but their parameters are determined by the category c.
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Expert priors Each expert provides a prediction on µc (experts do not need to have an opinion
on everything). To be exact, we posit that each expert has a prior on µc that follows a normal
distribution N(µc,j , σ

2
c,j). We also assume that the threshold, τ , is common for all prospects and

categories, and has a Gaussian prior: τ ∼ N(t, v).

Mixture of experts Each expert is given a weight γj , which represents the importance given to his
or her opinions. The vector of weights γ = (γ1, · · · , γP )′ belongs to the simplex and has a Dirichlet
prior: γ ∼ Dirichlet(α). The experts are considered independent.

Learning As usual, we suppose that the overall system learns (by applying Bayes’ rule), so that
the weights get updated as information and observations become available.

A.2 SIMPLE CALCULATIONS

Since the mixture is geometric, the prior on each µc, c = 1, · · · , C can be written as

Prior(µc) ∝
P∏

j=1

ϕµc,j ,σ2
c,j
(µc)

γj , (2)

which can be shown to be a Gaussian distribution with variance σ2
c (γ) such that

1

σ2
c (γ)

=

P∑
j=1

γj
σ2
c,j

.

Furthermore, its mean is µc(γ), which is worth

µc(γ) =

∑P
j=1

γjµj

σ2
c,j∑P

j=1
γj

σ2
c,j

.

A.3 ESTIMATION

Let us now suppose that, for each category c, there are nc users and ac of these who are a member.
Based on the data generating process, it is easy to see that the posterior distribution of the parameters
µ = (µ1, · · · , µC)

′
, τ and γ is given by

Posterior ∝
C∏

c=1

(
nc

ac

)
Φ

(
µc − τ

σc

)ac

Φ

(
τ − µc

σc

)nc−ac

ϕµc(γ),σ2
c(γ)

(µc)ϕt,v(τ)Dirichletα(γ).

(3)

A.4 DYNAMIC PRIORS

We consider the scenario where at time t + 1 new observations have Xt+1 have become available.
Consider θ is the set of model parameters. Then, using Bayes rule:

Posterior p(θ|Xt, Xt+1) ∝ p(θ|Xt)p(Xt+1|θ) (4)

Hence learning on combined new data is equivalent to updating priors and estimating posterior only
using the new obeservations.

B EXPERIMENTATION

Multiple methods are available to compute the posterior distribution, in our example, however, we
have limited ourselves to the Maximum A Posteriori (“M.A.P.”), which is obtained via the L-BFGS-
B optimisation method.

In addition, we have set parameters as follows:
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• The threshold τ ’s prior is N(0, 1).

• The weights’ prior is Dirichlet(1, 1, 1, 1, 1).

• Prior on each expert is N(0, 1).

We begin by introducing the following notation. Let for user i, xi,model be the observations available
to the algorithm, βmodel, with prior N(0, I) represent the unobserved population parameters and
µi,model be the log odds ratio. We know that

µi,model = xT
i,modelβmodel + ϵi,model (5)

where ϵi,model are are identically and independently distributed standard Gaussian variables. Simi-
larly, for expert j ∈ [1, P ], let xi,expertj be the observations available to the expert, βexpertj , with
prior N(0, I) represent the unobserved population parameters and µi,expertj be the log odds ratio.
We know that,

µi,expertj = xT
i,expertjβi,expertj + ϵi,expertj (6)

where ϵi,expertj are are identically and independently distributed standard Gaussian variables. Let
γ ∼ Dirichlet(α) represent the vector of weights and µ̂i = [µi,model, µi,expert1 . . . µi,expertP ], we
calculate the propensity si as

si = γT µ̂i + ϵi, (7)

and ŷ ∼ Bernoulli(p), p = 1{si>τ} where τ ∼ N(0, 1).

B.1 INFORMATION SHARING

We consider the scenario where during estimation phase, the observed information is jointly used
by the experts and the algorithm to estimate the posterior distribution of the parameters. This cor-
responds to experiments described as (i) and (ii) in the experimentation section. The graphical
representation of the model is provided in figure 2.

Figure 2: Information sharing model

B.2 INDEPENDENT LEARNING

We consider the scenario where during estimation phase, the observed information is independently
used by the experts and the algorithm to estimate the posterior distribution of the parameters. This
is analogous to a super-learner Van der Laan et al. (2007) of the experts and the algorithm. The
graphical representation of the model is provided in figure 3.
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Figure 3: Independent learner model

B.3 DEFERRAL SYSTEM

The goal of the deferral system is to defer to one or more experts who are likely to make accurate
decision for the given input. We model the deferral system as a multivariate multinomial bayesian
logistic regression, i.e. for customer i, γi ∼ Categorical(pi) and pi = softmax(xT

i,modelβdeferral,c)
which given any user attributes, will choose the appropriate expert including the algorithm. The
estimation of the posterior distributions of the parameters is done is two steps: (1) The priors of the
experts and parameters of the algorithm are evaluated in an independent setting as described in B.2.
The graphical representation of the model for this step is provided in figure 4.

Figure 4: Deferral system: independent learners

(2) We simulate using the parameters in the previous step and assign the best predictive expert among
the set for each observation. Using the augmented data set, we estimate parameters for the deferral
system. The graphical representation of the model for this step is provided in figure 5

During inference, we first infer from the deferral system to pin point if we need to defer to an expert
or use the algorithm, followed by the inference from the appropriate expert/algorithm.

Figure 5: Deferral system: expert selection
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