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Abstract

Point cloud registration is a fundamental task in 3D computer vision. Recent
advances have shown that graph-based methods are effective for outlier rejec-
tion in this context. However, existing clique-based methods impose overly strict
constraints and are NP-hard, making it difficult to achieve both robustness and
efficiency. While the k-core reduces computational complexity, which only consid-
ers node degree and ignores higher-order topological structures such as triangles,
limiting its effectiveness in complex scenarios. To overcome these limitations, we
introduce the k-truss from graph theory into point cloud registration, leveraging
triangle support as a constraint for inlier selection. We further propose a consen-
sus voting-based low-scale sampling strategy to efficiently extract the structural
skeleton of the point cloud prior to k-truss decomposition. Additionally, we design
a spatial distribution score that balances coverage and uniformity of inliers, pre-
venting selections that concentrate on sparse local clusters. Extensive experiments
on KITTI, 3DMatch, and 3DLoMatch demonstrate that our method consistently
outperforms both traditional and learning-based approaches in various indoor and
outdoor scenarios, achieving state-of-the-art results.

1 Introduction

Point cloud registration is a fundamental problem in 3D computer vision [43, 29], remote sensing [19,
12], 3D reconstruction [6, 11], and autonomous driving [50]. Its primary goal is to estimate the optimal
rigid transformation matrix that precisely aligns two point clouds. Accurate 3D correspondences
form the foundation of point cloud registration. High-quality correspondences enable the correct
computation of rotation and translation, and their quality directly affects the final registration accuracy.

Recent works [48, 1] demonstrate the effectiveness of graph theory for correspondences se-
lection in point cloud registration. In a graph, vertices represent matched point pairs, and
edges encode geometric compatibility, which are added when two correspondences meet a pre-
set threshold [30]. Based on this representation, several graph algorithms have been devel-
oped to select reliable correspondences. The classical maximal clique approach [49, 37] seeks
reliable matches by finding fully connected subgraphs, ensuring strong geometric consistency
but facing two major challenges. The strict connectivity is often unachievable due to noise
or occlusion, resulting in the loss of correct matches. Maximal clique search is NP-hard
[13], making it impractical for large-scale data. The k-core method [35, 32] relaxes connec-
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tivity requirements and reduces computation, but its weak constraints compromise correspon-
dences reliability, which highlights the difficulty in balancing structural robustness and efficiency.

Graph Construction

Figure 1: Triangular structure
as inlier indicator. Inlier corre-
spondences (green) form triangle-
rich structures, while outliers
(red) lack triangular support.

To address these limitations, we introduce the k-truss concept
from community detection [47, 46, 26] into point cloud registra-
tion. A k-truss [9] requires each edge to participate in at least k-2
triangles, leveraging the rigidity and invariance of triangles. Tri-
angles derive their strength from their stable structure, serving as
the simplest rigid planar formation and preserving their geometric
properties regardless of rotation or translation. In real-world data,
inlier correspondences naturally form triangle-rich clusters, as
shown in Fig. 1, making k-truss decomposition effective for pre-
serving reliable matches while filtering outliers. Our method first
uses consensus voting for low-scale sampling, then constructs a
compatibility graph and applies k-truss decomposition. For each
resulting subgraph, we estimate the transformation via weighted
SVD [7] and rank candidates using a spatial distribution score,
selecting the transformation with the highest score as the final
result.

To our knowledge, this is the first work to introduce k-truss into
point cloud registration, establishing a robust correspondences
selection framework based on triangle constraints. Inspired by k-
truss, we propose a heuristic method that leverages triangle-based
truss structures to robustly filter and refine correspondences. Ex-
perimental results show that our method achieves excellent performance under high noise and outlier
ratios. Meanwhile, it maintains polynomial time complexity and demonstrates high computational
efficiency among graph-based methods. Extensive evaluations on standard datasets further demon-
strate that our method significantly outperforms existing state-of-the-art approaches in registration
accuracy. Our main contributions are summarized as follows:

• We propose a novel correspondence selection method called PointTruss. It uses triangle support
constraints to effectively filter out mismatches related to isolated and low-support edges.

• We develop an integrated pipeline. It applies consensus-voting low-scale sampling to extract
the structural skeleton, k-truss decomposition to preserve triangle-supported inliers, and spatial
distribution scoring to favor broad, uniform coverage. Each component is modular and can be used
independently.

• Extensive experiments on KITTI, 3DMatch, and 3DLoMatch show that PointTruss consistently
outperforms both traditional and learning-based methods across diverse indoor and outdoor sce-
narios. It achieves state-of-the-art accuracy and efficiency with polynomial-time complexity and
strong robustness to noise and outliers.

2 Related Work

Traditional Point Cloud Registration. RANSAC and its variants [14, 2] iteratively sample from
the initial correspondence set to find the largest consensus set. Early handcrafted feature descriptors,
such as FPFH [31], extract local features by encoding geometric histograms. FGR [51] estimates the
optimal transformation using robust estimators like the Geman-McClure loss. Branch-and-bound
(BnB) based optimization methods, such as GORE [3] and its variant QGORE [25], perform global
search in the parameter space to obtain the best transformation. Voting-based method [40] select
reliable correspondences through a scoring mechanism. Some works tackle registration with high
outlier rates and non-convex objectives via robust and global search, mitigating local minima and
improving convergence [28, 34]. However, these methods often suffer from low computational
efficiency and limited accuracy under high outlier ratios.

Learning-based Point Cloud Registration. Current learning-based point cloud registration ap-
proaches can be categorized as follows. The first category focuses on detecting reliable keypoints or
extracting more discriminative features [29, 41]. For example, FCGF [8] uses a fully convolutional
network to extract point cloud features in a single pass, without separate keypoint detection. Another
category aims to distinguish inliers from outliers. PointDSC [1] removes outliers using pairwise
spatial compatibility supervision, while VBReg [20] introduces variational non-local networks for
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outlier rejection. There are also end-to-end approaches [42], such as Deep Global Registration (DGR)
[7], which employs sparse convolution and point-wise MLPs to classify correspondences. Although
these methods perform well in specific scenarios [44], they generally require large amounts of train-
ing data and have limited generalization ability. In contrast, training-free graph-based registration
methods often exhibit better robustness and can be integrated as auxiliary modules in deep learning
frameworks to further improve overall performance.

Graph-based Point Cloud Registration. Graph-based algorithms [30] typically construct a compat-
ibility graph by evaluating the pairwise compatibility of correspondences, which enables efficient
removal of a large number of outliers. For example, the TEASER [39] employs maximal clique
theory to decouple scale, rotation, and translation estimation. ROBIN [32] uses the maximal k-core
theory for outlier pruning. SUCOFT [35] introduces the concept of k-supercore to improve outlier
rejection effectiveness. SC2-PCR [5] imposes stricter constraints on correspondences by introducing a
second-order spatial compatibility metric. MAC [48] first proposes a maximal clique-based method to
mine richer local consistency information, while FastMAC [49] accelerates computation by applying
random spectral sampling on the correspondence graph. These methods demonstrate that mining key
information in the compatibility graph is crucial for improving the robustness and accuracy of point
cloud registration.

Input Correspondences Low-scale sampling Graph Construction k-Truss Decomposition and Transformations Generation Output Transformation
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Figure 2: Pipeline of our method. 1. Starting from input correspondences, perform low-scale
sampling to reduce redundancy. 2. Constructing a correspondence graph and apply k-truss decompo-
sition to identify subgraphs with varying levels of triangle support (i.e., different k values). 3. Each
k-truss subgraph represents a set of correspondences with a specific degree of structural consistency.
4. Based on these subgraphs, generate multiple transformation hypotheses and select the optimal
transformation using the spatial distribution score.

3 Methods

3.1 Problem Formulation

For two point clouds, where the source point cloud is defined as P = {pi ∈ R3 | i = 1, . . . , N} and
the target point cloud as Q = {qi ∈ R3 | i = 1, . . . ,M}, the goal of point cloud registration is to
estimate the rigid transformation T = {R, t} that aligns these two point clouds. Here, R ∈ SO(3)
represents the rotation matrix, and t ∈ R3 represents the translation vector. The optimization problem
can be formulated as:

min
R,t

∑
(pi,qi)∈C

∥Rpi + t− qi∥22, (1)

where C = {ci | i = 1, . . . , Nc} is the initial correspondence set obtained through feature matching,
with each correspondence ci = (pi,qi).

We extract either geometric or learned local features from the point clouds, use feature matching to
generate C, and apply the k-truss method to extract the optimal subgraph. This subgraph is then used
to estimate the six degrees of freedom (6-DoF) pose transformation between P and Q. The overall
pipeline is illustrated in Fig. 2, and the PointTruss is both simple and efficient.

3.2 Graph Construction

The graph space can more accurately capture the affinity relationships between correspondences
than Euclidean space [5]. Therefore, we represent the initial correspondences as a compatibility
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graph, where each node denotes a correspondence and edges connect nodes that are geometrically
compatible [1, 23, 24, 30, 48].

The graph is constructed using the rigid distance constraint between correspondence pairs (ci, cj),
which is quantitatively measured as:

Sdist(ci, cj) = |∥pi − pj∥ − ∥qi − qj∥| ≤ 2τ, (2)

where τ = c · σ is the distance threshold, c is typically set to 3.5 based on statistical confidence inter-
vals, and σ is the standard deviation of noise, which controls the sensitivity to distance discrepancies.
This constraint ensures that the distance between point pairs remains nearly invariant under rigid
transformations.

The compatibility consistency score between ci and cj is defined as:

Scomp(ci, cj) = exp

(
−Sdist(ci, cj)

2

2σ2

)
, (3)

If Scomp(ci, cj) exceeds a threshold τcomp, an edge eij is formed between ci and cj . The weight of
the edge is Scomp(ci, cj). Otherwise, Scomp(ci, cj) is set to zero.

3.3 Consensus Voting-based Low-scale Sampling Strategy

To efficiently identify inlier correspondences and reduce the search space, we propose a consensus
voting-based low-scale sampling strategy. This method leverages the previously defined geometric
consistency metrics to identify the most reliable correspondences.

Consensus Score Computation. Utilizing the compatibility score Scomp defined in Eq. (3), we com-
pute the consensus score for each correspondence i by counting the number of other correspondences
that are geometrically compatible with it:

Si =

N∑
j=1,j ̸=i

I(Scomp(ci, cj) > τc), (4)

where I(·) is the indicator function and τc is the consistency threshold. This score represents the
number of other correspondences that support correspondence i.

Non-Maximum Suppression. To avoid sampling spatially clustered correspondences, we apply
non-maximum suppression [27]:

IsLocalMaxi = min
j∈N

(
(Si ≥ Sj) ∨ (dsij ≥ rnms)

)
, (5)

where N is the set of all correspondences, dsij = ∥pi − pj∥2 is the Euclidean distance between
source points, rnms is the non-maximum suppression radius, and ∨ denotes the logical OR operation.
A correspondence is considered a local maximum when, for all other correspondences, either its
score is higher or it is spatially distant.

The final score for each correspondence is:

Sfinal
i = Si · IsLocalMaxi, (6)

Low-scale Sampling. We select the top-K correspondences with the highest final scores, where K is
determined by:

K = ⌊β · N⌋, (7)

with β being the sampling ratio parameter. This sampling strategy ensures that we can select a diverse
set of geometrically consistent correspondences, significantly reducing the computational cost of
subsequent operations while maintaining a high probability of including correct correspondences.
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3.4 The k-Truss Decomposition

Following the Consensus Voting-based Low-scale Sampling Strategy presented in Sec. 3.3, we
construct a new compatibility graph among the selected high-quality correspondences. The adjacency
matrix A of this refined graph represents the pairwise geometric consistency relationships established
in Sec. 3.2, but now focused on the reduced set of promising correspondences. To further identify
structurally consistent subsets, we apply k-truss decomposition to this adjacency matrix.

Definition 1. (k-Truss Decomposition Theory). Given an undirected graph G = (V,E) and an
integer k ≥ 3, the k-truss of G, denoted by Tk(G), is defined as the maximal subgraph H = (VH , EH)
of G where every edge e ∈ EH is contained in at least (k − 2) triangles within H .

This formal definition captures the essential property that each edge in a k-truss must have strong
structural support through triangle formations. In the context of correspondence graphs, a triangle
represents three correspondences that are mutually consistent, which is a stronger constraint than
pairwise consistency.

Definition 2. (Triangle Support). For an edge e = (u, v) ∈ E in a graph G = (V,E), the triangle
support of e, denoted by sup(e,G), is defined as the number of triangles in G that contain e:

sup(e,G) = |{w ∈ V \ {u, v} : (u,w) ∈ E ∧ (v, w) ∈ E}|, (8)

The triangle support can be efficiently computed using matrix operations. If A is the adjacency
matrix of G, then:

sup((u, v), G) = (A2)u,v ·Au,v, (9)

where (A2)u,v counts the number of length-2 paths between u and v.

Theorem 1. Let (pi, pj , pk) denote a triplet of point correspondences, and let ∆Dijk represent the
deviation vector of triangle edge lengths between the source and target point clouds. Under a rigid
transformation with Gaussian noise, for any threshold ϵ > 0,

P (∥∆Dijk∥F < ϵ | correct) ≫ P (∥∆Dijk∥F < ϵ | incorrect) ,

where P(·) denotes the probability, ∥∆Dijk∥F denotes the Frobenius norm of the deviation vector,
and ≫ indicates "significantly greater than." This inequality states that the probability of trian-
gle relationships being preserved under rigid transformation is significantly higher for correct
correspondences than for incorrect ones.

Therefore, the k-truss, which requires each edge to be supported by at least k − 2 triangles, sig-
nificantly enhances robustness in correspondence selection by leveraging higher-order structural
consistency.

Please see Appendix A.2 for detailed proof and derivations.

Matrix-Based Implementation. The k-truss decomposition operates on the adjacency matrix derived
from the sampled correspondences. The algorithm proceeds by computing the triangle support for
each edge:

T = A2 ⊙A, (10)

where ⊙ denotes the Hadamard (element-wise) product.

We then identify valid edges that satisfy the k-truss criterion [9]:

Evalid = (T ≥ (k − 2)), (11)

For each vertex i, we extract its neighborhood connected by valid edges:

Ni = {j ∈ V : Evalid(i, j) = 1}, (12)

Vertices with neighborhoods of sufficient size (|Ni| ≥ k) form clusters in the k-truss decomposition.

Computational Complexity Analysis of k-Truss Decomposition. The k-truss decomposition has
a time complexity of O(m1.5), which is much more efficient than exponential-time clique-based
methods and remains practical for large-scale graphs. For more details, please refer to Appendix A.3.
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3.5 Hypothesis Generation and Evaluation

Each k-truss subgraph filtered from the previous step represents a structurally robust set of correspon-
dences. By applying the SVD algorithm to each k-truss subgraph, we can obtain a set of 6-DoF pose
hypotheses.

Centrality-weighted SVD. Transformation estimation of correspondences is implemented using
weighted SVD [48, 29, 5, 7]. We assign weights to correspondences based on their centrality values
within the k-truss subgraph. Our weighting scheme follows established graph-based PCR methods
by deriving weights from spectral analysis [24]. We compute the eigendecomposition of the k-truss
subgraph’s compatibility matrix and use the principal eigenvector elements as correspondence weights
in our weighted SVD. This method leverages the structural importance of each correspondence to
improve transformation accuracy.

The final goal of our method is to estimate the optimal 6-DoF rigid transformation (composed of a
rotation pose R∗ ∈ SO(3) and a translation pose t∗ ∈ R3) that maximizes our spatial distribution
score function:

(R∗, t∗) = argmax
R,t

SDS(P,Q,R, t), (13)

where SDS represents our spatial distribution score function defined as:

SDS(P,Q,R, t) = ρinlier ·
√
ρcoverage · ρerror, (14)

with the individual components:

ρinlier =
|I|
|P|

, (15)

ρcoverage =

∏
d∈{x,y,z} ranged(I)∏
d∈{x,y,z} ranged(P)

, (16)

ρerror = 1−
1
|I|
∑

i∈I ∥Rpi + t− qi∥
τ

, (17)

where I = {i : ∥Rpi + t − qi∥ < τ} is the set of inlier indices, τ is the inlier threshold, ranged
computes the coordinate range along dimension d, pi ∈ P and qi ∈ Q are corresponding points
from source and target point clouds.

Unlike conventional metrics such as MAE [48] or inlier count [5], our SDS function comprehensively
evaluates both alignment accuracy and spatial distribution quality of inliers. The ρinlier term measures
the proportion of correctly aligned points, ρcoverage evaluates how well the inliers span the original
point cloud volume, and ρerror assesses the precision of alignment among inlier points. This balanced
evaluation method effectively prevents selecting transformations with clustered inliers in limited
regions and promotes transformations with well-distributed inliers across the entire object. The best
hypothesis according to this comprehensive scoring function is selected to perform the final 3D
registration.

4 Experiment

4.1 Experimental Setup

Datasets. For outdoor scenarios, we evaluate our method on the KITTI dataset [15]. Following
the protocol established in [1, 5, 48], we select 555 point cloud pairs from sequences 8 to 10 for
testing. For indoor environments, we conduct experiments on the 3DMatch dataset [45] and the more
challenging 3DLoMatch dataset [17], where point cloud pairs have less than 30% overlap. To further
assess the robustness and generalization capability of our approach, we also perform experiments on
the Bunny model from the Stanford 3D Scanning Repository [10].
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Evaluation Criteria. We use rotation error (RE), translation error (TE), and registration recall (RR)
as the main evaluation metrics. Following [4, 39, 48], registration is considered successful if the
results on the 3DMatch and 3DLoMatch datasets satisfy RE ≤ 15◦ and TE ≤ 30cm, or on the
KITTI dataset RE ≤ 5◦ and TE ≤ 60cm. The mean rotation error and mean translation error are
computed only on successfully registered pairs. The registration accuracy of a dataset is defined as
the ratio of successfully registered pairs to the total number of pairs.

Implementation details. Our method is implemented in PyTorch. For the 3DMatch, 3DLoMatch,
and KITTI datasets, we use Fast Point Feature Histograms (FPFH) [31] and Fully Convolutional
Geometric Features (FCGF) [8] as descriptors to generate initial correspondences. Following [4,
39, 21], the Bunny model is downsampled to Nc points and resized to fit a [0, 1]3 cube, creating the
source point cloud P . To generate the target point cloud Q, a random transformation (R, t) is applied
to P and then Gaussian noise ϵi ∼ N (0, σ2I3) is added. A pair of the original and moved points
defines an inlier. The inliers are contaminated with outliers generated by random transformations.
Detailed computational complexity analysis is provided in the Appendix A.3. All experiments are
conducted on an AMD Ryzen 9 5950X CPU and a single NVIDIA RTX 3090 GPU.

Figure 3: Outlier robustness evaluation on the synthetic dataset. The first row shows the rotation
and translation errors of each method as the outlier ratio on the Bunny model increases from 10% to
90%. The second row compares the rotation and translation errors of different methods at an outlier
ratio of 99%.

Figure 4: Noise robustness evaluation on the synthetic dataset. Comparison of rotation and
translation errors on the Bunny model as the noise standard deviation increases from 0.01 to 0.09.
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4.2 Robustness to Outliers and Noise on Synthetic Data

On the synthetic dataset, we conduct experiments using the Bunny model. The outlier ratio is varied
from 10% to 90% to systematically evaluate the robustness of each method under high outlier rates.
The Bunny model is downsampled to Nc = 500 and Gaussian noise with zero mean and standard
deviation σ = 0.01 is added. For each outlier ratio, 100 independent trials are performed, and the
mean rotation error (RE) and translation error (TE) are recorded. We also test an extreme case with
an outlier ratio of up to 99% (please see Fig. 3, second row). Our method is compared against
state-of-the-art traditional approaches [51, 14, 5, 39, 48]. Results show that traditional methods such
as FGR and RANSAC exhibit rapidly increasing errors as the outlier ratio rises, while our method
consistently achieves the best robustness and registration accuracy across all outlier levels.

Table 1: Results on KITTI dataset [15] using FPFH [31] and FCGF [8] descriptors.

FPFH FCGF
RR(%)↑ RE(◦)↓ TE(cm)↓ RR(%)↑ RE(◦)↓ TE(cm)↓ Time(s)

i) Traditional
FGR [51] 5.23 0.86 43.84 89.54 0.46 25.72 3.88
RANSAC [14] 74.41 1.55 30.20 80.36 0.73 26.79 5.43
TEASER++ [39] 91.17 1.03 17.98 95.51 0.33 22.38 0.03
SC2-PCR [5] 99.46 0.35 7.87 98.02 0.33 20.69 0.31
MAC [48] 97.66 0.41 8.61 97.84 0.34 19.34 3.29
TR-DE [4] 96.76 0.90 15.63 98.20 0.38 18.00 -
TEAR [18] 99.10 0.39 8.62 - - - -
Jiang et al. [21] 99.56 0.34 7.85 98.20 0.32 20.73 0.54
ii) Deep learned
DGR [7] 77.12 1.64 33.10 96.90 0.34 21.70 2.29
PointDSC [1] 98.92 0.38 8.35 97.84 0.33 20.32 0.45
VBReg [20] 98.92 0.45 8.41 98.02 0.32 20.91 0.24
Ours 99.64 0.43 5.31 99.10 0.59 11.06 0.21

We further evaluate the robustness of each method under different noise levels, as shown in Fig. 4.
Specifically, we increase the standard deviation of Gaussian noise from σ = 0.01 to σ = 0.1 to
systematically assess algorithm performance. Experimental results indicate that, as the noise level
increases, the translation error of the clique-based MAC [48] method rises significantly, while our
triangle-based method is barely affected. The bundled structure of triangles effectively captures the
key skeleton of the point cloud and resists noise interference. As a result, our method consistently
achieves the lowest rotation and translation errors under high noise conditions, demonstrating superior
robustness.

Table 2: Comparison results on 3DMatch [45] using FPFH [31] and FCGF [8] descriptors.

FPFH FCGF
RR(%)↑ RE(◦)↓ TE(cm)↓ RR(%)↑ RE(◦)↓ TE(cm)↓ Time(s)

i) Traditional
FGR [51] 40.91 4.96 10.25 78.93 2.90 8.41 0.89
RANSAC [14] 66.10 3.95 11.03 91.44 2.69 8.38 2.86
TEASER++ [39] 75.48 2.48 7.31 85.71 2.73 8.66 0.03
SC2-PCR [5] 83.90 2.12 6.69 93.16 2.06 6.53 0.12
MAC [48] 83.90 2.11 6.80 93.72 2.07 6.52 5.54
FastMAC [49] 82.87 2.15 6.73 92.67 2.00 6.47 0.11
Jiang et al. [21] 83.92 2.12 6.64 93.28 2.04 6.48 0.36
ii) Deep learned
DGR [7] 32.84 2.45 7.53 88.85 2.28 7.02 1.53
PointDSC [1] 72.95 2.18 6.45 91.87 2.10 6.54 0.10
VBReg [20] 82.57 2.14 6.77 93.53 2.04 6.49 0.20
Ours 84.70 1.80 6.22 93.84 1.70 6.13 0.20
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4.3 Experimental Results on the KITTI Dataset

We conduct experiments on the KITTI dataset [15] to evaluate the potential of our algorithm in real
outdoor scenarios. Table 1 presents the results using FPFH [31] and FCGF [8] descriptors for initial
correspondence generation. We compare our method with leading traditional [51, 14, 39, 5, 48, 4, 18,
21] and learning-based approaches [7, 1, 20]. Following [5, 48], the mean rotation error (RE) and
mean translation error (TE) are calculated only on successfully registered pairs. As shown in Table 1,
our method achieves the highest recall (RR) and lowest TE with both FPFH and FCGF descriptors.
Moreover, our method demonstrates superior efficiency at comparable registration accuracy. These
results confirm the robustness of our method for registering sparse and non-uniform outdoor point
clouds. Additional visualizations are provided in the Appendix A.10.

Table 3: Comparison results on 3DLoMatch [17] using FPFH [31] and FCGF [8] descriptors.

FPFH FCGF
RR(%)↑ RE(◦)↓ TE(cm)↓ RR(%)↑ RE(◦)↓ TE(cm)↓

i) Traditional
RANSAC [14] 19.83 4.67 10.32 37.60 4.28 11.04
TEASER++ [39] 35.15 4.38 10.96 46.76 4.12 12.89
SC2-PCR [5] 35.93 4.26 10.86 58.73 3.80 10.44
MAC [48] 40.88 3.66 9.45 59.85 3.50 9.75
FastMAC [49] 38.46 4.04 10.47 58.23 3.80 10.81
ii) Deep learned
PointDSC [1] 27.91 4.27 10.45 56.20 3.87 10.48
VBReg [20] 30.83 4.38 10.92 58.30 3.58 9.72
Ours 43.96 2.89 8.93 61.64 3.30 9.72

4.4 Experimental Results on the 3DMatch and 3DLoMatch Datasets

We conducted systematic comparative experiments on the 3DMatch dataset with overlap ratios
exceeding 30%. The left and right columns of Table 2 show the registration performance using FPFH
and FCGF descriptors, respectively. With the handcrafted FPFH descriptor, our method achieves the
highest recall (RR), outperforming both traditional and learning-based approaches. Using the FCGF
descriptor, our method surpasses all state-of-the-art baselines on every evaluation metric. Compared
to the MAC method, our method improves RR by 0.56%. More importantly, it reduces the average
rotation error (RE) and average translation error (TE) by about 16.7% and 5.4%, respectively. This
demonstrates superior overall performance. Qualitative results are shown in Fig. 5 and Appendix
A.10. Our method remains robust even in challenging scenarios with ambiguous features or unclear
local structures. It achieves alignment results that are close to the ground truth. These findings
strongly validate the robustness and generalization ability of our method on diverse and complex
point cloud data.

As shown in Table 3, we systematically evaluated our algorithm on the 3DLoMatch dataset for
low-overlap registration. We compared our method with several leading traditional and deep learning
approaches, using both FPFH and FCGF descriptors. Our method consistently delivers superior
recall rates and reduced error metrics, validating its exceptional robustness and versatility even in
challenging low-overlap scenarios. Qualitative results in Fig. 5 and Appendix A.10 further illustrate
that our method remains effective even when local structures are ambiguous.

4.5 PointTruss Integration with Deep Learning Methods on 3DLoMatch

We have conducted experiments combining PointTruss with recent deep learning methods [29, 41]
on the challenging 3DLoMatch dataset.

PointTruss successfully enhances both GeoTransformer (+4.5% recall) and PareNet (+1.70% recall)
on the challenging 3DLoMatch dataset. The consistent improvements across different learned features
validate PointTruss’s compatibility with modern deep learning pipelines. Moreover, when integrated
with GeoTransformer, PointTruss achieves performance comparable to MAC while being more
computationally efficient. These results demonstrate that PointTruss not only works as a standalone
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(a) Input (b) SC2-PCR (c) MAC (d) Ours (e) Ground-truth

Figure 5: Qualitative comparisons on the 3DMatch and 3DLoMatch datasets. The first and
second rows correspond to 3DMatch, and the third and fourth rows correspond to 3DLoMatch.

Table 4: PointTruss Integration with Deep Learning Methods on 3DLoMatch

Method Registration Recall

GeoTransformer 75.0%
GeoTransformer + MAC 78.9%
GeoTransformer + PointTruss 79.5%
PareNet 80.5%
PareNet + MAC 81.5%
PareNet + PointTruss 82.2%

method but also serves as an effective drop-in replacement for traditional robust estimators in deep
learning pipelines, providing consistent improvements across different feature extractors.

5 Conclusion

In this work, we introduce the k-truss from graph theory to the point cloud registration and use
triangle support as a key constraint. We first perform consensus voting-based low-scale sampling on
the input correspondences to construct a compatibility graph. Based on this, we propose a heuristic
method that applies k-truss decomposition with triangle support constraints to obtain several k-truss
subgraphs. Each candidate subgraph is then processed by weighted SVD, and we use a designed
spatial distribution score to evaluate the spatial coverage and uniformity of inliers, selecting the
best transformation hypothesis. Our method is efficient and simple, leveraging triangles as minimal
rigid planar structures and exploiting their strong structural binding. Experimental results on indoor,
outdoor, and object-level point clouds show that our algorithm achieves state-of-the-art registration
accuracy while maintaining high efficiency. The method is robust to large numbers of outliers and
low-overlap scenarios. Limitations and broader impacts are discussed in Appendix A.7.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The claims and contributions of the paper are clearly articulated in the abstract
and introduction, and demonstrate good generalizability under similar assumptions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: The paper discusses the limitations of the work in Appendix A.7.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the method was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the method.
For example, a facial recognition algorithm may perform poorly when image resolution
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: The paper presents theorems and formulas in Sec. 3, and reports theoretical
results in Sec. 4. We systematically derive the statistical properties of triangle relations under
rigid-body noise and provide a rigorous theoretical foundation for the robust discriminative
power of the k-truss. The detailed derivations are presented in Appendix A.2.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed description of the algorithmic procedure in the paper,
and the main experimental results are reproducible. The code will be made publicly available
upon acceptance of the paper.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will make the complete code public following the acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setup and implement details are provided in Sec. 4.1, as well
as in Appendix A.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conducted multiple experiments on public datasets as described in Sec.
4. Furthermore, we performed 100 independent runs in Sec. 4.2, and the averaged results
demonstrate that our experimental outcomes are stable across multiple runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the compute workers and model efficiency in Sec.
4.1,Sec. 4.3 and Sec. 4.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This article complies in all respects with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The potential positive and negative societal impacts of the work are discussed
in Appendix A.7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses publicly available code and datasets during the evaluation
process, strictly adhering to all relevant protocols and usage restrictions. Detailed license
information for each dataset is provided in Appendix A.9.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We will release the our code under the CC BY-NC-SA 4.0 license after the
acceptance of the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and research with human subjects
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collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: In this paper, LLMs are not used as any important, original, or non-standard
component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

In the appendix, we first provide rigorous definitions of evaluation metrics (Sec. A.1). We then present
the Triangle Relation Stability Theorem for point cloud registration (Sec. A.2). A computational
complexity analysis and comparison of dense subgraph algorithms is given in Sec. A.3. We further
describe pseudocode for key algorithmic components (Sec. A.4) and provide specific hyper-parameter
selections for reference (Sec. A.5). Additionally, we conduct ablation studies of each component
(Sec. A.6) and discuss the limitations and scalability of our method (Sec. A.7 and Sec. A.8). We offer
detailed information on public datasets (Sec. A.9) along with their visualization results (Sec. A.10).
We also present an ablation study on graph sampling and the k-value (Sec. A.11).

A.1 The rigorous definitions of Evaluation Metrics

Rotation Error (RE) For a given point cloud pair, the rotation error measures the angular difference
between the estimated rotation R and the ground truth rotation Rgt, computed as:

RE = arccos
trace(RgtR

T )− 1

2
(18)

Translation Error (TE) The translation error measures the Euclidean distance between the esti-
mated translation t and the ground truth translation tgt:

TE = ∥t− tgt∥2 (19)

Registration Recall (RR) Registration recall measures the percentage of successfully registered
point cloud pairs over all pairs in the dataset. A registration is considered successful if:

RR3DMatch&3DLoMatch =
1

N

N∑
i=1

[REi < 15◦ ∧ TEi < 30 cm] (20)

RRKITTI =
1

N

N∑
i=1

[REi < 5◦ ∧ TEi < 60 cm] (21)

Mean Rotation and Translation Errors The mean rotation and translation errors are computed
only over the successfully registered point cloud pairs:

Mean RE =
1

|N ′|
∑
i∈N ′

REi (22)

Mean TE =
1

|N ′|
∑
i∈N ′

TEi (23)

where N ′ = {i | REi < τRE ∧ TEi < τTE} denotes the set of successfully registered pairs, with
τRE = 15◦ and τTE = 30 cm for 3DMatch and 3DLoMatch, and τRE = 5◦ and τTE = 60 cm for
KITTI.

A.2 Triangle Relation Stability Theorem Based Point Cloud Registration

The PointTruss registration framework introduces a novel perspective by leveraging the k-truss from
graph theory to establish robust correspondence patterns in point cloud registration. At the core
of k-truss lies the concept of triangle support—each edge in a k-truss is contained in at least k-2
triangles, providing exceptional structural stability against perturbations. This property is particularly
advantageous in point cloud registration, where noise, outliers, and partial visibility are common
challenges.

Before developing the algorithmic components of PointTruss, it is essential to establish a rigorous
theoretical foundation that quantifies how triangle relations behave under noise and rigid transfor-
mations. Specifically, we need to mathematically prove why triangle relations remain stable for
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correct correspondences while exhibiting significant deviations for incorrect ones. This theoretical
foundation addresses several critical questions:

1. How do triangle relations (edge lengths) change under noise perturbation?

2. What statistical properties characterize these changes?

3. Under what conditions can we reliably distinguish between correct and incorrect point correspon-
dences based on triangle relation stability?

4. Why does the triangle-supported k-truss provide a reliable foundation for robust registration?

The following theorem establishes the statistical properties of triangle relations under noise, providing
the theoretical underpinning for the PointTruss registration framework. By demonstrating that correct
correspondences maintain stable triangle relations with high probability, this analysis justifies using
triangle-based constraints as a core mechanism for robust point cloud registration.

Let P = {pi}Ni=1 denote the source point cloud and Q = {qi}Ni=1 denote the target point cloud after
rigid transformation and noise perturbation, where pi, qi ∈ R3. The rigid transformation is defined as
T = (R, t), where R ∈ SO(3) is a rotation matrix satisfying R⊤R = I and det(R) = 1, and t ∈ R3

is a translation vector.

The noise-contaminated point cloud model can be expressed as:

qi = Rpi + t+ ηi, ηi ∼ N (0, σ2I) (24)

where ηi represents independent and identically distributed Gaussian noise with zero mean and
covariance matrix σ2I .

For any pair of points pi and pj in the source point cloud, their Euclidean distance is preserved under
rigid transformation. Let dij = ∥pi − pj∥ denote the distance between points pi and pj . In the
absence of noise, the distance between the corresponding transformed points qi and qj is:

∥qi − qj∥ = ∥Rpi + t− (Rpj + t)∥
= ∥R(pi − pj)∥

=
√

(R(pi − pj))⊤(R(pi − pj))

=
√

(pi − pj)⊤R⊤R(pi − pj)

=
√

(pi − pj)⊤I(pi − pj)

= ∥pi − pj∥ = dij

(25)

This distance preservation property is a fundamental characteristic of rigid transformations.

For any triplet of points (pi, pj , pk) in the source point cloud, we define the triangle relation matrix
Dijk as:

Dijk = [∥pi − pj∥ ∥pi − pk∥ ∥pj − pk∥] (26)

Similarly, for the corresponding points in the target point cloud, the triangle relation matrix is:

D′
ijk = [∥qi − qj∥ ∥qi − qk∥ ∥qj − qk∥] (27)

Under noise-free rigid transformation, Dijk = D′
ijk, reflecting the invariance of triangle relations

under rigid transformations.

In the presence of noise, the distance between two points in the target point cloud becomes:
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∥qi − qj∥ = ∥Rpi + t+ ηi − (Rpj + t+ ηj)∥
= ∥R(pi − pj) + (ηi − ηj)∥
= ∥pi − pj +R⊤(ηi − ηj)∥
= ∥pi − pj + Zij∥

(28)

where Zij = R⊤(ηi − ηj) ∼ N (0, 2σ2I) represents the transformed noise difference.

The squared distance between noisy points can be expanded as:

∥qi − qj∥2 = ∥pi − pj + Zij∥2

= (pi − pj + Zij)
⊤(pi − pj + Zij)

= (pi − pj)
⊤(pi − pj) + 2(pi − pj)

⊤Zij + Z⊤
ijZij

= ∥pi − pj∥2 + 2(pi − pj)
⊤Zij + ∥Zij∥2

(29)

Taking the expectation:

E[∥qi − qj∥2] = E[∥pi − pj∥2 + 2(pi − pj)
⊤Zij + ∥Zij∥2]

= ∥pi − pj∥2 + E[2(pi − pj)
⊤Zij ] + E[∥Zij∥2]

(30)

Since E[Zij ] = 0, the middle term vanishes:

E[2(pi − pj)
⊤Zij ] = 2(pi − pj)

⊤E[Zij ] = 0 (31)

For the third term, ∥Zij∥2 follows a chi-squared distribution with 3 degrees of freedom and scaling
factor 2σ2. The expected value of a chi-squared random variable is its degrees of freedom multiplied
by the scaling factor:

E[∥Zij∥2] = 3 · 2σ2 = 6σ2 (32)

Therefore:

E[∥qi − qj∥2] = d2ij + 6σ2 (33)

To calculate the expected value of ∥qi − qj∥, we apply a first-order Taylor expansion of f(x) =
√
x

around x = d2ij :

f(x) ≈ f(d2ij) + f ′(d2ij)(x− d2ij)

=
√
d2ij +

1

2
√

d2ij

(x− d2ij)

= dij +
1

2dij
(x− d2ij)

(34)

For this approximation to be valid, we require σ ≪ dij , ensuring that higher-order terms (of order
σ4

d3
ij

and beyond) remain negligible.

Substituting x = ∥qi − qj∥2 with E[x] = d2ij + 6σ2:
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E[∥qi − qj∥] ≈ dij +
1

2dij
(E[∥qi − qj∥2]− d2ij)

= dij +
1

2dij
(d2ij + 6σ2 − d2ij)

= dij +
1

2dij
· 6σ2

= dij +
3σ2

dij

(35)

Defining the distance deviation as ∆ij = ∥qi − qj∥ − dij , its expected value is:

E[∆ij ] = E[∥qi − qj∥]− dij ≈
3σ2

dij
(36)

For more precise analysis, we decompose the noise vector Zij into components parallel and perpen-
dicular to the direction vector uij =

pi−pj

dij
:

Zij = Zij,uuij + Zij,⊥ (37)

where Zij,u = Zij ·uij is the projection of noise along uij , and Zij,⊥ is the perpendicular component.

Using this decomposition, the distance can be more precisely approximated as:

∥qi − qj∥ = ∥dijuij + Zij∥
= ∥dijuij + Zij,uuij + Zij,⊥∥
= ∥(dij + Zij,u)uij + Zij,⊥∥

≈ (dij + Zij,u)

√
1 +

∥Zij,⊥∥2
(dij + Zij,u)2

≈ (dij + Zij,u)

(
1 +

1

2

∥Zij,⊥∥2

(dij + Zij,u)2

)
(38)

For ∥Zij,u∥ ≪ dij , we can further approximate:

∥qi − qj∥ ≈ (dij + Zij,u)

(
1 +

1

2

∥Zij,⊥∥2

d2ij

)

≈ dij + Zij,u +
∥Zij,⊥∥2

2dij

(39)

Since ∥Zij,⊥∥2 = ∥Zij∥2 − Z2
ij,u, we have:

∥qi − qj∥ ≈ dij + Zij,u +
∥Zij∥2 − Z2

ij,u

2dij
(40)

Therefore, the deviation can be expressed as:

∆ij ≈ Zij,u +
∥Zij∥2 − Z2

ij,u

2dij
(41)

The variance of ∆ij can be decomposed as:
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Var(∆ij) = Var

(
Zij,u +

∥Zij∥2 − Z2
ij,u

2dij

)

= Var(Zij,u) + Var

(
∥Zij∥2 − Z2

ij,u

2dij

)
+ 2Cov

(
Zij,u,

∥Zij∥2 − Z2
ij,u

2dij

) (42)

Since Zij ∼ N (0, 2σ2I), we have Zij,u ∼ N (0, 2σ2), thus:

Var(Zij,u) = 2σ2 (43)

For the second term, ∥Zij∥2 ∼ 2σ2χ2
3 with variance 12σ4, and Z2

ij,u ∼ 2σ2χ2
1 with variance 8σ4.

The covariance between them is 4σ4. Therefore:

Var

(
∥Zij∥2 − Z2

ij,u

2dij

)
=

1

4d2ij
Var(∥Zij∥2 − Z2

ij,u)

=
1

4d2ij
(Var(∥Zij∥2) + Var(Z2

ij,u)− 2Cov(∥Zij∥2, Z2
ij,u))

=
1

4d2ij
(12σ4 + 8σ4 − 2 · 4σ4)

=
1

4d2ij
(20σ4 − 8σ4)

=
1

4d2ij
· 12σ4

=
3σ4

d2ij

(44)

The third term vanishes due to the independence between Zij,u and ∥Zij,⊥∥2:

Cov

(
Zij,u,

∥Zij∥2 − Z2
ij,u

2dij

)
=

1

2dij
Cov(Zij,u, ∥Zij,⊥∥2) = 0 (45)

Hence, the variance of distance deviation is:

Var(∆ij) ≈ 2σ2 +
3σ4

d2ij
(46)

For the triplet (pi, pj , pk), we need to calculate the covariance between deviations ∆ij and ∆ik. The
key insight is that Zij = R⊤(ηi − ηj) and Zik = R⊤(ηi − ηk) share the noise component ηi.

The cross-covariance matrix is:

E[ZijZ
⊤
ik] = E[R⊤(ηi − ηj)(ηi − ηk)

⊤R]

= R⊤E[(ηi − ηj)(ηi − ηk)
⊤]R

(47)

Expanding the expectation:

E[(ηi − ηj)(ηi − ηk)
⊤] = E[ηiη⊤i − ηiη

⊤
k − ηjη

⊤
i + ηjη

⊤
k ]

= E[ηiη⊤i ]− E[ηiη⊤k ]− E[ηjη⊤i ] + E[ηjη⊤k ]
(48)

Due to independence of noise vectors, only E[ηiη⊤i ] = σ2I is non-zero. Therefore:
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E[(ηi − ηj)(ηi − ηk)
⊤] = σ2I − 0− 0 + 0 = σ2I

E[ZijZ
⊤
ik] = R⊤σ2IR = σ2I

(49)

This leads to the covariance between projections:

Cov(Zij,u, Zik,u) = E[Zij,uZik,u]− E[Zij,u]E[Zik,u]

= E[(Zij · uij)(Zik · uik)]

= E[u⊤
ijZijZ

⊤
ikuik]

= u⊤
ijE[ZijZ

⊤
ik]uik

= u⊤
ijσ

2Iuik

= σ2(uij · uik)

(50)

Considering that the linear terms dominate in the deviation expression, we can approximate:

Cov(∆ij ,∆ik) ≈ Cov(Zij,u, Zik,u) = σ2(uij · uik) (51)

The complete 3× 3 covariance matrix for triangle edge deviations is:

Σ =

[ Var(∆ij) Cov(∆ij ,∆ik) Cov(∆ij ,∆jk)
Cov(∆ik,∆ij) Var(∆ik) Cov(∆ik,∆jk)
Cov(∆jk,∆ij) Cov(∆jk,∆ik) Var(∆jk)

]
(52)

Substituting the specific expressions:

Σ =


2σ2 + 3σ4

d2
ij

σ2(uij · uik) σ2(uij · ujk)

σ2(uik · uij) 2σ2 + 3σ4

d2
ik

σ2(uik · ujk)

σ2(ujk · uij) σ2(ujk · uik) 2σ2 + 3σ4

d2
jk

 (53)

The deviation vector of the triangle relation matrix is defined as:

∆Dijk = D′
ijk −Dijk = [∆ij ,∆ik,∆jk] (54)

This vector follows a multivariate normal distribution:

∆Dijk ∼ N (µ,Σ) (55)

with mean vector:

µ = [E[∆ij ],E[∆ik],E[∆jk]] =

[
3σ2

dij
,
3σ2

dik
,
3σ2

djk

]
(56)

and covariance matrix Σ as defined previously.

The Frobenius norm of the deviation matrix is:

∥∆Dijk∥F =
√
∆2

ij +∆2
ik +∆2

jk (57)

The squared norm follows a non-central chi-squared distribution with 3 degrees of freedom and
non-centrality parameter:
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λ = ∥µ∥2

=

(
3σ2

dij

)2

+

(
3σ2

dik

)2

+

(
3σ2

djk

)2

= 9σ4

(
1

d2ij
+

1

d2ik
+

1

d2jk

)

= 9σ4
∑

(a,b)∈{(i,j),(i,k),(j,k)}

1

d2ab

(58)

For incorrect point correspondences, at least one point is mismatched or belongs to a different rigid
body. In this case, the deviation includes both random noise and systematic geometric error:

∆Dijk ∼ N (µ+ δsys,Σ) (59)

where δsys = [δij , δik, δjk] represents the systematic error vector that typically satisfies ∥δsys∥ ≫ σ.

Given a threshold ϵ, we define:

p1 = P(∥∆Dijk∥F < ϵ | correct correspondence) (60)

p2 = P(∥∆Dijk∥F < ϵ | incorrect correspondence) (61)

Under conditions of sufficient point cloud density, relatively small noise level σ, and significant
systematic error ∥δsys∥ ≫ σ, we can establish that p1 > p2.

For correct correspondences, ∥∆Dijk∥2F follows a non-central chi-squared distribution with non-
centrality parameter λ1 = ∥µ∥2.

For incorrect correspondences, ∥∆Dijk∥2F follows a non-central chi-squared distribution with non-
centrality parameter λ2 = ∥µ+ δsys∥2.

Since ∥δsys∥ ≫ ∥µ∥, we have λ2 ≫ λ1. The cumulative distribution function of a non-central
chi-squared distribution decreases with increasing non-centrality parameter for a fixed threshold.
Therefore:

p1 = P(∥∆Dijk∥F < ϵ | correct) ≫ P(∥∆Dijk∥F < ϵ | incorrect) = p2 (62)

For a k-truss, where each edge is supported by at least k-2 triangles, the probability of correctly
identifying a correspondence increases exponentially with k, while the probability of incorrectly
accepting a false correspondence decreases exponentially. Assuming approximate independence
between triangles supporting an edge, the probability of correctly identifying a correspondence with
m = k-2 supporting triangles is:

P (correct | m triangles) ≈ 1− (1− p1)
m (63)

Similarly, the probability of incorrectly accepting a false correspondence with m supporting triangles
is:

P (incorrect accepted | m triangles) ≈ (p2)
m (64)

Since p1 > p2, as m increases (higher k-truss order), the discrimination power between correct and
incorrect correspondences increases substantially. This provides the theoretical foundation for why
triangle-supported k-truss offer exceptional robustness in point cloud registration, particularly in
challenging scenarios with noise, outliers, and partial visibility.
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A.3 Computational Complexity Analysis

In this section, we provide a systematic comparison of the computational complexity for four
representative dense subgraph algorithms commonly used in graph-based correspondence selection:
maximum clique [32], maximal clique [48], k-truss (our method), and k-core[35]. As shown
in Table 5, this analysis highlights the superior efficiency of k-truss for large-scale point cloud
registration.

maximum clique. The maximum clique problem aims to find the largest fully connected subgraph
within a given graph. This is a classic NP-complete problem. The number of possible cliques grows
exponentially with the number of vertices, making exact computation intractable for large graphs.
The time complexity is exponential with respect to the number of nodes, and thus maximum clique
algorithms are unsuitable for practical large-scale applications.

maximal clique. A maximal clique is a clique that cannot be extended by including any adjacent
vertex; it is not necessarily the largest clique, but it is maximal with respect to set inclusion. Enu-
merating all maximal cliques in a graph is also computationally demanding, as the number of such
cliques can still be exponential in the worst case. As a result, MAC-based methods are robust in
theory but suffer from high computational cost and limited scalability.

k-truss (our method). k-truss decomposition efficiently finds a subgraph in which every edge is
contained in at least k − 2 triangles. The main computational steps are triangle enumeration and
iterative edge removal based on triangle support. The overall time complexity is polynomial, typically
O(m1.5) where m is the number of edges. This makes k-truss much more efficient and scalable than
clique-based methods, while still leveraging higher-order geometric consistency (triangles) for robust
correspondence selection.

k-core. k-core decomposition identifies the largest subgraph in which every node has at least degree
k. It can be computed with a simple iterative node removal process in linear time, O(m). This method
is extremely efficient and suitable for very large graphs. However, k-core only considers node degree
and ignores triangle or higher-order structures, which can limit its robustness when facing high outlier
rates or complex geometric scenarios.

Table 5: Time complexity comparison of dense subgraph algorithms.

Method Description Time Complexity Structural Strength

maximum clique Largest fully-connected sub-
graph

Exponential Strongest, but intractable

maximal clique (MAC) Maximal fully-connected sub-
graph

Exponential Strong, but costly

k-truss Each edge in ≥ k−2 triangles Polynomial (O(m1.5)) Strong (triangle-based)
k-core Each node degree ≥ k Linear (O(m)) Moderate (degree-based)

Both maximum clique and maximal clique approaches impose strict connectivity constraints but have
exponential time complexity, making them impractical for large-scale or real-time applications. k-core
is extremely efficient but provides only weak structural guarantees. In contrast, k-truss decomposition
achieves a favorable balance: it maintains polynomial computational complexity, making it feasible for
large-scale graphs, while its triangle-based strpucture ensures robust inlier selection. This advantage
explains the superior efficiency and effectiveness of k-truss in our framework for large-scale point
cloud registration. Moreover, parallel k-truss decomposition algorithms can further improve the
speed of k-truss extraction, making it even more suitable for large-scale applications.

A.4 Pseudocode for Our Algorithm

The following pseudocode outlines the complete pipeline of PointTruss, our robust 3D point cloud
registration framework. The overall method consists of four modular stages: (1) consensus voting-
based sampling, (2) compatibility graph construction and k-truss decomposition, (3) cluster-wise
transformation estimation, and (4) spatial distribution score-based selection. Each stage is further
detailed below with interleaved explanation and modular pseudocode.
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Algorithm 1 PointTruss
1: Input: Source point cloud P, target point cloud Q, initial correspondences C, parameters:

noise std σ, inlier threshold τ , sampling ratio β, k-truss parameter k, consensus threshold τc,
compatibility threshold τcomp, NMS radius rnms

2: Output: Rigid transformation (R∗, t∗)
3: Apply Algorithm 2 to C with τc, rnms, β to obtain Isampled

4: Let Csampled = {C[i] : i ∈ Isampled}
5: Construct compatibility graph G among Csampled; add edge between ci and cj if Scomp(ci, cj) >

τcomp, using noise parameter σ
6: Compute adjacency matrix A of G
7: Apply Algorithm 3 to A with k to get robust clusters {Nm}
8: for each cluster Nm do
9: Compute node centrality in cluster to obtain weights wi

10: Estimate candidate transformation (Rm, tm) using centrality-weighted SVD
11: end for
12: Apply Algorithm 4 to all candidate transformations {(Rm, tm)} to obtain optimal (R∗, t∗)
13: return (R∗, t∗)

Step 1: Consensus Voting-based Low-scale Sampling.
Given initial correspondences, we first select a subset of high-quality matches via consensus vot-
ing and non-maximum suppression (NMS). This improves the precision of the subsequent graph
construction.

Algorithm 2 Consensus Voting-based Low-scale Sampling
1: Input: Correspondences C = {(ps

i ,p
t
i)}Ni=1, compatibility scores Scomp(·, ·), consistency

threshold τc, NMS radius rnms, sampling ratio β
2: Output: Sampled correspondence indices Isampled

3: for each correspondence i = 1 to N do
4: Compute consensus score Si using Scomp and threshold τc (please see Eq. (3))
5: end for
6: for each correspondence i = 1 to N do
7: Apply non-maximum suppression to Si using NMS radius rnms (please see Eq. (5))
8: Compute final score Sfinal

i (please see Eq. (6))
9: end for

10: Set K = ⌊β ·N⌋
11: Select indices Isampled of the top-K correspondences with the highest Sfinal

i
12: return Isampled

Step 2: Compatibility Graph Construction and K-Truss Decomposition.
A compatibility graph is built over the sampled correspondences, where edges represent geometric
consistency. We then extract structurally robust clusters using k-truss decomposition.

Step 3: Cluster-wise Transformation Estimation.
For each cluster, we estimate a candidate rigid transformation using centrality-weighted SVD. All
candidate transformations are subsequently evaluated in the next step.

Step 4: Spatial Distribution Score (SDS) Based Selection.
We score each candidate using SDS, which measures both the alignment quality and spatial spread of
inliers, and select the best one for output.

A.5 Hyper-parameter selection

We set the inlier threshold τ to 0.1 for the 3DMatch and 3DLoMatch datasets. For the KITTI dataset,
τ is set to 0.6. The sampling ratio β ranges from 0.1 to 0.5. The k-truss parameter k is chosen
between 3 and 10. The consensus threshold τc is set to 0.9 by default. The compatibility threshold
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Algorithm 3 K-Truss Decomposition for Enhanced Structure Detection
1: Input: Adjacency matrix A of the compatibility graph among sampled correspondences, truss

parameter k
2: Output: Robust clusters of correspondences {Nm}
3: Compute triangle support matrix T using A
4: Identify valid edges Evalid where triangle support ≥ (k−2)
5: for each vertex i do
6: Extract neighborhood Ni connected by valid edges
7: if |Ni| ≥ k then
8: Add Ni to the set of robust clusters {Nm}
9: end if

10: end for
11: return {Nm}

Algorithm 4 Spatial Distribution Score (SDS) Based Transformation Selection
1: Input: Source points P = {ps

i}Ni=1, target points Q = {pt
i}Ni=1, candidate transformations

{(Rm, tm)}Mm=1, inlier threshold τ
2: Output: Optimal transformation (R∗, t∗)
3: for each candidate (Rm, tm) do
4: Transform source points using (Rm, tm)
5: Identify inlier set Im using threshold τ
6: if |Im| < 10 then
7: Assign SDS score = 0 for this candidate
8: else
9: Compute inlier ratio ρinlier

10: Compute spatial coverage ratio ρcoverage
11: Compute inlier alignment error term ρerror
12: Compute SDS score (please see Eq. (14–17))
13: end if
14: end for
15: Select (R∗, t∗) with the highest SDS score
16: return (R∗, t∗)

τcomp is adjusted according to the noise standard deviation σ. The NMS radius rnms is typically set
to 0.1. All hyperparameters are determined based on empirical validation.

A.6 Ablation study of each component

We conducted systematic ablation studies on the 3DMatch and 3DLoMatch datasets to analyze each
component of our algorithm. The MAC (Maximal Clique) method was introduced for comparison,
ensuring a comprehensive evaluation of our proposed modules. As shown in Table 6, our method
demonstrates the effectiveness of the k-truss for point cloud registration. This structure not only
improves overall registration accuracy but also enhances robustness. In addition, the consensus
voting-based low-scale sampling strategy and spatial distribution score each contribute positively in
experiments. Results indicate that both strategies can serve as effective components for traditional
registration methods, improving their performance in challenging scenarios. Overall, our study
confirms the practical value and broad applicability of these modules in point cloud registration tasks.

A.7 Limitations and broader impacts

We propose a novel point cloud registration method based on the k-truss in graph theory. This
method uses triangles as core constraints and introduces a new perspective for point cloud registration.
It fully exploits the advantages of higher-order structures in modeling spatial relationships. Our
method performs well in both dense and sparse point cloud scenarios. It shows strong robustness
and generalization, effectively resisting high ratios of outliers and noise. In addition, the k-truss
decomposition module in our algorithm is highly extensible. It can be used as an independent
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Table 6: Analysis experiments on 3DMatch and 3DLoMatch with FPFH and FCGF descriptors.
CV: Consensus Voting-based Low-scale Sampling Strategy; MAC: Maximal Clique; SDS: Spatial
Distribution Score.

CV MAC k-truss SDS inlier RR3DMatch(%) RR3DLoMatch(%)

FPFH
1) ✓ ✓ 83.67 37.10
2) ✓ ✓ ✓ 83.80 38.85
3) ✓ ✓ 83.73 39.02
4) ✓ ✓ ✓ 84.20 38.91
5) ✓ ✓ 83.86 37.79
6) ✓ ✓ ✓ 84.20 39.98
7) ✓ ✓ 83.86 38.85
8) ✓ ✓ ✓ 84.70 43.96

FCGF
1) ✓ ✓ 91.68 57.44
2) ✓ ✓ ✓ 93.59 59.46
3) ✓ ✓ 93.53 59.01
4) ✓ ✓ ✓ 93.72 59.96
5) ✓ ✓ 93.40 58.00
6) ✓ ✓ ✓ 93.72 59.63
7) ✓ ✓ 93.66 59.40
8) ✓ ✓ ✓ 93.84 61.64

component and flexibly integrated into other registration algorithms or point cloud processing
frameworks, further enhancing overall system performance.

In terms of applications, this method is particularly suitable for scenarios requiring high precision
and stability in point cloud registration, such as autonomous driving. For example, in perception and
localization tasks for autonomous vehicles, reliable point cloud registration is crucial for environment
understanding and high-precision map construction. Nevertheless, our method still has room for
improvement in the adaptive selection of the k value and the screening of the optimal k-truss subgraph.
At present, how to automatically determine the best k value according to different data characteristics,
and how to efficiently select representative k-truss substructures, are the main directions for our future
research.

In the future, we will further explore the potential of higher-order topological structures, such as
quadrilaterals, in point cloud registration. This will improve the expressive power of the algorithm in
complex scenarios. We also plan to leverage high-performance parallel computing frameworks, such
as PyTorch, to parallelize the k-truss decomposition process. This will enable real-time processing of
large-scale point cloud data. Through these improvements, we aim to promote the application of graph-
based point cloud registration algorithms in real engineering scenarios and advance development in
related fields.

A.8 Scalability of our algorithm

Our experimental results demonstrate that the proposed algorithm achieves state-of-the-art perfor-
mance in both accuracy and robustness, while also exhibiting excellent efficiency. With further
optimization, such as leveraging PyTorch’s parallel computation capabilities, the speed of our method
can be further improved. Currently, the k-truss decomposition accounts for most of the runtime.
Several studies have optimized parallel k-truss decomposition, and these techniques can also be
applied to our method. In addition, our method can serve as a flexible module that integrates with
conventional or deep learning-based descriptors. The proposed Spatial Distribution Score can also be
adopted by other methods to further enhance overall accuracy.
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Figure 6: Visualizations of registration results on the 3DMatch and 3DLoMatch datasets. The
first two rows show examples from 3DMatch, and the last two rows show examples from 3DLoMatch.
In each group, yellow and blue point clouds represent the source and target, respectively. From left to
right: (a) input point cloud pairs, (b) results of our method, and (c) ground-truth alignment.

A.9 Datasets

All datasets used in this work are publicly available. The Bunny model from the Stanford 3D Scanning
Repository was acquired using a Cyberware 3030 MS scanner and is restricted to non-commercial
use. The KITTI dataset is published under the NonCommercial-ShareAlike 3.0 License and contains
11 sequences captured by a Velodyne HDL-64 3D LiDAR scanner in outdoor driving scenarios.
Following the protocol in [5, 48], we use sequences 8–10 for testing. Additionally, we provide the
3DMatch dataset and its corresponding license information, as shown in Table 7, where 3DLoMatch
is a subset of 3DMatch.

Table 7: Source datasets for 3DMatch and their corresponding licenses.

Datasets License
SUN3D [38] CC BY-NC-SA 4.0
7-Scenes [33] Non-commercial use only

RGB-D Scenes v.2 [22] (License not stated)
Analysis-by-Synthesis [36] CC BY-NC-SA 4.0

BundleFusion [11] CC BY-NC-SA 4.0
Halber et al. [16] CC BY-NC-SA 4.0

A.10 Visualization of Registration Results

We present visual registration results on the 3DMatch and 3DLoMatch datasets in Fig. 6. The
yellow and blue point clouds represent the source and target, respectively. The first column shows the
input point clouds, and the second column displays the point clouds aligned using the ground-truth
transformation. Even on the 3DLoMatch dataset with low overlap, our method clearly extracts the
key structure and achieves accurate alignment. We also show registration results on the KITTI dataset
in Fig. 7. The input source and target point clouds are in different poses. After applying our estimated
transformation, the source point cloud is successfully aligned with the target. The result is almost
identical to that of the ground-truth transformation.
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Input Ours Ground-truth

Figure 7: Visualizations of registration results on the KITTI dataset. From left to right: input
point cloud pairs, registration results using our method, and ground-truth alignment.

A.11 Ablation Study on Graph Sampling and K-value

We conduct comprehensive ablations to evaluate how the sampling ratio β influences accuracy and
efficiency, as shown in Table 8.

Table 8: Impact of sampling ratio β on 3DMatch (FCGF).

Sampling Ratio β Registration Recall Runtime (s) Speedup

0.1 93.10% 0.12 8.3×
0.2 93.53% 0.16 6.3×
0.3 93.84% 0.20 5.0×
0.4 93.78% 0.25 4.0×
0.5 93.41% 0.31 3.2×

Retaining only 10% of correspondences via consensus voting preserves 93.10% registration success
while yielding an 8.3× speedup, indicating that voting preferentially keeps geometrically consistent
correspondences. Higher sampling ratios can be slightly worse than β=0.3 because they retain more
erroneous correspondences that adversely affect the downstream k-truss decomposition.

Initial graph: 5,020 nodes → after voting: 502 nodes → adjacency: 502×502 with 43,571 edges.

Table 9: K-Truss decomposition statistics with 10% sampling.

k-value Subgraphs Node Range Avg. Nodes

3 502 [3–322] 173.6
4 502 [4–322] 173.6
5 499 [5–322] 174.5
6 498 [6–322] 174.7
7 495 [7–320] 175.5
8 493 [8–321] 176.0
9 492 [9–320] 176.1
10 490 [10–320] 176.4
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As shown in Table 9, even with aggressive 10% sampling, subgraphs remain large (average 170+
nodes), due to: (i) high-quality input after the voting pre-filter that enforces strong geometric
consistency and high connectivity density; and (ii) natural clustering of correct correspondences,
which form richly supported triangle structures satisfying k-truss constraints.

Sensitivity to k and Multi-k The sensitivity of registration recall to k is shown in Table 10.

Table 10: Sensitivity of registration recall to k on 3DMatch with FCGF.

k-value Registration Recall

3 93.15%
5 93.21%
7 93.59%
10 93.40%
Multi-k (3–10) 93.84%

Performance is weakly sensitive to k because stricter k-truss subgraphs are nested subsets of those
at smaller k, forming a natural hierarchy. The multi-k strategy leverages this property. In practice,
we select the transformation from the subgraph with the highest spatial distribution score; a global
re-estimation using all inliers is unnecessary, as the selected subgraph already yields robust alignment.
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