Tram: A Token-level Retrieval-augmented Mechanism for Source Code
Summarization

Anonymous ACL submission

Abstract

Automatically generating human-readable text
describing the functionality of a program is
the intent of source code summarization. Al-
though Neural Language Models achieve sig-
nificant performance in this field, an emerging
trend is combining neural models with external
knowledge. Most previous approaches rely on
the sentence-level retrieval and combination
paradigm (retrieval of similar code snippets
and use of the corresponding code and sum-
mary pairs) on the encoder side. However, this
paradigm is coarse-grained and cannot directly
take advantage of the high-quality retrieved
summary tokens on the decoder side. In this
paper, we explore a fine-grained token-level
retrieval-augmented mechanism on the decoder
side to help the vanilla neural model generate a
better code summary. Furthermore, to mitigate
the limitation of token-level retrieval on cap-
turing contextual code semantics, we propose
to integrate code semantics representation into
summary tokens. Extensive experiments and
human evaluation reveal that our token-level
retrieval-augmented approach significantly im-
proves performance and is more interpretive.
We have made our code publicly available' to
facilitate future research.

1 Introduction

With software functions becoming more compre-
hensive and complex, it becomes a heavy burden
for developers to understand software. It has been
reported that nearly 90% (Wan et al., 2018) of ef-
fort is used for maintenance, and much of this ef-
fort is spent on understanding the maintenance task
and related software source codes. Source code
summary as a natural language is indispensable in
software, since humans can easily read and under-
stand it, as shown in Table 1. However, manually
writing source code summaries is time-consuming

"https://anonymous.4open.science/r/
SourceCodeSummary-8ABD

and tedious. Besides, in the process of continuous
software iteration, the source code summary is of-
ten outdated. Hence, automatically generating con-
cise and human-readable source code summaries is
critical and meaningful.

def cos(x):
np = import module ("numpy")
if isinstance(x, (int, float)):
return interval (np.sin(x))
elif isinstance (x, interval):
if (not (np.isifnite(x.start) and
np.isfinite(x.end))):

return interval((-1), 1, is_valid=x.is_valid)
(na, _) = divmod(x.start, (np.pi / 2.0))
(nb, _) = divmod(x.end, (np.pi / 2.0))
start = min(np.cos(x.start), np.cos(x.end))
end = max (np.cos(x.start), np.cos(x.end))
if ((nb - na) > 4):
return interval((-1), 1, is_valid=x.is_valid)

elif (na == nb):
return interval (start, end, is_valid=x.is_valid)
else:
if ((na // 4) != (nb // 4)):
end = 1
if (((na - 2) // 4) !'= ((nb - 2) // 4)):
start = -1
return interval (start, end, is_valid=x.is_valid)
else:
raise NotImplementedError

Summary: evaluates the cos of an interval.
Sentence-level:
evaluates logarithm to base 10 of an interval.
Token-level: cos, tangent, sin, hyperbolic - - -

Table 1: Task sample of source code summarization.
The example is a Python function instance.

With the development of language models and
the linguistic nature of source code, researchers
explored Seq2Seq architecture such as recurrent
neural networks to generate summaries from the
given source code (Iyer et al., 2016; Loyola et al.,
2017; Liang and Zhu, 2018). Soon afterward,
Transformer-based models (Ahmad et al., 2020;
Wu et al., 2021; Gong et al., 2022) were proposed,
which outperformed previous RNN-based models
by a large margin. Recently, many approaches pro-
pose to additionally exploit the structural proper-
ties of source code, including Abstract Syntax Tree
(AST), Program Dependency Graph (PDG), etc.
Current structure-aware methods fuse structural in-
formation in hybrid way (Hu et al., 2018; Shido

https://anonymous.4open.science/r/SourceCodeSummary-8ABD
https://anonymous.4open.science/r/SourceCodeSummary-8ABD

et al., 2019; LeClair et al., 2020; Choi et al., 2021;
Shi et al., 2021), or structured-guided way (Wu
et al., 2021; Son et al., 2022; Gong et al., 2022).
While these methods achieve excellent results, they
only focus on mining the information of the code
itself to get richer code representation, neglecting
the existing human-written code-summary pairs.

In order to make use of the external existing
high-quality code and the corresponding summary
instances, Liu et al. (2021) retrieved the most simi-
lar code snippet by text similarity metric to enrich
target code structure information for getting a better
code representation encoder. This retrieval method
only carries out from the perspective of text simi-
larity and neglects code semantic similarity in the
retrieval phase. Besides, the summary correspond-
ing to the retrieved code snippet is just a simple
concatenate to the encoder. Zhang et al. (2020);
Parvez et al. (2021) used a pre-trained encoder to
obtain code semantic representation, which was
used to retrieve similar code snippets. The for-
mer only used similar code snippets and discarded
the corresponding summaries; the latter directly
spliced the retrieved code snippet and the corre-
sponding summary behind the target code; both
were also aimed at better code representation on
the encoder side. Code summarization, as a genera-
tive task essentially, the decoder generates the sum-
mary tokens autoregressively. However, previous
retrieval-augmented methods neglect to fuse the re-
trieved information on the decoder side, which will
result in the utilization pattern being indirect and
insufficient. Besides, current retrieval-augmented
methods that use the summary are still at the coarse-
grained sentence level (i.e., concatenate), which
will blend in a lot of noise, as shown in Table 1,
many of the corresponding summary tokens are not
related, like "logarithm to base 10".

This inspires us to perform a fine-grained re-
trieval manner on the decoder side, so we propose
a token-level retrieval-augmented mechanism. In
order to achieve the purpose of retrieving semantic
similar summary tokens, we first construct a data-
store to store the summary token and correspond-
ing token representation through a pre-trained base
model offline. At the same time, in order to fully
consider contextual code semantics associated with
summary tokens, our token representation inte-
grates code representation with attention weight.
The summary token representation at each genera-
tion step is used to retrieve the most similar top- K

tokens, as shown in Table 1, the token-level re-
trieval results are "cos, tangent, sin, hyperbolic
-+ "at the generation step of next token "cos"”. The
retrieved top-K tokens are expanded to a proba-
bility distribution called retrieval-based distribu-
tion. The retrieval-based distribution fused with
the vanilla distribution to form the final distribu-
tion. Besides, our token-level retrieval mechanism
can be seamlessly integrated with the additional
sentence-level retrieval manner.

In summary, the main contributions of this paper
are outlined as follows:

1. We first explore a token-level retrieval-
augmented mechanism on the decoder side for
source code summarization.

2. Our proposed retrieval-augmented mecha-
nism is orthogonal to existing improvements, e.g.
combined with code representation or addition
sentence-level retrieval manner.

3. Extensive experiments and human evaluation
show that our proposed method significantly out-
performs other baseline models.

2 Methodology

In this work, we propose a Token-level Retrieval-
augmented Mechanism for Source Code Summa-
rization (Tram). Firstly, we introduce the base
model, which establishes the summary token and
corresponding token representation pairs in a data-
store. Then, we formulate the token-level retrieval
method, which retrieves tokens from the datastore
and blends the final prediction probability. Finally,
we introduce the additional sentence-level simi-
lar code snippet retrieval-augmented manner. The
overview of Tram is shown in Figure 1.

2.1 Base Model

In the first place, we use Transformer (Vaswani
et al., 2017) as our backbone. The Transformer
consists of stacked multi-head attention and pa-
rameterized linear transformation layers for both
encoder and decoder. Each layer emphasizes on
self-attention mechanism, which is denoted as:

i — IL’Z'WQ(Z‘J‘WK)T
SN

hi=7 aij(w;W")

J=1

exp(e;j;)

where ;; = ST o) We WE WV are the

parameters that are unique per layer and attention

Fused Distribution

Transformer Distribution

Retrieval Distribution

’—l—h H X(l—l)l A x
A x

(Cos Similarity Value \
(R o™ T b 0.96 initiation
- | .
_____________ ol Additional Se_ntence | 0.87 attempt
| level Retrieval 0.82 initialize
0.41 check
2. Query 0.37 test
[ZEI:%EED I Top_.q
— @ — Key Value\
Transformer Transformer CT T T T T T retun
Encoder Decoder
|
—_— —
A 1. Store CITTTTT)| ferator
(O) >
Code + Summary Token Representation Datastore

Figure 1: The overview architecture of Trams. The left part is the base model and the vanilla model distribution.
The right part shows the process of retrieving similar summary tokens and getting the retrieval-based distribution.
The Query and Key are the combinations of encoder and decoder representation.

head, h; is the ¢th-token hidden representation.

Nevertheless, as pointed out in Ahmad et al.
(2020), the semantic representation of a code does
not rely on the absolute positions of its tokens. In-
stead, their mutual interactions influence the mean-
ing of the source code. To encode the pairwise
relationships between input elements, Shaw et al.
(2018) extend the self-attention mechanism as fol-
lows:

WO (x;WHE + ag)T
Vi

eij =

n
hi = Zaij(ijV + a:;)
j=1

where af](. and a}; are relative positional represen-

tation for the two position ¢ and j. We clip the
maximum relative position to a maximum absolute
value of [because precise relative position informa-
tion is not useful beyond a certain distance.

K _ K V_ Vv
Q5 = Welip(j—il)> Y5 = Welip(j—i,l)

clip(z,l) = maz(—I,min(zx,1))

Hence, the Transformer architecture equipped with
relative position representation serves as our base
model.

2.2 Datastore Creation

For fine-grained token-level retrieval, the datastore
that store summary token representation and corre-
sponding token pairs is indispensable. At the stage
of datastore establishment, we adopt the above pre-
trained base model to go through all training in-
stances (C, S) in an offline manner. The encoder
encodes the source code into a sequence of hidden
states. The decoder takes the representations of the
source code as input and generates target summary
text autoregressively. During this process, for each
instance (¢, s), we record encoder representation
(which contains code semantic) as C'R, decoder
presentation” (which contain summary semantic)
as SR and corresponding ground-truth target token
as s. The representation and target token are stored
as key and value, respectively. Formally, given a
training set, we construct the datastore as follows:

(K, V) ={(Ry, st), Vst € sl(c,s) € (C,S)}

where the value s, is the ground-truth target token
with ¢ denoting decoding timestep, R; is the cor-
responding hidden representation. Spread it out,
Ry consist of two parts: one is code representation

It is worth noting that we record the hidden representation
input to the final layer feed network in the decoder.

C Ry, the other is summary token representation
S Rti
R, = Trans(CRy, SRy)

Trans(-) can be any aggregation transformation.
In this work, we use the concatenate operation.
Especially, C'R; is the weighted sum of each code
token representation.

¢
CRt = Z?:Et * CT;
=1

where w; is the cross attention weight, cr; is the
i-th code token representation and ¢ denoted code
token length.

2.3 Token-level Retrieval

While inference, at each decoding step ¢, the de-
coder representation S R; together with code rep-
resentation C'R; used the same transformation op-
erator T'rans(-) as query ¢;. The query then re-
trieves the top- /K most similar summary tokens in
the datastore according to cos similarity distance.
It is worth noting that we use cos similarity in-
stead of squared-L? distance because of the per-
formance of the preliminary experiment. As an
added bonus, cos similarity can be seen as retrieval
confidence. In practice, the retrieval over mil-
lions of key-value pairs is carried out using FAISS
(Johnson et al., 2019), a library for fast nearest
neighbor search in high-dimensional spaces. The
retrieved key-value pairs (k,v) and correspond-
ing cos similarity distance o composed a triple
set N' = {(k;,vi, ;)| = 1,2,--- , K}. Inspired
by KNN-MT (Khandelwal et al., 2021), the triple
set can then be expanded and normalized to the
retrieval-based distribution as follows:

P (s¢|e, §<4) o Z

(ks,vi,06)EN

]]‘St:Ui exp (g(kiv al))

g(ki, ;) = ;% T

where g(-) can be any Kernel Density Estimation
(KDE), in our paper, we use the product form; 7" is
the temperature to regulate probability distribution.

2.4 Fused Distribution

The final prediction distribution can be seen as
the vanilla base model output distribution and the
retrieval-based distribution are interpolated by a
hyper-parameter A:

P(stle, §<t) = A * Pr(st|c, S<¢)

+ (1= A) * Pr(stlc, 8<¢)

Datasets Java | Python | CCSD

Train 69,708 | 55,538 | 84,316
Validation 8,714 | 18,505 | 4,432
Test 8,714 | 18,502 | 4,203

Code: Avg. tokens 73.76 49.42 68.59
Summary: Avg. tokens | 17.73 9.48 8.45

Table 2: Statistics of the experimental datasets. We split
CCSD following Liu et al. (2021), and the Java/Python
dataset splits are public available.

where P, indicates the vanilla base model distri-
bution.

2.5 Additional Sentence-level Retrieval

The token-level retrieval-augmented method can
also be seamlessly incorporated with additional
sentence-level retrieval. Additional sentence-level
retrieval means finding the most semantic similarity
code snippet, and using an additional encoder to
encode the code snippet, then decoding with the
target code snippet synchronously. Formally, the
final fused distribution can be extended as follow:

.P(St|C7 §<t) =)\1 * Pr(St|C, §<t)
+ Ao x Sim x Ps(s¢|(c), $<¢)
+ (1= X — A2) * Pp(stlc, $<¢)

where P is the additional sentence-level produced
distribution, (c) is the most semantic similar code
snippet to ¢, and S¢m is the corresponding similar-
ity score.

3 Experiments

3.1 Experimental Setup

Datasets. We conduct the source code summa-
rization experiments on three public benchmarks
of Java (Hu et al., 2018), Python (Wan et al., 2018),
CCSD (C Code Summarization Dataset) (Liu et al.,
2021). The partitioning of train/validation/test sets
follows the original datasets. The statistics of the
three datasets are shown in Table 2.

Out-of-Vocabulary. The vast operators and iden-
tifiers in program language may produce a much
larger vocabulary than natural language, which can
cause Out-of-Vocabulary problem. To avoid this
problem, we apply CamelCase and snake_case
tokenizers that are consistent with recent works
(Gong et al., 2022; Wu et al., 2021; Ahmad et al.,
2020) to reduce the vocabulary size of source code.

Metrics. Similar to recent work (Gong et al.,
2022; Son et al., 2022), we evaluate the source code
summarization performance using three widely-
used metrics, BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005) and ROUGE-L
(Lin, 2004). These metrics are prevalent in machine
translation and text summarization. Furthermore,
considering the essence of source code summariza-
tion to help humans better understand code, we also
conduct a human evaluation study. The volunteers
are asked to rank summaries generated from the
anonymized approaches from 1 to 5 (i.e., 1: Poor,
2: Marginal, 3: Acceptable, 4: Good, 5: Excellent)
based on Similarity, Relevance, and Fluency. Fur-
ther details on human evaluation can be found in
Appendix A.

Training Details. We implement our approach
based on JoeyNMT (Kreutzer et al., 2019) on
NVIDIA 3090. The batch size is set to 32 and
Adam optimizer is used with an initial learning
rate 10~%. To alleviate overfitting, we adopt early
stopping with patience 15. For Faiss (Johnson
et al., 2019) Index, we employ IndexFlatIP and
top- /=16 to keep a balance between retrieval qual-
ity and retrieval speed in the large scale datastore.
It is worth noting that the only part that requires
training is the base model, and once trained, all
parameters of the base model are fixed.

3.2 Baselines

RNN-based. CODE-NN (Iyer et al., 2016) fol-
lows LSTM-based encoder-decoder architecture
with attention mechanism, treating source code as
natural language. Tree2Seq (Eriguchi et al., 2016)
is an end-to-end syntactic NMT model which di-
rectly uses a tree-based LSTM as an encoder. It ex-
tends an RNN model with the source code structure.
Hybrid2Seq (Wan et al., 2018) incorporates ASTs
and sequential content of code snippets into a deep
reinforcement learning framework. DeepCom (Hu
et al., 2018) flattens the AST into a sequence as in-
put, which is obtained via traversing the AST with
a structure-based traversal (SBT) method. Dual
Model (Wei et al., 2019) treats code summarization
and code generation as a dual task. It trains the
two tasks jointly by a dual training framework to
simultaneously improve the performance of both
tasks.

Transformer-based. Transformer (Ahmad et al.,
2020) is the first attempt to use transformer archi-
tecture, equipped with relative positional encoding

and copy mechanism (See et al., 2017), effectively
capturing long-range dependencies of source code.
CAST (Shi et al., 2021) hierarchically splits a large
AST into a set of subtrees and utilizes a recursive
neural network to encode the subtrees, aimed to
capture the rich information in ASTs. mAST +
GCN (Choi et al., 2021) adopt the AST and graph
convolution to model the structural information and
the Transformer to model the sequential informa-
tion. SiT (Wu et al., 2021) incorporates a multi-
view graph matrix into Transformer’s self-attention
mechanism. Essentially, it improves performance
by masking redundant attention in the calculation
process of self-attention scores. SiT + PDG (Son
et al., 2022) pointed program dependency graph is
more effective for expressing the structural informa-
tion than AST. SCRIPT (Gong et al., 2022) utilizes
AST structural relative positions to augment the
structural correlations between code tokens.

Retrieval-based. Rencos (Zhang et al., 2020)
is the first retrieval-based Seq2Seq model, which
computes a joint probability conditioned on both
original source code and retrieved the most simi-
lar source code for a summary generation. HGNN
(Liu et al., 2021) is the retrieval-based GNN model,
which retrieval the most similar code and uses a
Hybrid GNN by fusing static graph and dynamic
graph to capture global code graph information.

3.3 Main Results

The main experiment results are shown in Table 3
and Table 4 in terms of the three automatic evalu-
ation metrics. The reason for having two tables is
most recently Transformer-based works compared
their performance on the two widely used Java and
Python benchmarks; the recently Retrieval-based
works compared on different benchmarks. Thus,
our experiments are performed on all three datasets
(Java/Python/CCSD) for more comprehensive com-
parison. We calculate the values of the metrics
following the same scripts. For these metrics, the
larger value indicates better performance.

From Table 3, SiT + PDG and SCRIPT out-
perform all previous works by a significant mar-
gin. However, our proposed token-level retrieval-
augmented model further boosts results with 1.25
BLEU points on Java and 1.74 BLEU points on
Python and achieves new state-of-the-art results.
At the same time, we notice that the performance
improvement of Python is better than that of Java.
The main reason we speculate is that the average

Model Java Python

BLEU ROUGE-L METEOR | BLEU ROUGE-L METEOR
RNN-based Methods
CODE-NN (Iyer et al., 2016) 27.60 41.10 12.61 17.36 37.81 09.29
Tree2Seq (Eriguchi et al., 2016) 37.88 51.50 22.55 20.07 35.64 08.96
Hybrid2Seq (Wan et al., 2018) 38.22 51.91 22.75 19.28 39.34 09.75
DeepCom (Hu et al., 2018) 39.75 52.67 23.06 20.78 37.35 09.98
Dual Model (Wei et al., 2019) 42.39 53.61 25.77 21.80 39.45 11.14
Transformer-based Methods
Transformer (Ahmad et al., 2020) | 44.58 54.76 26.43 32.52 46.73 19.77
CAST (Shi et al., 2021) 45.19 55.08 27.88 - - -
mAST + GCN (Choi et al., 2021) | 45.49 54.82 27.17 32.82 46.81 20.12
SiT (Wu et al., 2021) 45.70 55.54 27.55 33.46 47.50 20.28
SiT + PDG (Son et al., 2022) 46.86 56.69 - - - -
SCRIPT (Gong et al., 2022) 46.89 56.69 28.48 34.00 48.15 20.84
Our Method
Base 46.72 56.74 28.60 34.01 48.21 20.93
Tram 48.14 57.89 29.38 35.74 49.63 21.87
Tram w/o CR 47.96 57.42 29.23 35.51 49.37 21.68
Tram with SenRe 48.37 58.21 29.69 36.15 49.76 22.03

Table 3: Comparison of the performance of our method with other baseline methods on Java and Python benchmarks
in terms of BLEU, ROUGE-L, and METEOR. The results of base models are reported in their original papers.
‘> refers to no corresponding value from the paper. CR refers to code representation, SenRe refers to additional
sentence-level retrieval. All of our methods are the mean of 5 runs with different random seeds.

code token length of Java is longer (from Table 2)
and has richer code structure information, and the
Transformer-based structure-induced methods can
capture richer code semantics in their customized
encoder.

Table 4 compares our proposed model with other
retrieval-based models on CCSD and Python bench-
marks. Our base model is even comparable to other
retrieval-based methods; the main reason is that
the backbone * are different. We reproduce Ren-
cos architecture* in our base model for fair com-
parison, which we denoted as Base + Rencos.
Our model still outperforms other retrieval-based
methods, further improving performance with 2.05
BLEU points and 1.47 BLEU points on CCSD and
Python, respectively. This also proves the superior-
ity of our fine-grained retrieval-augmented method
to fuse similar summary tokens on the decoder side.

3.4 Ablation Study

To validate the effectiveness of Code Representa-
tion (CR), we eliminate CR for comparison. The
performance decline in all datasets demonstrated
that the fusion with code semantic representation
into the summary token is also important for sum-

3other retrieval-based methods are RNN-based.
“HGNN code is not open source.

mary token retrieval.

As pointed out in the methodology, our retrieval-
augmented method can also be seamlessly incorpo-
rated with additional sentence-level retrieval (Tram
with SenRe). The results show Tram with SenRe im-
proved by 0.23 BLEU, 0.41 BLEU, and 0.75 BLEU
points on Java, Python, and CCSD, respectively.
The performance improvement of Tram with SenRe
demonstrated the superiority of the combination
of sentence-level retrieval manner and token-level
retrieval manner, the formal aimed at retrieving the
most similar code snippet and fused on the encoder
side, and the latter aimed at retrieving the most
similar summary token and fused on the decoder
side; both are beneficial.

4 Analysis

4.1 Hyper-parameters Analysis

Our methods have two main hyper-parameters: A
and T'. A means the weight of the retrieval-based
distribution part to account for the final distribution;
the bigger value means the final distribution relies
more on retrieval results and vice versa. 1" means
Temperature, which smooths the retrieval-based
distribution. We plot the performance of Tram
with different hyper-parameter selections in Figure

Model CCSD Python?

BLEU ROUGE-L METEOR | BLEU ROUGE-L METEOR
Retrieval-based Methods
Rencos (Zhang et al., 2020) | 14.80 31.41 14.64 34.73 47.53 21.06
HGNN (Liu et al., 2021) 16.72 34.29 16.25 - - -
Our Method
Base 17.82 35.33 16.71 34.85 48.84 21.49
Base + Rencos 19.43 36.92 17.69 35.26 49.25 22.07
Tram 21.48 37.88 18.35 36.73 50.35 22.53
Tram w/o CR 21.30 37.77 18.22 36.53 50.20 22.35
Tram with SenRe 22.23 38.16 18.96 36.95 50.69 22.93

Table 4: Comparison of ours with other retrieval methods. CR means code representation, SenRe means additional
sentence-level retrieval. { means the Python dataset is slightly different from the Python on Tabel 3, and we are
consistent with Rencos (Zhang et al., 2020). All of our methods are the mean of 5 runs with different random seeds.

Model Java Python?
Similarity Relevance Fluency | Similarity Relevance Fluency
Rencos - - - 3.07 3.06 3.96
SCRIPT 3.65 3.70 4.12 - - -
Base 3.62 3.64 4.10 3.20 3.24 4.03
Tram 3.83 3.89 4.23 3.33 3.44 4.14
Table 5: Human Evaluation on Java and Python datasets.

Java - o Python - & For T, on the one hand, too small cannot separate
a1 m the retrieval-based distribution; on the other hand,
s 354 too large will cause the retrieval-based distribution

2 s Tram | 3% Tram to focus on only one token. The final result shows
2 2 bue | @ :: st both declines the performance.
S S N R 4.2 Human Evaluation
' ' We perform a human evaluation to assess the qual-

Java- T o Python - T ity of the generated summaries by our approach,
481 337 Rencos, SCRIPT, and Base model in terms of Simi-
s 354 /\\ larity, Relevance, and Fluency as shown in Table

2 a5 2 :i - ;fﬂ}" 5. The results show that our approach can gener-
M m o ase

46.9 342

33.9

®ST10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
T T

Figure 2: The study of hyper-parameters (A and T')
selections in Java and Python datasets.

2. For A, we find different A\ selections have a
significant impact on the final performance, and
for different datasets, the optimal X is different
(i.e., A = 0.5 for Java and A = 0.6 for Python). In
addition, another interesting phenomenon is that all
different A have a positive effect on the final result.

ate better summaries that are more similar to the
ground truth, more relevant to the source code, and
more fluency in naturalness.

4.3 Qualitative Analysis

We provide a couple of examples in Table 6 to
demonstrate the usefulness of our proposed ap-
proach qualitatively. The qualitative analysis re-
veals that, compared to other models, the token-
level retrieval-augmented manner enables visual-
ization of the Retrieval Results and corresponding
probability at each generation step, as shown in the
last line of each function instance, which makes
our model better interpretability.

void scsi_netlink_init (void) {
struct netlink_kernle_cfg cfg;
cfg.input = scsi_nl_rcv_msg;
cfg.groups = SCSI_NL_GPRP_CNT;
scsi_nl_sock = netlink_kernel_create (&init_net,

NETLINK_SCSITRANSPORT, &cfq);

if (!scsi_nl_sock) {
printk (KERN_ERR "%s: register of receive handler failed\n", _ func_);
return;}

return; }

Base: called by scsi netlink initialization to register the scsi netlink interface.
Rencos: called by scsi netlink interface to register the scsi netlink interface.
called by scsi subsystem to register the scsi transport netlink interface.
Human Written: called by scsi subsystem to initialize the scsi transport netlink interface.
Retrieval Results: "subsystem" (0.90), "transport"(0.04), "stack"(0.02), "command"(0.0034), "device"(0.0025) - - -

def category_structure (category,
return {’description’:
"html_Url’:

site):
category.title,
("%s://%s%s’ % (PROTOCOL,

site.domain,

category.get_absolute_url())),

"rss Url’: ('%s://%s%s’% (PROTOCOL,
"category Id’:
"parent_1Id’:
"category Description’:
"category_ Name’ :

category.pk ,

category.title }

((category.parent and category.parent.pk)
category.description,

site.domain,
reverse (' zinnia:category_ feed’,

args=|[category.tree_path]))),

or 0),

Base: updates the structure.
Rencos: a post structure.
a category structure.
Human Written: a category structure.

Retrieval Results: "category"(0.43), "tag"(0.11), "post"(0.07), "helper"(0.06),"version"(0.06) - - -

Table 6: Task samples. The first one is a C instance, the second one is a Python instance. The bold red font is the
keyword of the generated summary. The Retrieval Results line is the visible retrieval results and corresponding

probability after softmax on the keyword generation step.

4.4 Inference Speed

A common concern about retrieval-based methods
is that additional retrieval processes may slow the
inference speed. We test the inference speed in
CCSD and Python* datasets. The average inference
time of Tram is 1.28 times of base model, which
is only slightly slower but has a speed of 1.96x
compared to Base + Rencos model.

5 Related Work

Source Code Summarization Recent works
(Gong et al., 2022; Son et al., 2022; Peng et al.,
2021; Shi et al., 2021; Wu et al., 2021) on source
code summarization pay more and more attention
to code structural information, including AST, Con-
trol dependency, PDG, etc. These works mainly
focus on how to capture and exploit the structural
information of the code itself. Our work is or-
thogonal to theirs, aimed at how to better and fine-
grained blend existing high-quality human-written
code-summary pairs.

K-Nearest-Neighbor Machine Translation Re-
cently, non-parametric methods have been success-

fully applied to neural machine translation (Khan-
delwal et al., 2021; Jiang et al., 2021; Zheng et al.,
2021a,b). These approaches complement advanced
NMT models with external memory to alleviate
the performance degradation in domain adaption.
Compared to these works, we have intelligently in-
tegrated code semantics in the retrieval process,
and our token-level retrieval-augmented mecha-
nism can be integrated with other sentence-level
retrieval methods.

6 Conclusion

In this paper, we proposed a novel token-level
retrieval-augmented mechanism for source code
summarization. By a well-designed fine-grained
retrieval pattern, our method can effectively incor-
porate external human-written code-summary pairs
on the decoder side. The extensive experiments
and human evaluation show that our approach has
a significant performance improvement. However,
the limitation of our retrieval-augmented method
is heavily relying on high-quality code-summary
pairs; exploring how to deal with noisy and low-
resource scenarios will be our future direction.

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998-5007, On-
line. Association for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65-72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

YunSeok Choi, JinYeong Bak, CheolWon Na, and Jee-
Hyong Lee. 2021. Learning sequential and structural
information for source code summarization. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 2842-2851, Online.
Association for Computational Linguistics.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 823-833,
Berlin, Germany. Association for Computational Lin-
guistics.

Zi Gong, Cuiyun Gao, Yasheng Wang, Wenchao Gu,
Yun Peng, and Zenglin Xu. 2022. Source code sum-
marization with structural relative position guided
transformer. arXiv preprint arXiv:2202.06521.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018.
Deep code comment generation. In Proceedings of
the 26th Conference on Program Comprehension,
ICPC ’18, page 200-210, New York, NY, USA. As-
sociation for Computing Machinery.

Srinivasan lyer, loannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2073-2083, Berlin, Germany. Association for Com-
putational Linguistics.

Qingnan Jiang, Mingxuan Wang, Jun Cao, Shanbo
Cheng, Shujian Huang, and Lei Li. 2021. Learning
kernel-smoothed machine translation with retrieved
examples. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7280-7290, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535-547.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-
bor machine translation. In International Conference
on Learning Representations.

Julia Kreutzer, Jasmijn Bastings, and Stefan Riezler.
2019. Joey NMT: A minimalist NMT toolkit for
novices. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP): System
Demonstrations, pages 109—114, Hong Kong, China.
Association for Computational Linguistics.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In Proceedings of
the 28th International Conference on Program Com-
prehension, ICPC 20, page 184-195, New York, NY,
USA. Association for Computing Machinery.

Yuding Liang and Kenny Zhu. 2018. Automatic gener-
ation of text descriptive comments for code blocks.
Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1).

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow,
and Yang Liu. 2021. Retrieval-augmented generation
for code summarization via hybrid {gnn}. In Inter-
national Conference on Learning Representations.

Pablo Loyola, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2017. A neural architecture for generating natu-
ral language descriptions from source code changes.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 287-292, Vancouver, Canada.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL *02, page 311-318, USA.
Association for Computational Linguistics.

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty,
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval
augmented code generation and summarization. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 2719-2734, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, and Zhi
Jin. 2021. Integrating tree path in transformer for
code representation. In Advances in Neural Informa-
tion Processing Systems.

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/2021.findings-acl.251
https://doi.org/10.18653/v1/2021.findings-acl.251
https://doi.org/10.18653/v1/2021.findings-acl.251
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://doi.org/10.18653/v1/D19-3019
https://doi.org/10.18653/v1/D19-3019
https://doi.org/10.18653/v1/D19-3019
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1609/aaai.v32i1.11963
https://doi.org/10.1609/aaai.v32i1.11963
https://doi.org/10.1609/aaai.v32i1.11963
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://openreview.net/forum?id=zv-typ1gPxA
https://doi.org/10.18653/v1/P17-2045
https://doi.org/10.18653/v1/P17-2045
https://doi.org/10.18653/v1/P17-2045
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://openreview.net/forum?id=kavMEjaWuGkK
https://openreview.net/forum?id=kavMEjaWuGkK
https://openreview.net/forum?id=kavMEjaWuGkK

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464—468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang,
Shi Han, Dongmei Zhang, and Hongbin Sun. 2021.
CAST: Enhancing code summarization with hierar-
chical splitting and reconstruction of abstract syntax
trees. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4053-4062, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto,
Atsushi Miyamoto, and Tadayuki Matsumura. 2019.
Automatic source code summarization with extended
tree-Istm. In 2019 International Joint Conference on
Neural Networks (IJCNN), pages 1-8. IEEE.

Jikyoeng Son, Joonghyuk Hahn, HyeonTae Seo, and
Yo-Sub Han. 2022. Boosting code summarization
by embedding code structures. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 5966-5977, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Im-
proving automatic source code summarization via
deep reinforcement learning. In Proceedings of
the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, page
397-407, New York, NY, USA. Association for Com-
puting Machinery.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019.
Code generation as a dual task of code summariza-
tion. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Honggiu Wu, Hai Zhao, and Min Zhang. 2021. Code
summarization with structure-induced transformer.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 1078-1090,
Online. Association for Computational Linguistics.

10

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
and Xudong Liu. 2020. Retrieval-based neural
source code summarization. In Proceedings of the
ACM/IEEE 42nd International Conference on Soft-
ware Engineering, ICSE *20, page 1385-1397, New
York, NY, USA. Association for Computing Machin-
ery.

Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang,
Boxing Chen, Weihua Luo, and Jiajun Chen. 2021a.
Adaptive nearest neighbor machine translation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 368-374,
Online. Association for Computational Linguistics.

Xin Zheng, Zhirui Zhang, Shujian Huang, Boxing Chen,
Jun Xie, Weihua Luo, and Jiajun Chen. 2021b. Non-
parametric unsupervised domain adaptation for neu-
ral machine translation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2021,
pages 4234-4241, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

A Human Evaluation

In our human evaluation, We invite 3 PhD students
and 5 master students as volunteers, who have at
least 2-5 years software engineering experiences.
We conducted a small-scale random dataset (i.e.,
100 random Java samples and 100 random Python
samples). The volunteers are asked to rank sum-
maries generated from the anonymized approaches
from 1to 5 (i.e., 1: Poor, 2: Marginal, 3: Accept-
able, 4: Good, 5: Excellent) based on the three
following questions:

* Similarity: How similarity of generated sum-
mary and ground-truth?

* Relevance: Is the generated summary relevant
to the source code?

* Fluency: Is this generated summary syntacti-
cally correct and fluency?

For each evaluation summary, the rating scale is
from 1 to 5, where a higher score means better qual-
ity. Responses from all volunteers were collected
and averaged.

https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/2021.emnlp-main.332
https://doi.org/10.18653/v1/2021.emnlp-main.332
https://doi.org/10.18653/v1/2021.emnlp-main.332
https://doi.org/10.18653/v1/2021.emnlp-main.332
https://doi.org/10.18653/v1/2021.emnlp-main.332
https://aclanthology.org/2022.coling-1.521
https://aclanthology.org/2022.coling-1.521
https://aclanthology.org/2022.coling-1.521
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://proceedings.neurips.cc/paper/2019/file/e52ad5c9f751f599492b4f087ed7ecfc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e52ad5c9f751f599492b4f087ed7ecfc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e52ad5c9f751f599492b4f087ed7ecfc-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.18653/v1/2021.findings-acl.93
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.18653/v1/2021.acl-short.47
https://doi.org/10.18653/v1/2021.findings-emnlp.358
https://doi.org/10.18653/v1/2021.findings-emnlp.358
https://doi.org/10.18653/v1/2021.findings-emnlp.358
https://doi.org/10.18653/v1/2021.findings-emnlp.358
https://doi.org/10.18653/v1/2021.findings-emnlp.358

