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Abstract

Automatically generating human-readable text001
describing the functionality of a program is002
the intent of source code summarization. Al-003
though Neural Language Models achieve sig-004
nificant performance in this field, an emerging005
trend is combining neural models with external006
knowledge. Most previous approaches rely on007
the sentence-level retrieval and combination008
paradigm (retrieval of similar code snippets009
and use of the corresponding code and sum-010
mary pairs) on the encoder side. However, this011
paradigm is coarse-grained and cannot directly012
take advantage of the high-quality retrieved013
summary tokens on the decoder side. In this014
paper, we explore a fine-grained token-level015
retrieval-augmented mechanism on the decoder016
side to help the vanilla neural model generate a017
better code summary. Furthermore, to mitigate018
the limitation of token-level retrieval on cap-019
turing contextual code semantics, we propose020
to integrate code semantics representation into021
summary tokens. Extensive experiments and022
human evaluation reveal that our token-level023
retrieval-augmented approach significantly im-024
proves performance and is more interpretive.025
We have made our code publicly available1 to026
facilitate future research.027

1 Introduction028

With software functions becoming more compre-029

hensive and complex, it becomes a heavy burden030

for developers to understand software. It has been031

reported that nearly 90% (Wan et al., 2018) of ef-032

fort is used for maintenance, and much of this ef-033

fort is spent on understanding the maintenance task034

and related software source codes. Source code035

summary as a natural language is indispensable in036

software, since humans can easily read and under-037

stand it, as shown in Table 1. However, manually038

writing source code summaries is time-consuming039

1https://anonymous.4open.science/r/
SourceCodeSummary-8ABD

and tedious. Besides, in the process of continuous 040

software iteration, the source code summary is of- 041

ten outdated. Hence, automatically generating con- 042

cise and human-readable source code summaries is 043

critical and meaningful. 044

def cos(x):
np = import module("numpy")
if isinstance(x, (int, float)):

return interval(np.sin(x))
elif isinstance(x, interval):

if (not(np.isifnite(x.start) and
np.isfinite(x.end))):

return interval((-1), 1, is_valid=x.is_valid)
(na, _) = divmod(x.start, (np.pi / 2.0))
(nb, _) = divmod(x.end, (np.pi / 2.0))
start = min(np.cos(x.start), np.cos(x.end))
end = max(np.cos(x.start), np.cos(x.end))
if ((nb - na) > 4):

return interval((-1), 1, is_valid=x.is_valid)
elif (na == nb):

return interval(start, end, is_valid=x.is_valid)
else:

if ((na // 4) != (nb // 4)):
end = 1

if (((na - 2) // 4) != ((nb - 2) // 4)):
start = -1

return interval(start, end, is_valid=x.is_valid)
else:

raise NotImplementedError

Summary: evaluates the cos of an interval.
Sentence-level:

evaluates logarithm to base 10 of an interval.
Token-level: cos, tangent, sin, hyperbolic · · ·

Table 1: Task sample of source code summarization.
The example is a Python function instance.

With the development of language models and 045

the linguistic nature of source code, researchers 046

explored Seq2Seq architecture such as recurrent 047

neural networks to generate summaries from the 048

given source code (Iyer et al., 2016; Loyola et al., 049

2017; Liang and Zhu, 2018). Soon afterward, 050

Transformer-based models (Ahmad et al., 2020; 051

Wu et al., 2021; Gong et al., 2022) were proposed, 052

which outperformed previous RNN-based models 053

by a large margin. Recently, many approaches pro- 054

pose to additionally exploit the structural proper- 055

ties of source code, including Abstract Syntax Tree 056

(AST), Program Dependency Graph (PDG), etc. 057

Current structure-aware methods fuse structural in- 058

formation in hybrid way (Hu et al., 2018; Shido 059
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et al., 2019; LeClair et al., 2020; Choi et al., 2021;060

Shi et al., 2021), or structured-guided way (Wu061

et al., 2021; Son et al., 2022; Gong et al., 2022).062

While these methods achieve excellent results, they063

only focus on mining the information of the code064

itself to get richer code representation, neglecting065

the existing human-written code-summary pairs.066

In order to make use of the external existing067

high-quality code and the corresponding summary068

instances, Liu et al. (2021) retrieved the most simi-069

lar code snippet by text similarity metric to enrich070

target code structure information for getting a better071

code representation encoder. This retrieval method072

only carries out from the perspective of text simi-073

larity and neglects code semantic similarity in the074

retrieval phase. Besides, the summary correspond-075

ing to the retrieved code snippet is just a simple076

concatenate to the encoder. Zhang et al. (2020);077

Parvez et al. (2021) used a pre-trained encoder to078

obtain code semantic representation, which was079

used to retrieve similar code snippets. The for-080

mer only used similar code snippets and discarded081

the corresponding summaries; the latter directly082

spliced the retrieved code snippet and the corre-083

sponding summary behind the target code; both084

were also aimed at better code representation on085

the encoder side. Code summarization, as a genera-086

tive task essentially, the decoder generates the sum-087

mary tokens autoregressively. However, previous088

retrieval-augmented methods neglect to fuse the re-089

trieved information on the decoder side, which will090

result in the utilization pattern being indirect and091

insufficient. Besides, current retrieval-augmented092

methods that use the summary are still at the coarse-093

grained sentence level (i.e., concatenate), which094

will blend in a lot of noise, as shown in Table 1,095

many of the corresponding summary tokens are not096

related, like "logarithm to base 10".097

This inspires us to perform a fine-grained re-098

trieval manner on the decoder side, so we propose099

a token-level retrieval-augmented mechanism. In100

order to achieve the purpose of retrieving semantic101

similar summary tokens, we first construct a data-102

store to store the summary token and correspond-103

ing token representation through a pre-trained base104

model offline. At the same time, in order to fully105

consider contextual code semantics associated with106

summary tokens, our token representation inte-107

grates code representation with attention weight.108

The summary token representation at each genera-109

tion step is used to retrieve the most similar top-K110

tokens, as shown in Table 1, the token-level re- 111

trieval results are "cos, tangent, sin, hyperbolic 112

· · · " at the generation step of next token "cos". The 113

retrieved top-K tokens are expanded to a proba- 114

bility distribution called retrieval-based distribu- 115

tion. The retrieval-based distribution fused with 116

the vanilla distribution to form the final distribu- 117

tion. Besides, our token-level retrieval mechanism 118

can be seamlessly integrated with the additional 119

sentence-level retrieval manner. 120

In summary, the main contributions of this paper 121

are outlined as follows: 122

1. We first explore a token-level retrieval- 123

augmented mechanism on the decoder side for 124

source code summarization. 125

2. Our proposed retrieval-augmented mecha- 126

nism is orthogonal to existing improvements, e.g. 127

combined with code representation or addition 128

sentence-level retrieval manner. 129

3. Extensive experiments and human evaluation 130

show that our proposed method significantly out- 131

performs other baseline models. 132

2 Methodology 133

In this work, we propose a Token-level Retrieval- 134

augmented Mechanism for Source Code Summa- 135

rization (Tram). Firstly, we introduce the base 136

model, which establishes the summary token and 137

corresponding token representation pairs in a data- 138

store. Then, we formulate the token-level retrieval 139

method, which retrieves tokens from the datastore 140

and blends the final prediction probability. Finally, 141

we introduce the additional sentence-level simi- 142

lar code snippet retrieval-augmented manner. The 143

overview of Tram is shown in Figure 1. 144

2.1 Base Model 145

In the first place, we use Transformer (Vaswani 146

et al., 2017) as our backbone. The Transformer 147

consists of stacked multi-head attention and pa- 148

rameterized linear transformation layers for both 149

encoder and decoder. Each layer emphasizes on 150

self-attention mechanism, which is denoted as: 151

eij =
xiW

Q(xjW
K)T√

dk
152

153

hi =
n∑

j=1

αij(wjW
V ) 154

where αij =
exp(eij)∑n
j=1 exp(eij)

, WQ,WK ,W V are the 155

parameters that are unique per layer and attention 156
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Figure 1: The overview architecture of Trams. The left part is the base model and the vanilla model distribution.
The right part shows the process of retrieving similar summary tokens and getting the retrieval-based distribution.
The Query and Key are the combinations of encoder and decoder representation.

head, hi is the ith-token hidden representation.157

Nevertheless, as pointed out in Ahmad et al.158

(2020), the semantic representation of a code does159

not rely on the absolute positions of its tokens. In-160

stead, their mutual interactions influence the mean-161

ing of the source code. To encode the pairwise162

relationships between input elements, Shaw et al.163

(2018) extend the self-attention mechanism as fol-164

lows:165

eij =
xiW

Q(xjW
K + aKij )

T

√
dk

166

167

hi =
n∑

j=1

αij(wjW
V + aVij)168

where aKij and aVij are relative positional represen-169

tation for the two position i and j. We clip the170

maximum relative position to a maximum absolute171

value of l because precise relative position informa-172

tion is not useful beyond a certain distance.173

aKij = ωK
clip(j−i,l), a

V
ij = ωV

clip(j−i,l)174

175
clip(x, l) = max(−l,min(x, l))176

Hence, the Transformer architecture equipped with177

relative position representation serves as our base178

model.179

2.2 Datastore Creation 180

For fine-grained token-level retrieval, the datastore 181

that store summary token representation and corre- 182

sponding token pairs is indispensable. At the stage 183

of datastore establishment, we adopt the above pre- 184

trained base model to go through all training in- 185

stances (C, S) in an offline manner. The encoder 186

encodes the source code into a sequence of hidden 187

states. The decoder takes the representations of the 188

source code as input and generates target summary 189

text autoregressively. During this process, for each 190

instance (c, s), we record encoder representation 191

(which contains code semantic) as CR, decoder 192

presentation2 (which contain summary semantic) 193

as SR and corresponding ground-truth target token 194

as s. The representation and target token are stored 195

as key and value, respectively. Formally, given a 196

training set, we construct the datastore as follows: 197

(K,V) = {(Rt, st), ∀st ∈ s|(c, s) ∈ (C, S)} 198

where the value st is the ground-truth target token 199

with t denoting decoding timestep, Rt is the cor- 200

responding hidden representation. Spread it out, 201

Rt consist of two parts: one is code representation 202

2It is worth noting that we record the hidden representation
input to the final layer feed network in the decoder.
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CRt, the other is summary token representation203

SRt:204

Rt = Trans(CRt, SRt)205

Trans(·) can be any aggregation transformation.206

In this work, we use the concatenate operation.207

Especially, CRt is the weighted sum of each code208

token representation.209

CRt =
ℓ∑

i=1

w̃t · cri210

where w̃t is the cross attention weight, cri is the211

i-th code token representation and ℓ denoted code212

token length.213

2.3 Token-level Retrieval214

While inference, at each decoding step t, the de-215

coder representation SRt together with code rep-216

resentation CRt used the same transformation op-217

erator Trans(·) as query qt. The query then re-218

trieves the top-K most similar summary tokens in219

the datastore according to cos similarity distance.220

It is worth noting that we use cos similarity in-221

stead of squared-L2 distance because of the per-222

formance of the preliminary experiment. As an223

added bonus, cos similarity can be seen as retrieval224

confidence. In practice, the retrieval over mil-225

lions of key-value pairs is carried out using FAISS226

(Johnson et al., 2019), a library for fast nearest227

neighbor search in high-dimensional spaces. The228

retrieved key-value pairs (k, v) and correspond-229

ing cos similarity distance α composed a triple230

set N = {(ki, vi, αi)|i = 1, 2, · · · ,K}. Inspired231

by KNN-MT (Khandelwal et al., 2021), the triple232

set can then be expanded and normalized to the233

retrieval-based distribution as follows:234

Pr(st|c, ŝ<t) ∝
∑

(ki,vi,αi)∈N

1st=vi exp (g(ki, αi))235

236
g(ki, αi) = αi ∗ T237

where g(·) can be any Kernel Density Estimation238

(KDE), in our paper, we use the product form; T is239

the temperature to regulate probability distribution.240

2.4 Fused Distribution241

The final prediction distribution can be seen as242

the vanilla base model output distribution and the243

retrieval-based distribution are interpolated by a244

hyper-parameter λ:245

P (st|c, ŝ<t) = λ ∗ Pr(st|c, ŝ<t)

+ (1− λ) ∗ Pm(st|c, ŝ<t)
246

Datasets Java Python CCSD
Train 69,708 55,538 84,316

Validation 8,714 18,505 4,432
Test 8,714 18,502 4,203

Code: Avg. tokens 73.76 49.42 68.59
Summary: Avg. tokens 17.73 9.48 8.45

Table 2: Statistics of the experimental datasets. We split
CCSD following Liu et al. (2021), and the Java/Python
dataset splits are public available.

where Pm indicates the vanilla base model distri- 247

bution. 248

2.5 Additional Sentence-level Retrieval 249

The token-level retrieval-augmented method can 250

also be seamlessly incorporated with additional 251

sentence-level retrieval. Additional sentence-level 252

retrieval means finding the most semantic similarity 253

code snippet, and using an additional encoder to 254

encode the code snippet, then decoding with the 255

target code snippet synchronously. Formally, the 256

final fused distribution can be extended as follow: 257

P (st|c, ŝ<t) = λ1 ∗ Pr(st|c, ŝ<t)

+ λ2 ∗ Sim ∗ Ps(st|⟨c⟩, ŝ<t)

+ (1− λ1 − λ2) ∗ Pm(st|c, ŝ<t)

258

where Ps is the additional sentence-level produced 259

distribution, ⟨c⟩ is the most semantic similar code 260

snippet to c, and Sim is the corresponding similar- 261

ity score. 262

3 Experiments 263

3.1 Experimental Setup 264

Datasets. We conduct the source code summa- 265

rization experiments on three public benchmarks 266

of Java (Hu et al., 2018), Python (Wan et al., 2018), 267

CCSD (C Code Summarization Dataset) (Liu et al., 268

2021). The partitioning of train/validation/test sets 269

follows the original datasets. The statistics of the 270

three datasets are shown in Table 2. 271

Out-of-Vocabulary. The vast operators and iden- 272

tifiers in program language may produce a much 273

larger vocabulary than natural language, which can 274

cause Out-of-Vocabulary problem. To avoid this 275

problem, we apply CamelCase and snake−case 276

tokenizers that are consistent with recent works 277

(Gong et al., 2022; Wu et al., 2021; Ahmad et al., 278

2020) to reduce the vocabulary size of source code. 279
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Metrics. Similar to recent work (Gong et al.,280

2022; Son et al., 2022), we evaluate the source code281

summarization performance using three widely-282

used metrics, BLEU (Papineni et al., 2002), ME-283

TEOR (Banerjee and Lavie, 2005) and ROUGE-L284

(Lin, 2004). These metrics are prevalent in machine285

translation and text summarization. Furthermore,286

considering the essence of source code summariza-287

tion to help humans better understand code, we also288

conduct a human evaluation study. The volunteers289

are asked to rank summaries generated from the290

anonymized approaches from 1 to 5 (i.e., 1: Poor,291

2: Marginal, 3: Acceptable, 4: Good, 5: Excellent)292

based on Similarity, Relevance, and Fluency. Fur-293

ther details on human evaluation can be found in294

Appendix A.295

Training Details. We implement our approach296

based on JoeyNMT (Kreutzer et al., 2019) on297

NVIDIA 3090. The batch size is set to 32 and298

Adam optimizer is used with an initial learning299

rate 10−4. To alleviate overfitting, we adopt early300

stopping with patience 15. For Faiss (Johnson301

et al., 2019) Index, we employ IndexFlatIP and302

top-K=16 to keep a balance between retrieval qual-303

ity and retrieval speed in the large scale datastore.304

It is worth noting that the only part that requires305

training is the base model, and once trained, all306

parameters of the base model are fixed.307

3.2 Baselines308

RNN-based. CODE-NN (Iyer et al., 2016) fol-309

lows LSTM-based encoder-decoder architecture310

with attention mechanism, treating source code as311

natural language. Tree2Seq (Eriguchi et al., 2016)312

is an end-to-end syntactic NMT model which di-313

rectly uses a tree-based LSTM as an encoder. It ex-314

tends an RNN model with the source code structure.315

Hybrid2Seq (Wan et al., 2018) incorporates ASTs316

and sequential content of code snippets into a deep317

reinforcement learning framework. DeepCom (Hu318

et al., 2018) flattens the AST into a sequence as in-319

put, which is obtained via traversing the AST with320

a structure-based traversal (SBT) method. Dual321

Model (Wei et al., 2019) treats code summarization322

and code generation as a dual task. It trains the323

two tasks jointly by a dual training framework to324

simultaneously improve the performance of both325

tasks.326

Transformer-based. Transformer (Ahmad et al.,327

2020) is the first attempt to use transformer archi-328

tecture, equipped with relative positional encoding329

and copy mechanism (See et al., 2017), effectively 330

capturing long-range dependencies of source code. 331

CAST (Shi et al., 2021) hierarchically splits a large 332

AST into a set of subtrees and utilizes a recursive 333

neural network to encode the subtrees, aimed to 334

capture the rich information in ASTs. mAST + 335

GCN (Choi et al., 2021) adopt the AST and graph 336

convolution to model the structural information and 337

the Transformer to model the sequential informa- 338

tion. SiT (Wu et al., 2021) incorporates a multi- 339

view graph matrix into Transformer’s self-attention 340

mechanism. Essentially, it improves performance 341

by masking redundant attention in the calculation 342

process of self-attention scores. SiT + PDG (Son 343

et al., 2022) pointed program dependency graph is 344

more effective for expressing the structural informa- 345

tion than AST. SCRIPT (Gong et al., 2022) utilizes 346

AST structural relative positions to augment the 347

structural correlations between code tokens. 348

Retrieval-based. Rencos (Zhang et al., 2020) 349

is the first retrieval-based Seq2Seq model, which 350

computes a joint probability conditioned on both 351

original source code and retrieved the most simi- 352

lar source code for a summary generation. HGNN 353

(Liu et al., 2021) is the retrieval-based GNN model, 354

which retrieval the most similar code and uses a 355

Hybrid GNN by fusing static graph and dynamic 356

graph to capture global code graph information. 357

3.3 Main Results 358

The main experiment results are shown in Table 3 359

and Table 4 in terms of the three automatic evalu- 360

ation metrics. The reason for having two tables is 361

most recently Transformer-based works compared 362

their performance on the two widely used Java and 363

Python benchmarks; the recently Retrieval-based 364

works compared on different benchmarks. Thus, 365

our experiments are performed on all three datasets 366

(Java/Python/CCSD) for more comprehensive com- 367

parison. We calculate the values of the metrics 368

following the same scripts. For these metrics, the 369

larger value indicates better performance. 370

From Table 3, SiT + PDG and SCRIPT out- 371

perform all previous works by a significant mar- 372

gin. However, our proposed token-level retrieval- 373

augmented model further boosts results with 1.25 374

BLEU points on Java and 1.74 BLEU points on 375

Python and achieves new state-of-the-art results. 376

At the same time, we notice that the performance 377

improvement of Python is better than that of Java. 378

The main reason we speculate is that the average 379
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Model Java Python
BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

RNN-based Methods
CODE-NN (Iyer et al., 2016) 27.60 41.10 12.61 17.36 37.81 09.29
Tree2Seq (Eriguchi et al., 2016) 37.88 51.50 22.55 20.07 35.64 08.96
Hybrid2Seq (Wan et al., 2018) 38.22 51.91 22.75 19.28 39.34 09.75
DeepCom (Hu et al., 2018) 39.75 52.67 23.06 20.78 37.35 09.98
Dual Model (Wei et al., 2019) 42.39 53.61 25.77 21.80 39.45 11.14
Transformer-based Methods
Transformer (Ahmad et al., 2020) 44.58 54.76 26.43 32.52 46.73 19.77
CAST (Shi et al., 2021) 45.19 55.08 27.88 - - -
mAST + GCN (Choi et al., 2021) 45.49 54.82 27.17 32.82 46.81 20.12
SiT (Wu et al., 2021) 45.70 55.54 27.55 33.46 47.50 20.28
SiT + PDG (Son et al., 2022) 46.86 56.69 - - - -
SCRIPT (Gong et al., 2022) 46.89 56.69 28.48 34.00 48.15 20.84
Our Method
Base 46.72 56.74 28.60 34.01 48.21 20.93
Tram 48.14 57.89 29.38 35.74 49.63 21.87
Tram w/o CR 47.96 57.42 29.23 35.51 49.37 21.68
Tram with SenRe 48.37 58.21 29.69 36.15 49.76 22.03

Table 3: Comparison of the performance of our method with other baseline methods on Java and Python benchmarks
in terms of BLEU, ROUGE-L, and METEOR. The results of base models are reported in their original papers.
‘-’ refers to no corresponding value from the paper. CR refers to code representation, SenRe refers to additional
sentence-level retrieval. All of our methods are the mean of 5 runs with different random seeds.

code token length of Java is longer (from Table 2)380

and has richer code structure information, and the381

Transformer-based structure-induced methods can382

capture richer code semantics in their customized383

encoder.384

Table 4 compares our proposed model with other385

retrieval-based models on CCSD and Python bench-386

marks. Our base model is even comparable to other387

retrieval-based methods; the main reason is that388

the backbone 3 are different. We reproduce Ren-389

cos architecture4 in our base model for fair com-390

parison, which we denoted as Base + Rencos.391

Our model still outperforms other retrieval-based392

methods, further improving performance with 2.05393

BLEU points and 1.47 BLEU points on CCSD and394

Python, respectively. This also proves the superior-395

ity of our fine-grained retrieval-augmented method396

to fuse similar summary tokens on the decoder side.397

3.4 Ablation Study398

To validate the effectiveness of Code Representa-399

tion (CR), we eliminate CR for comparison. The400

performance decline in all datasets demonstrated401

that the fusion with code semantic representation402

into the summary token is also important for sum-403

3other retrieval-based methods are RNN-based.
4HGNN code is not open source.

mary token retrieval. 404

As pointed out in the methodology, our retrieval- 405

augmented method can also be seamlessly incorpo- 406

rated with additional sentence-level retrieval (Tram 407

with SenRe). The results show Tram with SenRe im- 408

proved by 0.23 BLEU, 0.41 BLEU, and 0.75 BLEU 409

points on Java, Python, and CCSD, respectively. 410

The performance improvement of Tram with SenRe 411

demonstrated the superiority of the combination 412

of sentence-level retrieval manner and token-level 413

retrieval manner, the formal aimed at retrieving the 414

most similar code snippet and fused on the encoder 415

side, and the latter aimed at retrieving the most 416

similar summary token and fused on the decoder 417

side; both are beneficial. 418

4 Analysis 419

4.1 Hyper-parameters Analysis 420

Our methods have two main hyper-parameters: λ 421

and T . λ means the weight of the retrieval-based 422

distribution part to account for the final distribution; 423

the bigger value means the final distribution relies 424

more on retrieval results and vice versa. T means 425

Temperature, which smooths the retrieval-based 426

distribution. We plot the performance of Tram 427

with different hyper-parameter selections in Figure 428
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Model CCSD Python‡

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR
Retrieval-based Methods
Rencos (Zhang et al., 2020) 14.80 31.41 14.64 34.73 47.53 21.06
HGNN (Liu et al., 2021) 16.72 34.29 16.25 - - -
Our Method
Base 17.82 35.33 16.71 34.85 48.84 21.49
Base + Rencos 19.43 36.92 17.69 35.26 49.25 22.07
Tram 21.48 37.88 18.35 36.73 50.35 22.53
Tram w/o CR 21.30 37.77 18.22 36.53 50.20 22.35
Tram with SenRe 22.23 38.16 18.96 36.95 50.69 22.93

Table 4: Comparison of ours with other retrieval methods. CR means code representation, SenRe means additional
sentence-level retrieval. ‡ means the Python dataset is slightly different from the Python on Tabel 3, and we are
consistent with Rencos (Zhang et al., 2020). All of our methods are the mean of 5 runs with different random seeds.

Model Java Python‡

Similarity Relevance Fluency Similarity Relevance Fluency
Rencos - - - 3.07 3.06 3.96
SCRIPT 3.65 3.70 4.12 - - -
Base 3.62 3.64 4.10 3.20 3.24 4.03
Tram 3.83 3.89 4.23 3.33 3.44 4.14

Table 5: Human Evaluation on Java and Python datasets.
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Figure 2: The study of hyper-parameters (λ and T )
selections in Java and Python datasets.

2. For λ, we find different λ selections have a429

significant impact on the final performance, and430

for different datasets, the optimal λ is different431

(i.e., λ = 0.5 for Java and λ = 0.6 for Python). In432

addition, another interesting phenomenon is that all433

different λ have a positive effect on the final result.434

For T , on the one hand, too small cannot separate 435

the retrieval-based distribution; on the other hand, 436

too large will cause the retrieval-based distribution 437

to focus on only one token. The final result shows 438

both declines the performance. 439

4.2 Human Evaluation 440

We perform a human evaluation to assess the qual- 441

ity of the generated summaries by our approach, 442

Rencos, SCRIPT, and Base model in terms of Simi- 443

larity, Relevance, and Fluency as shown in Table 444

5. The results show that our approach can gener- 445

ate better summaries that are more similar to the 446

ground truth, more relevant to the source code, and 447

more fluency in naturalness. 448

4.3 Qualitative Analysis 449

We provide a couple of examples in Table 6 to 450

demonstrate the usefulness of our proposed ap- 451

proach qualitatively. The qualitative analysis re- 452

veals that, compared to other models, the token- 453

level retrieval-augmented manner enables visual- 454

ization of the Retrieval Results and corresponding 455

probability at each generation step, as shown in the 456

last line of each function instance, which makes 457

our model better interpretability. 458
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void scsi_netlink_init(void){
struct netlink_kernle_cfg cfg;
cfg.input = scsi_nl_rcv_msg;
cfg.groups = SCSI_NL_GPRP_CNT;
scsi_nl_sock = netlink_kernel_create(&init_net,
NETLINK_SCSITRANSPORT, &cfg);
if (!scsi_nl_sock){

printk(KERN_ERR "%s: register of receive handler failed\n", __func__);
return;}

return;}
Base: called by scsi netlink initialization to register the scsi netlink interface.
Rencos: called by scsi netlink interface to register the scsi netlink interface.
Tram: called by scsi subsystem to register the scsi transport netlink interface.
Human Written: called by scsi subsystem to initialize the scsi transport netlink interface.
Retrieval Results: "subsystem" (0.90), "transport"(0.04), "stack"(0.02), "command"(0.0034), "device"(0.0025) · · ·
def category_structure(category, site):

return {’description’: category.title,
’html_Url’: (’%s://%s%s’%(PROTOCOL, site.domain,

category.get_absolute_url())),
’rss_Url’: (’%s://%s%s’%(PROTOCOL, site.domain,

reverse(’zinnia:category_feed’, args=[category.tree_path]))),
’category_Id’: category.pk ,
’parent_Id’: ((category.parent and category.parent.pk) or 0 ),
’category_Description’: category.description,
’category_Name’: category.title }

Base: updates the structure.
Rencos: a post structure.
Tram: a category structure.
Human Written: a category structure.
Retrieval Results: "category"(0.43), "tag"(0.11), "post"(0.07), "helper"(0.06),"version"(0.06) · · ·

Table 6: Task samples. The first one is a C instance, the second one is a Python instance. The bold red font is the
keyword of the generated summary. The Retrieval Results line is the visible retrieval results and corresponding
probability after softmax on the keyword generation step.

4.4 Inference Speed459

A common concern about retrieval-based methods460

is that additional retrieval processes may slow the461

inference speed. We test the inference speed in462

CCSD and Python‡ datasets. The average inference463

time of Tram is 1.28 times of base model, which464

is only slightly slower but has a speed of 1.96x465

compared to Base+Rencos model.466

5 Related Work467

Source Code Summarization Recent works468

(Gong et al., 2022; Son et al., 2022; Peng et al.,469

2021; Shi et al., 2021; Wu et al., 2021) on source470

code summarization pay more and more attention471

to code structural information, including AST, Con-472

trol dependency, PDG, etc. These works mainly473

focus on how to capture and exploit the structural474

information of the code itself. Our work is or-475

thogonal to theirs, aimed at how to better and fine-476

grained blend existing high-quality human-written477

code-summary pairs.478

K-Nearest-Neighbor Machine Translation Re-479

cently, non-parametric methods have been success-480

fully applied to neural machine translation (Khan- 481

delwal et al., 2021; Jiang et al., 2021; Zheng et al., 482

2021a,b). These approaches complement advanced 483

NMT models with external memory to alleviate 484

the performance degradation in domain adaption. 485

Compared to these works, we have intelligently in- 486

tegrated code semantics in the retrieval process, 487

and our token-level retrieval-augmented mecha- 488

nism can be integrated with other sentence-level 489

retrieval methods. 490

6 Conclusion 491

In this paper, we proposed a novel token-level 492

retrieval-augmented mechanism for source code 493

summarization. By a well-designed fine-grained 494

retrieval pattern, our method can effectively incor- 495

porate external human-written code-summary pairs 496

on the decoder side. The extensive experiments 497

and human evaluation show that our approach has 498

a significant performance improvement. However, 499

the limitation of our retrieval-augmented method 500

is heavily relying on high-quality code-summary 501

pairs; exploring how to deal with noisy and low- 502

resource scenarios will be our future direction. 503
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A Human Evaluation 693

In our human evaluation, We invite 3 PhD students 694

and 5 master students as volunteers, who have at 695

least 2-5 years software engineering experiences. 696

We conducted a small-scale random dataset (i.e., 697

100 random Java samples and 100 random Python 698

samples). The volunteers are asked to rank sum- 699

maries generated from the anonymized approaches 700

from 1 to 5 (i.e., 1: Poor, 2: Marginal, 3: Accept- 701

able, 4: Good, 5: Excellent) based on the three 702

following questions: 703

• Similarity: How similarity of generated sum- 704

mary and ground-truth? 705

• Relevance: Is the generated summary relevant 706

to the source code? 707

• Fluency: Is this generated summary syntacti- 708

cally correct and fluency? 709

For each evaluation summary, the rating scale is 710

from 1 to 5, where a higher score means better qual- 711

ity. Responses from all volunteers were collected 712

and averaged. 713
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