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Abstract

Large Language Models (LLMs) have distin-
guished themselves with outstanding perfor-
mance in complex language modeling tasks,
yet they come with significant computational
and storage challenges. This paper explores the
potential of quantization to mitigate these chal-
lenges. We systematically study the combined
application of three well-known post-training
techniques, SmoothQuant, AWQ, and GPTQ,
and provide a comprehensive analysis of their
interactions and implications for advancing
LLM quantization. We enhance the versatility
of these techniques by enabling quantization
to microscaling (MX) formats, expanding their
applicability beyond their initial fixed-point for-
mat targets. We show that combining different
PTQ methods enables us to quantize models
to 4-bit weights and 8-bit activations using the
MXINT format with negligible accuracy loss
compared to the uncompressed baseline.

1 Introduction

Large Language Models (LLMs) have emerged as
extremely powerful tools to comprehend and gen-
erate natural language. However, their intensive
computational demand and energy consumption
make widespread adoption of these models in ev-
eryday tasks to be challenging. One way to address
these challenges is post-training quantization, a
technique that involves reducing the precision of
model parameters and/or activations from the origi-
nal bit-width to formats with fewer bits. Quantiza-
tion can significantly reduce the memory footprint
and computational requirements of these models,
making them more accessible and deployable on a
wider range of hardware, including mobile devices
and edge devices. However, previous work has
shown that the activations of LLMs with more than
3B parameters are difficult to quantize due to the
emergence of outliers with large magnitude, which
leads to significant quantization errors and accuracy
degradation (Dettmers et al., 2022). To address this

issue, Xiao et al. proposed SmoothQuant, a quan-
tization technique that smooths out the activation
outliers by migrating the quantization difficulty
from activations to weights with a mathematically
equivalent transformation (Xiao et al., 2023). Lin
et al., proposed AWQ, a weight only quantization
algorithm that mitigates the quantization error by
channel-wise scaling of the salient weights (Lin
et al., 2023). Similarly, Frantar et al. proposed
GPTQ, a scalable one-shot quantization method
that utilizes approximate second-order information
to quantize weights (Frantar et al., 2022). In this
work, we systematically study the combined appli-
cation of these three algorithms and provide a com-
prehensive analysis of their interactions and impli-
cations for advancing LLM quantization to various
fixed-point and microscaling (MX) formats.

Microscaling format. The microscaling (MX)
format for neural net computation was proposed
by prior work, first as MSFP (Rouhani et al., 2020)
and later subsumed by an emerging industry stan-
dard microscaling formats (Rouhani et al., 2023).
Specifically, MXINTS8 is a microscaling format
that enables high-accuracy inference using half
the memory footprint and twice the throughput
of FP16. It is an emerging industry standard en-
dorsed by Microsoft, AMD, Arm, Intel, Meta, and
NVIDIA (Rouhani et al., 2023) and is already see-
ing adoption in today’s hardware products, such
as the Qualcomm cloud AI100 Accelerator (Qual-
comm, 2024).

The MX format, as outlined in this paper, is char-
acterized by three key components: 1) the scale
factor data type, 2) the data type and precision of
individual elements, and 3) the scaling block size.
The scale factor is applied uniformly across a block
of individual elements. This paper specifically fo-
cuses on MX formats employing the INT data type
for individual elements, thus termed MXINT.



Notation. Throughout the paper we denote a mi-
croscaling (MX) format with scaling block size
of b, 8-bit shared scaling factor, and d bits per el-
ement by MXINTd-b. For example, MXINT6-64
represents an MX format with 6 bits per element,
8 bits shared exponent across 64 values within a
block. Similarly, a fixed-point value with ¢ integer
bits and no fractional bits is denoted by INTi.

Contributions.

1. We enhance SmoothQuant, AWQ, and GPTQ
to support quantization to microscaling (MX)
data formats, extending their compatibility be-
yond the initially targeted fixed-point formats
in the proposed methods.

2. We study the interaction of SmoothQuant,
AWQ, and GPTQ to quantize state-of-the-art
models like Llama2 and Llama3 and show that
SmoothQuant and GPTQ, as well as AWQ
and GPTQ, are synergistic, especially at more
restrictive bit-widths.

2 SmoothQuant

SmoothQuant (SQ) is a quantization method
that targets both activations and weights of a
model (Xiao et al., 2023). In this approach, the ac-
tivation of a linear layer is scaled by a per-channel
smoothing factor s € R to minimize quantiza-
tion errors. Simultaneously, the weight of the layer
is adjusted in the opposite direction to maintain the
mathematical equivalence of the linear layer:

Y = (Xdiag(s) ") - (diag(s)W) = XW (1)
In Equation 1, X is the original input activa-
tion with outliers, and X = Xdiag(s)~! is the
smoothed activation. To minimize the quantization
error of the input activation, the smoothing factor is
selected such that all channels of the smoothed in-
put activation have the same maximum magnitude.
Accordingly, s is set to:

s; =max(|X;]), 7=1,2,....,C; )

Where C; is the number of input channels in
the input activation and j corresponds to ;" input
channel. Note that since the range of activations
varies for different input samples, the maximum
value of each channel is estimated using 128 cal-
ibration samples from the calibration dataset (see
Section A for more details). By dividing the input
activation by the the scaling factor of Equation 2,
all channels of the scaled input activation would
have the same range, making quantization of the
scaled tensor to be very easy. However, this will mi-
grate the difficulty of the quantization completely

Algorithm 1 Enhanced GPTQ: Quantize W given
inverse Hessian H™! = (2XX7 + AI)~!, block
size B, and micro-block size Bs.

Input: W /I Weight matrix

Input: d,ow // Row dimension of W
Input: d..; // Column dimension of W
Input: B, // Block size

Input: B, /] Micro-block size

Input: 7! // Hessian inverse information
Variable: F // Quantization error matrix
Output: // Quantized weight matrix

Initialize: Q < 0q4,.,,, x4
Initialize: E' < 04,.,,, xd..,
Initialize: H ' < Cholesky(H )"
fori =0,B1,2B4,...do
fOI‘j = Z,Z+BQ,Z+QBQ77'L+B1 —1do
k< j+ B> /I helper index
Q: 5k quant(W. ;.x)
E.jik = (Wejie — Q:,j:k)(EHfl]j:k,j:k)fl
Wik« Wik — E. i [H ™ i, ks
end for
W.itBy: & Wiisny: — Eoiiv By [H Vit By it By
end for
Return: Q

col

to the weight side of a linear layer. To address this
issue, Xiao et al. proposed a scaling formula that
balances the quantization difficulty of activations
and weights:

s; = max(|X; )% /max(|W;[)' ™%, i=1,2,...,Ci (3)

Where « is a hyper-parameter that controls how
much quantization difficulty we want to migrate
from activations to weights. For quantization to the
MX format using SmoothQuant, we directly cal-
culated the SmoothQuant scaling factors, skipping
the additional calibration phase required for quanti-
zation to fixed-point formats. For more details on
the SmoothQuant algorithm refer to Xiao et al.’s
work (Xiao et al., 2023).

3 AWQ

Activation-aware Weight Quantization (AWQ), is
a weight-only quantization method for LLMs (Lin
et al., 2023). In this algorithm, a small fraction (i.e.,
0.1%-1%) of salient weight channels are scaled up
to reduce their relative quantization error:

Y = XW ~ XW ~ (X/s)(sW) 4)
In Equation 4, s is a per-channel scaling factor
for the salient weights. To determine the salient
weights, AWQ refers to the activation distribution
instead of the weight distribution, as weight chan-
nels corresponding to the outlier activations are
more salient than other weights. The per-channel
scaling factor is calculated using the following for-
mula:

s=s, a€]l0,1] )



Act - Wgt bit-width | Format | Method || Llama2-7B | Llama2-13B | Llama3-8B
16-16 | TP16, FPI6 [ N/A 512 | 457 | 554
RTN 5.13 4.58 5.55
GPTQ 5.13 4.58 5.55
SmoothQuant 5.12 4.58 5.55
MXINTS8-128, MXINTS8-128 AWQ 5.12 4.58 5.55
SmoothQuant+ 5.12 4.58 5.55
&8 o __________| AWQr | s12 | 488 | 555
RTN 5.15 4.60 5.62
GPTQ 5.15 4.60 5.62
SmoothQuant 5.15 4.60 5.62
INTS, INT8 AWQ 5.17 4.62 5.85
SmoothQuant+ 5.15 4.60 5.62
AWQ+ 5.17 4.62 5.84
RTN 5.55 4.82 7.13
GPTQ 5.45 4.76 6.98
SmoothQuant 5.60 4.93 7.05
MXINTS8-128, MXINT4-128 AWQ 543 477 637
SmoothQuant+ 5.48 4.84 6.51
&4 oo _________| AWQr | 537 | 473 | 616
RTN 5.91 4.97 8.44
GPTQ 5.67 4.85 18.64
SmoothQuant 6.34 5.56 9.13
INTS, INT4 AWQ 5.61 4.85 7.33
SmoothQuant+ 5.78 5.12 7.32
AWQ+ 5.53 4.80 7.06

Table 1: Perplexity score on WikiText-2-test for the Llama2-7B, Llama2-13B, and Llama3-8B models, when
quantized to fixed-point and MX formats using different post-training quantization techniques. Act, Wgt, and
RTN denote activation, weight, and round to nearest, respectively. +: GPTQ weight quantization is used. We used

per-channel affine quantization for the fixed-point formats.

Where sy is the average magnitude of activation
(per-channel), and « is a hyper-parameter which
balances the protection of salient and non-salient
channels. Similar to SmoothQuant, to make AWQ
compatible with the MX format, we directly calcu-
late the per-channel scaling factors, skipping the
additional calibration phase required for fixed-point
quantization. For more details on AWQ refer to
Lin’s et al. work (Lin et al., 2023)

4 GPTQ

GPTQ is a post-training quantization (PTQ)
method that uses second-order Hessian informa-
tion for weight quantization in LLMs (Frantar et al.,
2022). It employs layer-wise quantization for each
layer [ in the network, seeking quantized weights
W, that make the outputs (W;X;) closely approxi-
mate those of the original weights (W;X;). In other
words, GPTQ aims to find (Frantar et al., 2022):

argminwl [|W.,X; — WIXLH% 6)

To solve equation 6, GPTQ quantizes each row
of the weight matrix, W, independently, focus-
ing on a single weight per row at a time. It con-
sistently updates all not-yet-quantized weights to
offset the error introduced by quantizing a single
weight. Since the objective function in equation 6
is quadratic, its Hessian H can be calculated using

the following formula, where F' denotes the set of
remaining full-precision weights:

Hr = 2Xp X% @)

Given H, the next to be quantized weight, wy,

and the corresponding update of all remaining

weights in F', d, are given by the following for-

mulas, where quant(w) rounds w to the nearest
quantized value (Frantar et al., 2022):

(wq — quant(wg))?
Hz'aq

wg — quant(wg) .1

T, )

For all rows of W, GPTQ quantizes weights in
the same order. This accelerates the process, as
certain computations need to be performed only
once for each column rather than once for each
weight.

The GPTQ algorithm, as originally proposed, is
designed for quantization to a fixed-point format.
We have enhanced the algorithm to also support
quantization to a microscaling (MX) format. Al-
gorithm 1 provides pseudocode for the modified
GPTQ, that enables MX quantization. Note that for
quantizing W to a specific MX format, the micro-
block size in the algorithm, B9, should be a multi-
ple of the block size of the MX format. For more

wq = argmin,,
®
by =—



details on the GPTQ algorithm refer to Frantar et
al.’s work (Frantar et al., 2022).

5 Experiments

Setup. We evaluate the impact of the
SmoothQuant, AWQ, and GPTQ techniques
on quantization of Llama2 and Llama3 models.
We employ various fixed-point and MX formats
with different bit-widths for our assessment and
report the perplexity of the quantized models on
WikiText-2 (Merity et al., 2016). Moreover, we
study the impact of applying GPTQ, SmoothQuant,
and AWQ individually, as well as the combined
effects of GPTQ with AWQ and GPTQ with
SmoothQuant. For more details on experiment
setup refer to Section A.

Results. Table 1 illustrates perplexity of the quan-
tized Llama models (Touvron et al., 2023; Meta,
2024) with three different sizes on WikiText-2-test
using various MX and fixed-point formats. For
all three models, aggressive quantization to small
bit-widths penalizes the model performance, while
quantizing to higher bit-widths has negligible effect
on perplexity. For example, quantizing Llama3-8B
to MXINTS preserves the baseline perplexity while
quantizing to MXINT4 increases perplexity by 29%
to 7.13. Moreover, quantization results using dif-
ferent MX format delivers better perplexity com-
pared to the fixed-point formats with the same
bit-width. For instance, quantizing Llama2-7B to
INT4 increases perplexity to 5.91. Enabling AWQ,
and GPTQ jointly, reduces it to 5.53, while us-
ing MXINT4 and enabling AWQ and GPTQ we
can achieve perplexity of 5.37. Additionally, we
found that in all cases except for the quantization of
both activations and weights to INT8, AWQ shows
superior results compared to SmoothQuant. For
the studied models and quantization formats, both
SmoothQuant and GPTQ, as well as AWQ and
GPTQ, are synergistic, an effect most prominent in
more aggressive quantizations.

Similarly, we assess the impact of GPTQ,
SmoothQuant, and AWQ on the quantization of
the Llama2, and Llama3 models (Touvron et al.,
2023) using MX formats with the block size of /6.
We observe similar trends to those identified in this
section. Detailed results of the experiment can be
found in the Table 2 of the appendix.

6 Related Work

Model quantization methods. There are two
primary categories of quantization techniques:
Quantization-Aware Training (QAT), which

leverages backpropagation to update quantized
weights (Bengio et al., 2013; Choi et al., 2018;
Nagel et al., 2021; Gholami et al., 2022), and
Post-Training Quantization (PTQ), which typically
requires no additional training. Quantization-aware
training methods cannot easily scale up to quantize
giant LLMs. Consequently, PTQ methods are
commonly employed for quantizing LLMs (Jacob
et al., 2018; Nagel et al., 2020; Wang et al., 2020;
Hubara et al., 2021; Li et al., 2021; Deng et al.,
2023). In this work, we studied the interaction of
three PTQ methods, SmoothQuant (Xiao et al.,
2023), AWQ (Lin et al., 2023), and GPTQ (Frantar
et al., 2022).

Large Language Model quantization. With the
recent open-source releases of language models
like Llama (Touvron et al., 2023), researchers are
developing cost-effective quantization methods to
compress these models for inference: LLM.int8()
identifies activation outliers in a few feature dimen-
sions as a hindrance to the quantization of larger
models, and proposes to preserve those dimensions
in higher precision using a mixed INT8/FP16 de-
composition (Dettmers et al., 2022). Similarly,
SpQR (Dettmers et al., 2023) and OWQ (Lee et al.,
2024) propose to retain outlier features that are dif-
ficult to quantize in full-precision, while AWQ (Lin
et al., 2023) mitigates the quantization error for the
outliers using grid-searched channel-wise scaling.
Lee et al., explored the combined use of AWQ,
SmoothQuant, and GPTQ for quantizing LLMs,
focusing solely on fixed-point data types in their
study (Lee et al., 2023).

7 Conclusion

To summarize, we demonstrated that for the stud-
ied models, quantizations using different MX for-
mats deliver better perplexity compared to fixed-
point formats with the same bit-width when the per-
channel affine quantization scheme is employed.
Particularly, for quantization to MXINTS, none of
GPTQ, AWQ, or SmoothQuant are necessary to
preserve the baseline accuracy. Notably, we found
that for Llama2 and Llama3, when quantized to
MX formats, AWQ is superior to SmoothQuant.
Moreover, AWQ and GPTQ are synergistic, espe-
cially, with more aggressive quantization to 4-bit.

Throughout the paper, we have shown that by uti-
lizing AWQ, and GPTQ and applying MX formats
we can quantize the Llama2 and Llama3 models to
4-bit weights and 8-bit activations, with minimal
perplexity degradation.



8 Limitations

With quantization of LLMs, we make the mod-
els accessible to more people, which generally
comes with security risks, such as potential misuse
for generating harmful content. This highlights
the need for further investigation into responsi-
ble Al practices. On the technical side, due to
space and computational resource constraints, we
have only reported results for text generation with
Llama?2 and Llama3 models up to 13B parameters
on the WikiText-2 dataset. Further investigation
of broader models, datasets, and tasks remains for
future work.
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A Experiment Setup

Models. We evaluated various quantization meth-
ods using the Llama2, and Llama3 families (Tou-
vron et al., 2023; Meta, 2024). These LLMs are
widely accepted in the machine learning commu-
nity for their superior performance compared to
other open-source LLMs (Dettmers et al., 2022;
Frantar et al., 2022; Xiao et al., 2023; Lin et al.,
2023). Llama also serves as the foundation for
many popular open-source models such as Al-
paca (Taori et al., 2023), Vicuna (Chiang et al.,
2023), and Stable Beluga (Stability Al, 2023).

Datasets. Following previous work (Dettmers
et al., 2022; Xiao et al., 2023; Frantar et al., 2022;
Lin et al., 2023; Dettmers and Zettlemoyer, 2023;
Yao et al., 2022), we measured the perplexity of
quantized language models on WikiText-2 (Merity
et al., 2016) as perplexity can stably reflect the
performance of LLMs (Dettmers and Zettlemoyer,

Format | Method 1l Llama2-7B | Llama2-13B | Llama3-8B
ATPI6, WEPI6 | N/A || 512 | 457 | 554
RTN 512 358 554
, GPTQ 512 458 554
AMXINTS-16 | g 512 457 554
W:MXINTS-16 | AWQ 512 458 554
SQ+ 512 457 554
AWQ+ 512 458 554
RTN 540 an 6.18
, GPTQ 541 4.68 5.93
AMXINTS-16 | g 533 474 6.14
W:MXINT4-16 | AWQ 530 470 6.03
SQ+ 528 469 5.95
AWQ+ 527 4.68 5.90

Table 2: Perplexity score on WikiText-2-test for the
Llama models, when quantized to MX formats with the
block size of /6 using different post-training quantiza-
tion techniques. A, W, SQ, and RTN denote activation,
weight, SmoothQuant, and round to nearest, respec-
tively. +: GPTQ weight quantization is used.

2023; Lin et al., 2023). Unless otherwise stated,
the test split of the dataset is used to evaluate the
models.

Quantization formats. We evaluated models us-
ing different microscaling and fixed-point quanti-
zation formats. For the fixed-point quantization,
we calibrated the models using 128 random in-
put sentences from WikiText-2-train to estimate
the dynamic range of activations. We utilized
MinMaxObserver to find the range of activations,
and calculated the zero-point and the scale parame-
ters for the activations and weights in per-channel
granularity levels. For the MXINT format, unless
otherwise specified, the blocking dimension of a
given tensor is the last dimension.

Activation smoothing. We calculated the per-
channel scaling factor for activations and weights
using the formula stated in Equation 1. As in the
previous work, we consistently use a migration
strength () value of 0.5 across all models through-
out the paper. To calculate the scaling factors, we
gathered the statistics of activations using 128 ran-
dom sentences from the WikiText-2-train dataset.
Once we calculated the scaling factors, we used the
same values to evaluate the models with different
quantization formats.

Targeted layers. Similar to the previous
work (Xiao et al., 2023), we apply smoothing
on the input activation of the self-attention and
the feed-forward layers of LLMs. Unless stated
otherwise, we transform all Linear layers to the
specified quantization format while keeping the
activation/weight in the original format for other
layers including GELU, Softmax, and LayerNorm.
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