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Abstract
Large Language Models (LLMs) have distin-001
guished themselves with outstanding perfor-002
mance in complex language modeling tasks,003
yet they come with significant computational004
and storage challenges. This paper explores the005
potential of quantization to mitigate these chal-006
lenges. We systematically study the combined007
application of three well-known post-training008
techniques, SmoothQuant, AWQ, and GPTQ,009
and provide a comprehensive analysis of their010
interactions and implications for advancing011
LLM quantization. We enhance the versatility012
of these techniques by enabling quantization013
to microscaling (MX) formats, expanding their014
applicability beyond their initial fixed-point for-015
mat targets. We show that combining different016
PTQ methods enables us to quantize models017
to 4-bit weights and 8-bit activations using the018
MXINT format with negligible accuracy loss019
compared to the uncompressed baseline.020

1 Introduction021

Large Language Models (LLMs) have emerged as022

extremely powerful tools to comprehend and gen-023

erate natural language. However, their intensive024

computational demand and energy consumption025

make widespread adoption of these models in ev-026

eryday tasks to be challenging. One way to address027

these challenges is post-training quantization, a028

technique that involves reducing the precision of029

model parameters and/or activations from the origi-030

nal bit-width to formats with fewer bits. Quantiza-031

tion can significantly reduce the memory footprint032

and computational requirements of these models,033

making them more accessible and deployable on a034

wider range of hardware, including mobile devices035

and edge devices. However, previous work has036

shown that the activations of LLMs with more than037

3B parameters are difficult to quantize due to the038

emergence of outliers with large magnitude, which039

leads to significant quantization errors and accuracy040

degradation (Dettmers et al., 2022). To address this041

issue, Xiao et al. proposed SmoothQuant, a quan- 042

tization technique that smooths out the activation 043

outliers by migrating the quantization difficulty 044

from activations to weights with a mathematically 045

equivalent transformation (Xiao et al., 2023). Lin 046

et al., proposed AWQ, a weight only quantization 047

algorithm that mitigates the quantization error by 048

channel-wise scaling of the salient weights (Lin 049

et al., 2023). Similarly, Frantar et al. proposed 050

GPTQ, a scalable one-shot quantization method 051

that utilizes approximate second-order information 052

to quantize weights (Frantar et al., 2022). In this 053

work, we systematically study the combined appli- 054

cation of these three algorithms and provide a com- 055

prehensive analysis of their interactions and impli- 056

cations for advancing LLM quantization to various 057

fixed-point and microscaling (MX) formats. 058

Microscaling format. The microscaling (MX) 059

format for neural net computation was proposed 060

by prior work, first as MSFP (Rouhani et al., 2020) 061

and later subsumed by an emerging industry stan- 062

dard microscaling formats (Rouhani et al., 2023). 063

Specifically, MXINT8 is a microscaling format 064

that enables high-accuracy inference using half 065

the memory footprint and twice the throughput 066

of FP16. It is an emerging industry standard en- 067

dorsed by Microsoft, AMD, Arm, Intel, Meta, and 068

NVIDIA (Rouhani et al., 2023) and is already see- 069

ing adoption in today’s hardware products, such 070

as the Qualcomm cloud AI100 Accelerator (Qual- 071

comm, 2024). 072

The MX format, as outlined in this paper, is char- 073

acterized by three key components: 1) the scale 074

factor data type, 2) the data type and precision of 075

individual elements, and 3) the scaling block size. 076

The scale factor is applied uniformly across a block 077

of individual elements. This paper specifically fo- 078

cuses on MX formats employing the INT data type 079

for individual elements, thus termed MXINT. 080
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Notation. Throughout the paper we denote a mi-081

croscaling (MX) format with scaling block size082

of b, 8-bit shared scaling factor, and d bits per el-083

ement by MXINTd-b. For example, MXINT6-64084

represents an MX format with 6 bits per element,085

8 bits shared exponent across 64 values within a086

block. Similarly, a fixed-point value with i integer087

bits and no fractional bits is denoted by INTi.088

Contributions.089

1. We enhance SmoothQuant, AWQ, and GPTQ090

to support quantization to microscaling (MX)091

data formats, extending their compatibility be-092

yond the initially targeted fixed-point formats093

in the proposed methods.094

2. We study the interaction of SmoothQuant,095

AWQ, and GPTQ to quantize state-of-the-art096

models like Llama2 and Llama3 and show that097

SmoothQuant and GPTQ, as well as AWQ098

and GPTQ, are synergistic, especially at more099

restrictive bit-widths.100

2 SmoothQuant101

SmoothQuant (SQ) is a quantization method102

that targets both activations and weights of a103

model (Xiao et al., 2023). In this approach, the ac-104

tivation of a linear layer is scaled by a per-channel105

smoothing factor s ∈ RCi to minimize quantiza-106

tion errors. Simultaneously, the weight of the layer107

is adjusted in the opposite direction to maintain the108

mathematical equivalence of the linear layer:109

Y = (Xdiag(s)−1) · (diag(s)W) = X̂Ŵ (1)110

In Equation 1, X is the original input activa-111

tion with outliers, and X̂ = Xdiag(s)−1 is the112

smoothed activation. To minimize the quantization113

error of the input activation, the smoothing factor is114

selected such that all channels of the smoothed in-115

put activation have the same maximum magnitude.116

Accordingly, s is set to:117

sj = max(|Xj |), j = 1, 2, ..., Ci (2)118

Where Ci is the number of input channels in119

the input activation and j corresponds to jth input120

channel. Note that since the range of activations121

varies for different input samples, the maximum122

value of each channel is estimated using 128 cal-123

ibration samples from the calibration dataset (see124

Section A for more details). By dividing the input125

activation by the the scaling factor of Equation 2,126

all channels of the scaled input activation would127

have the same range, making quantization of the128

scaled tensor to be very easy. However, this will mi-129

grate the difficulty of the quantization completely130

Algorithm 1 Enhanced GPTQ: Quantize W given
inverse Hessian H−1 = (2XXT + λI)−1, block
size B1, and micro-block size B2.

Input: W // Weight matrix
Input: drow // Row dimension of W
Input: dcol // Column dimension of W
Input: B1 // Block size
Input: B2 // Micro-block size
Input: H−1 // Hessian inverse information
Variable: E // Quantization error matrix
Output: Q // Quantized weight matrix
Initialize: Q← 0drow×dcol

Initialize: E ← 0drow×dcol

Initialize: H−1 ← Cholesky(H−1)T

for i = 0, B1, 2B1, ... do
for j = i, i+B2, i+ 2B2, ..., i+B1 − 1 do

k ← j +B2 // helper index
Q:,j:k ← quant(W:,j:k)
E:,j:k ← (W:,j:k −Q:,j:k)([H

−1]j:k,j:k)
−1

W:,k: ←W:,k: − E:,j:k[H
−1]j:k,k:

end for
W:,i+B1: ←W:,i+B1: − E:,i:i+B1 [H

−1]i:i+B1,i+B1:

end for
Return: Q

to the weight side of a linear layer. To address this 131

issue, Xiao et al. proposed a scaling formula that 132

balances the quantization difficulty of activations 133

and weights: 134

sj = max(|Xj |)α/max(|Wj |)1−α, j = 1, 2, ..., Ci (3) 135

Where α is a hyper-parameter that controls how 136

much quantization difficulty we want to migrate 137

from activations to weights. For quantization to the 138

MX format using SmoothQuant, we directly cal- 139

culated the SmoothQuant scaling factors, skipping 140

the additional calibration phase required for quanti- 141

zation to fixed-point formats. For more details on 142

the SmoothQuant algorithm refer to Xiao et al.’s 143

work (Xiao et al., 2023). 144

3 AWQ 145

Activation-aware Weight Quantization (AWQ), is 146

a weight-only quantization method for LLMs (Lin 147

et al., 2023). In this algorithm, a small fraction (i.e., 148

0.1%-1%) of salient weight channels are scaled up 149

to reduce their relative quantization error: 150

Y = XW ≈ XŴ ≈ (X/s)( ˆsW) (4) 151

In Equation 4, s is a per-channel scaling factor 152

for the salient weights. To determine the salient 153

weights, AWQ refers to the activation distribution 154

instead of the weight distribution, as weight chan- 155

nels corresponding to the outlier activations are 156

more salient than other weights. The per-channel 157

scaling factor is calculated using the following for- 158

mula: 159

s = sαX, α ∈ [0, 1] (5) 160
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Act - Wgt bit-width Format Method Llama2-7B Llama2-13B Llama3-8B
16-16 FP16, FP16 N/A 5.12 4.57 5.54

RTN 5.13 4.58 5.55
GPTQ 5.13 4.58 5.55
SmoothQuant 5.12 4.58 5.55
AWQ 5.12 4.58 5.55
SmoothQuant+ 5.12 4.58 5.55

MXINT8-128, MXINT8-128

AWQ+ 5.12 4.58 5.55
RTN 5.15 4.60 5.62
GPTQ 5.15 4.60 5.62
SmoothQuant 5.15 4.60 5.62
AWQ 5.17 4.62 5.85
SmoothQuant+ 5.15 4.60 5.62

8-8

INT8, INT8

AWQ+ 5.17 4.62 5.84
RTN 5.55 4.82 7.13
GPTQ 5.45 4.76 6.98
SmoothQuant 5.60 4.93 7.05
AWQ 5.43 4.77 6.37
SmoothQuant+ 5.48 4.84 6.51

MXINT8-128, MXINT4-128

AWQ+ 5.37 4.73 6.16
RTN 5.91 4.97 8.44
GPTQ 5.67 4.85 18.64
SmoothQuant 6.34 5.56 9.13
AWQ 5.61 4.85 7.33
SmoothQuant+ 5.78 5.12 7.32

8-4

INT8, INT4

AWQ+ 5.53 4.80 7.06

Table 1: Perplexity score on WikiText-2-test for the Llama2-7B, Llama2-13B, and Llama3-8B models, when
quantized to fixed-point and MX formats using different post-training quantization techniques. Act, Wgt, and
RTN denote activation, weight, and round to nearest, respectively. +: GPTQ weight quantization is used. We used
per-channel affine quantization for the fixed-point formats.

Where sX is the average magnitude of activation161

(per-channel), and α is a hyper-parameter which162

balances the protection of salient and non-salient163

channels. Similar to SmoothQuant, to make AWQ164

compatible with the MX format, we directly calcu-165

late the per-channel scaling factors, skipping the166

additional calibration phase required for fixed-point167

quantization. For more details on AWQ refer to168

Lin’s et al. work (Lin et al., 2023)169

4 GPTQ170

GPTQ is a post-training quantization (PTQ)171

method that uses second-order Hessian informa-172

tion for weight quantization in LLMs (Frantar et al.,173

2022). It employs layer-wise quantization for each174

layer l in the network, seeking quantized weights175

Ŵl that make the outputs (ŴlXl) closely approxi-176

mate those of the original weights (WlXl). In other177

words, GPTQ aims to find (Frantar et al., 2022):178

argminŴl
||WlXl − ŴlXl||22 (6)179

To solve equation 6, GPTQ quantizes each row180

of the weight matrix, W, independently, focus-181

ing on a single weight per row at a time. It con-182

sistently updates all not-yet-quantized weights to183

offset the error introduced by quantizing a single184

weight. Since the objective function in equation 6185

is quadratic, its Hessian H can be calculated using186

the following formula, where F denotes the set of 187

remaining full-precision weights: 188

HF = 2XF XT
F (7) 189

Given H, the next to be quantized weight, wq, 190

and the corresponding update of all remaining 191

weights in F , δF , are given by the following for- 192

mulas, where quant(w) rounds w to the nearest 193

quantized value (Frantar et al., 2022): 194

wq = argminwq

(wq − quant(wq))
2

[H−1
F ]qq

δq = −wq − quant(wq)

[H−1
F ]qq

.(H−1
F ):,q

(8) 195

For all rows of W, GPTQ quantizes weights in 196

the same order. This accelerates the process, as 197

certain computations need to be performed only 198

once for each column rather than once for each 199

weight. 200

The GPTQ algorithm, as originally proposed, is 201

designed for quantization to a fixed-point format. 202

We have enhanced the algorithm to also support 203

quantization to a microscaling (MX) format. Al- 204

gorithm 1 provides pseudocode for the modified 205

GPTQ, that enables MX quantization. Note that for 206

quantizing W to a specific MX format, the micro- 207

block size in the algorithm, B2, should be a multi- 208

ple of the block size of the MX format. For more 209
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details on the GPTQ algorithm refer to Frantar et210

al.’s work (Frantar et al., 2022).211

5 Experiments212

Setup. We evaluate the impact of the213

SmoothQuant, AWQ, and GPTQ techniques214

on quantization of Llama2 and Llama3 models.215

We employ various fixed-point and MX formats216

with different bit-widths for our assessment and217

report the perplexity of the quantized models on218

WikiText-2 (Merity et al., 2016). Moreover, we219

study the impact of applying GPTQ, SmoothQuant,220

and AWQ individually, as well as the combined221

effects of GPTQ with AWQ and GPTQ with222

SmoothQuant. For more details on experiment223

setup refer to Section A.224

Results. Table 1 illustrates perplexity of the quan-225

tized Llama models (Touvron et al., 2023; Meta,226

2024) with three different sizes on WikiText-2-test227

using various MX and fixed-point formats. For228

all three models, aggressive quantization to small229

bit-widths penalizes the model performance, while230

quantizing to higher bit-widths has negligible effect231

on perplexity. For example, quantizing Llama3-8B232

to MXINT8 preserves the baseline perplexity while233

quantizing to MXINT4 increases perplexity by 29%234

to 7.13. Moreover, quantization results using dif-235

ferent MX format delivers better perplexity com-236

pared to the fixed-point formats with the same237

bit-width. For instance, quantizing Llama2-7B to238

INT4 increases perplexity to 5.91. Enabling AWQ,239

and GPTQ jointly, reduces it to 5.53, while us-240

ing MXINT4 and enabling AWQ and GPTQ we241

can achieve perplexity of 5.37. Additionally, we242

found that in all cases except for the quantization of243

both activations and weights to INT8, AWQ shows244

superior results compared to SmoothQuant. For245

the studied models and quantization formats, both246

SmoothQuant and GPTQ, as well as AWQ and247

GPTQ, are synergistic, an effect most prominent in248

more aggressive quantizations.249

Similarly, we assess the impact of GPTQ,250

SmoothQuant, and AWQ on the quantization of251

the Llama2, and Llama3 models (Touvron et al.,252

2023) using MX formats with the block size of 16.253

We observe similar trends to those identified in this254

section. Detailed results of the experiment can be255

found in the Table 2 of the appendix.256

6 Related Work257

Model quantization methods. There are two258

primary categories of quantization techniques:259

Quantization-Aware Training (QAT), which260

leverages backpropagation to update quantized 261

weights (Bengio et al., 2013; Choi et al., 2018; 262

Nagel et al., 2021; Gholami et al., 2022), and 263

Post-Training Quantization (PTQ), which typically 264

requires no additional training. Quantization-aware 265

training methods cannot easily scale up to quantize 266

giant LLMs. Consequently, PTQ methods are 267

commonly employed for quantizing LLMs (Jacob 268

et al., 2018; Nagel et al., 2020; Wang et al., 2020; 269

Hubara et al., 2021; Li et al., 2021; Deng et al., 270

2023). In this work, we studied the interaction of 271

three PTQ methods, SmoothQuant (Xiao et al., 272

2023), AWQ (Lin et al., 2023), and GPTQ (Frantar 273

et al., 2022). 274

Large Language Model quantization. With the 275

recent open-source releases of language models 276

like Llama (Touvron et al., 2023), researchers are 277

developing cost-effective quantization methods to 278

compress these models for inference: LLM.int8() 279

identifies activation outliers in a few feature dimen- 280

sions as a hindrance to the quantization of larger 281

models, and proposes to preserve those dimensions 282

in higher precision using a mixed INT8/FP16 de- 283

composition (Dettmers et al., 2022). Similarly, 284

SpQR (Dettmers et al., 2023) and OWQ (Lee et al., 285

2024) propose to retain outlier features that are dif- 286

ficult to quantize in full-precision, while AWQ (Lin 287

et al., 2023) mitigates the quantization error for the 288

outliers using grid-searched channel-wise scaling. 289

Lee et al., explored the combined use of AWQ, 290

SmoothQuant, and GPTQ for quantizing LLMs, 291

focusing solely on fixed-point data types in their 292

study (Lee et al., 2023). 293

7 Conclusion 294

To summarize, we demonstrated that for the stud- 295

ied models, quantizations using different MX for- 296

mats deliver better perplexity compared to fixed- 297

point formats with the same bit-width when the per- 298

channel affine quantization scheme is employed. 299

Particularly, for quantization to MXINT8, none of 300

GPTQ, AWQ, or SmoothQuant are necessary to 301

preserve the baseline accuracy. Notably, we found 302

that for Llama2 and Llama3, when quantized to 303

MX formats, AWQ is superior to SmoothQuant. 304

Moreover, AWQ and GPTQ are synergistic, espe- 305

cially, with more aggressive quantization to 4-bit. 306

Throughout the paper, we have shown that by uti- 307

lizing AWQ, and GPTQ and applying MX formats 308

we can quantize the Llama2 and Llama3 models to 309

4-bit weights and 8-bit activations, with minimal 310

perplexity degradation. 311
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8 Limitations312

With quantization of LLMs, we make the mod-313

els accessible to more people, which generally314

comes with security risks, such as potential misuse315

for generating harmful content. This highlights316

the need for further investigation into responsi-317

ble AI practices. On the technical side, due to318

space and computational resource constraints, we319

have only reported results for text generation with320

Llama2 and Llama3 models up to 13B parameters321

on the WikiText-2 dataset. Further investigation322

of broader models, datasets, and tasks remains for323

future work.324
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A Experiment Setup453

Models. We evaluated various quantization meth-454

ods using the Llama2, and Llama3 families (Tou-455

vron et al., 2023; Meta, 2024). These LLMs are456

widely accepted in the machine learning commu-457

nity for their superior performance compared to458

other open-source LLMs (Dettmers et al., 2022;459

Frantar et al., 2022; Xiao et al., 2023; Lin et al.,460

2023). Llama also serves as the foundation for461

many popular open-source models such as Al-462

paca (Taori et al., 2023), Vicuna (Chiang et al.,463

2023), and Stable Beluga (Stability AI, 2023).464

Datasets. Following previous work (Dettmers465

et al., 2022; Xiao et al., 2023; Frantar et al., 2022;466

Lin et al., 2023; Dettmers and Zettlemoyer, 2023;467

Yao et al., 2022), we measured the perplexity of468

quantized language models on WikiText-2 (Merity469

et al., 2016) as perplexity can stably reflect the470

performance of LLMs (Dettmers and Zettlemoyer,471

Format Method Llama2-7B Llama2-13B Llama3-8B

A:FP16, W:FP16 N/A 5.12 4.57 5.54
RTN 5.12 4.58 5.54
GPTQ 5.12 4.58 5.54
SQ 5.12 4.57 5.54
AWQ 5.12 4.58 5.54

A:MXINT8-16

SQ+ 5.12 4.57 5.54
W:MXINT8-16

AWQ+ 5.12 4.58 5.54
RTN 5.40 4.72 6.18
GPTQ 5.41 4.68 5.93
SQ 5.33 4.74 6.14
AWQ 5.30 4.70 6.03

A:MXINT8-16

SQ+ 5.28 4.69 5.95
W:MXINT4-16

AWQ+ 5.27 4.68 5.90

Table 2: Perplexity score on WikiText-2-test for the
Llama models, when quantized to MX formats with the
block size of 16 using different post-training quantiza-
tion techniques. A, W, SQ, and RTN denote activation,
weight, SmoothQuant, and round to nearest, respec-
tively. +: GPTQ weight quantization is used.

2023; Lin et al., 2023). Unless otherwise stated, 472

the test split of the dataset is used to evaluate the 473

models. 474

Quantization formats. We evaluated models us- 475

ing different microscaling and fixed-point quanti- 476

zation formats. For the fixed-point quantization, 477

we calibrated the models using 128 random in- 478

put sentences from WikiText-2-train to estimate 479

the dynamic range of activations. We utilized 480

MinMaxObserver to find the range of activations, 481

and calculated the zero-point and the scale parame- 482

ters for the activations and weights in per-channel 483

granularity levels. For the MXINT format, unless 484

otherwise specified, the blocking dimension of a 485

given tensor is the last dimension. 486

Activation smoothing. We calculated the per- 487

channel scaling factor for activations and weights 488

using the formula stated in Equation 1. As in the 489

previous work, we consistently use a migration 490

strength (α) value of 0.5 across all models through- 491

out the paper. To calculate the scaling factors, we 492

gathered the statistics of activations using 128 ran- 493

dom sentences from the WikiText-2-train dataset. 494

Once we calculated the scaling factors, we used the 495

same values to evaluate the models with different 496

quantization formats. 497

Targeted layers. Similar to the previous 498

work (Xiao et al., 2023), we apply smoothing 499

on the input activation of the self-attention and 500

the feed-forward layers of LLMs. Unless stated 501

otherwise, we transform all Linear layers to the 502

specified quantization format while keeping the 503

activation/weight in the original format for other 504

layers including GELU, Softmax, and LayerNorm. 505
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