Under review as a conference paper at ICLR 2026

ANALYTICAL RESTRUCTURING OF FEED-FORWARD
NETWORKS FOR ACCELERATED LLLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Scaling large language models (LLMs) improves performance but dramatically in-
creases inference costs, with feed-forward networks (FFNs) consuming the major-
ity of computational resources. While sparse architectures like mixture-of-experts
(MoE) can mitigate this, inducing sparsity in existing dense models typically re-
quires extensive, resource-intensive retraining (often hundreds of billions of to-
kens), creating a prohibitive barrier to practical deployment. We propose a broadly
applicable post-training framework that improves this performance—cost trade-off
by enabling the rapid, analytical restructuring of FFNSs into a sparse, efficient ar-
chitecture. The framework operates by analyzing neuron activation patterns from
a small calibration dataset, then analytically rebuilding the FFN into a Mixture-of-
Experts-style architecture with always-active “shared” experts and conditionally
activated “routed” experts. Critically, this process can restructure dense FFNs into
sparse MoE architectures and can also be applied recursively to the experts within
existing MoE models to create finer-grained hierarchical sparsity for further ac-
celeration. We construct a differentiable router directly from activation statistics,
enabling immediate deployment with a useful training-free baseline and serving
as a robust foundation for optional, lightweight fine-tuning. Experiments validate
our approach across diverse settings, delivering practical speedups reaching up
to 1.17x in compute-bound scenarios while providing consistent gains across all
configurations. This is achieved with only minutes of processing time and min-
imal fine-tuning (2k samples), which favorably contrasts with methods requiring
orders of magnitude more computational resources. By providing an efficient, an-
alytical path to high-performance sparsity, the framework makes accelerated LLM
deployment practical and accessible for resource-constrained environments.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable performance on a wide range of tasks
Zhang et al.| (2022); Touvron et al.|(2023)); Liu et al.| (2024bjal), but their ever-growing size presents
significant deployment challenges due to high computational demands, especially on resource-
constrained hardware or under strict latency budgets. This has spurred the development of various
inference acceleration techniques. Methods like pruning [Lu et al.|(2024) and quantization |[Lin et al.
(2024); |Pei et al.|(2023) are widely used but typically induce static changes to the model’s archi-
tecture or numerical precision. A different paradigm, the mixture-of-experts (MoE) architecture
Lepikhin et al.| (2020); [Du et al.| (2022); Fedus et al.[(2022); Dai et al.| (2024)), decouples model ca-
pacity from computational cost by using a router to dynamically select a sparse subset of parameters
for each input token. However, reaping the benefits of MoE models has traditionally required ex-
pensive pre-training from scratch, establishing a challenging trade-off between model performance
and training cost.

The computational bottleneck in modern transformer architectures is disproportionately located in
the feed-forward network (FFN) blocks. Several studies have reported high activation sparsity in
FFN neurons |[Liu et al.| (2023); |[Zhang et al.|(2021); [Pei et al.|(2024), meaning only a small fraction
of neurons activate for any given input. This natural sparsity presents a compelling opportunity
to accelerate inference without the cost of pre-training. A key research question is thus how to
impose an efficient, structured sparsity pattern onto an already-trained model as a lightweight, post
hoc optimization. While some prior work has explored restructuring dense models into MoEs,
these methods perpetuate the costly training paradigm [Zhu et al.| (2024); |Qu et al.| (2024); Zheng

Under review as a conference paper at ICLR 2026

et al.| (2024). They often require substantial, resource-intensive continual training (on the order of
hundreds of billions of tokens) to recover model quality, creating a significant barrier to practical
deployment. This high cost frames a critical gap: the need for a method that delivers the benefits of
sparsity without the prohibitive computational expense.

To overcome these limitations, we propose an analytical post-training framework that improves the
performance-cost trade-off for LLM acceleration. The framework restructures FFNs through a rapid,
analytical process using only a tiny calibration dataset. It operates by analyzing neuron activation
patterns to distinguish frequently active neurons (grouped into ‘shared’ experts) from sparsely ac-
tive ones. The sparsely active neurons are then clustered into specialized ‘routed’ experts using a
balanced assignment algorithm Jonker & Volgenant| (1988)). This restructuring is broadly applica-
ble: it can transform a dense model’s single, large FFN into a sparse MoE architecture, or it can
be applied recursively to the individual experts of an existing MoE model to induce a finer-grained
hierarchical sparsity. Crucially, the framework constructs a differentiable router analytically from
activation statistics, bypassing the need for expensive router training and enabling rapid deployment
with a strong training-free baseline or optional, lightweight fine-tuning.

Our contributions are:

* A New Efficiency Paradigm for Sparsity: We challenge the costly training-based ap-
proach by introducing an analytical, post hoc FFN restructuring method. Our framework
achieves a superior trade-off between performance and conversion cost, making sparsity
practical for rapid deployment.

* Universal and Hierarchical Restructuring: The proposed method rapidly restructures
any FFN into a sparse, expert-based architecture. We demonstrate its universality by show-
ing it can not only restructure dense models but also optimize existing MoE models by
creating a hierarchical expert structure.

 Analytical, Differentiable Router: The router is initialized directly from activation statis-
tics, providing immediate functionality and a strong starting point for optional fine-tuning,
a key advantage over methods requiring router training from scratch.

¢ Strong Performance with Practical Speedups: The method achieves strong performance
while delivering practical speedups reaching up to 1.17x in compute-bound scenarios,
requiring only minimal fine-tuning with 2k samples to rival methods that use orders of
magnitude more compute.

The combination of speed, flexibility, and analytical construction presents a compelling and practical
solution for researchers and practitioners seeking to deploy any LLM architecture more efficiently.

2 RELATED WORK

In contrast to pretraining MoE models from scratch, recent research has investigated the feasibil-
ity of constructing MoE architectures by repurposing existing dense LLMs. Current methodologies
for deriving MoE models from dense checkpoints generally follow two paradigms: (1) partitioning
parameters of FFNs while preserving the original model’s total parameter count Zuo et al.| (2022);
Zhang et al.| (2021); |[Yang et al.| (2024), or (2) expanding the model’s overall capacity while re-
taining activation dimensions comparable to standard dense models Komatsuzaki et al.| (2022); [Wu
et al.[(2024). This work prioritizes the former approach. Notably, MoEBERT [Zuo et al.| (2022)
introduces an importance-driven strategy to transform FFNs into expert modules by strategically re-
distributing top-scoring neurons across specialized components. Concurrently, MoEfication [Zhang
et al.| (2021) leverages the discovery of sparse activation patterns in ReLU-based FFNs within T5
architectures, enabling the decomposition of these layers into distinct expert groups governed by a
learned routing mechanism. Based on continual training,Zhu et al.| (2024) modifies the LLaMA-
2 7B model as a LLaMA-MoE-3.5B MoE model, where the parameters of the original FFNs are
partitioned into multiple experts. In|Qu et al.| (2024), based on a two-stage post-training strategy,
an MoE model is constructed from the LLaMA3 8B model, where both attention and MLP are
partitioned into MoE blocks. EMoE |Qiu et al.| (2023) creates MoE structures during fine-tuning
by clustering neurons based on their key vectors, enabling conditional computation without adding
extra parameters. Read-ME |Cai et al.| (2024)) further explores refactorizing dense LLMs into MoE
architectures with a decoupled router and system co-design, focusing on domain-aware expert con-
struction and optimized inference (e.g., batching and caching). Compared to these approaches, our

Under review as a conference paper at ICLR 2026

method analytically restructures FFNs into experts by splitting neurons into shared and routed ex-
perts based on binary activation features and a balanced assignment objective, then constructing a
router directly from representative neuron statistics. Under matched sparsity and a small 2k-sample
fine-tuning budget, our analytical MoE restructuring achieves substantially better performance than
random-initialized MLP baselines, while avoiding the heavy continual pretraining required by

et al.[(2024)); |Qu et al.| (2024).

A parallel line of work studies fully differentiable routing and MoE training from scratch. Re-
MoE [Wang et al.[(2024) replaces hard Top-K with ReLU routing and explicit load-balancing reg-
ularization, and Lory [Zhong et al] (2024) performs segment-level differentiable expert merging
trained on large token budgets. These methods focus on learning routers and experts jointly dur-
ing pre-training, whereas our contribution is a training-light analytical restructuring of existing
dense (or MoE) FFNs using only a tiny 2k-sample budget, making our approach complementary
to differentiable-routing MoEs.

Orthogonal to FFN-to-MoE conversion, training-free activation sparsity methods such as TEAL |[Liu]
and WINA keep the backbone dense but sparsify neuron or chan-
nel activations at inference time using magnitude- or weight-informed thresholds plus specialized
sparse kernels. These approaches operate at the neuron level and can in principle be applied in-
side MoE experts, whereas our method changes the architectural granularity by restructuring FFNs
into shared and routed experts with an analytical router; this makes training-free activation sparsity
complementary rather than competing with our Dense-to-MoE conversion.

3 METHODOLOGY - _
Input embedding
v
The proposed framework transforms dense LLMs Hidden StafTva'IL{'es Aﬂmjﬂﬂﬂhhmm_
into sparsely activated MoE architectures through ~ a o v bigh
two key phases: efficient expert grouping and an- Activation Features
alytical router construction. As shown in Fig- . }
ure[T} the framework operates through the follow- | feeoniae
ing systematic process: \ hen
. . . . f Lowly-activated
A. Neuron Activation Profiling (Section [3.1)) neurons Highlyactivated
. . . . Ul
Using a small calibration dataset, the framework . | Batanced Assignment
profiles the activation patterns of neurons within Routed Experts _Shared Experts _
each FFN layer to categorize them into shared ex- o : .. IR
perts (high-activation, task-agnostic) and routed \
experts (sparsely activated, task-specific). ’
Centroids Representative neurons
B. Expert Grouping (Section [3.1) Shared Ex- ©00-+-00 © 0000
perts: Neurons exhibiting the highest activa- ¢ T2os Mo T2 metd
tion rates are directly assigned to shared experts, Approximiate Minimization
which remain consistently activated during infer-

ence. Routed Experts: The remaining neurons are T ________

efficiently partitioned into routed experts through
balanced clustering, mathematically formulated

as a linear assignment problem. .
Input

C. Router Construction and Optimization
(Section [3.2) The routing mechanism is analyti-
cally derived from the activation statistics of rep-
resentative neurons in each expert cluster, with
differentiable enhancements and load balancing Figure 1: Overview of the proposed analytical
for fine-tuning scenarios. FFN-to-MoE restructuring framework.

Output

3.1 SHARED AND ROUTED EXPERTS
GROUPING

An FEN layer computes F'(x) and adds it to the input embedding x via a residual connection. For
LLaMA models with SwiGLU, this function is:

F(x) = Wi,,h, where h = Swish(W g, .x) © (W x). (1)

gate

Under review as a conference paper at ICLR 2026

Here, x € R?, Wi, W € R4%dn and W gown € R% %4 where d}, is the FFN hidden width. Our
goal is to restructure this dense FFN into a sparse expert-based architecture composed of N shared
experts and N, routed experts (Ns + N, = N). The final output is a combination of a single shared
expert £/° and the Top-K selected routed experts £ :

N,
Fyop(x) = E°(x) + Zgi(x) - B (x), 2)

where g;(x) is the gate value from a router network G. During inference, only the top Ny, routed
experts (by router score) are activated and others receive gate value 0, where Ny, is the number of
routed experts activated per token. The following sections detail how we construct these experts
from the original FFN weights without training.

3.1.1 SHARED EXPERTS: IDENTIFYING GLOBAL PATTERNS

Shared experts are designed to capture common knowledge by housing neurons that are consistently
active. To identify them, we first analyze neuron activations on a small calibration dataset. We
compute the hidden states H € R?<% for a batch of g tokens.

Due to FFN activation sparsity, a neuron’s importance can be measured by its activation frequency.
For each token, we identify the K, neurons with the highest activation magnitudes. This yields a
binary activation matrix A = [c; ¢z - ¢4,] € {0, 1}9%" where each column c; is the activation
feature vector for neuron i, representing its firing pattern across the dataset. A neuron’s activation
rate, (u;, is the mean of its feature vector c;. The sparsity analysis is detailed in Appendix[A.T] while
the complete step-by-step pipeline is provided in Appendix [A2} (Here K, is a small calibration
hyperparameter.)

We select the N - m neurons with the highest activation rates (u;) to form the shared expert E°.
(Here m denotes the per-expert neuron count.) Its weights (W3, W, .., Wi o) are constructed by

slicing the original FFN weight matrices according to the selected neuron indices.

3.1.2 ROUTED EXPERTS: CLUSTERING SPECIALIZED PATTERNS

Routed experts handle specialized, input-dependent computations. We form them by grouping the
remaining neurons based on functional similarity. Our key insight is that neurons with similar roles
will have similar activation patterns.

Therefore, we cluster the remaining neurons by applying a balanced assignment algorithm to
their activation feature vectors (c;) from the previous step. This algorithm groups neurons into N,
experts, each of size m, by minimizing intra-cluster distance based on their co-activation patterns.
The detailed optimization is provided in Appendix Each routed expert E, is then constructed
by slicing the original FFN weights with its assigned neuron indices.

3.2 ROUTER CONSTRUCTION AND OPTIMIZATION

To preserve knowledge from the dense FFN, we design a router GG that predicts the importance of
each expert such that Fiy;,(x) approximates the original output F'(x). We conceptualize the dense

FFN as an MoE where all experts are active: F'(x) = Zfil E;(x).

Our approach identifies a single representative neuron I7; to act as a proxy for each expert j. This
neuron is the one whose activation feature vector cg, (from matrix A) is closest to the expert’s
cluster centroid ¢;. Since the centroid embodies the expert’s average activation pattern, this neuron
serves as an ideal proxy. The router is constructed using only the parameters of these representative
neurons:

G(x) = Swish(xW [) © (xWi), (3)
where WE . = W[, Sr], Wil = Wy [:, Sgl, and Sk = {Ry,..., Ry, } contains the represen-
tative neuron indices. This yields router scores s = [s1, ..., sy, | reflecting each expert’s expected

contribution. The detailed mathematical derivation is provided in Appendix [A-4]

The initial router uses hard Top-K selection, which is non-differentiable. To enable optional fine-
tuning, we introduce learnable scaling parameters u = [ug,...,uy,], initialized to zero. For a

Under review as a conference paper at ICLR 2026

selected expert i, the binary gate value of 1 is replaced by a soft gate 1 + s} - u;, where s’ =
Softmax(s). This allows the model to learn to modulate expert contributions while preserving the
initial performance. To ensure balanced expert utilization without auxiliary losses, we introduce
adaptive bias terms b = [by, ..., by,] added to scores before Top-K selection. The final gating logic
is:

g = { 1+ s} u;, s;+b; € Top-K({s+b; | 1<j <N}, Ny), @

0, otherwise

During fine-tuning, we update the adaptive biases b using a simple utilization-based controller. For
each layer and step, let 7" be the number of routed tokens and Nj the number of routed experts
activated per token; the load of expert ¢ is L; (number of times it appears in the Top-/V}, set), and its
empirical utilization is p; = L;/(NyT). With a uniform utilization target p* = 1/N, and a small
step size v (we use v = 10~?), the bias update is b; < b; + v(p* — p;). Overloaded experts (p; >
p*) are gradually down-biased, while under-utilized experts (p; < p*) are up-biased, increasing
utilization entropy and reducing load variance without introducing an auxiliary load-balancing loss.
At inference, the router operates on the fixed learned u and b with negligible overhead because it
only processes representative neurons.

3.3 APPLICATION TO EXISTING MOE MODELS

The framework’s analytical approach is broadly applicable, allowing it not only to restructure dense
FFNs into MoEs but also to optimize existing MoE models by inducing a finer-grained, hierarchical
sparsity. This is achieved by applying the restructuring process to each expert within an MoE layer
individually.

Consider a standard MoE layer where the output is a gated sum of expert outputs: Fisop(x) =
Z;vzrl gi(x) - E;(x), where g;(x) is the gate value for expert F;. Each expert E; is itself a stan-
dard FEN. Our intra-expert restructuring applies the methodology described in Section [3.1]and Sec-
tion [3.2]to each of these expert FFNs.

This transforms each original expert E; into its own hierarchical expert structure, containing one
always-active shared sub-expert (E7) and a set of routable, specialized sub-experts (E; ;). The
output of the original expert E; is thus reformulated as:

N
Bi(x) = Ej(x) = E{(x) + Y _ g} ;(x) - B ;(x), (5)
j=1

where 91/‘, ;(x) are the gate values from a newly constructed sub-router for the sub-experts within E;.

The final output of the entire MoE layer becomes a two-level hierarchy: a top-level router selects
which primary experts to activate, and within each activated expert, a second-level sub-router se-
lects which specialized sub-experts to use. This induces a more profound and dynamic sparsity,
further accelerating inference by ensuring that only a small fraction of neurons within the already-
selected experts are utilized. This application underscores the approach as a general-purpose FFN
restructuring framework for maximizing computational efficiency.

4 EXPERIMENTS

We evaluate the proposed framework as a post-training sparsification method for inference acceler-
ation on large language models. Our implementation uses Hugging Face Transformers |Wolf] (2019)
and PyTorch Paszke et al.[(2019).

4.1 MAIN RESULTS

Calibration: We randomly select 8 examples (2048 sequence length) from WikiText-2 |Merity et al.
(2016) to compute activation statistics for neuron grouping and initial router construction. We set
K, = 10 for the activation status record.

Lightweight Fine-tuning (2k): We fine-tune using LoRA Hu et al.|(2021) (rank 8, alpha 32) on
2,048 WikiText-2 samples for 1 epoch. The optimizer is Adam Kingmal (2014) (81 = 0.9, 82 =

Under review as a conference paper at ICLR 2026

0.95). We use different learning rates for the router scale parameter (0.001) and other LoRA param-
eters (5.95e-5). The load balancing bias update speed v = 0.001.

We compare our method against several approaches for accelerating LLM inference: (1) Dense
Models: Original Llama-2 7B, Llama-2 70B, Qwen-2.5-7B, and Qwen-3-30B-A3B checkpoints
serve as performance upper bounds. (2) Structured Pruning: SliceGPT |Ashkboos et al.| (2024)
and SLEB Song et al.| (2024}, which remove structured components (20% reduction). We use 20%
pruning for fair comparison since these methods prune the entire model structure while our method
only sparsifies FEN layers. (3) MoE-restructuring: LLaMA-MoE |[Zhu et al.|(2024), LLaMA-
MoE-v2 |Qu et al.| (2024), and EMoE |Qiu et al.| (2023)), which restructure dense FFNs into sparse
MoE architectures.

The main results use 25% sparsity with S3A3ES configuration (3 shared + 3 active routed / 8 total),
balancing performance and efficiency. For fair comparison, we configure all MoE methods with 8
total experts by default.

Table 1: Downstream task accuracy (zero-shot evaluation) after LoRA fine-tuning on 2k WikiText-2
samples. Higher is better. We use 25% sparsity with a 1:1 shared/routed expert configuration.

Method | Sparsity | Type | PIQA WinoGrande ARC-E ARC-C HellaSwag
Llama-2 7B
Dense | 0% - | 78.78 69.06 74.58 46.16 76.00
SliceGPT 20% Structured Pruning | 65.71 62.88 59.76 33.21 51.34
SLEB 20% Structured Pruning | 73.13 58.98 57.90 33.02 62.47
LLaMA-MoE 25% MOoE Restructuring | 49.35 50.28 54.04 26.37 25.77
LLaMA-MoE-v2 25% MOoE Restructuring | 63.55 59.35 63.77 34.81 54.89
EMOoE 25% MOoE Restructuring | 72.47 64.48 58.63 35.75 60.80
Ours 25% | MoE Restructuring | 74.34 65.77 67.09 40.35 69.36
Llama-2 70B
Dense | 0% |- | 82.70 77.98 80.98 57.34 83.84
SliceGPT 20% Structured Pruning | 68.91 70.06 64.56 41.14 56.26
SLEB 20% Structured Pruning | 77.39 65.55 62.37 40.11 68.39
LLaMA-MoE 25% MoE Restructuring | 51.95 56.50 59.09 32.40 27.57
LLaMA-MoE-v2 25% MOoE Restructuring | 66.79 66.57 68.94 42.38 59.57
EMoE 25% MOoE Restructuring | 76.34 72.33 63.47 43.62 66.19
Ours | 25% | MoE Restructuring | 78.49 73.49 73.32 49.86 76.12
Qwen-2.5-7B
Dense | 0% |- | 79.82 73.16 77.36 51.02 78.86
SliceGPT 20% Structured Pruning | 66.19 66.51 61.88 36.69 53.21
SLEB 20% Structured Pruning | 74.95 61.76 59.95 35.80 64.41
LLaMA-MoE 25% MOoE Restructuring | 49.63 53.21 57.05 28.64 25.65
LLaMA-MoE-v2 25% MoE Restructuring | 64.25 62.71 65.77 37.59 56.06
EMoE 25% MoE Restructuring | 73.98 65.41 60.63 38.48 62.71
Ours | 25% | MoE Restructuring | 75.93 69.36 70.59 43.86 72.21
Qwen-3-30B-A3B
Dense | 0% |- | 84.51 79.18 84.43 57.88 87.44
SliceGPT 20% Structured Pruning | 70.60 71.58 66.88 41.85 58.41
SLEB 20% Structured Pruning | 79.16 66.01 70.08 42.11 71.74
LLaMA-MoE 25% MoE Restructuring | 52.18 54.48 62.50 30.77 28.32
LLaMA-MoE-v2 25% MOoE Restructuring | 65.54 67.24 71.27 41.99 62.78
EMoE 25% MOoE Restructuring | 74.76 70.50 65.78 43.12 70.62
Ours | 25% | MoE Restructuring | 80.23 74.84 76.75 48.80 80.71

Evaluation on Downstream Task Performance. Table [I| presents zero-shot results on five com-
mon benchmarks: PIQA [Bisk et al.| (2020), WinoGrande Sakaguchi et al.| (2021), ARC-Easy,
ARC-Challenge (Clark et al.| (2018), and HellaSwag |Zellers et al.| (2019). At 25% sparsity, the
proposed method consistently outperforms all baseline methods across four different base models.
On Llama-2 7B, it achieves 74.34% on PIQA and 69.36% on HellaSwag, substantially exceeding
both structured pruning methods and other MoE restructuring approaches. The effectiveness gen-
eralizes across model scales and architectures: on the larger Qwen-3-30B-A3B model, it achieves

Under review as a conference paper at ICLR 2026

Table 2: Broader downstream evaluation on Llama-2 7B at 25% sparsity (S3A3E8). We report
MMLU-5shot, HumanEval pass@1, and GSM8K-8shot (higher is better).

Method | MMLU-5shot (%) | HumanEval pass@1 (%) | GSM8K-8shot (%)
Dense 45.81 12.72 14.31
LLaMA-MoE 35.09 7.58 7.41
LLaMA-MoE-v2 38.02 9.32 10.09
EMoE 43.11 10.29 12.55
Ours 44.02 11.22 13.01

Table 3: Matched-budget clustering and routing comparison on Llama-2 7B (MMLU-5shot, higher
is better). All methods use 25% sparsity, identical expert counts, and 2k-sample fine-tuning.

Method | Expert grouping | Router | MMLU-5shot (%) | A vs Dense (pp)
Dense | - | - \ 45.81 \ +0.00
MoEfication (budget-matched) | Parameter K-means MLP router 35.17 -10.64
READ-ME (budget-matched) | Domain-aware clustering Global router 31.24 -14.57
MoEfication-clustering + ours | Parameter K-means Analytical router 37.33 -8.48
READ-ME-clustering + ours Domain-aware clustering Analytical router 36.79 -9.02
Ours (analytical) | Binary-activation balanced assign. | Analytical router | 44.02 \ -1.79

80.23% on PIQA and 80.71% on HellaSwag, demonstrating robust performance improvements even
on state-of-the-art foundation models. The results demonstrate that the analytical construction and
lightweight fine-tuning enable effective sparsification while maintaining competitive performance
across diverse model architectures and scales.

Broader Evaluation on Knowledge, Coding, and Math. Beyond these five zero-shot tasks, we
also evaluate Llama-2 7B at 25% sparsity (S3A3E8) on MMLU-5shot, HumanEval pass@1, and
GSMS8K-8shot to cover knowledge-intensive and reasoning benchmarks. As summarized in Ta-
ble[2} our analytical MoE restructuring achieves 44.02% MMLU-5shot (only 1.79 pp below dense)
and competitive coding/math accuracy, while MoEfication-style and LLaMA-MOoE variants incur
substantially larger drops, underscoring the robustness of our conversion on harder tasks.

Matched-Budget Comparison with MoEfication and Read-ME. Table [3| reports MMLU-5shot
on Llama-2 7B under 25% sparsity with identical expert counts and a 2k-sample fine-tuning budget
for all MoE conversions. Our analytical MoE restructuring reaches 44.02% MMLU-5shot (only
1.79 pp below the dense baseline at 45.81%), whereas budget-matched MoEfication and READ-
ME variants remain 8—15 pp below dense. Using the same router, switching from K-means or
domain-aware clustering to our binary-activation balanced clustering yields an additional +6.69 pp,
highlighting the importance of the shared—routed split and balanced assignment.

4.2 ABLATION STUDIES

Efficient Fine-tuning: Achieving Strong Performance with Minimal Data. Figure [2] demon-
strates the method’s capability for rapid deployment and data-efficient adaptation with the 25%
sparsity configuration. The approach achieves strong performance immediately after construction
with zero fine-tuning data, showcasing the effectiveness of the analytical router initialization from
activation statistics. This training-free performance provides practical value, enabling quick de-
ployment without adaptation overhead. Building upon this solid foundation, the method achieves
further substantial performance recovery with as few as 1,024 WikiText-2 samples, reaching near-
optimal results that plateau quickly with additional data. This rapid convergence from an already
strong baseline showcases the effectiveness of the analytical construction: the method requires mini-
mal fine-tuning because the initial router initialization already captures essential activation patterns.
This analysis highlights practical advantages: delivering competitive sparsification directly after
construction and achieving strong performance with minimal computational overhead, making it
suitable for industrial deployment where extensive retraining is prohibitive.

To further isolate the role of lightweight fine-tuning, Table] compares our method with LLaMA-
MoE-v2 on Llama-2 7B under the same 25% sparsity. Our training-free model already achieves
42.50% MMLU-5shot with reasonable perplexity (7.32/11.98 on Wiki/C4), outperforming LLaMA-
MOoE-v2 even after fine-tuning (34.81%, 8.68/19.76). With only 2k samples, our fine-tuned model

Under review as a conference paper at ICLR 2026

Table 4: Training-free vs fine-tuned comparison on Llama-2 7B and LLaMA-MoE-v2 (25% sparsity;
identical decoding). We report MMLU-5shot (higher is better) and language modeling perplexity
(PPL; lower is better).

Model | Regime | MMLU-5shot (%) | PPL-Wiki | PPL-C4
LLaMA-MoE-v2 | Training-free 30.33 > 10,000 | > 7,000
LLaMA-MoE-v2 | Fine-tuning 34.81 8.68 19.76
Ours Training-free 42.50 7.32 11.98
Ours Fine-tuning (2k) 44.02 5.92 11.21
— | | | | | |
z ‘ Construction Time ‘ ‘ —o— Perplexity (PPL) ‘ .
S ool 17 3
& &
g L =
k5 16 8
£ - =
2} o
g &
O 5

T T T T T T
0 64 128 256 512 1024 2048 4096
Number of Training Data

Figure 2: Data efficiency: Model performance and construction time with increasing fine-tuning
data (WikiText-2 samples, 25% sparsity).

'104 I I I I I
- o 0 0Before Balance

1+ 00 After Balance

0.5 -

| adolahah)anslds |

T — T
o 1 2 3 4 5 6 7 8 9 10 11 12 13
Expert ID

Load Count

Figure 3: Load balancing effectiveness: Achieving uniform expert utilization.

reaches 44.02% MMLU-5shot and further reduces perplexity to 5.92/11.21, indicating that most of
the gain comes from analytical restructuring, with fine-tuning acting as a small refinement.

Effective Load Balancing for Better Expert Utilization. Figure [3] demonstrates a sophisticated
load balancing mechanism, which addresses a critical challenge in MoE architectures: expert uti-
lization imbalance. Without load balancing, the final layer of Llama-2 7B exhibits severe activation
skew, with some experts receiving disproportionately high traffic while others remain underutilized.
The analytical load balancing technique effectively redistributes computational load across all ex-
perts, maximizing hardware efficiency and preventing bottlenecks. This balanced utilization is cru-
cial for achieving the full speedup potential in industrial deployment, as imbalanced expert usage can
lead to memory inefficiencies and reduced throughput. The uniform expert distribution showcased
in the figure directly translates to more predictable and consistent inference performance.

Efficiency: Token Budget and Conversion Time. Table [5] summarizes the supervised token bud-
gets and conversion times of our method and LLaMA-MoE variants. While LLaMA-MoE-v1 and v2
require 200B and ~7B supervised tokens respectively (months- and days-scale continual training),
our analytical restructuring uses only 2k samples and completes in 2,741s end-to-end (271s for the
analytical construction itself), validating the “minutes-level” conversion claim.

Calibration Sensitivity and Harder Benchmarks. Table[6]examines MMLU-5shot and perplexity
on Llama-2 7B under 25% sparsity while varying calibration source (WikiText-2 vs C4) and cal-
ibration set size. Increasing the calibration set from 8 to 64 samples yields modest MMLU gains

Under review as a conference paper at ICLR 2026

Table 5: Supervised token budget and conversion time for constructing MoE models. We report the
supervised data required to obtain a usable MoE model, and (for ours) the measured end-to-end and
analytical construction time on our setup.

Method | Supervised token budget | End-to-end time | Construction time (ours)
Ours 2k samples 2741s 271s
LLaMA-MoE-v1 200B tokens Months 334s"
LLaMA-MoE-v2 ~7B tokens Days 509s"

T Split-only time measured on our setup; reported training tokens from the original papers are not included.

Table 6: Calibration sensitivity on Llama-2 7B at 25% sparsity (S3A3ES). We vary calibration
source (WikiText-2 vs C4) and calibration set size n (number of samples). We report MMLU-5shot
(higher is better), absolute drop vs dense (A pp; dense = 45.81), and perplexity (PPL; lower is better)

on Wiki and C4.
Calibration source | n (samples) | MMLU-5shot (%) | A vs Dense (pp) | PPL-Wiki / PPL-C4

WikiText-2 8 44.02 -1.79 592/11.21
WikiText-2 32 44.63 -1.18 5.72/11.15
WikiText-2 64 44.89 -0.92 5.69/10.98
C4 8 42.31 -3.50 7.04/9.17
C4 32 43.25 -2.56 6.92/9.07
C4 64 43.39 -2.42 6.78 /9.02

Table 7: Hierarchical application to an existing MoE model (Qwen3-30B-A3B) at 25% sparsity. We
report GFLOPs per decoding step, GMACs per token, tokens per second, and MMLU-5shot.

Method | GFLOPs () | GMACs ({) | tokens/s (1) | MMLU-5shot (%)

Dense 778.7 389.33 1.19 80.78
Ours (hierarchical) 634.9 331.32 1.36 78.21

(e.g., 44.02—44.89 on WikiText-2) and small perplexity reductions; C4 calibration behaves sim-
ilarly and sometimes slightly better on C4 PPL. Overall, these results indicate that our analytical
pipeline is robust to calibration choices and achieves competitive MMLU with tiny calibration and
tuning budgets.

Hierarchical Application to Existing MoE Layers. To empirically validate the hierarchical MoE
application, we apply our intra-expert restructuring to an existing MoE model, Qwen3-30B-A3B, by
splitting each expert into 8 sub-experts (width-splits) and reusing the S3A3ES configuration inside
each expert. As shown in Table [7] the resulting two-level hierarchy reduces GFLOPs by 18.5%
and GMAC:s by 14.9%, while increasing throughput by 14.3% with only a 2.57 pp drop in MMLU-
Sshot. This demonstrates that our analytical construction extends beyond dense-to-MoE conversion
and can induce beneficial hierarchical sparsity in existing MoE layers.

5 CONCLUSION

We introduced a post-training framework that improves the trade-off between performance and com-
putational cost in deploying sparse LLMs. By analytically restructuring FFNs based on neuron acti-
vation statistics, the method efficiently remodels dense networks into high-performing sparse MoE
architectures. This process requires only a tiny calibration dataset and minutes of computation, di-
rectly challenging the expensive, training-heavy paradigm of prior methods. Our key innovation
lies in the analytical construction of both the expert partitions and the router, which enables strong
performance out of the box and serves as a robust starting point for optional, lightweight fine-tuning.
Furthermore, we demonstrated broad applicability by showing it can be applied not only to dense
models but also to existing MoE models, creating a finer-grained hierarchical sparsity for further
acceleration. This work makes performant, sparse LLMs more accessible and practical for a wide
range of real-world applications.

Under review as a conference paper at ICLR 2026

DECLARATION OF LLM USAGE

The usage of LLM:s is strictly limited to aid and polish the paper writing.

REFERENCES

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Ruisi Cai, Yeonju Ro, Geon-Woo Kim, Peihao Wang, Babak Ehteshami Bejnordi, Aditya Akella,
Zhangyang Wang, et al. Read-me: Refactorizing llms as router-decoupled mixture of experts
with system co-design. Advances in Neural Information Processing Systems, 37:116126-116148,
2024.

Sihan Chen, Dan Zhao, Jongwoo Ko, Colby Banbury, Huiping Zhuang, Luming Liang, and Tianyi
Chen. Wina: Weight informed neuron activation for accelerating large language model inference.
arXiv preprint arXiv:2505.19427, 2025.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqgi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547—
5569. PMLR, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Roy Jonker and Ton Volgenant. A shortest augmenting path algorithm for dense and sparse linear
assignment problems. In DGOR/NSOR: Papers of the 16th Annual Meeting of DGOR in Co-
operation with NSOR/Vortrige der 16. Jahrestagung der DGOR zusammen mit der NSOR, pp.
622-622. Springer, 1988.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa,
Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training
mixture-of-experts from dense checkpoints. arXiv preprint arXiv:2212.05055, 2022.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device 1lm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

10

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024b.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
free activation sparsity in large language models. arXiv preprint arXiv:2408.14690, 2024c.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137-22176. PMLR,
2023.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
language models. arXiv preprint arXiv:2402.14800, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Zehua Pei, Xufeng Yao, Wengian Zhao, and Bei Yu. Quantization via distillation and contrastive
learning. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Zehua Pei, Hui-Ling Zhen, Xianzhi Yu, Sinno Jialin Pan, Mingxuan Yuan, and Bei Yu. Fusegpt:
Learnable layers fusion of generative pre-trained transformers. arXiv preprint arXiv:2411.14507,
2024.

Zihan Qiu, Zeyu Huang, and Jie Fu. Unlocking emergent modularity in large language models.
arXiv preprint arXiv:2310.10908, 2023.

Xiaoye Qu, Daize Dong, Xuyang Hu, Tong Zhu, Weigao Sun, and Yu Cheng. Llama-moe v2: Ex-
ploring sparsity of llama from perspective of mixture-of-experts with post-training. arXiv preprint
arXiv:2411.15708, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99—-106, 2021.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
Streamlining llms through redundancy verification and elimination of transformer blocks. arXiv
preprint arXiv:2402.09025, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ziteng Wang, Jun Zhu, and Jianfei Chen. Remoe: Fully differentiable mixture-of-experts with relu
routing. arXiv preprint arXiv:2412.14711, 2024.

T Wolf. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

Haoyuan Wu, Haisheng Zheng, Zhuolun He, and Bei Yu. Parameter-efficient sparsity craft-
ing from dense to mixture-of-experts for instruction tuning on general tasks. arXiv preprint
arXiv:2401.02731, 2024.

Yuanhang Yang, Shiyi Qi, Wenchao Gu, Chaozheng Wang, Cuiyun Gao, and Zenglin Xu. Xmoe:

Sparse models with fine-grained and adaptive expert selection. arXiv preprint arXiv:2403.18926,
2024.

11

Under review as a conference paper at ICLR 2026

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Moefication:
Transformer feed-forward layers are mixtures of experts. arXiv preprint arXiv:2110.01786, 2021.

Haizhong Zheng, Xiaoyan Bai, Xueshen Liu, Z Morley Mao, Beidi Chen, Fan Lai, and Atul
Prakash. Learn to be efficient: Build structured sparsity in large language models. arXiv preprint
arXiv:2402.06126, 2024.

Zexuan Zhong, Mengzhou Xia, Danqi Chen, and Mike Lewis. Lory: Fully differentiable mixture-of-
experts for autoregressive language model pre-training. arXiv preprint arXiv:2405.03133, 2024.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
Llama-moe: Building mixture-of-experts from llama with continual pre-training. In Proceed-
ings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 15913—
15923, 2024.

Simiao Zuo, Qingru Zhang, Chen Liang, Pengcheng He, Tuo Zhao, and Weizhu Chen. Moe-
bert: from bert to mixture-of-experts via importance-guided adaptation. arXiv preprint
arXiv:2204.07675, 2022.

12

Under review as a conference paper at ICLR 2026

A DETAILED MATHEMATICAL DERIVATIONS

This appendix provides the detailed mathematical derivations and algorithmic analysis that support
the core concepts presented in the main manuscript.

A.1 ACTIVATION SPARSITY ANALYSIS AND HYPOTHESIS

Min: -0.134766
Max: 0.202148
25th percentile: -0.005768
75th percentile: 0.006073

600 | st

Frequency
=
g

:

o

S

S
T

015 o1 ,5.‘10 2 0 ;vl‘o 2 0.1 015 0.2
Hidden State Value

(a) The histogram of FFN hidden state h for the 3-th

block and the 1, 000-th token.

Min: 0.032471
Max: 1.000000
entile: 0.060059
75th percentile: 0.095215

400

200 |

Frequency

I I I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Activation Rate

(b) The histogram of activation rates p for the 3-th block
with K, = 1, 000.

Figure A.1: Empirical analysis of FFN activation patterns supporting our mathematical framework.

As demonstrated in fig. [1(a)} the distribution of the FFN hidden state h is sharply peaked at O and
constrained within a small range. This indicates that most h; are concentrated near zero, confirming
the sparsity of activations.

Detailed Hypothesis and Derivation. Given the input embedding x € R?, each neuron’s contribu-
tion can be analyzed independently. For the i-th neuron:

hi = Swish(x - Wyaei) - (X - Wup,i)

where wy4¢,; and w,), ; are the i-th columns of the gate and up projection weights. The FFN output

decomposes as:
dn

F(x) =Y hiWaoun.i ©6)
1=1

Each h; acts as a gating score for the corresponding output weight W, ;. Since structured pruning
research shows that || F'(x)|| is typically small due to residual connections, we observe high sparsity
in FFN activations. This leads to our central hypothesis:

arg miin |hiwdown,i| ~ arg miin |hl| (7)

This approximation is justified because when h; is extremely small, the product h; W goum,; van-
ishes regardless of the magnitude of W,y ;. The empirical evidence in Figure supports this
hypothesis by showing the high concentration of hidden states near zero.

A.2 COMPLETE ACTIVATION ANALYSIS PIPELINE

To systematically quantify neuron activation patterns, we establish the complete mathematical
pipeline starting from calibration data.

13

Under review as a conference paper at ICLR 2026

Step 1: Tensor Reshaping and Hidden State Computation. Given a batched input tensor X &
Rb*sxd from the calibration dataset, where b is batch size and s is sequence length, we first reshape
it to X’ € R7%*? where ¢ = b - s is the total number of tokens. We then compute the hidden states:

H = Swish(X'W 4t.) © (X'W,,,) € RI%4n (8)

Note that in practical implementation, we normalize X', W 4. and W, before the calculation to
eliminate the influence of their magnitudes on the output.

Step 2: Activation Matrix Construction. Using the ATopK metric from the main text, we apply
it row-wise to the hidden state matrix H to create binary activation markers, directly producing the
activation matrix A € R9* %

A=cicy - cqg]

where each column c; € RY is the activation feature vector representing neuron ¢’s activation status
across all g calibration tokens, and A[t, i] = a,; as defined by the ATopK metric.

Step 3: Activation Rate Computation. The activation rates are computed by averaging each col-
umn of the activation matrix:

q

1 .
M= [/’617 M2, 7l’l’dh]? where i = g Z A[t? Z] = mean(ci) (9)
t=1

The histogram of these activation rates p is shown in Figure [I(b)] The histogram reveals a highly
skewed distribution of activation rates, where the majority of neurons exhibit low activation rates
(below 0.1), with a sharp peak near 0.07. However, the distribution also features a long tail, indi-
cating the presence of a subset of neurons with significantly higher activation rates extending up to
1. These high-activation neurons are likely active across a wide range of input tokens, making them
suitable for processing common knowledge rather than task-specific specialization. Therefore, we
identify neurons for shared experts by grouping these high-activation neurons. Given the total num-
ber of shared experts as IV and the expert size m, we get the selection indices set Sy, by selecting
N - m neurons with highest activation rates based on p:

Sy, ={i + pi € TopK({p; |1 <j <dp},Ns-m)}. (10)

These indices Sy, are then used to form the shared experts by assigning the corresponding parame-
ters from the original FFN, as detailed in Section[3.1]

The majority of low activation rates also encourage us to construct routed experts, which are not
always activated but are specialized for tokens encountered.

A.3 DETAILED BALANCED CLUSTERING ALGORITHM FOR ROUTED EXPERTS

To construct routed experts, we employ a constrained balanced K-means clustering algorithm on the
activation feature vectors c; derived from matrix A.

Centroid Initialization. We first identify [V, centroids by selecting neurons (excluding those al-
ready assigned to shared experts) with the highest activation rates from p:

C={ci:p; €TopK(p; |1 <j<dp,j¢Sn,,Ny)} ={€1,...,¢n,}

Distance Matrix Construction. We formalize the clustering by constructing a distance matrix
D € RVN»m*xNr where element d; ; represents the Ly distance between the i-th activation feature
vector ¢; and the j-th centroid ¢;:

q

dij = llei = &jlla = | D (ki —)2 (11)
k=1
The constrained balanced K-means algorithm proceeds iteratively with centroids ¢, ¢}, . .. ,é}f\,r at

iteration ¢:

14

Under review as a conference paper at ICLR 2026

Cluster Assignment: Let Tz-fp be a solution to the following linear program:

mN, N,
w3 3Ty a2
i=1 p=1
mN,. N,
sLY Tip=mV¥pe{l,....N}: Y Tip=1,Vie{l,...,mN, }; Ti, > 0,Vp,i.
i=1 p=1
Cluster Update:
ST e N “m ot
et = S s T, >0 (13)
¢, otherw1se.

Since this is an unbalanced assignment problem (mN,. > m), we reduce it to a balanced assignment
by extending the distance matrix:

ext __
D! = [dy,...,d;,ds, ..., ds,...,dN,,...,dn,]
——— —— ————
m times m times m times

The balanced assignment problem becomes:

mN, N,.-m

Ir%i,n Z Z Ti - d5%) (14)

i=1 p/=1

MmN, MUIN
sty T, =19 €{l,...,mN}; Y T/, =1¥ie{l,...,mN,.}; T/, > 0,Vi,p'

Drawing on the Jonker-Volgenant algorithm Jonker & Volgenant| (1988)), this problem can be ad-
dressed as a reduced assignment problem in each step of the K -means algorithm, with a complexity
of O(n?). The final solution provides the optimized grouping strategy for routed experts with in-
dices:

Sn,p={i 13T, =1, forke {m(p—1)+1,...,mp}}

A.4 DETAILED ROUTER CONSTRUCTION OPTIMIZATION
This section provides the complete mathematical derivation for the router construction presented in
the main manuscript.

Problem Formulation. Given the same input x, the original dense FFN output equals the sum of all
expert outputs: F'(x) = E¥(x) + Zf;l ET(x). The MoE version differs only in the expert gating
scores g. To preserve knowledge from the original FFN, we formulate the router construction as:

1€Sqe
in | Faron(x; G - C1)EN(x)| = E'(x)| (5
arg mén| Mo (X;G) — F(x)| = argmln|z)| = argm1n| Z (15)

where Sge = {7 : 5; ¢ TopK({s;|1 < j < N, }, Nj)} represents deactivated experts.

Optimization Reduction. Using our sparsity hypothesis from Equation (7), we reformulate the
problem:

i€Sa. ‘ $€Sae
argmén| Z El(x)| oy cquation argmcgnl Z Z bW down. ;|
JESN,. i
1€Sde

by equati
ypquémnm argm1n| Z Z |h;)]

jESNT i

= argngn]Eh (M1] ¢ € Sqe) (16)

15

Under review as a conference paper at ICLR 2026

Table B.1: Near-dense performance with optimized industrial settings (Llama-2 70B).

Method | Sparsity | PIQA WinoGrande ARC-E ARC-C HellaSwag

Dense 0% 82.70 77.98 80.98 57.34 83.84

Proposed (Optimized) 25% 82.35 77.41 80.21 56.50 83.77
Degradation ‘ -0.35% -0.57% -0.77% -0.84% -0.07%

Optimal Solution via Permutation Matching. The optimal router should match the sorting
indices of expert scores {s1,...,sn,} with expected expert activations {hf,... h} } where

h! = Ey[||hZ||1]. Formally, there exists a permutation o such that:

So(1) < So(2) <. < So(N,) and 1_1;(1) < 1_12(2) <..- < B;(Nr) 17

The minimum value of Appendix [A-4]is achieved when:

1 N,.—Np
min (7]l |4 € Sae) = =7 D By

i=1

Representative Neuron Construction. For each expert cluster, we identify the representative neu-
ron I2; as the neuron whose activation feature vector (from matrix A) is closest to the cluster cen-
troid:
Rj :a'rgmianiféng (18)
1E€ESN,,j
where c; are the columns of activation matrix A and Sy, ; contains the neuron indices assigned to
expert j.

The router is constructed using these representative neurons:
G(x) = Swish(xW 5,) o (xW[) (19)

:[71;%13 TR27"'7h7}‘2NT]%[_§‘7_25"'aB71‘VJ (20)

This construction provides an approximate solution to the original optimization problem by lever-
aging the representative neuron assumption that h%j ~ hj.

B INDUSTRIAL APPLICATION DETAILS

In this section we provide the full industrial-scale evaluation results described in the main text.
These experiments use more generous calibration and inference settings (e.g., larger calibration
sets, prompt engineering, self-consistency) to mimic deployment scenarios.

Near-Dense Performance with Optimized Settings. Table reports the framework’s perfor-
mance on Llama-2 70B when deployed with optimized settings. Accelerating larger models like
70B is particularly crucial for industrial deployment due to their higher computational demands.
With enhanced calibration data and inference optimization techniques, the 25% sparsity configura-
tion achieves near-dense performance across all benchmarks, with degradation typically under 1%.

Inference Speedup for Industrial Deployment. Table shows measured full-model speedups
for the proposed method with 25% sparsity across different configurations and context lengths on
Qwen-2.5 72B. A 4k context length represents typical conversational applications, while a 32k con-
text length captures long-document processing scenarios; batch size 128 corresponds to memory-
bound regimes, while larger batch sizes (BS>400) reflect compute-bound deployments. The method
consistently delivers practical acceleration across both axes.

C PERPLEXITY-SPARSITY TRADE-OFFS

Table studies WikiText-2 perplexity on Llama-2 7B as we vary FFN sparsity with a total of
16 experts. Perplexity improves monotonically as sparsity increases, and at the highest sparsity we

16

Under review as a conference paper at ICLR 2026

Table B.2: Full-model inference speedup for the proposed method with 25% sparsity across deploy-
ment scenarios (Qwen-2.5 72B). S: Shared experts; A: Active routed experts; E: Total experts.

Confieuration Memory-Bound (BS=128) | Compute-Bound (BS>400)
guratt 4k Context 32k Context | 4k Context 32k Context
S1ASES8 1.08 x 1.15x 1.12x 1.17x
S3A3ES8 1.06 x 1.13x 1.11x 1.148x
S2A4E8 1.05x 1.12x 1.10x 1.121x
S4A8E16 1.02x 1.10x 1.08x 1.11x
S6A6E16 1.03x 1.08 x 1.07x 1.102x
S3A9E16 1.02x 1.05x 1.05x 1.085x%

Table C.1: Perplexity on WikiText-2 vs sparsity for Llama-2 7B with 16 experts. Higher sparsity
corresponds to fewer active FFN parameters; lower perplexity is better.

Sparsity | PPL-Wiki ()

Dense 5.27
0.75 12.73
0.625 9.56
0.5 7.71
0.375 6.55
0.25 5.78
0.125 5.25

Table D.1: Effect of k-sample self-consistency (voting) on academic benchmarks at 25% sparsity
(S3A3ES). We report accuracy (%) on PIQA, ARC-E, ARC-C, and their average (Avg).

Model | Method | k (samples) | PIQA | ARC-E | ARC-C | Avg
Llama-2 7B Dense 1 78.78 | 74.58 46.16 | 66.51
Dense 5 79.21 75.29 46.75 67.08
Ours (25%) 1 74.34 67.09 40.35 60.59
Ours (25%) 5 77.52 | 73.88 44.54 | 65.31
Qwen3-30B-A3B | Dense 1 84.51 84.43 57.88 75.61
Dense 5 85.11 85.33 58.12 | 76.19
Ours (25%) 1 80.23 | 76.75 48.80 | 68.59
Ours (25%) 5 84.56 | 84.75 57.19 | 75.50

tested (0.125) our converted model slightly outperforms the dense baseline (5.25 vs 5.27), showing
that aggressive activation sparsity can match or even improve language modeling quality under our
analytical restructuring.

D EFFECT OF SELF-CONSISTENCY ON SPARSE VS DENSE MODELS

Table[D.T|evaluates k-sample self-consistency (voting) on Llama-2 7B and Qwen3-30B-A3B at 25%
sparsity (S3A3ES) over PIQA, ARC-E, and ARC-C. While increasing k from 1 to 5 improves both
dense and sparse models, the average accuracy gain is substantially larger for our sparse conversion
(e.g., +4.72 pp vs +0.57 pp on Llama-2 7B; +6.91 pp vs +0.58 pp on Qwen3-30B-A3B), nearly
closing the gap to dense under the same k. This supports the observation that randomness from
sparse activation can be effectively averaged out via self-consistency, and that our FFN-to-MoE
restructuring remains competitive once such deployment-time levers are enabled.

E IMPACT OF EXPERT CONFIGURATION

Impact of Expert Configuration. We compare different expert configurations at 25% sparsity
after fine-tuning to understand the trade-offs between configuration complexity and performance.

17

Under review as a conference paper at ICLR 2026

PIQA WinoGrande ARC-Easy ARC-Challenge HellaSwag
| | . .

76

S T

72

=
&

70 -

=
&%
'
i<
T

Tl 0

68 |-

=
3

2 68 -

Accuracy (%)
Accuracy (%)
Accuracy (%)
Accuracy (%)

Accuracy (%)

IS
S
T

66 -

66 T 39 T S E—

70

=
2

S3A3E8 S6AGE16 S3A9E16

Figure E.1: Impact of expert configuration at 25% sparsity (after fine-tuning). Each subplot shows
the performance of three configurations: S3A3ES (3 shared + 3 active / 8 total), S6A6E16 (6 shared
+ 6 active / 16 total), and S3A9E16 (3 shared + 9 active / 16 total) across five downstream tasks.

Figure [E.T|shows the performance of three configurations across five downstream tasks: S3A3ES (3
shared + 3 active / 8 total), S6A6E16 (6 shared + 6 active / 16 total), and S3A9E16 (3 shared + 9
active / 16 total).

The results reveal interesting patterns across different tasks. S6A6E16 consistently achieves the
highest performance on PIQA (74.76%) and ARC-Easy (70.35%), suggesting that balanced ex-
pert allocation with more total experts can be beneficial for knowledge-intensive tasks. However,
S3A9E16 performs best on WinoGrande (67.87%), indicating that increased routing complexity
can help with commonsense reasoning tasks. For ARC-Challenge, S6A6E16 again leads (42.13%),
while S3A3E8 maintains competitive performance on HellaSwag (69.36%). These results demon-
strate that optimal expert configuration depends on the specific downstream task characteristics, with
balanced configurations generally providing robust performance across diverse evaluation scenarios.

F DISCUSSION

Broader Impact and Future Directions. Our work presents an analytical post-training framework
for reducing the significant computational overhead of LLM inference, thereby making powerful
models more accessible for research and deployment in resource-constrained settings. Beyond a
pure acceleration technique, the analytical nature of the method offers a new lens for interpreting
the internal workings of FFNs. The distinct grouping of neurons into ‘shared’ and ‘routed’ experts
based on activation statistics provides empirical evidence for functional specialization within these
layers. Future research could leverage this methodology to analyze how knowledge is encoded and
processed within LLMs. For future work, extending this analytical restructuring approach to other
parts of the transformer, such as attention heads, is a promising direction. Additionally, exploring
more sophisticated analytical techniques for router construction could potentially close the remain-
ing gap with fully trained routers, without sacrificing the efficiency of the post hoc approach.

Limitations. While the framework provides a robust approach, its effectiveness is subject to certain
conditions. Firstly, the quality of the neuron activation profiling is dependent on the calibration
dataset. Performance is optimal when the calibration data is representative of the target domain,
though our experiments show the method is relatively robust to calibration set size. Secondly, the
discrete nature of sparse routing introduces higher variance in generation. We observe that this
randomness can be effectively mitigated via self-consistency, where sparse models often benefit
more from multiple samples than dense baselines.

Compatibility with Other Efficiency Techniques. The analytical restructuring is orthogonal to
most system- and model-level efficiency methods and can be composed with them. In practice, FFN
restructuring integrates well with post-training quantization (e.g., AWQ/QAT) because the operation
preserves layer interfaces; it can be applied either before or after quantization with a small calibration
pass to maintain accuracy. Similarly, attention-side optimizations (K'V-cache compression, specula-
tive decoding, and attention sparsity) target different bottlenecks and are complementary. Structured
pruning (e.g., SliceGPT, SLEB) and our dynamic expert routing address different regimes: pruning
induces static capacity reduction across all inputs, while our method activates capacity condition-
ally per token. Similarly, training-free activation sparsity methods (e.g., TEAL, WINA) operate at
the finer neuron level and can be applied within our routed experts to further reduce FLOPs. In
deployment, load-balancing and batching policies remain important to realize end-to-end speedups;
our built-in bias adaptation mitigates expert hot-spotting and improves utilization on both memory-
bound and compute-bound settings. Overall, the framework serves as a drop-in FFN replacement

18

Under review as a conference paper at ICLR 2026

that composes with quantization, caching, pruning, and serving optimizations to widen the practical
acceleration envelope.

19

	Introduction
	Related Work
	Methodology
	Shared and Routed Experts Grouping
	Shared Experts: Identifying Global Patterns
	Routed Experts: Clustering Specialized Patterns

	Router Construction and Optimization
	Application to Existing MoE Models

	Experiments
	Main Results
	Ablation Studies

	Conclusion
	Detailed Mathematical Derivations
	Activation Sparsity Analysis and Hypothesis
	Complete Activation Analysis Pipeline
	Detailed Balanced Clustering Algorithm for Routed Experts
	Detailed Router Construction Optimization

	Industrial Application Details
	Perplexity–Sparsity Trade-offs
	Effect of Self-Consistency on Sparse vs Dense Models
	Impact of Expert Configuration
	Discussion

