

# ANALYTICAL RESTRUCTURING OF FEED-FORWARD NETWORKS FOR ACCELERATED LLM INFERENCE

005 **Anonymous authors**

006 Paper under double-blind review

## ABSTRACT

011 Scaling large language models (LLMs) improves performance but dramatically in-  
 012 creases inference costs, with feed-forward networks (FFNs) consuming the major-  
 013 ity of computational resources. While sparse architectures like mixture-of-experts  
 014 (MoE) can mitigate this, inducing sparsity in existing dense models typically re-  
 015 quires extensive, resource-intensive retraining (often hundreds of billions of to-  
 016 kens), creating a prohibitive barrier to practical deployment. We propose a broadly  
 017 applicable post-training framework that improves this performance–cost trade-off  
 018 by enabling the rapid, analytical restructuring of FFNs into a sparse, efficient ar-  
 019 chitecture. The framework operates by analyzing neuron activation patterns from  
 020 a small calibration dataset, then analytically rebuilding the FFN into a Mixture-of-  
 021 Experts-style architecture with always-active “shared” experts and conditionally  
 022 activated “routed” experts. Critically, this process can restructure dense FFNs into  
 023 sparse MoE architectures and can also be applied recursively to the experts within  
 024 existing MoE models to create finer-grained hierarchical sparsity for further ac-  
 025 celeration. We construct a differentiable router directly from activation statistics,  
 026 enabling immediate deployment with a useful training-free baseline and serving  
 027 as a robust foundation for optional, lightweight fine-tuning. Experiments validate  
 028 our approach across diverse settings, delivering practical speedups reaching up  
 029 to  $1.17\times$  in compute-bound scenarios while providing consistent gains across all  
 030 configurations. This is achieved with only minutes of processing time and min-  
 031 imal fine-tuning (2k samples), which favorably contrasts with methods requiring  
 032 orders of magnitude more computational resources. By providing an efficient, an-  
 033 alytical path to high-performance sparsity, the framework makes accelerated LLM  
 034 deployment practical and accessible for resource-constrained environments.

## 1 INTRODUCTION

036 Large language models (LLMs) have achieved remarkable performance on a wide range of tasks  
 037 Zhang et al. (2022); Touvron et al. (2023); Liu et al. (2024b;a), but their ever-growing size presents  
 038 significant deployment challenges due to high computational demands, especially on resource-  
 039 constrained hardware or under strict latency budgets. This has spurred the development of various  
 040 inference acceleration techniques. Methods like pruning Lu et al. (2024) and quantization Lin et al.  
 041 (2024); Pei et al. (2023) are widely used but typically induce static changes to the model’s archi-  
 042 tecture or numerical precision. A different paradigm, the mixture-of-experts (MoE) architecture  
 043 Lepikhin et al. (2020); Du et al. (2022); Fedus et al. (2022); Dai et al. (2024), decouples model ca-  
 044 pacity from computational cost by using a router to dynamically select a sparse subset of parameters  
 045 for each input token. However, reaping the benefits of MoE models has traditionally required ex-  
 046 pensive pre-training from scratch, establishing a challenging trade-off between model performance  
 047 and training cost.

048 The computational bottleneck in modern transformer architectures is disproportionately located in  
 049 the feed-forward network (FFN) blocks. Several studies have reported high activation sparsity in  
 050 FFN neurons Liu et al. (2023); Zhang et al. (2021); Pei et al. (2024), meaning only a small fraction  
 051 of neurons activate for any given input. This natural sparsity presents a compelling opportunity  
 052 to accelerate inference without the cost of pre-training. A key research question is thus how to  
 053 impose an efficient, structured sparsity pattern onto an already-trained model as a lightweight, post  
 hoc optimization. While some prior work has explored restructuring dense models into MoEs,  
 these methods perpetuate the costly training paradigm Zhu et al. (2024); Qu et al. (2024); Zheng

054 et al. (2024). They often require substantial, resource-intensive continual training (on the order of  
 055 hundreds of billions of tokens) to recover model quality, creating a significant barrier to practical  
 056 deployment. This high cost frames a critical gap: the need for a method that delivers the benefits of  
 057 sparsity without the prohibitive computational expense.

058 To overcome these limitations, we propose an analytical post-training framework that improves the  
 059 performance-cost trade-off for LLM acceleration. The framework restructures FFNs through a rapid,  
 060 analytical process using only a tiny calibration dataset. It operates by analyzing neuron activation  
 061 patterns to distinguish frequently active neurons (grouped into ‘shared’ experts) from sparsely ac-  
 062 tive ones. The sparsely active neurons are then clustered into specialized ‘routed’ experts using a  
 063 balanced assignment algorithm Jonker & Volgenant (1988). This restructuring is broadly applica-  
 064 ble: it can transform a dense model’s single, large FFN into a sparse MoE architecture, or it can  
 065 be applied recursively to the individual experts of an existing MoE model to induce a finer-grained  
 066 hierarchical sparsity. Crucially, the framework constructs a differentiable router analytically from  
 067 activation statistics, bypassing the need for expensive router training and enabling rapid deployment  
 068 with a strong training-free baseline or optional, lightweight fine-tuning.

069 Our contributions are:

- 070 • **A New Efficiency Paradigm for Sparsity:** We challenge the costly training-based ap-  
 071 proach by introducing an analytical, post hoc FFN restructuring method. Our framework  
 072 achieves a superior trade-off between performance and conversion cost, making sparsity  
 073 practical for rapid deployment.
- 074 • **Universal and Hierarchical Restructuring:** The proposed method rapidly restructures  
 075 any FFN into a sparse, expert-based architecture. We demonstrate its universality by show-  
 076 ing it can not only restructure dense models but also optimize existing MoE models by  
 077 creating a hierarchical expert structure.
- 078 • **Analytical, Differentiable Router:** The router is initialized directly from activation statis-  
 079 tics, providing immediate functionality and a strong starting point for optional fine-tuning,  
 080 a key advantage over methods requiring router training from scratch.
- 081 • **Strong Performance with Practical Speedups:** The method achieves strong performance  
 082 while delivering practical speedups reaching up to  $1.17 \times$  in compute-bound scenarios,  
 083 requiring only minimal fine-tuning with 2k samples to rival methods that use orders of  
 084 magnitude more compute.

085 The combination of speed, flexibility, and analytical construction presents a compelling and practical  
 086 solution for researchers and practitioners seeking to deploy any LLM architecture more efficiently.

## 088 2 RELATED WORK

090 In contrast to pretraining MoE models from scratch, recent research has investigated the feasibil-  
 091 ity of constructing MoE architectures by repurposing existing dense LLMs. Current methodologies  
 092 for deriving MoE models from dense checkpoints generally follow two paradigms: (1) partitioning  
 093 parameters of FFNs while preserving the original model’s total parameter count Zuo et al. (2022);  
 094 Zhang et al. (2021); Yang et al. (2024), or (2) expanding the model’s overall capacity while re-  
 095 taining activation dimensions comparable to standard dense models Komatsuzaki et al. (2022); Wu  
 096 et al. (2024). This work prioritizes the former approach. Notably, MoEBERT Zuo et al. (2022)  
 097 introduces an importance-driven strategy to transform FFNs into expert modules by strategically re-  
 098 distributing top-scoring neurons across specialized components. Concurrently, MoEfication Zhang  
 099 et al. (2021) leverages the discovery of sparse activation patterns in ReLU-based FFNs within T5  
 100 architectures, enabling the decomposition of these layers into distinct expert groups governed by a  
 101 learned routing mechanism. Based on continual training, Zhu et al. (2024) modifies the LLaMA-  
 102 2 7B model as a LLaMA-MoE-3.5B MoE model, where the parameters of the original FFNs are  
 103 partitioned into multiple experts. In Qu et al. (2024), based on a two-stage post-training strategy,  
 104 an MoE model is constructed from the LLaMA3 8B model, where both attention and MLP are  
 105 partitioned into MoE blocks. EMoE Qiu et al. (2023) creates MoE structures during fine-tuning  
 106 by clustering neurons based on their key vectors, enabling conditional computation without adding  
 107 extra parameters. [Read-ME Cai et al. \(2024\)](#) further explores refactoring dense LLMs into MoE  
 108 architectures with a decoupled router and system co-design, focusing on domain-aware expert con-  
 109 struction and optimized inference (e.g., batching and caching). Compared to these approaches, our

108 method analytically restructures FFNs into experts by splitting neurons into shared and routed experts  
 109 based on binary activation features and a balanced assignment objective, then constructing a  
 110 router directly from representative neuron statistics. Under matched sparsity and a small 2k-sample  
 111 fine-tuning budget, our analytical MoE restructuring achieves substantially better performance than  
 112 random-initialized MLP baselines, while avoiding the heavy continual pretraining required by Zhu  
 113 et al. (2024); Qu et al. (2024).

114 A parallel line of work studies fully differentiable routing and MoE training from scratch. Re-  
 115 MoE Wang et al. (2024) replaces hard Top-K with ReLU routing and explicit load-balancing reg-  
 116 ularization, and Lory Zhong et al. (2024) performs segment-level differentiable expert merging  
 117 trained on large token budgets. These methods focus on learning routers and experts jointly dur-  
 118 ing pre-training, whereas our contribution is a training-light analytical restructuring of existing  
 119 dense (or MoE) FFNs using only a tiny 2k-sample budget, making our approach complementary  
 120 to differentiable-routing MoEs.

121 Orthogonal to FFN-to-MoE conversion, training-free activation sparsity methods such as TEAL Liu  
 122 et al. (2024c) and WINA Chen et al. (2025) keep the backbone dense but sparsify neuron or  
 123 channel activations at inference time using magnitude- or weight-informed thresholds plus specialized  
 124 sparse kernels. These approaches operate at the neuron level and can in principle be applied in-  
 125 side MoE experts, whereas our method changes the architectural granularity by restructuring FFNs  
 126 into shared and routed experts with an analytical router; this makes training-free activation sparsity  
 127 complementary rather than competing with our Dense-to-MoE conversion.

### 3 METHODOLOGY

131 The proposed framework transforms dense LLMs  
 132 into sparsely activated MoE architectures through  
 133 two key phases: efficient expert grouping and an-  
 134 alytical router construction. As shown in Fig-  
 135 ure 1, the framework operates through the follow-  
 136 ing systematic process:

137 **A. Neuron Activation Profiling** (Section 3.1)  
 138 Using a small calibration dataset, the framework  
 139 profiles the activation patterns of neurons within  
 140 each FFN layer to categorize them into shared ex-  
 141 perts (high-activation, task-agnostic) and routed  
 142 experts (sparsely activated, task-specific).

143 **B. Expert Grouping** (Section 3.1) Shared Ex-  
 144 perts: Neurons exhibiting the highest activa-  
 145 tion rates are directly assigned to shared experts,  
 146 which remain consistently activated during infer-  
 147 ence. Routed Experts: The remaining neurons are  
 148 efficiently partitioned into routed experts through  
 149 balanced clustering, mathematically formulated  
 as a linear assignment problem.

150 **C. Router Construction and Optimization**  
 151 (Section 3.2) The routing mechanism is analyti-  
 152 cally derived from the activation statistics of rep-  
 153 resentative neurons in each expert cluster, with  
 154 differentiable enhancements and load balancing  
 155 for fine-tuning scenarios.

#### 3.1 SHARED AND ROUTED EXPERTS GROUPING

159 An FFN layer computes  $F(\mathbf{x})$  and adds it to the input embedding  $\mathbf{x}$  via a residual connection. For  
 160 LLaMA models with SwiGLU, this function is:

$$F(\mathbf{x}) = \mathbf{W}_{\text{down}}^\top \mathbf{h}, \quad \text{where } \mathbf{h} = \text{Swish}(\mathbf{W}_{\text{gate}}^\top \mathbf{x}) \odot (\mathbf{W}_{\text{up}}^\top \mathbf{x}). \quad (1)$$

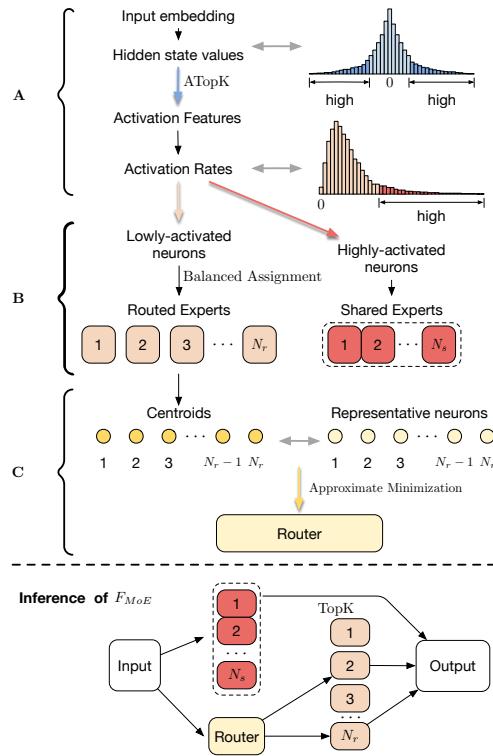


Figure 1: Overview of the proposed analytical FFN-to-MoE restructuring framework.

162 Here,  $\mathbf{x} \in \mathbb{R}^d$ ,  $\mathbf{W}_{\text{up}} \in \mathbb{R}^{d \times d_h}$ , and  $\mathbf{W}_{\text{down}} \in \mathbb{R}^{d_h \times d}$ , where  $d_h$  is the FFN hidden width. Our  
 163 goal is to restructure this dense FFN into a sparse expert-based architecture composed of  $N_s$  shared  
 164 experts and  $N_r$  routed experts ( $N_s + N_r = N$ ). The final output is a combination of a single shared  
 165 expert  $E^s$  and the Top-K selected routed experts  $E_i^r$ :

$$F_{\text{MoE}}(\mathbf{x}) = E^s(\mathbf{x}) + \sum_{i=1}^{N_r} g_i(\mathbf{x}) \cdot E_i^r(\mathbf{x}), \quad (2)$$

169 where  $g_i(\mathbf{x})$  is the gate value from a router network  $G$ . During inference, only the top  $N_k$  routed  
 170 experts (by router score) are activated and others receive gate value 0, where  $N_k$  is the number of  
 171 routed experts activated per token. The following sections detail how we construct these experts  
 172 from the original FFN weights without training.

### 174 3.1.1 SHARED EXPERTS: IDENTIFYING GLOBAL PATTERNS

175 Shared experts are designed to capture common knowledge by housing neurons that are consistently  
 176 active. To identify them, we first analyze neuron activations on a small calibration dataset. We  
 177 compute the hidden states  $\mathbf{H} \in \mathbb{R}^{q \times d_h}$  for a batch of  $q$  tokens.

179 Due to FFN activation sparsity, a neuron's importance can be measured by its activation frequency.  
 180 For each token, we identify the  $K_a$  neurons with the highest activation magnitudes. This yields a  
 181 binary activation matrix  $\mathbf{A} = [\mathbf{c}_1 \ \mathbf{c}_2 \ \dots \ \mathbf{c}_{d_h}] \in \{0, 1\}^{q \times d_h}$ , where each column  $\mathbf{c}_i$  is the **activation**  
 182 **feature vector** for neuron  $i$ , representing its firing pattern across the dataset. A neuron's activation  
 183 rate,  $\mu_i$ , is the mean of its feature vector  $\mathbf{c}_i$ . The sparsity analysis is detailed in Appendix A.1, while  
 184 the complete step-by-step pipeline is provided in Appendix A.2. (Here  $K_a$  is a small calibration  
 185 hyperparameter.)

186 We select the  $N_s \cdot m$  neurons with the highest activation rates ( $\mu_i$ ) to form the shared expert  $E^s$ .  
 187 (Here  $m$  denotes the per-expert neuron count.) Its weights ( $\mathbf{W}_{\text{up}}^s, \mathbf{W}_{\text{gate}}^s, \mathbf{W}_{\text{down}}^s$ ) are constructed by  
 188 slicing the original FFN weight matrices according to the selected neuron indices.

### 189 3.1.2 ROUTED EXPERTS: CLUSTERING SPECIALIZED PATTERNS

191 Routed experts handle specialized, input-dependent computations. We form them by grouping the  
 192 remaining neurons based on functional similarity. Our key insight is that neurons with similar roles  
 193 will have similar activation patterns.

194 Therefore, we cluster the remaining neurons by applying a **balanced assignment algorithm** to  
 195 their activation feature vectors ( $\mathbf{c}_i$ ) from the previous step. This algorithm groups neurons into  $N_r$   
 196 experts, each of size  $m$ , by minimizing intra-cluster distance based on their co-activation patterns.  
 197 The detailed optimization is provided in Appendix A.3. Each routed expert  $E_p^r$  is then constructed  
 198 by slicing the original FFN weights with its assigned neuron indices.

## 200 3.2 ROUTER CONSTRUCTION AND OPTIMIZATION

201 To preserve knowledge from the dense FFN, we design a router  $G$  that predicts the importance of  
 202 each expert such that  $F_{\text{MoE}}(\mathbf{x})$  approximates the original output  $F(\mathbf{x})$ . We conceptualize the dense  
 203 FFN as an MoE where all experts are active:  $F(\mathbf{x}) = \sum_{i=1}^N E_i(\mathbf{x})$ .

205 Our approach identifies a single **representative neuron**  $R_j$  to act as a proxy for each expert  $j$ . This  
 206 neuron is the one whose activation feature vector  $\mathbf{c}_{R_j}$  (from matrix  $\mathbf{A}$ ) is closest to the expert's  
 207 cluster centroid  $\hat{\mathbf{c}}_j$ . Since the centroid embodies the expert's average activation pattern, this neuron  
 208 serves as an ideal proxy. The router is constructed using only the parameters of these representative  
 209 neurons:

$$G(\mathbf{x}) = \text{Swish}(\mathbf{x} \mathbf{W}_{\text{gate}}^R) \odot (\mathbf{x} \mathbf{W}_{\text{up}}^R), \quad (3)$$

211 where  $\mathbf{W}_{\text{gate}}^R = \mathbf{W}_{\text{gate}}[:, S_R]$ ,  $\mathbf{W}_{\text{up}}^R = \mathbf{W}_{\text{up}}[:, S_R]$ , and  $S_R = \{R_1, \dots, R_{N_r}\}$  contains the represen-  
 212 tative neuron indices. This yields router scores  $\mathbf{s} = [s_1, \dots, s_{N_r}]$  reflecting each expert's expected  
 213 contribution. The detailed mathematical derivation is provided in Appendix A.4.

215 The initial router uses hard Top-K selection, which is non-differentiable. To enable optional fine-  
 216 tuning, we introduce learnable scaling parameters  $\mathbf{u} = [u_1, \dots, u_{N_r}]$ , initialized to zero. For a

selected expert  $i$ , the binary gate value of 1 is replaced by a soft gate  $1 + s'_i \cdot u_i$ , where  $s' = \text{Softmax}(\mathbf{s})$ . This allows the model to learn to modulate expert contributions while preserving the initial performance. To ensure balanced expert utilization without auxiliary losses, we introduce adaptive bias terms  $\mathbf{b} = [b_1, \dots, b_{N_r}]$  added to scores before Top-K selection. The final gating logic is:

$$g_i = \begin{cases} 1 + s'_i \cdot u_i, & s'_i + b_i \in \text{Top-K}(\{s'_j + b_j \mid 1 \leq j \leq N_r\}, N_k), \\ 0, & \text{otherwise} \end{cases} \quad (4)$$

During fine-tuning, we update the adaptive biases  $\mathbf{b}$  using a simple utilization-based controller. For each layer and step, let  $T$  be the number of routed tokens and  $N_k$  the number of routed experts activated per token; the load of expert  $i$  is  $L_i$  (number of times it appears in the Top- $N_k$  set), and its empirical utilization is  $p_i = L_i / (N_k T)$ . With a uniform utilization target  $p^* = 1/N_r$  and a small step size  $\gamma$  (we use  $\gamma = 10^{-3}$ ), the bias update is  $b_i \leftarrow b_i + \gamma(p^* - p_i)$ . Overloaded experts ( $p_i > p^*$ ) are gradually down-biased, while under-utilized experts ( $p_i < p^*$ ) are up-biased, increasing utilization entropy and reducing load variance without introducing an auxiliary load-balancing loss. At inference, the router operates on the fixed learned  $\mathbf{u}$  and  $\mathbf{b}$  with negligible overhead because it only processes representative neurons.

### 3.3 APPLICATION TO EXISTING MoE MODELS

The framework’s analytical approach is broadly applicable, allowing it not only to restructure dense FFNs into MoEs but also to optimize existing MoE models by inducing a finer-grained, hierarchical sparsity. This is achieved by applying the restructuring process to each expert within an MoE layer individually.

Consider a standard MoE layer where the output is a gated sum of expert outputs:  $F_{MoE}(\mathbf{x}) = \sum_{i=1}^{N_r} g_i(\mathbf{x}) \cdot E_i(\mathbf{x})$ , where  $g_i(\mathbf{x})$  is the gate value for expert  $E_i$ . Each expert  $E_i$  is itself a standard FFN. Our intra-expert restructuring applies the methodology described in Section 3.1 and Section 3.2 to each of these expert FFNs.

This transforms each original expert  $E_i$  into its own hierarchical expert structure, containing one always-active shared sub-expert ( $E_i^s$ ) and a set of routable, specialized sub-experts ( $E_{i,j}^r$ ). The output of the original expert  $E_i$  is thus reformulated as:

$$E_i(\mathbf{x}) \rightarrow E'_i(\mathbf{x}) = E_i^s(\mathbf{x}) + \sum_{j=1}^{N'_r} g'_{i,j}(\mathbf{x}) \cdot E_{i,j}^r(\mathbf{x}), \quad (5)$$

where  $g'_{i,j}(\mathbf{x})$  are the gate values from a newly constructed sub-router for the sub-experts within  $E_i$ .

The final output of the entire MoE layer becomes a two-level hierarchy: a top-level router selects which primary experts to activate, and within each activated expert, a second-level sub-router selects which specialized sub-experts to use. This induces a more profound and dynamic sparsity, further accelerating inference by ensuring that only a small fraction of neurons within the already-selected experts are utilized. This application underscores the approach as a general-purpose FFN restructuring framework for maximizing computational efficiency.

## 4 EXPERIMENTS

We evaluate the proposed framework as a post-training sparsification method for inference acceleration on large language models. Our implementation uses Hugging Face Transformers Wolf (2019) and PyTorch Paszke et al. (2019).

### 4.1 MAIN RESULTS

**Calibration:** We randomly select 8 examples (2048 sequence length) from WikiText-2 Merity et al. (2016) to compute activation statistics for neuron grouping and initial router construction. We set  $K_a = 10$  for the activation status record.

**Lightweight Fine-tuning (2k):** We fine-tune using LoRA Hu et al. (2021) (rank 8, alpha 32) on 2,048 WikiText-2 samples for 1 epoch. The optimizer is Adam Kingma (2014) ( $\beta_1 = 0.9, \beta_2 = 0.999$ ).

0.95). We use different learning rates for the router scale parameter (0.001) and other LoRA parameters (5.95e-5). The load balancing bias update speed  $\gamma = 0.001$ .

We compare our method against several approaches for accelerating LLM inference: (1) **Dense Models**: Original Llama-2 7B, Llama-2 70B, Qwen-2.5-7B, and Qwen-3-30B-A3B checkpoints serve as performance upper bounds. (2) **Structured Pruning**: SliceGPT Ashkboos et al. (2024) and SLEB Song et al. (2024), which remove structured components (20% reduction). We use 20% pruning for fair comparison since these methods prune the entire model structure while our method only sparsifies FFN layers. (3) **MoE-restructuring**: LLaMA-MoE Zhu et al. (2024), LLaMA-MoE-v2 Qu et al. (2024), and EMoE Qiu et al. (2023), which restructure dense FFNs into sparse MoE architectures.

The main results use 25% sparsity with S3A3E8 configuration (3 shared + 3 active routed / 8 total), balancing performance and efficiency. For fair comparison, we configure all MoE methods with 8 total experts by default.

Table 1: Downstream task accuracy (zero-shot evaluation) after LoRA fine-tuning on 2k WikiText-2 samples. Higher is better. We use 25% sparsity with a 1:1 shared/routed expert configuration.

| Method                | Sparsity | Type               | PIQA         | WinoGrande   | ARC-E        | ARC-C        | HellaSwag    |
|-----------------------|----------|--------------------|--------------|--------------|--------------|--------------|--------------|
| <b>Llama-2 7B</b>     |          |                    |              |              |              |              |              |
| Dense                 | 0%       | -                  | 78.78        | 69.06        | 74.58        | 46.16        | 76.00        |
| SliceGPT              | 20%      | Structured Pruning | 65.71        | 62.88        | 59.76        | 33.21        | 51.34        |
| SLEB                  | 20%      | Structured Pruning | 73.13        | 58.98        | 57.90        | 33.02        | 62.47        |
| LLaMA-MoE             | 25%      | MoE Restructuring  | 49.35        | 50.28        | 54.04        | 26.37        | 25.77        |
| LLaMA-MoE-v2          | 25%      | MoE Restructuring  | 63.55        | 59.35        | 63.77        | 34.81        | 54.89        |
| EMoE                  | 25%      | MoE Restructuring  | 72.47        | 64.48        | 58.63        | 35.75        | 60.80        |
| <b>Ours</b>           | 25%      | MoE Restructuring  | <b>74.34</b> | <b>65.77</b> | <b>67.09</b> | <b>40.35</b> | <b>69.36</b> |
| <b>Llama-2 70B</b>    |          |                    |              |              |              |              |              |
| Dense                 | 0%       | -                  | 82.70        | 77.98        | 80.98        | 57.34        | 83.84        |
| SliceGPT              | 20%      | Structured Pruning | 68.91        | 70.06        | 64.56        | 41.14        | 56.26        |
| SLEB                  | 20%      | Structured Pruning | 77.39        | 65.55        | 62.37        | 40.11        | 68.39        |
| LLaMA-MoE             | 25%      | MoE Restructuring  | 51.95        | 56.50        | 59.09        | 32.40        | 27.57        |
| LLaMA-MoE-v2          | 25%      | MoE Restructuring  | 66.79        | 66.57        | 68.94        | 42.38        | 59.57        |
| EMoE                  | 25%      | MoE Restructuring  | 76.34        | 72.33        | 63.47        | 43.62        | 66.19        |
| <b>Ours</b>           | 25%      | MoE Restructuring  | <b>78.49</b> | <b>73.49</b> | <b>73.32</b> | <b>49.86</b> | <b>76.12</b> |
| <b>Qwen-2.5-7B</b>    |          |                    |              |              |              |              |              |
| Dense                 | 0%       | -                  | 79.82        | 73.16        | 77.36        | 51.02        | 78.86        |
| SliceGPT              | 20%      | Structured Pruning | 66.19        | 66.51        | 61.88        | 36.69        | 53.21        |
| SLEB                  | 20%      | Structured Pruning | 74.95        | 61.76        | 59.95        | 35.80        | 64.41        |
| LLaMA-MoE             | 25%      | MoE Restructuring  | 49.63        | 53.21        | 57.05        | 28.64        | 25.65        |
| LLaMA-MoE-v2          | 25%      | MoE Restructuring  | 64.25        | 62.71        | 65.77        | 37.59        | 56.06        |
| EMoE                  | 25%      | MoE Restructuring  | 73.98        | 65.41        | 60.63        | 38.48        | 62.71        |
| <b>Ours</b>           | 25%      | MoE Restructuring  | <b>75.93</b> | <b>69.36</b> | <b>70.59</b> | <b>43.86</b> | <b>72.21</b> |
| <b>Qwen-3-30B-A3B</b> |          |                    |              |              |              |              |              |
| Dense                 | 0%       | -                  | 84.51        | 79.18        | 84.43        | 57.88        | 87.44        |
| SliceGPT              | 20%      | Structured Pruning | 70.60        | 71.58        | 66.88        | 41.85        | 58.41        |
| SLEB                  | 20%      | Structured Pruning | 79.16        | 66.01        | 70.08        | 42.11        | 71.74        |
| LLaMA-MoE             | 25%      | MoE Restructuring  | 52.18        | 54.48        | 62.50        | 30.77        | 28.32        |
| LLaMA-MoE-v2          | 25%      | MoE Restructuring  | 65.54        | 67.24        | 71.27        | 41.99        | 62.78        |
| EMoE                  | 25%      | MoE Restructuring  | 74.76        | 70.50        | 65.78        | 43.12        | 70.62        |
| <b>Ours</b>           | 25%      | MoE Restructuring  | <b>80.23</b> | <b>74.84</b> | <b>76.75</b> | <b>48.80</b> | <b>80.71</b> |

**Evaluation on Downstream Task Performance.** Table 1 presents zero-shot results on five common benchmarks: PIQA Bisk et al. (2020), WinoGrande Sakaguchi et al. (2021), ARC-Easy, ARC-Challenge Clark et al. (2018), and HellaSwag Zellers et al. (2019). At 25% sparsity, the proposed method consistently outperforms all baseline methods across four different base models. On Llama-2 7B, it achieves 74.34% on PIQA and 69.36% on HellaSwag, substantially exceeding both structured pruning methods and other MoE restructuring approaches. The effectiveness generalizes across model scales and architectures: on the larger Qwen-3-30B-A3B model, it achieves

324  
 325 Table 2: Broader downstream evaluation on Llama-2 7B at 25% sparsity (S3A3E8). We report  
 326 MMLU-5shot, HumanEval pass@1, and GSM8K-8shot (higher is better).

| Method       | MMLU-5shot (%) | HumanEval pass@1 (%) | GSM8K-8shot (%) |
|--------------|----------------|----------------------|-----------------|
| Dense        | 45.81          | 12.72                | 14.31           |
| LLaMA-MoE    | 35.09          | 7.58                 | 7.41            |
| LLaMA-MoE-v2 | 38.02          | 9.32                 | 10.09           |
| EMoE         | 43.11          | 10.29                | 12.55           |
| <b>Ours</b>  | <b>44.02</b>   | <b>11.22</b>         | <b>13.01</b>    |

332  
 333 Table 3: Matched-budget clustering and routing comparison on Llama-2 7B (MMLU-5shot, higher  
 334 is better). All methods use 25% sparsity, identical expert counts, and 2k-sample fine-tuning.

| Method                        | Expert grouping                    | Router            | MMLU-5shot (%) | $\Delta$ vs Dense (pp) |
|-------------------------------|------------------------------------|-------------------|----------------|------------------------|
| Dense                         | -                                  | -                 | 45.81          | +0.00                  |
| MoEfication (budget-matched)  | Parameter K-means                  | MLP router        | 35.17          | -10.64                 |
| READ-ME (budget-matched)      | Domain-aware clustering            | Global router     | 31.24          | -14.57                 |
| MoEfication-clustering + ours | Parameter K-means                  | Analytical router | 37.33          | -8.48                  |
| READ-ME-clustering + ours     | Domain-aware clustering            | Analytical router | 36.79          | -9.02                  |
| <b>Ours (analytical)</b>      | Binary-activation balanced assign. | Analytical router | <b>44.02</b>   | <b>-1.79</b>           |

343 80.23% on PIQA and 80.71% on HellaSwag, demonstrating robust performance improvements even  
 344 on state-of-the-art foundation models. The results demonstrate that the analytical construction and  
 345 lightweight fine-tuning enable effective sparsification while maintaining competitive performance  
 346 across diverse model architectures and scales.

347 **Broader Evaluation on Knowledge, Coding, and Math.** Beyond these five zero-shot tasks, we  
 348 also evaluate Llama-2 7B at 25% sparsity (S3A3E8) on MMLU-5shot, HumanEval pass@1, and  
 349 GSM8K-8shot to cover knowledge-intensive and reasoning benchmarks. As summarized in Ta-  
 350 ble 2, our analytical MoE restructuring achieves 44.02% MMLU-5shot (only 1.79 pp below dense)  
 351 and competitive coding/math accuracy, while MoEfication-style and LLaMA-MoE variants incur  
 352 substantially larger drops, underscoring the robustness of our conversion on harder tasks.

353 **Matched-Budget Comparison with MoEfication and Read-ME.** Table 3 reports MMLU-5shot  
 354 on Llama-2 7B under 25% sparsity with identical expert counts and a 2k-sample fine-tuning budget  
 355 for all MoE conversions. Our analytical MoE restructuring reaches 44.02% MMLU-5shot (only  
 356 1.79 pp below the dense baseline at 45.81%), whereas budget-matched MoEfication and READ-  
 357 ME variants remain 8–15 pp below dense. Using the same router, switching from K-means or  
 358 domain-aware clustering to our binary-activation balanced clustering yields an additional +6.69 pp,  
 359 highlighting the importance of the shared-routed split and balanced assignment.

## 360 4.2 ABLATION STUDIES

363 **Efficient Fine-tuning: Achieving Strong Performance with Minimal Data.** Figure 2 demon-  
 364 strates the method’s capability for rapid deployment and data-efficient adaptation with the 25%  
 365 sparsity configuration. The approach achieves strong performance immediately after construction  
 366 with zero fine-tuning data, showcasing the effectiveness of the analytical router initialization from  
 367 activation statistics. This training-free performance provides practical value, enabling quick de-  
 368 ployment without adaptation overhead. Building upon this solid foundation, the method achieves  
 369 further substantial performance recovery with as few as 1,024 WikiText-2 samples, reaching near-  
 370 optimal results that plateau quickly with additional data. This rapid convergence from an already  
 371 strong baseline showcases the effectiveness of the analytical construction: the method requires mini-  
 372 mal fine-tuning because the initial router initialization already captures essential activation patterns.  
 373 This analysis highlights practical advantages: delivering competitive sparsification directly after  
 374 construction and achieving strong performance with minimal computational overhead, making it  
 375 suitable for industrial deployment where extensive retraining is prohibitive.

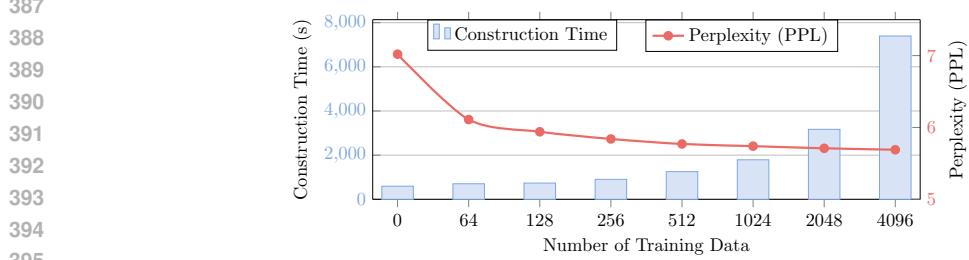
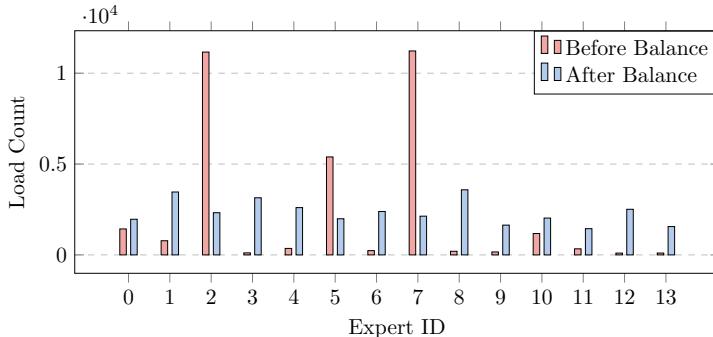
376 To further isolate the role of lightweight fine-tuning, Table 4 compares our method with LLaMA-  
 377 MoE-v2 on Llama-2 7B under the same 25% sparsity. Our training-free model already achieves  
 378 42.50% MMLU-5shot with reasonable perplexity (7.32/11.98 on Wiki/C4), outperforming LLaMA-  
 379 MoE-v2 even after fine-tuning (34.81%, 8.68/19.76). With only 2k samples, our fine-tuned model

378

379  
380  
381  
Table 4: Training-free vs fine-tuned comparison on Llama-2 7B and LLaMA-MoE-v2 (25% sparsity;  
identical decoding). We report MMLU-5shot (higher is better) and language modeling perplexity  
(PPL; lower is better).

| Model        | Regime           | MMLU-5shot (%) | PPL-Wiki    | PPL-C4       |
|--------------|------------------|----------------|-------------|--------------|
| LLaMA-MoE-v2 | Training-free    | 30.33          | > 10,000    | > 7,000      |
| LLaMA-MoE-v2 | Fine-tuning      | 34.81          | 8.68        | 19.76        |
| Ours         | Training-free    | 42.50          | 7.32        | 11.98        |
| Ours         | Fine-tuning (2k) | <b>44.02</b>   | <b>5.92</b> | <b>11.21</b> |

382

390  
391  
392  
393  
394  
395  
Figure 2: Data efficiency: Model performance and construction time with increasing fine-tuning  
396  
397  
398  
399  
data (WikiText-2 samples, 25% sparsity).400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
Figure 3: Load balancing effectiveness: Achieving uniform expert utilization.411  
412  
413  
414  
415  
reaches 44.02% MMLU-5shot and further reduces perplexity to 5.92/11.21, indicating that most of  
the gain comes from analytical restructuring, with fine-tuning acting as a small refinement.416  
417  
418  
419  
420  
421  
422  
423  
424  
**Effective Load Balancing for Better Expert Utilization.** Figure 3 demonstrates a sophisticated  
load balancing mechanism, which addresses a critical challenge in MoE architectures: expert utili-  
zation imbalance. Without load balancing, the final layer of Llama-2 7B exhibits severe activation  
skew, with some experts receiving disproportionately high traffic while others remain underutilized.  
The analytical load balancing technique effectively redistributes computational load across all ex-  
perts, maximizing hardware efficiency and preventing bottlenecks. This balanced utilization is cru-  
cial for achieving the full speedup potential in industrial deployment, as imbalanced expert usage can  
lead to memory inefficiencies and reduced throughput. The uniform expert distribution showcased  
in the figure directly translates to more predictable and consistent inference performance.425  
426  
427  
428  
429  
**Efficiency: Token Budget and Conversion Time.** Table 5 summarizes the supervised token bud-  
gets and conversion times of our method and LLaMA-MoE variants. While LLaMA-MoE-v1 and v2  
require 200B and  $\sim$ 7B supervised tokens respectively (months- and days-scale continual training),  
our analytical restructuring uses only 2k samples and completes in 2,741s end-to-end (271s for the  
analytical construction itself), validating the “minutes-level” conversion claim.430  
431  
**Calibration Sensitivity and Harder Benchmarks.** Table 6 examines MMLU-5shot and perplexity  
on Llama-2 7B under 25% sparsity while varying calibration source (WikiText-2 vs C4) and cal-  
ibration set size. Increasing the calibration set from 8 to 64 samples yields modest MMLU gains

432  
 433 **Table 5: Supervised token budget and conversion time for constructing MoE models.** We report the  
 434 supervised data required to obtain a usable MoE model, and (for ours) the measured end-to-end and  
 435 analytical construction time on our setup.

| Method       | Supervised token budget | End-to-end time | Construction time (ours) |
|--------------|-------------------------|-----------------|--------------------------|
| <b>Ours</b>  | <b>2k samples</b>       | <b>2741s</b>    | <b>271s</b>              |
| LLaMA-MoE-v1 | 200B tokens             | Months          | 334s <sup>†</sup>        |
| LLaMA-MoE-v2 | ~7B tokens              | Days            | 509s <sup>†</sup>        |

436  
 437 <sup>†</sup> Split-only time measured on our setup; reported training tokens from the original papers are not included.  
 438  
 439

440  
 441 **Table 6: Calibration sensitivity on Llama-2 7B at 25% sparsity (S3A3E8).** We vary calibration  
 442 source (WikiText-2 vs C4) and calibration set size  $n$  (number of samples). We report MMLU-5shot  
 443 (higher is better), absolute drop vs dense ( $\Delta$  pp; dense = 45.81), and perplexity (PPL; lower is better)  
 444 on Wiki and C4.

| Calibration source | $n$ (samples) | MMLU-5shot (%) | $\Delta$ vs Dense (pp) | PPL-Wiki / PPL-C4         |
|--------------------|---------------|----------------|------------------------|---------------------------|
| WikiText-2         | 8             | 44.02          | -1.79                  | 5.92 / 11.21              |
| WikiText-2         | 32            | 44.63          | -1.18                  | 5.72 / 11.15              |
| WikiText-2         | 64            | <b>44.89</b>   | <b>-0.92</b>           | <b>5.69</b> / 10.98       |
| C4                 | 8             | 42.31          | -3.50                  | 7.04 / 9.17               |
| C4                 | 32            | 43.25          | -2.56                  | 6.92 / 9.07               |
| C4                 | 64            | <b>43.39</b>   | <b>-2.42</b>           | <b>6.78</b> / <b>9.02</b> |

445  
 446 **Table 7: Hierarchical application to an existing MoE model (Qwen3-30B-A3B) at 25% sparsity.** We  
 447 report GFLOPs per decoding step, GMACs per token, tokens per second, and MMLU-5shot.

| Method              | GFLOPs ( $\downarrow$ ) | GMACs ( $\downarrow$ ) | tokens/s ( $\uparrow$ ) | MMLU-5shot (%) |
|---------------------|-------------------------|------------------------|-------------------------|----------------|
| Dense               | 778.7                   | 389.33                 | 1.19                    | 80.78          |
| Ours (hierarchical) | 634.9                   | 331.32                 | 1.36                    | 78.21          |

450  
 451 (e.g., 44.02 $\rightarrow$ 44.89 on WikiText-2) and small perplexity reductions; C4 calibration behaves sim-  
 452 ilarly and sometimes slightly better on C4 PPL. Overall, these results indicate that our analytical  
 453 pipeline is robust to calibration choices and achieves competitive MMLU with tiny calibration and  
 454 tuning budgets.

455 **Hierarchical Application to Existing MoE Layers.** To empirically validate the hierarchical MoE  
 456 application, we apply our intra-expert restructuring to an existing MoE model, Qwen3-30B-A3B, by  
 457 splitting each expert into 8 sub-experts (width-splits) and reusing the S3A3E8 configuration inside  
 458 each expert. As shown in Table 7, the resulting two-level hierarchy reduces GFLOPs by 18.5%  
 459 and GMACs by 14.9%, while increasing throughput by 14.3% with only a 2.57 pp drop in MMLU-  
 460 5shot. This demonstrates that our analytical construction extends beyond dense-to-MoE conversion  
 461 and can induce beneficial hierarchical sparsity in existing MoE layers.

## 462 5 CONCLUSION

463 We introduced a post-training framework that improves the trade-off between performance and  
 464 computational cost in deploying sparse LLMs. By analytically restructuring FFNs based on neuron  
 465 activation statistics, the method efficiently remodels dense networks into high-performing sparse MoE  
 466 architectures. This process requires only a tiny calibration dataset and minutes of computation, di-  
 467 rectly challenging the expensive, training-heavy paradigm of prior methods. Our key innovation  
 468 lies in the analytical construction of both the expert partitions and the router, which enables strong  
 469 performance out of the box and serves as a robust starting point for optional, lightweight fine-tuning.  
 470 Furthermore, we demonstrated broad applicability by showing it can be applied not only to dense  
 471 models but also to existing MoE models, creating a finer-grained hierarchical sparsity for further  
 472 acceleration. This work makes performant, sparse LLMs more accessible and practical for a wide  
 473 range of real-world applications.

486 DECLARATION OF LLM USAGE  
487488 The usage of LLMs is strictly limited to aid and polish the paper writing.  
489490 REFERENCES  
491

492 Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefer, and James  
493 Hensman. SliceGPT: Compress large language models by deleting rows and columns. *arXiv*  
494 *preprint arXiv:2401.15024*, 2024.

495 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-  
496 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,  
497 volume 34, pp. 7432–7439, 2020.

498 Ruiqi Cai, Yeonju Ro, Geon-Woo Kim, Peihao Wang, Babak Ehteshami Bejnordi, Aditya Akella,  
499 Zhangyang Wang, et al. Read-me: Refactorizing llms as router-decoupled mixture of experts  
500 with system co-design. *Advances in Neural Information Processing Systems*, 37:116126–116148,  
501 2024.

502 Sihan Chen, Dan Zhao, Jongwoo Ko, Colby Banbury, Huiping Zhuang, Luming Liang, and Tianyi  
503 Chen. Wina: Weight informed neuron activation for accelerating large language model inference.  
504 *arXiv preprint arXiv:2505.19427*, 2025.

505 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and  
506 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.  
507 *arXiv preprint arXiv:1803.05457*, 2018.

508 Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding  
509 Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-  
510 of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.

511 Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim  
512 Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language  
513 models with mixture-of-experts. In *International Conference on Machine Learning*, pp. 5547–  
514 5569. PMLR, 2022.

515 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter  
516 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,  
517 2022.

518 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
519 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint*  
520 *arXiv:2106.09685*, 2021.

521 Roy Jonker and Ton Volgenant. A shortest augmenting path algorithm for dense and sparse linear  
522 assignment problems. In *DGOR/NSOR: Papers of the 16th Annual Meeting of DGOR in Co-*  
523 *operation with NSOR/Vorträge der 16. Jahrestagung der DGOR zusammen mit der NSOR*, pp.  
524 622–622. Springer, 1988.

525 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,  
526 2014.

527 Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa,  
528 Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training  
529 mixture-of-experts from dense checkpoints. *arXiv preprint arXiv:2212.05055*, 2022.

530 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,  
531 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional  
532 computation and automatic sharding. *arXiv preprint arXiv:2006.16668*, 2020.

533 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan  
534 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for  
535 on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:  
536 87–100, 2024.

540 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,  
 541 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*  
 542 *arXiv:2412.19437*, 2024a.

543 Haotian Liu, Chunyuan Li, Qingsong Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*  
 544 *in neural information processing systems*, 36, 2024b.

546 James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-  
 547 free activation sparsity in large language models. *arXiv preprint arXiv:2408.14690*, 2024c.

549 Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,  
 550 Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms  
 551 at inference time. In *International Conference on Machine Learning*, pp. 22137–22176. PMLR,  
 552 2023.

553 Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng  
 554 Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large  
 555 language models. *arXiv preprint arXiv:2402.14800*, 2024.

556 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture  
 557 models. *arXiv preprint arXiv:1609.07843*, 2016.

559 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor  
 560 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-  
 561 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

562 Zehua Pei, Xufeng Yao, Wenqian Zhao, and Bei Yu. Quantization via distillation and contrastive  
 563 learning. *IEEE Transactions on Neural Networks and Learning Systems*, 2023.

565 Zehua Pei, Hui-Ling Zhen, Xianzhi Yu, Sinno Jialin Pan, Mingxuan Yuan, and Bei Yu. Fusegpt:  
 566 Learnable layers fusion of generative pre-trained transformers. *arXiv preprint arXiv:2411.14507*,  
 567 2024.

568 Zihan Qiu, Zeyu Huang, and Jie Fu. Unlocking emergent modularity in large language models.  
 569 *arXiv preprint arXiv:2310.10908*, 2023.

571 Xiaoye Qu, Daize Dong, Xuyang Hu, Tong Zhu, Weigao Sun, and Yu Cheng. Llama-moe v2: Ex-  
 572 ploring sparsity of llama from perspective of mixture-of-experts with post-training. *arXiv preprint*  
 573 *arXiv:2411.15708*, 2024.

574 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-  
 575 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

577 Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:  
 578 Streamlining llms through redundancy verification and elimination of transformer blocks. *arXiv*  
 579 *preprint arXiv:2402.09025*, 2024.

580 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-  
 581 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-  
 582 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

584 Ziteng Wang, Jun Zhu, and Jianfei Chen. Remoe: Fully differentiable mixture-of-experts with relu  
 585 routing. *arXiv preprint arXiv:2412.14711*, 2024.

586 T Wolf. Huggingface’s transformers: State-of-the-art natural language processing. *arXiv preprint*  
 587 *arXiv:1910.03771*, 2019.

588 Haoyuan Wu, Haisheng Zheng, Zhuolun He, and Bei Yu. Parameter-efficient sparsity craft-  
 589 ing from dense to mixture-of-experts for instruction tuning on general tasks. *arXiv preprint*  
 590 *arXiv:2401.02731*, 2024.

592 Yuanhang Yang, Shiyi Qi, Wencho Gu, Chaozheng Wang, Cuiyun Gao, and Zenglin Xu. Xmoe:  
 593 Sparse models with fine-grained and adaptive expert selection. *arXiv preprint arXiv:2403.18926*,  
 2024.

594 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-  
595 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

596  
597 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-  
598 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer  
599 language models. *arXiv preprint arXiv:2205.01068*, 2022.

600 Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Moefication:  
601 Transformer feed-forward layers are mixtures of experts. *arXiv preprint arXiv:2110.01786*, 2021.

602 Haizhong Zheng, Xiaoyan Bai, Xueshen Liu, Z Morley Mao, Beidi Chen, Fan Lai, and Atul  
603 Prakash. Learn to be efficient: Build structured sparsity in large language models. *arXiv preprint*  
604 *arXiv:2402.06126*, 2024.

605 Zexuan Zhong, Mengzhou Xia, Danqi Chen, and Mike Lewis. Lory: Fully differentiable mixture-of-  
606 experts for autoregressive language model pre-training. *arXiv preprint arXiv:2405.03133*, 2024.

607 Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.  
608 Llama-moe: Building mixture-of-experts from llama with continual pre-training. In *Proceed-  
609 ings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 15913–  
610 15923, 2024.

611 Simiao Zuo, Qingru Zhang, Chen Liang, Pengcheng He, Tuo Zhao, and Weizhu Chen. Moe-  
612 bert: from bert to mixture-of-experts via importance-guided adaptation. *arXiv preprint*  
613 *arXiv:2204.07675*, 2022.

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

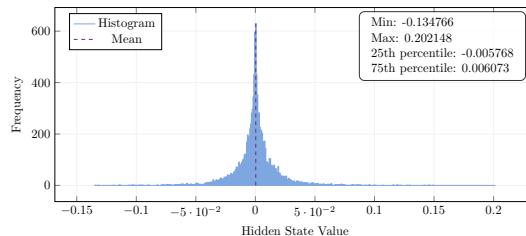
646

647

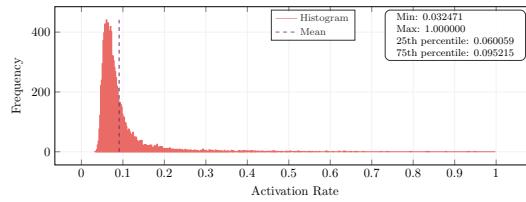
## 648 A DETAILED MATHEMATICAL DERIVATIONS 649

650 This appendix provides the detailed mathematical derivations and algorithmic analysis that support  
651 the core concepts presented in the main manuscript.  
652

### 653 A.1 ACTIVATION SPARSITY ANALYSIS AND HYPOTHESIS 654



655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
(a) The histogram of FFN hidden state  $\mathbf{h}$  for the 3-th  
block and the 1,000-th token.



665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
(b) The histogram of activation rates  $\mu$  for the 3-th block  
with  $K_a = 1,000$ .

Figure A.1: Empirical analysis of FFN activation patterns supporting our mathematical framework.

As demonstrated in fig. 1(a), the distribution of the FFN hidden state  $\mathbf{h}$  is sharply peaked at 0 and constrained within a small range. This indicates that most  $h_i$  are concentrated near zero, confirming the sparsity of activations.

**Detailed Hypothesis and Derivation.** Given the input embedding  $\mathbf{x} \in \mathbb{R}^d$ , each neuron's contribution can be analyzed independently. For the  $i$ -th neuron:

$$h_i = \text{Swish}(\mathbf{x} \cdot \mathbf{w}_{gate,i}) \cdot (\mathbf{x} \cdot \mathbf{w}_{up,i})$$

where  $\mathbf{w}_{gate,i}$  and  $\mathbf{w}_{up,i}$  are the  $i$ -th columns of the gate and up projection weights. The FFN output decomposes as:

$$F(\mathbf{x}) = \sum_{i=1}^{d_h} h_i \mathbf{w}_{down,i} \quad (6)$$

Each  $h_i$  acts as a gating score for the corresponding output weight  $\mathbf{w}_{down,i}$ . Since structured pruning research shows that  $\|F(\mathbf{x})\|$  is typically small due to residual connections, we observe high sparsity in FFN activations. This leads to our central hypothesis:

$$\arg \min_i |h_i \mathbf{w}_{down,i}| \approx \arg \min_i |h_i| \quad (7)$$

This approximation is justified because when  $h_i$  is extremely small, the product  $h_i \mathbf{w}_{down,i}$  vanishes regardless of the magnitude of  $\mathbf{w}_{down,i}$ . The empirical evidence in Figure 1(a) supports this hypothesis by showing the high concentration of hidden states near zero.

### 698 A.2 COMPLETE ACTIVATION ANALYSIS PIPELINE 699

700 To systematically quantify neuron activation patterns, we establish the complete mathematical  
701 pipeline starting from calibration data.

702 **Step 1: Tensor Reshaping and Hidden State Computation.** Given a batched input tensor  $\mathbf{X} \in \mathbb{R}^{b \times s \times d}$  from the calibration dataset, where  $b$  is batch size and  $s$  is sequence length, we first reshape it to  $\mathbf{X}' \in \mathbb{R}^{q \times d}$  where  $q = b \cdot s$  is the total number of tokens. We then compute the hidden states:

$$706 \quad \mathbf{H} = \text{Swish}(\mathbf{X}' \mathbf{W}_{\text{gate}}) \odot (\mathbf{X}' \mathbf{W}_{\text{up}}) \in \mathbb{R}^{q \times d_h} \quad (8)$$

707 Note that in practical implementation, we normalize  $\mathbf{X}'$ ,  $\mathbf{W}_{\text{gate}}$  and  $\mathbf{W}_{\text{up}}$  before the calculation to  
708 eliminate the influence of their magnitudes on the output.  
709

710 **Step 2: Activation Matrix Construction.** Using the ATopK metric from the main text, we apply  
711 it row-wise to the hidden state matrix  $\mathbf{H}$  to create binary activation markers, directly producing the  
712 activation matrix  $\mathbf{A} \in \mathbb{R}^{q \times d_h}$ :

$$713 \quad \mathbf{A} = [\mathbf{c}_1 \ \mathbf{c}_2 \ \cdots \ \mathbf{c}_{d_h}]$$

714 where each column  $\mathbf{c}_i \in \mathbb{R}^q$  is the activation feature vector representing neuron  $i$ 's activation status  
715 across all  $q$  calibration tokens, and  $\mathbf{A}[t, i] = a_{t,i}$  as defined by the ATopK metric.  
716

717 **Step 3: Activation Rate Computation.** The activation rates are computed by averaging each col-  
718 umn of the activation matrix:  
719

$$720 \quad \boldsymbol{\mu} = [\mu_1, \mu_2, \cdots, \mu_{d_h}], \text{ where } \mu_i = \frac{1}{q} \sum_{t=1}^q \mathbf{A}[t, i] = \text{mean}(\mathbf{c}_i) \quad (9)$$

722 The histogram of these activation rates  $\boldsymbol{\mu}$  is shown in Figure 1(b). The histogram reveals a highly  
723 skewed distribution of activation rates, where the majority of neurons exhibit low activation rates  
724 (below 0.1), with a sharp peak near 0.07. However, the distribution also features a long tail, indi-  
725 cating the presence of a subset of neurons with significantly higher activation rates extending up to  
726 1. These high-activation neurons are likely active across a wide range of input tokens, making them  
727 suitable for processing common knowledge rather than task-specific specialization. Therefore, we  
728 identify neurons for shared experts by grouping these high-activation neurons. Given the total num-  
729 ber of shared experts as  $N_s$  and the expert size  $m$ , we get the selection indices set  $S_{N_s}$  by selecting  
730  $N_s \cdot m$  neurons with highest activation rates based on  $\boldsymbol{\mu}$ :

$$731 \quad S_{N_s} = \{i : \mu_i \in \text{TopK}(\{\mu_j \mid 1 \leq j \leq d_h\}, N_s \cdot m)\}. \quad (10)$$

732 These indices  $S_{N_s}$  are then used to form the shared experts by assigning the corresponding parame-  
733 ters from the original FFN, as detailed in Section 3.1.  
734

735 The majority of low activation rates also encourage us to construct routed experts, which are not  
736 always activated but are specialized for tokens encountered.  
737

### 738 A.3 DETAILED BALANCED CLUSTERING ALGORITHM FOR ROUTED EXPERTS

740 To construct routed experts, we employ a constrained balanced K-means clustering algorithm on the  
741 activation feature vectors  $\mathbf{c}_i$  derived from matrix  $\mathbf{A}$ .

742 **Centroid Initialization.** We first identify  $N_r$  centroids by selecting neurons (excluding those al-  
743 ready assigned to shared experts) with the highest activation rates from  $\boldsymbol{\mu}$ :

$$745 \quad C = \{\mathbf{c}_i : \mu_i \in \text{TopK}(\mu_j \mid 1 \leq j \leq d_h, j \notin S_{N_s}, N_r)\} = \{\hat{\mathbf{c}}_1, \dots, \hat{\mathbf{c}}_{N_r}\}$$

747 **Distance Matrix Construction.** We formalize the clustering by constructing a distance matrix  
748  $\mathbf{D} \in \mathbb{R}^{N_r \cdot m \times N_r}$ , where element  $d_{i,j}$  represents the  $L_2$  distance between the  $i$ -th activation feature  
749 vector  $\mathbf{c}_i$  and the  $j$ -th centroid  $\hat{\mathbf{c}}_j$ :

$$750 \quad 751 \quad 752 \quad 753 \quad d_{i,j} = \|\mathbf{c}_i - \hat{\mathbf{c}}_j\|_2 = \sqrt{\sum_{k=1}^q (c_{k,i} - \hat{c}_{k,j})^2} \quad (11)$$

754 The constrained balanced K-means algorithm proceeds iteratively with centroids  $\hat{\mathbf{c}}_1^t, \hat{\mathbf{c}}_2^t, \dots, \hat{\mathbf{c}}_{N_r}^t$  at  
755 iteration  $t$ :

756 **Cluster Assignment:** Let  $T_{i,p}^t$  be a solution to the following linear program:  
 757

$$\begin{aligned} 758 \quad & \min_T \sum_{i=1}^{mN_r} \sum_{p=1}^{N_r} T_{i,p} \cdot d_{i,p} & (12) \\ 759 \quad & \text{s.t. } \sum_{i=1}^{mN_r} T_{i,p} = m, \forall p \in \{1, \dots, N_r\}; \sum_{p=1}^{N_r} T_{i,p} = 1, \forall i \in \{1, \dots, mN_r\}; T_{i,p} \geq 0, \forall p, i. \\ 760 \quad & \\ 761 \quad & \\ 762 \quad & \\ 763 \quad & \end{aligned}$$

764 **Cluster Update:**  
 765

$$\hat{c}_p^{t+1} = \begin{cases} \frac{\sum_{i=1}^{N_r \cdot m} T_{i,p}^t \cdot \mathbf{c}_i}{\sum_{i=1}^{N_r \cdot m} T_{i,p}^t}, & \text{if } \sum_{i=1}^{N_r \cdot m} T_{i,p}^t > 0, \\ \hat{c}_p^t, & \text{otherwise.} \end{cases} \quad (13)$$

766 Since this is an unbalanced assignment problem ( $mN_r > m$ ), we reduce it to a balanced assignment  
 767 by extending the distance matrix:  
 768

$$\mathbf{D}^{ext} = \left[ \underbrace{\mathbf{d}_1, \dots, \mathbf{d}_1}_{m \text{ times}}, \underbrace{\mathbf{d}_2, \dots, \mathbf{d}_2}_{m \text{ times}}, \dots, \underbrace{\mathbf{d}_{N_r}, \dots, \mathbf{d}_{N_r}}_{m \text{ times}} \right]$$

769 The balanced assignment problem becomes:  
 770

$$\begin{aligned} 771 \quad & \min_{T'} \sum_{i=1}^{mN_r} \sum_{p'=1}^{N_r \cdot m} T'_{i,p'} \cdot d_{i,p'}^{ext} & (14) \\ 772 \quad & \text{s.t. } \sum_{i=1}^{mN_r} T'_{i,p'} = 1, \forall p' \in \{1, \dots, mN_r\}; \sum_{p'=1}^{mN_r} T'_{i,p'} = 1, \forall i \in \{1, \dots, mN_r\}; T'_{i,p'} \geq 0, \forall i, p' \\ 773 \quad & \\ 774 \quad & \\ 775 \quad & \\ 776 \quad & \\ 777 \quad & \\ 778 \quad & \\ 779 \quad & \\ 780 \quad & \\ 781 \quad & \\ 782 \quad & \end{aligned}$$

783 Drawing on the Jonker-Volgenant algorithm Jonker & Volgenant (1988), this problem can be ad-  
 784 dressed as a reduced assignment problem in each step of the  $K$ -means algorithm, with a complexity  
 785 of  $O(n^3)$ . The final solution provides the optimized grouping strategy for routed experts with in-  
 786 dices:

$$S_{N_r,p} = \{i : \exists T'_{i,k} = 1, \text{ for } k \in \{m(p-1) + 1, \dots, mp\}\}$$

#### 787 A.4 DETAILED ROUTER CONSTRUCTION OPTIMIZATION

788 This section provides the complete mathematical derivation for the router construction presented in  
 789 the main manuscript.

790 **Problem Formulation.** Given the same input  $\mathbf{x}$ , the original dense FFN output equals the sum of all  
 791 expert outputs:  $F(\mathbf{x}) = E^s(\mathbf{x}) + \sum_{i=1}^{N_r} E_i^r(\mathbf{x})$ . The MoE version differs only in the expert gating  
 792 scores  $\mathbf{g}$ . To preserve knowledge from the original FFN, we formulate the router construction as:

$$\arg \min_G |F_{MoE}(\mathbf{x}; G) - F(\mathbf{x})| = \arg \min_G \left| \sum_{i=1}^{N_r} (g_i - 1) E_i^r(\mathbf{x}) \right| = \arg \min_G \left| \sum_{i \in S_{de}} E_i^r(\mathbf{x}) \right| \quad (15)$$

793 where  $S_{de} = \{i : s_i \notin \text{TopK}(\{s_j | 1 \leq j \leq N_r\}, N_k)\}$  represents deactivated experts.  
 794

795 **Optimization Reduction.** Using our sparsity hypothesis from Equation (7), we reformulate the  
 796 problem:

$$\begin{aligned} 803 \quad & \arg \min_G \left| \sum_{i \in S_{de}} E_i^r(\mathbf{x}) \right| \stackrel{\text{by equation 6}}{=} \arg \min_G \left| \sum_{i \in S_{de}} \sum_{j \in S_{N_r, i}} h_j \mathbf{w}_{down, j} \right| \\ 804 \quad & \stackrel{\text{by equation 7}}{\approx} \arg \min_G \left| \sum_{i \in S_{de}} \left( \sum_{j \in S_{N_r, i}} |h_j| \right) \right| \\ 805 \quad & = \arg \min_G \mathbb{E}_{\mathbf{h}} [\|\mathbf{h}_i^r\|_1 \mid i \in S_{de}] \quad (16) \\ 806 \quad & \\ 807 \quad & \\ 808 \quad & \\ 809 \quad & \end{aligned}$$

810  
811 Table B.1: **Near-dense performance with optimized industrial settings (Llama-2 70B).**  
812

| Method               | Sparsity | PIQA   | WinoGrande | ARC-E  | ARC-C  | HellaSwag |
|----------------------|----------|--------|------------|--------|--------|-----------|
| Dense                | 0%       | 82.70  | 77.98      | 80.98  | 57.34  | 83.84     |
| Proposed (Optimized) | 25%      | 82.35  | 77.41      | 80.21  | 56.50  | 83.77     |
| Degradation          |          | -0.35% | -0.57%     | -0.77% | -0.84% | -0.07%    |

813  
814  
815  
816  
817  
818 **Optimal Solution via Permutation Matching.** The optimal router should match the sorting  
819 indices of expert scores  $\{s_1, \dots, s_{N_r}\}$  with expected expert activations  $\{\bar{\mathbf{h}}_1^r, \dots, \bar{\mathbf{h}}_{N_r}^r\}$  where  
820  $\bar{\mathbf{h}}_i^r = \mathbb{E}_{\mathbf{h}}[\|\mathbf{h}_i^r\|_1]$ . Formally, there exists a permutation  $\sigma$  such that:

$$s_{\sigma(1)} \leq s_{\sigma(2)} \leq \dots \leq s_{\sigma(N_r)} \text{ and } \bar{\mathbf{h}}_{\sigma(1)}^r \leq \bar{\mathbf{h}}_{\sigma(2)}^r \leq \dots \leq \bar{\mathbf{h}}_{\sigma(N_r)}^r \quad (17)$$

821  
822  
823 The minimum value of Appendix A.4 is achieved when:

$$\min_G \mathbb{E}_{\mathbf{h}} [\|\mathbf{h}_i^r\|_1 \mid i \in S_{de}] = \frac{1}{N_r - N_k} \sum_{i=1}^{N_r - N_k} \bar{\mathbf{h}}_{\sigma(i)}^r$$

824  
825  
826  
827 **Representative Neuron Construction.** For each expert cluster, we identify the representative  
828 neuron  $R_j$  as the neuron whose activation feature vector (from matrix  $\mathbf{A}$ ) is closest to the cluster cen-  
829 troid:

$$R_j = \arg \min_{i \in S_{N_r, j}} \|\mathbf{c}_i - \hat{\mathbf{c}}_j\|_2 \quad (18)$$

830  
831 where  $\mathbf{c}_i$  are the columns of activation matrix  $\mathbf{A}$  and  $S_{N_r, j}$  contains the neuron indices assigned to  
832 expert  $j$ .

833  
834 The router is constructed using these representative neurons:

$$G(\mathbf{x}) = \text{Swish}(\mathbf{x}\mathbf{W}_{gate}^R) \odot (\mathbf{x}\mathbf{W}_{up}^R) \quad (19)$$

$$= [h_{R_1}^r, h_{R_2}^r, \dots, h_{R_{N_r}}^r] \approx [\bar{\mathbf{h}}_1^r, \bar{\mathbf{h}}_2^r, \dots, \bar{\mathbf{h}}_{N_r}^r] \quad (20)$$

835  
836 This construction provides an approximate solution to the original optimization problem by lever-  
837 aging the representative neuron assumption that  $h_{R_j}^r \approx \bar{\mathbf{h}}_j^r$ .

## 838 B INDUSTRIAL APPLICATION DETAILS

839  
840 In this section we provide the full industrial-scale evaluation results described in the main text.  
841 These experiments use more generous calibration and inference settings (e.g., larger calibration  
842 sets, prompt engineering, self-consistency) to mimic deployment scenarios.

843  
844 **Near-Dense Performance with Optimized Settings.** Table B.1 reports the framework’s perfor-  
845 mance on Llama-2 70B when deployed with optimized settings. Accelerating larger models like  
846 70B is particularly crucial for industrial deployment due to their higher computational demands.  
847 With enhanced calibration data and inference optimization techniques, the 25% sparsity configura-  
848 tion achieves near-dense performance across all benchmarks, with degradation typically under 1%.

849  
850  
851  
852  
853 **Inference Speedup for Industrial Deployment.** Table B.2 shows measured full-model speedups  
854 for the proposed method with 25% sparsity across different configurations and context lengths on  
855 Qwen-2.5 72B. A 4k context length represents typical conversational applications, while a 32k con-  
856 text length captures long-document processing scenarios; batch size 128 corresponds to memory-  
857 bound regimes, while larger batch sizes (BS>400) reflect compute-bound deployments. The method  
858 consistently delivers practical acceleration across both axes.

## 859 C PERPLEXITY-SPARSITY TRADE-OFFS

860  
861  
862 Table C.1 studies WikiText-2 perplexity on Llama-2 7B as we vary FFN sparsity with a total of  
863 16 experts. Perplexity improves monotonically as sparsity increases, and at the highest sparsity we

864  
 865 Table B.2: **Full-model inference speedup for the proposed method with 25% sparsity across deployment**  
 866 **scenarios (Qwen-2.5 72B). S: Shared experts; A: Active routed experts; E: Total experts.**

| Configuration | Memory-Bound (BS=128) |             | Compute-Bound (BS>400) |             |
|---------------|-----------------------|-------------|------------------------|-------------|
|               | 4k Context            | 32k Context | 4k Context             | 32k Context |
| S1A5E8        | 1.08×                 | 1.15×       | 1.12×                  | 1.17×       |
| S3A3E8        | 1.06×                 | 1.13×       | 1.11×                  | 1.148×      |
| S2A4E8        | 1.05×                 | 1.12×       | 1.10×                  | 1.121×      |
| S4A8E16       | 1.02×                 | 1.10×       | 1.08×                  | 1.11×       |
| S6A6E16       | 1.03×                 | 1.08×       | 1.07×                  | 1.102×      |
| S3A9E16       | 1.02×                 | 1.05×       | 1.05×                  | 1.085×      |

875  
 876 Table C.1: **Perplexity on WikiText-2 vs sparsity for Llama-2 7B with 16 experts. Higher sparsity**  
 877 **corresponds to fewer active FFN parameters; lower perplexity is better.**

| Sparsity | PPL-Wiki (↓) |
|----------|--------------|
| Dense    | 5.27         |
| 0.75     | 12.73        |
| 0.625    | 9.56         |
| 0.5      | 7.71         |
| 0.375    | 6.55         |
| 0.25     | 5.78         |
| 0.125    | <b>5.25</b>  |

887  
 888 Table D.1: **Effect of  $k$ -sample self-consistency (voting) on academic benchmarks at 25% sparsity**  
 889 **(S3A3E8). We report accuracy (%) on PIQA, ARC-E, ARC-C, and their average (Avg).**

| Model         | Method     | $k$ (samples) | PIQA  | ARC-E | ARC-C | Avg   |
|---------------|------------|---------------|-------|-------|-------|-------|
| Llama-2 7B    | Dense      | 1             | 78.78 | 74.58 | 46.16 | 66.51 |
|               | Dense      | 5             | 79.21 | 75.29 | 46.75 | 67.08 |
|               | Ours (25%) | 1             | 74.34 | 67.09 | 40.35 | 60.59 |
|               | Ours (25%) | 5             | 77.52 | 73.88 | 44.54 | 65.31 |
| Qwen3-30B-A3B | Dense      | 1             | 84.51 | 84.43 | 57.88 | 75.61 |
|               | Dense      | 5             | 85.11 | 85.33 | 58.12 | 76.19 |
|               | Ours (25%) | 1             | 80.23 | 76.75 | 48.80 | 68.59 |
|               | Ours (25%) | 5             | 84.56 | 84.75 | 57.19 | 75.50 |

900  
 901 tested (0.125) our converted model slightly outperforms the dense baseline (5.25 vs 5.27), showing  
 902 that aggressive activation sparsity can match or even improve language modeling quality under our  
 903 analytical restructuring.

## 905 D EFFECT OF SELF-CONSISTENCY ON SPARSE VS DENSE MODELS

907 Table D.1 evaluates  $k$ -sample self-consistency (voting) on Llama-2 7B and Qwen3-30B-A3B at 25%  
 908 sparsity (S3A3E8) over PIQA, ARC-E, and ARC-C. While increasing  $k$  from 1 to 5 improves both  
 909 dense and sparse models, the average accuracy gain is substantially larger for our sparse conversion  
 910 (e.g., +4.72 pp vs +0.57 pp on Llama-2 7B; +6.91 pp vs +0.58 pp on Qwen3-30B-A3B), nearly  
 911 closing the gap to dense under the same  $k$ . This supports the observation that randomness from  
 912 sparse activation can be effectively averaged out via self-consistency, and that our FFN-to-MoE  
 913 restructuring remains competitive once such deployment-time levers are enabled.

## 914 E IMPACT OF EXPERT CONFIGURATION

915 **Impact of Expert Configuration.** We compare different expert configurations at 25% sparsity  
 916 after fine-tuning to understand the trade-offs between configuration complexity and performance.

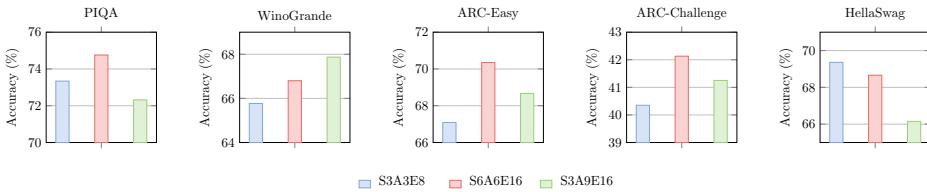


Figure E.1: Impact of expert configuration at 25% sparsity (after fine-tuning). Each subplot shows the performance of three configurations: S3A3E8 (3 shared + 3 active / 8 total), S6A6E16 (6 shared + 6 active / 16 total), and S3A9E16 (3 shared + 9 active / 16 total) across five downstream tasks.

Figure E.1 shows the performance of three configurations across five downstream tasks: S3A3E8 (3 shared + 3 active / 8 total), S6A6E16 (6 shared + 6 active / 16 total), and S3A9E16 (3 shared + 9 active / 16 total).

The results reveal interesting patterns across different tasks. S6A6E16 consistently achieves the highest performance on PIQA (74.76%) and ARC-Easy (70.35%), suggesting that balanced expert allocation with more total experts can be beneficial for knowledge-intensive tasks. However, S3A9E16 performs best on WinoGrande (67.87%), indicating that increased routing complexity can help with commonsense reasoning tasks. For ARC-Challenge, S6A6E16 again leads (42.13%), while S3A3E8 maintains competitive performance on HellaSwag (69.36%). These results demonstrate that optimal expert configuration depends on the specific downstream task characteristics, with balanced configurations generally providing robust performance across diverse evaluation scenarios.

## F DISCUSSION

**Broader Impact and Future Directions.** Our work presents an analytical post-training framework for reducing the significant computational overhead of LLM inference, thereby making powerful models more accessible for research and deployment in resource-constrained settings. Beyond a pure acceleration technique, the analytical nature of the method offers a new lens for interpreting the internal workings of FFNs. The distinct grouping of neurons into ‘shared’ and ‘routed’ experts based on activation statistics provides empirical evidence for functional specialization within these layers. Future research could leverage this methodology to analyze how knowledge is encoded and processed within LLMs. For future work, extending this analytical restructuring approach to other parts of the transformer, such as attention heads, is a promising direction. Additionally, exploring more sophisticated analytical techniques for router construction could potentially close the remaining gap with fully trained routers, without sacrificing the efficiency of the post hoc approach.

**Limitations.** While the framework provides a robust approach, its effectiveness is subject to certain conditions. Firstly, the quality of the neuron activation profiling is dependent on the calibration dataset. Performance is optimal when the calibration data is representative of the target domain, though our experiments show the method is relatively robust to calibration set size. **Secondly, the discrete nature of sparse routing introduces higher variance in generation.** We observe that this randomness can be effectively mitigated via self-consistency, where sparse models often benefit more from multiple samples than dense baselines.

**Compatibility with Other Efficiency Techniques.** The analytical restructuring is orthogonal to most system- and model-level efficiency methods and can be composed with them. In practice, FFN restructuring integrates well with post-training quantization (e.g., AWQ/QAT) because the operation preserves layer interfaces; it can be applied either before or after quantization with a small calibration pass to maintain accuracy. Similarly, attention-side optimizations (KV-cache compression, speculative decoding, and attention sparsity) target different bottlenecks and are complementary. Structured pruning (e.g., SliceGPT, SLEB) and our dynamic expert routing address different regimes: pruning induces static capacity reduction across all inputs, while our method activates capacity conditionally per token. **Similarly, training-free activation sparsity methods (e.g., TEAL, WINA) operate at the finer neuron level and can be applied within our routed experts to further reduce FLOPs.** In deployment, load-balancing and batching policies remain important to realize end-to-end speedups; our built-in bias adaptation mitigates expert hot-spotting and improves utilization on both memory-bound and compute-bound settings. Overall, the framework serves as a drop-in FFN replacement

972 that composes with quantization, caching, pruning, and serving optimizations to widen the practical  
973 acceleration envelope.  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025