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Abstract

We investigate the use of multimodal information contained in images as an effective
method for enhancing the commonsense of Transformer models for text generation. We
perform experiments using BART and T5 on concept-to-text generation, specifically the
task of generative commonsense reasoning, or CommonGen. We call our approach VisCTG:
Visually Grounded Concept-to-Text Generation. VisCTG involves captioning images repre-
senting appropriate everyday scenarios, and using these captions to enrich and steer the
generation process. Comprehensive evaluation and analysis demonstrate that VisCTG
noticeably improves model performance while successfully addressing several issues of the
baseline generations, including poor commonsense, fluency, and specificity.

1. Introduction

Transformer-based models have seen increasing popularity for NLP tasks. This includes
SOTA text generation models such as BART [Lewis et al., 2020] and T5 [Raffel et al., 2020].
Model improvements such as larger and better pretrained text generators is a large reason for
performance gains. Despite increasing attention on the commonsense reasoning capabilities
of models through works like COMET [Bosselut et al., 2019], studies have shown that even
large pretrained language models still struggle with commonsense tasks that humans can
reason through very easily [Talmor et al., 2019]. We believe that there is commonsense
information present in other modalities such as vision, beyond what is present simply in
text, which can possibly be used to inject commonsense into text generation models.

In this paper, we show this is true by improving the performance of Transformer-based
text generators on concept-to-text generation using visual-grounding, which we call VisCTG:
Visually-Grounded Concept-to-Text Generation. Concept-to-text generation is a high-
level formulation of several constrained text generation and data-to-text natural language
generation (NLG) tasks. These are challenging tasks that have seen increasing interest, and
involve generating natural language outputs given certain pre-conditions, e.g. specific words
in the outputs, and structured or semi-structured inputs. They typically involve converting
a set of inputs into natural language text. These inputs can normally be thought of as
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{stand, hold, umbrella, street} {field, player, team, walk}

capt: a woman walking down a street holding an umbrella capt: a group of baseball players standing on a field
gen: A woman stands on a street holding an umbrella. gen: players walk onto the field during the match

between football teams.

{cat, bed, pet, lay} {fence, jump, horse, rider}

capt: a cat laying on a bed with a stuffed animal capt: a horse is jumping over a wooden fence
gen: A cat laying on a bed being petted. gen: A rider jumps a fence on a horse.

Table 1: Examples of retrieved images for select input concept sets. Corresponding captions and final
generations are below the images.

concepts, or high-level words or structures, that play an important role in the generated
text. Multimodal work has seen increasing popularity, but its exploration for constrained
and data-to-text NLG has been limited [Baltrusaitis et al., 2019, Gao et al., 2020].

We investigate the task of generative commonsense reasoning, or CommonGen [Lin
et al., 2020], which involves generating sentences that effectively describe everyday scenarios
from concepts sets, or words that must appear in the output. CommonGen is challenging
as effective relational reasoning ability using commonsense knowledge is required. Models
must also possess compositional generalization ability to piece together different concepts.
CommonGen is an effective benchmark for constrained text generation and commonsense
reasoning as its task formulation and evaluation methodology are rather broadly applicable.

We experiment on CommonGen using different sizes of BART and T5. An initial quali-
tative analysis (§3.1) of baseline generations shows several issues related to commonsense,
specificity, and fluency. We hypothesize that these issues can be addressed through using
images and their captions (§3.2). Images representing everyday scenarios are quite common-
place, and are typically logical and grounded in commonsense. Further, image captioning
models can normally produce decent captions for everyday images, which can be used to
guide and enhance the generation process. See Table 1 for examples.

Expounding on this, we use a pretrained image captioning model on MSCOCO captions
[Lin et al., 2015] to caption the top retrieved images for each concept set (§4.1,4.2). We use
these captions as additional information to augment inputs to our generation models (§4.3).
Extensive evaluation (§6) demonstrates that VisCTG improves model performance while
addressing baseline inadequacies with regards to commonsense, specificity, and fluency.
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2. Dataset, Models, and Metrics

2.1 CommonGen Dataset

The original CommonGen dataset is made up of 35,141 concept sets (consisting of 3 to 5
keywords each) and 79,051 sentences, split into train, dev, and test splits. Since the original
test set is hidden, we partition the original dev set into new dev and test splits for the
majority of our experiments. We do, however, ask the CommonGen authors to evaluate our
best VisCTG models on the original test set (more in §6). The training set remains the
same. We refer to the original dev and test sets as devO and testO, and these new splits as
trainCG, devCG, and testCG. Table 2 contains information about these splits. Their relative
sizes and distribution of concept set sizes within each are kept similar to the originals.

2.2 Models: T5 and BART

Dataset Stats TrainCG DevO TestO DevCG TestCG

# concept sets 32,651 993 1,497 240 360
size = 3 25,020 493 - 120 -
size = 4 4,240 250 747 60 180
size = 5 3,391 250 750 60 180
# sentences 67,389 4,018 7,644 984 1583

Table 2: Statistics of CommonGen dataset splits.

We use pretrained text generation mod-
els T5 and BART, both base and large
versions. Both are seq2seq Transformer
models. T5 has strong multitask pre-
training. BART is pretrained as a de-
noising autoencoder to reproduce origi-
nal from noised text. Their HuggingFace implementations are used for our experiments.

We train two seeded versions of each model on trainCG and evaluate their performance
on devO. These serve as the baselines for our experiments. Using the numbers in Lin et al.
[2020] as comparison, we validate our implementations. We use the hyperparameters from
Lin et al. [2020], beam search for decoding, and select the final epoch as the one reaching
maximum ROUGE-2 [Lin and Hovy, 2003] on the dev split. From Table 3, we observe that
our re-implementations reach or exceed reported results in Lin et al. [2020] on most metrics.

Model\Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Cov
Reported BART-large 22.13 43.02 37.00 27.50 31.00 14.12 30.00 97.56

Reported T5-base 15.33 36.20 28.10 18.00 24.60 9.73 23.40 83.77
Reported T5-Large 21.98 44.41 40.80 30.60 31.00 15.84 31.80 97.04

Our BART-base 15.91 36.15 38.30 28.30 30.20 15.07 30.35 93.44
Our BART-large 17.27 37.32 39.95 30.20 31.15 15.72 31.20 95.03

Our T5-base 17.27 37.69 41.15 31.00 31.10 16.37 32.05 94.44
Our T5-large 17.90 38.31 43.80 33.60 32.70 17.02 33.45 96.26

Table 3: Comparing devO performance of our re-implemented models to those in Lin et al. [2020]. Bold
represents where we reach or exceed reported numbers. Results are averaged over two seeds for our models.
Lin et al. [2020] did not report BART-base or BERTScore. See §2.3 for evaluation metric explanations.

2.3 Evaluation Metrics

We use several evaluation metrics, including those in Lin et al. [2020] such as BLEU [Papineni
et al., 2002], CIDEr [Vedantam et al., 2015], SPICE [Anderson et al., 2016], and coverage
(cov). These (other than cov) assess token-level similarity between human references and
generations. Cov measures the average percentage of concepts covered by the generations.

We also use BERTScore [Zhang et al., 2019] and Perplexity (PPL). BERTScore measures
BERT [Devlin et al., 2019] embeddings similarity between individual tokens, serving as a
more semantic-level similarity measure. We multiply by 100 when reporting BERTScore.

3



SY Feng, K Lu, Z Tao, M Alikhani, T Mitamura, E Hovy, V Gangal

Concept Set Generated Output Human Reference
{horse, carriage, draw} horse drawn in a carriage The carriage is drawn by the horse.

{bathtub, bath, dog, give} A dog giving a bath in a bathtub.
The teenager made a big mess in the

bathtub giving her dog a bath.
{dog, house, eat} A dog eats hay in a house The dog eats food inside the house.
{cow, horse, lasso} A cow is lassoing a horse. A group of men riding horses lassoing a cow.

Table 4: Example generations from our baseline models versus human references.

PPL serves as a measure of fluency, with lower values representing higher fluency. We use
GPT-2 [Radford et al., 2019] for PPL. For all other metrics, higher means better performance.

3. Initial Analysis and Motivation

3.1 Baseline Model Generations

We conduct an initial analysis of the baseline model outputs, and observe that several
outputs lack fluency. Some are more like phrases than full coherent sentences, e.g. “body of
water on a raft”. Others are missing important words, e.g. “A listening music and dancing
in a dark room” is clearly missing a noun before listening. A large portion of generated
texts are generic and bland, e.g. “Someone sits and listens to someone talk”. This may be
an instance of the dull response problem faced by generation models [Du and Black, 2019, Li
et al., 2015], where they prefer safe, short, and frequent responses independent of the input.

Many generations also appear to lack commonsense. For example, “body of water on a
raft” is illogical as the phrases “body of water” and “a raft” are pieced together incorrectly.
A similar issue occurs with the {horse, carriage, draw} example in Table 4. Further, at
times the models cannot understand what certain nouns can or cannot do, e.g. “A dog
checking his phone on a pier.” Several other examples of this can be found in Table 4.

3.2 Images and Captions

Images that represent everyday scenarios are quite prevalent for almost any reasonable input
concept set. Further, the images are typically grounded in commonsense. For example,
searching {cow, horse, lasso} will result in many images of cowboys riding horses and
lassoing cows, rather than the illogical situation of “A cow is lassoing a horse.” described
by the baseline generation in Table 4. Many everyday images are relatively similar to those
in image captioning datasets such as MSCOCO, so pretrained image captioning models
should work quite effectively. We thus hypothesize that using images and their captions to
visually-ground concept-to-text generation can potentially deal with issues mentioned in 3.1.
Retrieved images with corresponding captions generated by a pretrained image captioning
model (see §4.2) and final generations for select input concept sets can be found in Table 1.

Textual corpora also suffer from reporting bias [Gordon and Van Durme, 2013], where
everyday, commonsense albeit “uninteresting” actions (walking), objects (bench) and facts
(bananas are yellow) are underrepresented compared to real-world frequency, while “newswor-
thy” actions (murdering), objects (spaceships) and facts (blue GMO bananas) are exaggerated.
This also seeps into large pretrained text models [Shwartz and Choi, 2020]. Using visual
data and models dampens this bias, likely improving commonsense of generations.
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4. Methodology

4.1 Image Retrieval

We first obtain images for each concept set in the three splits. Image captioning datasets
such as MSCOCO and Flickr are typically too small and focused to be effective since we
must cover numerous different concept sets. Further, a search engine is more generalizable.

We decide to use Google Images. On a sample of concept sets, the retrieved images using
other search engines were inappropriate; they did not incorporate most input keywords nor
handle homonyms well. For example, “sports+fan+watch” yields images of fans watching a
sports game on Google images, but images of hand watches on Bing and DuckDuckGo.

We queried input concept sets by concatenating keywords with plus signs (+), and used
simple-image-scraper1 to obtain URLs of the top 30 resulting images. The image was scraped
only if the URL ended in .png, .jpeg, .jpg, or .gif. Finally, the received content was verified
to be valid images using pillow1, and skipped otherwise. Retrieved images were typically of
high quality and corresponded well to the input concepts. See Table 1 for examples.

4.2 Image Captioning

After retrieving images, we use a PyTorch-based implementation2 of the FC image captioning
model [Luo et al., 2018, Rennie et al., 2017], which generates a caption sequence via an LSTM
model. The LSTM is initialized with a pseudo token, obtained by feeding the input image
into a deep CNN followed by a linear projection. For our experiments, we use a pretrained
FC model trained on the MSCOCO dataset with pretrained Resnet-101 image features.2 As
most of our retrieved images represent everyday scenarios and are relatively similar to those
in MSCOCO, the pre-trained model performs quite well (see example captions in Table 1).

4.3 Caption Selection and Input Augmentation
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Figure 1: Graph displaying the average coverage by
the top NTC captions in aggregate per concept set.

After we have captions Sc = {c1, c2, ..., cn}
for each concept set in all three splits, we
reorder them by descending coverage to the
concept set to obtain Sc′ = {c′1, c′2, ..., c′n}. If
two captions are tied for coverage, we keep
them in their original search result order.
This allows us to select the captions that
have highest coverage and are most relevant.

Since most retrieved images and corre-
sponding captions cover only a fraction of
the entire concept set, and the quality of
each varies, we hypothesize that using multi-
ple captions for generation may lead to more
robust and higher-quality outputs with more coverage. The models may learn to piece
together information from caption(s) while generating final texts. Hence, we try experiments
using different numbers of top captions within Sc′ , a parameter we call NTC (Number of

1. https://pypi.org/project/simple-image-download/, https://pypi.org/project/Pillow/
2. https://github.com/ruotianluo/self-critical.pytorch, see Appendix A for further model details.
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Augmented Input → Final Generation

wave fall board surfer <s> a surfer riding a wave on a surfboard→ A surfer is falling off his board into the waves.

dance stage front crowd <s> a crowd of people watching a man on a stage <s> a man is holding a microphone
in front of a crowd → A man dances in front of a crowd on stage.

stand hold umbrella street <s> a woman walking down a street holding an umbrella <s> a woman walking down
a street holding an umbrella <s> a girl holding a pink umbrella in a city <s> a man holding an umbrella in a city
<s> a group of people standing under a umbrella → A group of people standing on a street holding umbrellas.

Table 5: Examples of augmented inputs and final generations for varying values of NTC. The augmented

inputs are composed of original input keywords followed by <s> separated augmenting captions.

Top Captions). We try NTC = 1, 2, 3, 5, 7, 10, and do not go above NTC = 10 as Figure 1
shows that coverage gains from 10 → 30 are minor.

The captions are concatenated together and onto the input concept set using <s>
separator tokens. These serve as augmented inputs to the BART and T5 models. The
models learn to convert these augmented inputs to human references during training, and
are fed the augmented inputs (corresponding to the value of NTC) during validation and
testing. Some examples of augmented inputs and final generations can be found in Table 5.

5. Experiments

5.1 Model Training and Selection

For training VisCTG models, we mainly follow baseline hyperparameters, barring learning
rate (LR) which is tuned per NTC value, and the maximum encoder length which is chosen
depending on the tokenizer and value of NTC to ensure the entire input token sequence can
fit onto the encoder. We train two seeds per model. See Appendix B for more details.

We choose the epoch corresponding to highest ROUGE-2 on devCG, and use beam search
for decoding. NTC itself is a hyperparameter, so while we train separate versions of each
model corresponding to different NTC values, the final chosen models correspond to the
NTC values that performed best on devCG when averaged over both seeds. We then use the
final chosen models to generate on both testCG and testO, and report the results in §6.

5.2 Human Evaluation

We ask annotators to evaluate 72 testCG examples, containing the VisCTG and baseline
outputs using BART-large and T5-base. These two are chosen as they cover both model
types and sizes. See Appendix §C for further details.

We ask annotators to evaluate the text’s fluency and commonsense on scales of 1-5.
Fluency is a measure of how grammatical, natural, and human-like the text is. Commonsense
is the plausibility of the events described by the text. Coverage is more objective compared
to fluency and commonsense and we do not evaluate it as the automatic metric suffices.

6. Results and Analysis

Automatic evaluation results on testCG are in Tables 6 and 7, and results on testO are in
Table 8.3 Graphs displaying BLEU-4, CIDEr, and SPICE (the metrics on the CommonGen

3. We generated on testO and got the CommonGen authors to evaluate our outputs on their hidden test set.
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BART-base (NTC = 5) BART-large (NTC = 2)
Metrics Baseline VisCTG p-value Baseline VisCTG p-value

ROUGE-1 43.96±0.03 45.44±0.08 1.58E-05 45.67±0.25 46.91±0.31 1.58E-05
ROUGE-2 17.31±0.02 19.15±0.21 1.58E-05 18.77±0.04 20.36±0.05 1.58E-05
ROUGE-L 36.65±0.00 38.43±0.07 1.58E-05 37.83±0.29 39.23±0.01 1.58E-05
BLEU-1 73.20±0.28 75.65±0.78 6.94E-05 74.45±0.21 78.80±0.28 6.94E-05
BLEU-2 54.50±0.14 59.05±0.07 6.94E-05 56.25±0.78 61.60±0.85 6.94E-05
BLEU-3 40.40±0.14 44.90±0.42 6.94E-05 42.15±0.49 47.00±0.71 6.94E-05
BLEU-4 30.10±0.14 34.10±0.57 3.82E-03 32.10±0.42 36.25±0.78 2.08E-04

METEOR 30.35±0.35 31.95±0.07 6.94E-05 31.70±0.14 34.00±0.14 6.94E-05
CIDEr 15.56±0.10 16.84±0.05 6.94E-05 16.42±0.09 18.35±0.13 6.94E-05
SPICE 30.05±0.07 31.80±0.28 6.94E-05 31.85±0.21 34.60±0.28 6.94E-05

BERTScore 59.19±0.32 61.44±0.02 1.58E-05 59.95±0.29 62.85±0.30 1.58E-05
Coverage 90.43±0.17 90.66±1.39 0.33* 94.49±0.53 96.49±0.24 1.58E-05

PPL 80.39±3.65 72.45±0.79 1.58E-05 80.37±4.51 68.46±5.90 1.58E-05

Table 6: Automatic evaluation results (with standard deviations) for BART on testCG, averaged over two
seeds. Bold corresponds to best performance on that metric per model size. p-value column contains the
statistical significance p-values (from Pitman’s permutation test [Pitman, 1937]) for VisCTG compared to
the corresponding baseline per model size. Insignificant p-values (using α = 0.05) are marked with *.

T5-base (NTC = 2) T5-large (NTC = 1)
Metrics Baseline VisCTG p-values Baseline VisCTG p-values

ROUGE-1 44.63±0.13 46.26±0.07 1.58E-05 46.32±0.26 46.93±0.22 7.26E-04
ROUGE-2 18.40±0.14 19.78±0.30 1.58E-05 19.59±0.12 20.01±0.23 0.02
ROUGE-L 37.60±0.16 38.91±0.27 1.58E-05 39.20±0.21 39.52±0.43 0.06*
BLEU-1 73.60±0.85 76.80±0.28 6.94E-05 77.55±0.35 78.65±0.21 4.65E-03
BLEU-2 57.00±0.71 60.30±0.28 6.94E-05 60.80±0.28 61.55±0.35 0.07*
BLEU-3 42.75±0.49 46.25±0.64 6.94E-05 46.50±0.00 47.10±0.57 0.11*
BLEU-4 32.70±0.42 36.10±0.85 6.94E-05 36.20±0.14 36.40±0.28 0.21*

METEOR 31.05±0.49 32.70±0.00 6.94E-05 33.20±0.00 33.65±0.49 0.49*
CIDEr 16.26±0.25 17.65±0.02 6.94E-05 17.79±0.01 17.94±0.25 0.23*
SPICE 31.95±0.07 33.40±0.28 6.94E-05 33.90±0.42 34.55±0.21 0.03

BERTScore 61.40±0.34 62.42±0.17 1.58E-05 62.67±0.09 62.72±0.03 0.34*
Coverage 90.96±1.77 94.48±1.39 1.58E-05 94.40±0.02 95.95±0.45 1.58E-05

PPL 83.04±1.62 77.50±3.86 3.16E-05 81.78±4.63 73.41±4.32 1.58E-05

Table 7: Automatic evaluation results (with standard deviations) for T5 on testCG, averaged over two
seeds. Bold corresponds to best performance on that metric per model size. p-values column contains the
statistical significance p-values (from Pitman’s permutation test [Pitman, 1937]) for VisCTG compared to
the corresponding baseline per model size. Insignificant p-values (using α = 0.05) are marked with *.

leaderboard4) on testCG over different values of NTC are in Figure 2. Human evaluation
results on testCG are in Table 9. Optimal NTC values for BART-base, BART-large, T5-base,
and T5-large are 5, 2, 2, and 1, respectively. These are the VisCTG results reported in the
aforementioned tables. Table 10 contains qualitative examples, with more in Appendix §D.

6.1 Analysis of Evaluation Results

We see from Tables 6 and 7 that VisCTG outperforms the baselines on all metrics across the
models on testCG. Performance gains are strong and statistically significant for BART-base,
BART-large, and T5-base. VisCTG appears relatively less effective for T5-large which is
the strongest baseline, and hence further improving its performance may be more difficult.
Table 9 shows that the BART-large and T5-base VisCTG models noticeably outperform
their respective baselines in both fluency and commonsense, as rated by human annotators.

4. https://inklab.usc.edu/CommonGen/leaderboard.html
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Models\Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage
T5-base (reported baseline) 14.63 34.56 28.76 18.54 23.94 9.40 19.87 76.67
T5-large (reported baseline) 21.74 42.75 43.01 31.96 31.12 15.13 28.86 95.29

BART-large (reported baseline) 22.02 41.78 39.52 29.01 31.83 13.98 28.00 97.35

EKI-BART [Fan et al., 2020] - - - 35.945 - 16.999 29.583 -
KG-BART [Liu et al., 2020] - - - 33.867 - 16.927 29.634 -
RE-T5 [Wang et al., 2021] - - - 40.863 - 17.663 31.079 -

T5-base VisCTG 22.83 44.98 45.749 34.722 31.809 16.173 28.808 92.92
T5-large VisCTG 23.83 45.76 47.376 36.409 33.012 16.815 29.629 95.54

BART-base VisCTG 21.73 43.43 43.235 32.291 30.86 15.187 27.403 88.98
BART-large VisCTG 23.68 45.07 48.031 36.939 33.215 17.199 29.973 94.86

Table 8: Automatic evaluation results of VisCTG models on testO (hidden test set), evaluated by the
CommonGen authors. We compare to their reported baseline numbers in Lin et al. [2020] (they did
not evaluate BART-base), and models on their leaderboard with publications at the time of writing that
outperform the baselines. Their leaderboard only reports BLEU-4, CIDEr, and SPICE. Bold corresponds to
best performance (for those three metrics) per model type and size combo.

29

30

31

32

33

34

35

36

37

0 1 2 3 5 7 10

B
L
E

U
-4

NTC

BLEU-4 vs. NTC

BART-base T5-base

15

15.5

16

16.5

17

17.5

18

0 1 2 3 5 7 10

C
ID

E
r

NTC

CIDEr vs. NTC

BART-base T5-base

29.5

30

30.5

31

31.5

32

32.5

33

33.5

34

0 1 2 3 5 7 10

S
P

IC
E

NTC

SPICE vs. NTC

BART-base T5-base

Figure 2: BLEU-4, CIDEr, and SPICE on testCG over different values of NTC for BART-base and T5-base.

Model Method Fluency Commonsense

BART-large
Baseline 3.67 4.04
VisCTG 4.04 4.20

T5-base
Baseline 3.82 4.18
VisCTG 4.25 4.65

Table 9: Average human eval results on testCG, rated on
1-5 scales. Bold corresponds to best performance on that
metric for that model. See §5.2 and Appendix C for details.

From Table 8, we see that VisCTG
models substantially outperform corre-
sponding baselines reported in Lin et al.
[2020] on testO. T5-base VisCTG out-
performs the reported T5-base and large
baselines across metrics, and BART-
base VisCTG performs similarly to the reported BART-large baseline. BART-large VisCTG
outperforms the reported baseline, EKI-BART [Fan et al., 2020], and KG-BART [Liu et al.,
2020]. These are SOTA published CommonGen BART models that use external knowledge
from corpora and KGs. We show that visual-grounding is more effective, and BART-large
VisCTG would place very high on the leaderboard.4 T5-large VisCTG outperforms the
reported baseline, but lags behind the SOTA published RE-T5 [Wang et al., 2021].

Figure 2 shows that as NTC increases, BLEU-4, CIDEr, and SPICE increase to a peak,
and taper off after. This is expected as we saw in Figure 1 that the rate of increase of
coverage declines with larger NTC. The latter images and captions are of diminishing quality,
and hence using too many negatively affects model performance.

6.2 Qualitative Analysis

Table 10 shows several baseline outputs that contain issues from §3.1, e.g. incomplete/illogical
sentences. Human references are all fluent and logical. VisCTG can usually generate much
better text than the baselines, addressing issues with fluency, commonsense, and specificity.
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The baseline outputs for ex. 1-2 are phrases lacking arguments, and are all illogical for ex.
1-3. Using captions, VisCTG successfully adjusts semantic roles of entities, replaces incorrect
subjects, fixes dependency structure, and grounds generations in commonsense. For ex. 1,
the captions are of the form “{X} sitting on a chair with {Y}”, where {X} is a subject
and {Y} is an object. VisCTG output has a similar structure, being fluent+logical with
higher coverage. For ex. 2, the baseline output treats “hand of a bird” as a single entity, the
subject. Captions separate “bird” and “hand” into two, likely guiding the VisCTG output to
do so. For ex. 3, the baseline misplaces “bus” as subject. Captions are of form “{X} sitting
on a bench {Y}”, where {X} is a logical subject and {Y} is an expression. The VisCTG
output has this structure, with correct subject and commonsense, and higher coverage.

For ex. 4, the baseline output lacks a subject that the captions both contain, likely
guiding the VisCTG output to contain one: “a man”. For ex. 5, the baseline output is
generic due to uses of “someone”. VisCTG’s output is more specific and refers to “man”,
likely because the caption (although not very fitting) includes a “man” subject. Even for
captions that fit the concepts less, the structure and fluency can still potentially be exploited.

VisCTG is imperfect. For ex. 6, its output is less logical and lower coverage than the
baseline’s. The captions are all simplistic and low coverage; the first is illogical, and some
others are of the form “a bunch of apples {...} on a tree”, likely negatively impacting the
generation. Ex. 4’s human reference is creative, which is an area where VisCTG still lacks
in comparison. For ex. 5, while VisCTG edits “someone” to “man”, it is unable to merge
the two instances of “man” or adjust the sentence to be more coherent. These weaknesses
are likely because captions tend to be simplistic (due to the captioning model’s training
data), limiting VisCTG’s ability to make heavier edits. VisCTG, unsurprisingly, appears to
depend quite heavily on the captions, and hence quality of the images and captioning model.

7. Related Work

Constrained Text Generation: There have been several works that investigate con-
strained text generation. Miao et al. [2019] use Metropolis-Hastings sampling to determine
Levenshtein edits per generation step, and show gains on several tasks. Feng et al. [2019]
propose Semantic Text Exchange to adjust text semantics given a replacement entity.

Data-to-text NLG: E2E-NLG [Dušek et al., 2018] and WebNLG [Gardent et al., 2017]
are two popular NLG benchmarks with structured inputs - meaning representation (MR)
and triple sequences, respectively. Montella et al. [2020] use Wiki sentences with parsed
OpenIE triples as weak supervision for WebNLG. Tandon et al. [2018] permute input MRs
to augment examples for E2E-NLG. Kedzie and McKeown [2019] inject Gaussian noise into
a trained decoder’s hidden states and sample augmented examples for E2E-NLG.

Commonsense Reasoning and Incorporation: Talmor et al. [2019] show that not all
pretrained LMs can reason through commonsense tasks. Other works investigate common-
sense injection into models; one popular way being knowledge graphs (KGs). One large
commonsense KG is COMET, which trains on KG edges to learn connections between
words and phrases. COSMIC [Ghosal et al., 2020] is a model that uses COMET to inject
commonsense. EKI-BART [Fan et al., 2020] and KG-BART [Liu et al., 2020] use external
knowledge (e.g. from corpora and KGs) to improve BART’s performance on CommonGen.
Distinctly, VisCTG uses visual-grounding and shows higher performance (see §6).
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Multimodal Machine Learning and NLP: There has been more work on multimodal
ML and NLP, in fundamental areas such as multimodal representation and fusion, and
application areas such as speech recognition and video captioning, but little for constrained
and data-to-text NLG tasks, e.g. CommonGen [Baltrusaitis et al., 2019, Gao et al., 2020].

Method Text
Concept set {sit, chair, toy, hand} (example 1)
Captions a little girl sitting on a chair with a teddy bear <s> a small child sitting on a chair with a

teddy bear <s> a young boy sitting on a chair with a skateboard <s> a woman sitting on
a chair with a teddy bear <s> a man sitting on a chair with a remote

BART-base-BL hands sitting on a chair
BART-base-VisCTG A boy sitting on a chair with a toy in his hand.
Human A baby sits on a chair with a toy in one of its hands.

Concept set {food, eat, hand, bird} (example 2)
Captions a bird is perched on a branch with a hand <s> a person holding a small bird in their hand
BART-large-BL hand of a bird eating food
BART-large-VisCTG A bird eats food from a hand.
Human A small bird eats food from someone’s hand.

Concept set {bench, bus, wait, sit} (example 3)
Captions a man sitting on a bench with a book <s> a person sitting on a bench with a laptop
T5-base-BL A bus sits on a bench.
T5-base-VisCTG A man sits on a bench waiting for a bus.
Human The man sat on the bench waiting for the bus.

Concept set {jacket, wear, snow, walk} (example 4)
Captions a young boy in a red jacket is standing in the snow <s> a man in a red jacket is standing

in the snow
BART-large-BL walking in the snow wearing a furry jacket
BART-large-VisCTG A man is walking in the snow wearing a jacket.
Human Jamie took a walk out into the snow with only a T shirt on and instantly went back inside

to wear his jacket.

Concept set {hold, hand, stand, front} (example 5)
Captions a man holding a pair of scissors in front of a wall
T5-large-BL Someone stands in front of someone holding a hand.
T5-large-VisCTG A man stands in front of a man holding a hand.
Human A man stands and holds his hands out in front of him.

Concept set {bag, put, apple, tree, pick} (example 6)
Captions a person holding a apple in a tree <s> a bunch of apples are growing on a tree <s> a close

up of a green apple with a tree <s> a bunch of apples are growing on a tree
BART-base-BL A man is putting apples in a bag and picking them up from the tree.
BART-base-VisCTG A man puts a bag of apples on a tree.
Human I picked an apple from the tree and put it in my bag.

Table 10: Qualitative examples for testCG. Color coded final generations: baseline (BL), VisCTG, and
human reference. Concept set refers to the input keywords and Captions refers to the captions (separated by
<s>) used by the VisCTG model for that particular example to produce its final generation.

8. Conclusion and Future Work

In conclusion, we motivated and explored the use of visual grounding for improving the
commonsense of Transformer models for text generation. We investigated this for concept-to-
text generation, calling our method VisCTG: Visually Grounded Concept-to-Text Generation.
Extensive experiments on BART and T5 showed its efficacy on the CommonGen task.
Comprehensive evaluation and analysis showed that VisCTG boosts model performance
while addressing baseline deficiencies related to commonsense, fluency, and specificity.
Potential future work includes improving image search and captioning, e.g. a method for
better selection of images during retrieval or using a stronger captioning model. Video
captioning and image generation rather than retrieval can also be explored. Further, VisCTG
can be investigated for other data-to-text NLG tasks such as WebNLG.
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Appendices

Appendix A. Pretrained FC Image Captioning Model Details

The image encoder is a pretrained Resnet-101 [Ren et al., 2015], where the global average
pooling of the final convolutional layer output, a vector of dimension 2048, is taken per image.
The spatial features are extracted from the output of a Faster R-CNN [Ren et al., 2015,
Anderson et al., 2018] with ResNet-101 [He et al., 2016], trained by object and attribute
annotations from Visual Genome [Krishna et al., 2016]. For captioning, the dimensions of
LSTM hidden state, image feature embedding, and word embedding are all set to 512. Please
see Luo et al. [2018], particularly Sections 3.3 and 5.1, and Rennie et al. [2017], particularly
Sections 2 and 5, for more.

Appendix B. BART and T5 Model Training and Generation Details

T5-large consists of 770M params, T5-base 220M params, BART-large 406M params, and
BART-base 139M params. We train two seeded versions of each baseline model and VisCTG
model. For all models, we use beam search with a beam size of 5, decoder early stopping, a
decoder length penalty of 0.6, maximum encoder lengths of 32 for the baselines and up to
160 for BART and 256 for T5 for VisCTG models, decoder maximum lengths of 32, and a
decoder minimum length of 1. For model training, we use a batch size of 64 for T5-base and
BART-base, 32 for BART-large, and 8 for T5-large. For T5-base, T5-large, and BART-base,
we use 400 warmup steps, and 500 for BART-large. We train all models up to a reasonable
number of epochs (e.g. 10 or 20) and perform early stopping using our best judgment (e.g.
if metrics have continually decreased for multiple epochs). The learning rates for VisCTG
models were determined by trying a range of values (e.g. from 1e-6 to 1e-4), and finding
ones which led to good convergence behavior (e.g. validation metrics increase at a decently
steady rate and reach max. after a reasonable number of epochs).

Training was done using Google Colab instances which alternately used a single V100 or
P100 GPU. The vast majority of the training was done on a single V100 per model. T5-base
models trained in approx. 1.5 hours, BART-base models in approx. 1 hour, T5-large models
in approx. 6 hours, and BART-large models in approx. 2 hours.

Appendix C. Human Evaluation Details

The human evaluation study was performed through paid annotators on AMT. Annotators
were from Anglophone countries with > 97% approval rate. Each example was evaluated
by two annotators. Specific instructions and a question snippet can be seen in Figure 3.
Note that T5-base and BART-large studies were conducted separately, so results across both
model types are not relatively comparable. The main purpose of the evaluation is to show
the relative improvement between the VisCTG models over the corresponding baselines.

The time given for each AMT task instance or HIT was 8 minutes. Sufficient time to
read the instructions, as calibrated by authors, was also considered in the maximum time
limit for performing each HIT/task. Annotators were paid 98 cents per HIT. The rate of
payment (7.35$/hour) exceeded the minimum wage rate for the USA (7.2$/hour) and hence
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constitutes fair pay. We neither solicit, record, request or predict any personal information
pertaining to the AMT crowdworkers, during the studies.

(a)

(b)

Figure 3: Snapshots of human evaluation: a) instructions seen by annotator and b) an example with
questions.

Appendix D. Further Qualitative Examples

See Table 11 for further qualitative examples.
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Method Text
Concept set {sunglass, wear, lady, sit}
Captions a woman sitting on a bench with a cell phone <s> a woman sitting on a bench with a book
T5-base-BL A lady sits in a sunglass.
T5-base-VisCTG A lady wearing sunglasses sits on a bench.
Human The lady wants to wear sunglasses, sit, relax, and enjoy her afternoon.

Concept set {music, dance, room, listen}
Captions a person is standing in a room with a bed <s> a woman is holding a laptop in a room
BART-large-BL A listening music and dancing in a dark room
BART-large-VisCTG A group of people are dancing and listening to music in a room.
Human A boy danced around the room while listening to music.

Concept set {pool, water, slide, slide}
Captions a boat is parked in a water with a boat
T5-large-BL A girl slides into a pool and slides into the water.
T5-large-VisCTG A group of people slide down a slide into a pool of water.
Human A boy slides down a bouncy slide into a pool of water.

Concept set {rock, water, stand, body}
Captions a bird sitting on a rock in a body of water
T5-large-BL a body of water standing on rocks
T5-large-VisCTG A man standing on a rock near a body of water.
Human A bird standing on a large rock in a body of water.

Concept set {card, deck, shuffle, hand}
Captions a person holding a cell phone in their hand <s> a person holding a pair of scissors in their

hand
BART-large-BL a hand shakes a deck of cards
BART-large-VisCTG A man shuffles a deck of cards with his hand.
Human A man shuffles a deck of cards in his hands.

Concept set {chase, ball, owner, dog, throw}
Captions a dog is standing in the grass with a frisbee <s> a dog is playing with a frisbee in the grass
T5-base-BL owner throws a ball to his dog during a chase.
T5-base-VisCTG A dog is throwing a ball at its owner.
Human The owner threw the ball for the dog to chase after.

Concept set {body, water, bench, sit}
Captions a bench sitting on a beach next to a body of water <s> a man is sitting on a bench with a

cell phone <s> a bench sitting on a of a beach <s> a bench sitting in the middle of a lake
<s> woman sitting on a bench with a bird in the background

BART-base-BL A woman sitting on a bench with water in her body.
BART-base-VisCTG A man sits on a bench near a body of water.
Human The woman sat on the bench as she stared at the body of water.

Concept set {bench, sit, talk, phone}
Captions a man sitting on a bench with a cell phone <s> a woman sitting on a bench with a cell

phone <s> a man sitting on a bench with a cell phone <s> a person sitting on a bench with
a skateboard <s> a man sitting on a bench with a laptop

BART-base-BL A man sitting on a bench talking to his phone.
BART-base-VisCTG A man sitting on a bench talking on his cell phone.
Human The woman sits on the bench to talk on her daughter on the phone.

Table 11: Further qualitative examples for testCG. Color coded final generations: baseline (BL), VisCTG,
and human reference. Concept set refers to the input keywords and Captions refers to the captions (separated
by <s>) used by the VisCTG model for that particular example to produce its final generation.
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