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h  i  g  h  l  i g h t s

• We present the first systematic 
screening of the AC Phenomenon in 
AMPs, called AMPCliff. 

• We propose AMPCliff-specific data 
partition (AC split) and suitable 
evaluation metrics. 

• We conduct a comprehensive 
benchmark of ML and DL models for 
AMPCliff prediction task. 
g  r  a  p  h  i  c  a  l  a b s t r a c t

An overview of the quantitative definition and benchmarking of AMPCliff. a-c are the model architec-
tures used in this paper, including a machine learning methods: RF, XGBoost, GB, GP and SVM. b deep 
learning methods LSTM and CNN. c pre-trained language models like transformer encoder-based models 
BERT, ESM2 and transformer decoder-based model GPT2, ProGen2. d-e list the features used in this paper, 
including d fixed type representations, e dictionary index, one-hot encoding, word embedding and finger-
print. f the procedure of AC split. g an illustrative definition of AMPCliff. 
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Introduction: Activity cliff (AC) is a phenomenon that a pair of similar molecules differ by a small struc-
tural alternation but exhibit a large difference in their biochemical activities. This phenomenon affects 
various tasks ranging from virtual screening to lead optimization in drug development. The AC of small 
molecules has been extensively investigated but limited knowledge is accumulated about the AC phe-
nomenon in pharmaceutical peptides with canonical amino acids.
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Introduction 

Activity cliff (AC) refers to a pair of similar compounds that dif-
fer by only a small structural change but exhibit a large difference 
in their biochemical activities [1–11]. AC was first observed in the 
investigations of Quantitative Structure-Activity Relationship 
(QSAR) modeling in drug design [12], and has remained a persis-
tent challenge in QSAR modeling for over 30 years [1]. This phe-
nomenon affects tasks ranging from virtual screening to lead 
optimization in drug development [9,13]. Precise AC modeling is 
highly beneficial for pharmaceutical researchers. 

In earlier studies, researchers designed hand-crafted features 
and linear functions to construct SAR models, such as HomoSAR 
[14]. However, these approaches could only capture simple rela-
tionships and were insufficient for modeling complex, nonlinear 
interactions among features. Advances in deep learning have sig-
nificantly driven the development of drug design and the applica-
tions of QSAR modeling in scientific research and industry [15–17]. 
Recent efforts in QSAR modeling of antimicrobial peptides (AMP) 
include Recurrent Neural Network (RNN) models [18] and genera-
tive variational autoencoder (VAE) [19]. Despite these advance-
ments, the best models have only achieved a Pearson correlation 
coefficient (PCC) of 0.77. This observation suggests that ACs could 
be a critical factor in building precise QSAR models for AMPs. 

The early studies on the activity of antimicrobial peptides have 
already observed phenomena similar to activity cliffs. The experi-
ments in this paper[20] found that after deleting two bases from 
the N-terminal of VFRLKKWMQKVIDRFGG, the MIC against Staphy-
lococcus aureus (S. aureus) increased from 32 lM to above 128 lM 
[20]. Another study [21] observed that the C-terminal regions of 
porcine thrombin showed antimicrobial activities against both 
Gram-positive and Gram-negative bacteria. It seems to be aligned 
with the general trend that the antimicrobial activity of the pep-
tides generally correlated positively with the length of the peptide 
found in this work [22]. At the same time, they observed some spe-
cial cases. Changing WRWWWR peptide against S. aureus to 
WRWWWRW had an IC50 value of approximately 32 lM increased 
to above 100 lM  [22]. RWWWW still had an IC50 around 32 lM, 
while RWWWWW completely lost its activity [22]. On the other 
hand, some indels can also result in AC. The AMP in [23] showed 
a dramatic loss of activity in both L → V and L → B variants. And 
the work [24] observed the same phenomenon. The activity of 
R2AW → R2AW(1–22) decreased more than 10 times. Although 
these findings explain this unusual phenomenon, it is difficult to 
accurately capture. It exists not only in AMPs, but also in the small
2

molecule drug design field, which has led researchers to study this 
phenomenon more systematically. 

AC studies in small molecules can be separated into three types 
(Fig. 1): (i) discovery, (ii) data-driven analysis, and (iii) predictive 
modeling. Since 2006, the concept of AC received multiple precise 
definitions [3–5,9,25], such as MMP-Cliff [3] and 3D activity cliffs 
[5]. Various metrics [2,7,26] like SARI [26] and SALI [2] have also 
been proposed to characterize ACs. The term MMP-Cliff was 
defined to focus on structural differences within molecule pairs 
in 2012 [3], and remains the most prevalent form in the AC charac-
terizations. The same team also explored 3D activity cliffs [5], 
which highlighted the challenges of applying 2D measures to 3D 
structures and emphasized the importance of molecular represen-
tation in AC characterization. Despite such advances, the explo-
ration of 3D cliffs has stalled since 2015 [8], possibly due to 
limited data. The popularly-used term MMP-Cliff requires two 
molecules in the MMP (Matched Molecular Pair) to differ at most 
eight non-hydrogen atoms in the exchanged fragments of the size 
at most 13 non-hydrogen atoms, and to have the potency differ-
ence at least 2 orders of magnitudes. 

Most AC studies before 2010 focused on the data-driven analy-
sis of what caused the AC phenomenon (Fig. 1). Afterwards, numer-
ous predictive models based on the definition of MMP-Cliff have 
been developed [1,9], e.g., random forests [27] and support vector 
machines [28]. Deep learning (DL) algorithms have also been 
explored for their applications in this field and delivered limited 
successes [1,6] due to their inability to capture the high-
frequency signals in the AC pairs [29–33]. Machine learning (ML) 
models with stereochemistry-aware features [6] like Extended 
Connectivity Fingerprints (ECFP) have proven more effective in 
characterizing the MMP-Cliff molecular pairs than end-to-end 
deep learning algorithms [6,11]. Recent research has taken a fresh 
look at QSAR models from an algorithmic perspective, and pin-
pointed fundamental issues with deep learning in predicting small 
molecule properties, beyond just data scarcity [31]. 

This study quantitatively defines the AC Phenomenon in AMP as 
a pair of AMPs with high sequence similarity but radically different 
antimicrobial activities (called an AMPCliff). We systematically 
evaluate the recent peptide representation algorithms on the AMP-
Cliff prediction task. To the best of our knowledge, there is no 
direct quantitative definition of ACs in AMPs with canonical amino 
acids. We reviewed the history of AC investigations in small mole-
cules since its concept has been extensively studied. We identify 
that the popularly employed definition of MMP-Cliff in small mole-
cules fails to consider the evolutionary conservations among pep-

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. A brief history of the investigations of the AC phenomenon for the molecular prediction task. 
tides. It is widely accepted that two proteins or peptides with evo-
lutionarily conserved substitutions tend to exert similar biochem-
ical activities [34]. This oversight is understandable that 
evolutionary conservation is not as important in small molecules 
as in peptides. 

The prevalence of AMPs with canonical amino acids in the pub-
lic datasets constitutes the basis of quantitatively defining and 
benchmarking the AMPCliff pairs in this study. The main contribu-
tions of this study are summarized as follows: 

• We present the first systematic screening of the AC Phenom-
enon in AMPs (AMPCliff), based on the quantitative activity 
measurement of their Minimum Inhibitory Concentrations 
(MICs) against the same bacterium. 

• The quantitative definition of AMPCliff is proposed based on the 
AMPs of S. aureus in the public AMP dataset GRAMPA, and eval-
uated by a novel data partition method, AC split, for model 
training. 

• We conduct a comprehensive benchmarking experiment of var-
ious machine learning, deep learning, and pre-trained language 
models on the AMPCliff prediction task. 

Preliminaries 

The detailed descriptions of the peptide representations and the 
model architectures are provided in Supplementary Material S1. 

Benchmark dataset 

Description of the benchmark dataset. Building a QSAR model 
for AMP design has been significantly hindered due to the limited 
availability of quantitative measurements of AMP activity, such as 
MIC values, in public datasets like APD3 [35], DRAMP [36], DBAASP 
[37], and YADAMP [38]. Witten et al. finally curated the MIC values 
of AMPs from these public datasets in the Spring of 2018 [39]. To 
the best of our knowledge, GRAMPA [39] is the first and only public 
AMP dataset with MIC values, and it has already facilitated the 
studies of peptide design. Huang et al. trained an RNN regressive 
model based on the GRAMPA dataset to filter highly active pep-
tides [18]. Pandi et al. also filtered sequences against Escherichia 
coli (E. coli) and Bacillus subtilis (B. subtilis) from GRAMPA to build 
3

RNN-based and CNN-based regressive models [19]. GRAMPA con-
tains 6760 unique sequences, and 51,345 total MIC measurements 
(Fig. 2a Origin). Some AMP/bacterium pairs occur multiple times 
due to overlap between databases and/or antimicrobial activity 
tests against multiple bacterial sub-strains [39]. 

We follow the data processing strategy in [39] to remove any 
peptides containing Cysteine for the exclusion of disulfide bonds. 
35,862 entries are obtained for further analysis (Fig. 2a w/o_Cys). 
We take the geometric mean when multiple measurements for 
an AMP/bacterium pair are present in the database, similar as in 
[39], and finally get 25,628 entries (Fig. 2a w/o_Cys_Unique). The 
preprocessed dataset consists of 3759 AMPs with their associated 
MIC values against E. coli, and 3373 peptides against S. aureus. 
These two bacteria carry the rich annotations in the database. Since 
S. aureus is one of the most prevalent pathogens threatening 
human life for their rapid increase in antimicrobial resistance 
[40]  (Fig. 2b), this study uses S. aureus as an example to discuss 
the definition and prediction of AMPCliffs. More than 80 % of the 
entries in the dataset have their lengths ranged from 7 to 25 amino 
acids (see Fig. 2c). So this study zooms into peptides whose lengths 
ranged within [7,25] with their MIC values against S. aureus. The 
consolidated benchmark dataset consists of 2758 AMPs in total. 

Landscape of the benchmark dataset. In order to figure out the 
challenges in the prediction of MIC values, we take the last layer of 
the pre-trained 33-layer ESM2 model as the representation of pep-
tides, and employ t-SNE to visualize the two-dimensional distribu-
tions of the AMPs. Then we visualize the negative log10 of the MIC 
values as the z-axis of the overall landscape of the benchmark 
dataset. The unsmooth landscape intuitively illustrates the exis-
tences of many AC pairs (Fig. 2e). Fig. 2f shows 5 pairs of potential 
ACs and the complete list of the defined AMPCliff pairs is available 
in Supplementary Table S6 and S7. 

Study rationale and experiment design 

How to define activity cliff of AMPs? Here we take two 
AMPs ALWKTLLKKVLKA as sequence1 and ALWKTLLKKVLKAAA 
as sequence2 to illustrate the procedure (Fig. 3). AMPCliff firstly 
aligns the two peptides using the Smith-Waterman algorithm. 
A substitution score matrix is used to calculate the similarity 
score between the two aligned peptides, and the residue-wise
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Fig. 2. Exploratory profiling for GRAMPA dataset. a The number of filtered peptides by excluding sequences with Cysteine (w/o_Cys) and dropping duplicate sequences (w/ 
o_Cys_Unique) from the original GRAMPA dataset (Origin). b The number of peptides against a bacterium after filtering. S. aureus, Pseudomonas aeruginosa (P. aeruginosa), 
Klebsiella pneumoniae (K. pneumoniae), Acinetobacter baumannii (A. baumannii), Enterococcus faecium (E. faecium) are the 5 out of the 6 pathogens that pose the greatest threat 
to human life. c Length distribution of peptides against S. aureus. d Label distribution of peptides against S. aureus. e The landscape of the peptides against S. aureus. Features 
were the last layer of ESM2 with 33 layers reduced by t-SNE with two dimensions. f ACs showcased on a series of peptides with 5-fold MIC changes. The unit of MIC is lM, and 
the original data are available in the GRAMPA dataset. 
geometric mean is calculated as the final similarity score 
between these two peptides. Fig. 3g shows the MIC difference 
of sequence1 and sequence2 is around 11-fold, large enough to 
be treated as a pair of AMPCliff. 

This study defines a pair of AMPs as AMPCliff, if these two AMPs 
with canonical amino acids are significantly similar to each other 
while their antimicrobial activity measurements, i.e., MIC values, 
have a large fold change (Fig. 3g). This is different to the definition 
of MMP-Cliff in [3] that the similarity between two molecules is 
measured on the atom-level and the potency change has to be at 
least 2 orders of magnitudes. We believe that the inter-molecular 
similarity in AMPCliff aligns more closely with the modular struc-
ture of amino acids in AMPs. The following sections will provide a 
detailed definition of AMPCliff. 

Does scaling law still work on AC property prediction? The 
scaling law refers to that the performance of a language model 
(LM) improves consistently with the continually increased scale 
of this LM. This pattern was also observed in protein language 
models (language models trained by protein data) [41,42]. There-
fore, this naturally raises a question: Does the scaling law of GLMs 
still hold effective in predicting the AC property in the AMPs with 
canonical amino acids? This question motivates us to evaluate the 
performance of transformer encoder- and transformer decoder-
based models in increasing model sizes (illustrated in Fig. 3c). 
Moreover, some researchers have found that traditional machine 
learning methods outperformed advanced deep learning methods 
on AC property prediction tasks [1]. So we choose tree-based mod-
els, GP, and SVM as baselines (Fig. 3a). We also evaluate the effec-
tiveness of published regression models for peptide design, 
4

including Huang et al.’s work [18], Pandi et al.’s work [19], and 
Schissel et al.’s work [43] Fig. 3b). The details of the experimental 
settings of this work can be found in Supplementary Table S12. If 
the corresponding methods were derived from the literature, the 
column ‘‘citation” will list its abbreviation in this paper and give 
the original reference. The hyperparameters of each model are 
listed in Supplementary Table S1. 

How to evaluate the model performance on AC property pre-
diction? The dataset splitting strategy is essential to develop a 
stable model [44]. ACNet [11] utilized random split and target split 
to evaluate the model performance. But random split may separate 
a pair of AMPs one AMPCliff into training and test sets. This sepa-
ration will reduce the influence of the ACs on the model perfor-
mance and overestimate the capacity of the model on AC 
prediction tasks. While target split may introduce an out-of-
distribution (OOD) issue into the model and amplifies the influence 
of ACs on the model performance. 

This study introduces AC split, a data split strategy to ensure 
that AMPCliff pairs appear exclusively in the test set, and evaluates 
whether a peptide representation method can effectively learn the 
high-frequency patterns commonly found in AMPCliffs from the 
low-frequency patterns in training set. The AC split strategy 
(Fig. 3f) firstly extracts all AMPCliff pairs with k-fold changes in 
the MIC values from the given dataset to form the test set. The 
remaining peptides are then divided into training and validation 
sets using a stratified random split strategy, consistent with the 
approach described in the literature [45]. Further discussion of 
AC split with other data split strategies can be found in Supple-
mentary Material S2.
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Fig. 3. An overview of the quantitative definition and benchmarking of AMPCliff. a-c are the model architectures used in this paper, including a machine learning 
methods: RF, XGBoost, GB, GP and SVM. b deep learning methods LSTM and CNN. c pre-trained language models like transformer encoder-based models BERT, ESM2 and 
transformer decoder-based model GPT2, ProGen2. d-e list the features used in this paper, including d fixed-type representations, e dictionary index, one-hot encoding, word 
embedding and fingerprint. f the procedure of AC split. g an illustrative definition of AMPCliff. 
Results and discussion 

AMPCliffs by conserved mutations 

We defined a pair of amino acids with a positive BLOSUM62 
substitution score as the conserved substitution, and found out 
that even conserved substitutions can cause AC in AMPs. We illus-
trated 10 such AMP pairs as examples in Table 1. The complete list 
of AMPCliffs was released in Supplementary Table S6. For example, 
the pair of AMPs FLPIIGKLLSGLL and FLPIVGKLLSGLL only had a 
substitution from I to V (BLOSUM62 score 3) on the 5th residue, 
while their MIC values were increased from 4.45 lM  to  59  lM, 
with 13.2681-fold changes in the antimicrobial activities. Another 
pair of AMPs RRWWRWWR (MIC = 1.80 lM) and RRWYRWWR 
(MIC = 42 lM) carried a conserved substitution from W to Y and 
their antimicrobial activities received a 23.3116-fold change. The
Table 1 
Ten example pairs of AMPCliffs with conserved mutations. The two AMPs were aligned by t
of gap open/extension −11 and −1, which were default parameters in BLASTp [46]. The ‘‘Mu
in AMP2)”. The detailed information can be found in the Supplementary Table S6 and S7.

AMP1 MIC1 AMP2

FLPIIGKLLSGLL 4.45E-06 FLPIVGK
GLLKKIKWLL 2.84E-05 GLLKRIK
GWLDVAKKIGKAAFNVAKNFI 2.23E-05 GWLDV
ILPWKWPWWKWRR 2.58E-06 LLPWKW
INLKAIAALAKKLL 2.15E-05 INLKAIA
KKKWLWLW 6.74E-05 KRKWL
KQKWLWLW 3.79E-05 KQRWL
RRLFRRILRWL 5.5E-07 RRLFRR
RRWWRWWR 1.8E-06 RRWYR
RWWRWWR 1.4E-05 RWWRY

5

underlying causes of AC are often complex. According to study 
[47], both KQRWLWLW and KQKWLWLW are cyclic peptides. 
However, substituting the basic residue arginine (R) with another 
basic residue lysine (K) leads to a marked decrease in activity 
against S. aureus. The study [47] further reports that KQRWLWLW 
can self-assemble into nanotubes within synthetic lipid mem-
branes, whereas there is no evidence indicating that KQKWLWLW 
exhibits similar self-assembly behavior. 

In another work [48], a series of structurally modified synthetic 
parasin I analogs were analyzed. The structure of parasin I in 
30 mM SDS was determined to include a short a-helix (residues 
9–17) flanked by disordered regions (residues 1–8 and 18–19). 
The results demonstrated that a basic residue at the N-terminus 
is critical for membrane-binding activity. Moreover, the results 
showed that even a single lysine residue located in a random coil 
region can profoundly influence the peptide’s action mechanism.
he Smith-Waterman alignment with BLOSUM62 substitution matrix and set penalties 
tation” column indicates ‘‘(position in the alignment, amino acid in AMP1, amino acid 
 

MIC2 Mutation 

LLSGLL 5.9E-05 (5, I, V) 
WLL 3.23E-06 (5, K, R) 
AKKIGKAAFNVAKNFL 1.7E-06 (21, I, L) 
PWWKWRR 1.61E-05 (1, I, L) 
AMAKKLL 1E-06 (9, L, M) 
WLW 8.23E-06 (2, K, R) 
WLW 3.7E-06 (3, K, R) 
ILRYL 4.5E-06 (10, W, Y) 
WWR 4.2E-05 (4, W, Y) 
WR 2.07E-06 (5, W, Y) 
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Measurement of similarity between two AMPs 

Limitation of the MMP-Cliff definition in AMPs with canoni-
cal amino acids. During our experimental investigations, we iden-
tified a limitation in the current definition of MMP-Cliff. This 
definition does not account for the structural similarity of sub-
structures that transform within a pair of molecules, nor does it 
consider the evolutionary context of amino acids. Typically, sub-
structures with structural similarities are likely to exhibit similar 
functional characteristics. Therefore, a revised definition of activity 
cliffs (ACs) specific to AMPs with canonical amino acids is 
necessary. 

How to measure the similarity between two AMPs beyond 
MMP-Cliff? This study investigated five commonly used similarity 
measurements between two peptides or two molecules to evaluate 
their performance, including Levenshtein distance (Levenshtein), 
Levenshtein distance between aligned sequences (Leven-
shtein_aligned), sequence_identity, an average of Tanimoto simi-
larity between aligned sequences (Tanimoto_average), and an 
average of BLOSUM62 after normalized between aligned sequences 
(BLOSUM62_average). Two peptide sequences are aligned by the 
Smith-Waterman algorithm using biopython version 1.79 with 
Python version 3.8.18. For more details on why we designed 
BLOSUM62_average and Tanimoto_average to compare with 
sequence_identity, please see Supplementary Material S3. 

For a pair of sequences sequence1, sequence2, we denoted them 
as S2 for short. Then we use sequence alignment algorithm to 
get the aligned sequence pair, denoted as gn and gn with the 
same aligned sequence length Furthermore, we used a similar-
ity matrix Mrx RN N to measure the similarity between two 
amino acids. For any two arbitrary amino acids p and q, we have 
their similarity value Mrx p q 0 1 , and then we get the sim-
ilarity between the two sequences La 

i 1SIMrx S1 align i S2 align i . 

S1 
S1 ali S2 ali 

La. 
SI 

SI 
1 
La 

BLOSUM62 versus Tanimoto similarity on AMPCliff. To com-
pare the BLOSUM62 substitution matrix (with integer values rang-
ing from −4 to 11) and the Tanimoto similarity of each amino acid 
pair based on ECFP (with float values ranging from 0 to 1) on the 
same scale, we employ a normalization strategy akin to the 
MaxMinScaler in the Python sklearn package, with an additional 
step to ensure the symmetry of the formula: 

Mnew 
M min M 

max M min M 1 

Mnew 
Mnew Mnew 

T 

2 
2 

where M represents the original scoring matrix, and Mnew is the 
normalized version. 

Fig. 4a illustrates the details of the normalized BLOSUM62 
matrix (referred to as ‘‘BLOSUM62 average”) and Tanimoto similar-
ity matrix. We observe that certain amino acids exhibit similar pat-
terns across both matrices. For example, the normalized 
BLOSUM62 values for phenylalanine (F) with tryptophan (W) and 
tyrosine (Y) are 0.42 and 0.65, respectively, with phenylalanine 
(F) being most similar to tyrosine (Y) compared to other amino 
acids. This similarity is mirrored in the Tanimoto similarity matrix, 
where the similarity values for phenylalanine (F) with tryptophan 
(W) and tyrosine (Y) are 0.5 and 0.7, respectively, again showing 
phenylalanine (F) as most similar to tyrosine (Y). 

However, significant differences also emerged. For instance, the 
normalized BLOSUM62 values between cysteine (C) and arginine 
(R), asparagine (N), and aspartic acid (D) are all below 0.1. In con-
trast, the Tanimoto similarities between cysteine (C) and arginine 
(R), asparagine (N), and aspartic acid (D) are 0.3, 0.5, and 0.52, 
respectively. This discrepancy arises because Tanimoto similarity 
6

does not account for structural similarity at the atomic level, and 
assumes that all atomic substitutions have the same impact. 

As shown in Fig. 4a, cysteine (C) contains sulfur (S) and often 
forms disulfide bonds, while arginine (R), asparagine (N), and 
aspartic acid (D) have markedly different side chains and chemical 
properties. Arginine (R) is basic with an amino group (–NH2), 
asparagine (N) is amidic with an amide group (–CONH2), and 
aspartic acid (D) is acidic with a carboxyl group (–COOH). These 
fundamental differences lead to distinct physicochemical proper-
ties that Tanimoto similarity fails to capture. The MMP-Cliff defini-
tion suffers from a similar issue to Tanimoto similarity, i.e., treating 
atom-level differences uniformly. 

In summary, we combine the advantages of the two sequence 
identity calculation methods and propose the ‘‘BLOSUM62 aver-
age” as a more suitable similarity measure for short-length pep-
tides with canonical amino acids. 

Global alignment versus local alignment. This study investi-
gates AMPCliffs in peptides with canonical amino acids, and 
employs the Smith-Waterman local alignment algorithm with 
the BLOSUM62 substitution matrix. We set the gap opening and 
gap extension penalties to −11 and −1, which are the default 
parameters in BLASTp [46]. For more discussion about global align-
ment and local alignment, please see Supplementary Material S4. 

Measurement of bioactivity changes between two AMPs 

Setting the fold-change threshold for bioactivities. The defi-
nition of an MMP-Cliff [3] requires that the potency difference 
between two compounds meeting the structural criteria must be 
at least two orders of magnitude. However, the measurement of 
bioactivities in AMPs uses a different metric, minimum inhibitory 
concentration (MIC), to assess antimicrobial potency. A lower 
MIC value indicates higher antimicrobial activities. 

Mouton et al. [49] pointed out that the ISO 20776–2 standard 
for MIC reproducibility allows for an acceptable deviation of one 
dilution from the mode in 95 % of cases, corresponding to a range 
of at least two 2-fold dilutions. To determine an appropriate fold-
change threshold for AMPCliffs, we evaluated how different mini-
mum MIC differences in AMPCliff pairs, ranging from a 5-fold to 
a higher fold change, affect model performance using the Recall 
metric (see ‘‘Performance evaluation of AMPCliff predictions” for 
details). For the definition of Recall, please see Evaluation Metrics. 

In this study, an MIC value with the unit mole (M) is firstly con-
verted to –log(MIC) (the logarithm base 10). We defined the MIC 
values of any two sequences as MIC1 and MIC2, with MIC1 ≥ MIC2. 
The fold change is defined as:

MIC1 
MIC2 

s 3 

log MIC1 
MIC2 

logMIC1 logMIC2 log s 4 

log MIC1 log MIC2 log s 5 

In order to define the fold change threshold properly, we set 
s = 2, 3, 4, and 5 to establish the dataset for model training and per-
formance comparison with recent state-of-the-art methods for the 
AMPCliff prediction task. (See Performance evaluation of AMP-
Cliff predictions) Note that a larger −log(MIC) value indicates bet-
ter antimicrobial activities. 

Experimental data supporting theoretical analysis. To ensure 
our methods are applicable in real-world scenarios, we compared 
the number of detected 5-fold change AMPCliffs across different 
sequence length regions using various similarity metrics: Leven-
shtein, Levenshtein_aligned, sequence_identity, BLOSUM62_aver-
age, and Tanimoto_average. Fig. 4b provides a schematic of these
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Fig. 4. Similarity measurements between AMPs. a The difference in amino-acid level similarity matrix measured by Tanimoto similarity and BLOSUM62 after 
normalization. b A toy example of 5 similarity measurements, i.e., Levenshtein, Levenshtein_aligned, sequence_identity, Tanimoto_average, and BLOSUM62_average. 
Levenstein distance measures the minimum number of single-character edits (insertions, deletions, or substitutions) required to change one string into another. In this case, 
Levenstein distance is 2. sequence_identity, Tanimoto_average, and BLOSUM62_average used the same operation but different similarity metrics. Levenshtein_aligned is to 
count the difference of the aligned sequence pair. c The numbers of AMPCliffs with 5-fold change in MIC values measured by Levenshtein, Levenshtein aligned, sequence 
identity, BLOSUM62 average, and Tanimoto average. Here we set 1 as the threshold for ‘‘Levenshtein” and ‘‘Levenshtein aligned”, and 0.9 as the threshold for the other 3 
methods. d the total number of 5-fold change AMPCliffs under 5 similarity measurements. e Showcases of the variation of AMPCliffs as the fold change increased. Nodes 
represented sequences. If two nodes were marked as an AMPCliff pair, then they got an edge. The red node and the blue node represented the top 2 maximum degree nodes as 
fold change increased. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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measurement procedures, while Fig. 4c-d present the numbers of 
detected 5-fold AMPCliffs across different length ranges.

Levenshtein distance is also known as edit distance, and it mea-
sures the difference between two sequences by counting the min-
imum number of single-character edits (insertions, deletions, or 
substitutions) required to convert one sequence into the other. 
The difference between ‘‘Levenshtein” and ‘‘Levenshtein_aligned” 
lies in whether the sequences are aligned prior to comparison 
(see Fig. 4b). Our results show that these two metrics yield similar 
outcomes (see Fig. 4c). 

The distinction between ‘‘Levenshtein_aligned” and ‘‘sequence_ 
identity” is that sequence_identity averages similarity over the 
entire sequence length (see Fig. 4b). This averaging operation 
biases sequence identity toward identifying longer sequences. For 
example, if two aligned sequence lign an 

1 
align differ by only 

one residue, the sequence identity will be only 0.9 if the aligned 
sequences are 10 residues. This bias explains why AMPCliffs iden-
tified by sequence identity tend to be longer and why few 
sequences in the [7–9] length range are detected (see Fig. 4c). This 
also suggests that MMseqs2 is not suitable for clustering short pep-
tides, a conclusion that aligns with experimental findings in the lit-
erature [50,51]. 

s S1 a d S 

The length distributions of AMPCliffs identified by ‘‘BLOSUM62_ 
average” and ‘‘Tanimoto_average” are similar to each other, with 
‘‘BLOSUM62_average” generally detecting a high count (see 
Fig. 4d). Each metric has its strengths and limitations. 
BLOSUM62_average incorporates the prior knowledge of medicinal 
chemists and evolutionary information, but cannot be extended to 
the peptides with non-canonical amino acids. Tanimoto_average 
treats all atomic substitutions equally and disregards evolutionary 
information. But it can be easily applied to peptides with non-
canonical amino acids. 

Therefore, this study presents two versions of the AMPCliff 
identification models. For tasks involving canonical amino acids, 
the BLOSUM62 version is recommended. For tasks involving non-
canonical amino acids, the Tanimoto version is preferred if a suit-
able sequence alignment algorithm for non-canonical peptides is 
available. To our knowledge, PepSeA [52] is the only sequence 
alignment algorithm currently available for such peptides. This 
paper primarily reports results from AMPCliff predictions using 
the ‘‘BLOSUM62_average” metric, with the detailed results for both 
‘‘BLOSUM62_average” and ‘‘Tanimoto_average” metrics provided 
in Supplementary Tables S2-S4 and S8-S9. 

In summary, our experimental results confirm that sequence 
identity is not a suitable metric for measuring similarity between 
short AMPs with canonical amino acids. Instead, our proposed 
‘‘BLOSUM62_average” measurement can detect the highest num-
ber of AMPCliffs. 

Quantitative definition of AC in AMPs 

We further propose a new quantitative definition of AC in AMPs 
with canonical amino acids, termed AMPCliff. The principles of 
AMPCliff align with a common understanding of AC that struc-
turally similar molecules are active against the same tween two 
AMPs is defi bacteria but exhibit significantly different MIC values. 
We set a 2-fold change as the minimum threshold for MIC differ-
ences. The similarity between the two AMPs is defined as follows: 

Given a pair of peptide sequences S1 and S2, we first use the 
Smith-Waterman alignment algorithm to obtain the aligned 
sequences, denoted as and S , of the same length, La. We uti-

lize a similarity matri Mrx RN N to measure the similarity 
between two residues in the alignment. For a pair of matched resi-
dues p and q in the alignment, their similarity value is defined as 

S1 align 
2 
align 

x SI 
8

Mrx p q 0 1 . The overall similarity between the two aligned 
peptide sequences is then calculated as: 
SI 

1 
La 

La 
i 1SIMrx S1 align i S2 align i 6 

Fig. 3g illustrates the AMPCliff definition procedure using the 
two AMP sequences ALWKTLLKKVLKA and ALWKTLLKKVLKAAA 
as examples. 

The key difference between AMPCliff and MMP-Cliff lies in the 
similarity measurement. AMPCliff first employs sequence align-
ment to align the two molecules, and then uses a similarity matrix 
to calculate the similarity of residues at each aligned position. The 
final similarity is obtained by taking the geometric mean of these 
values. Further discussion of similarity threshold criteria can be 
found in Supplementary Material S5. Having established the defini-
tion of AC in AMPs with canonical amino acids (AMPCliff), the next 
question is how we can evaluate model performance in predicting 
AMPCliffs? 

Performance evaluation of AMPCliff predictions 

We compare the performance of a 4:1 stratified random split 
(referred to as ‘‘random split”) with our proposed AC split, varying 
the MIC threshold from 2-fold to 5-fold changes. We denote the AC 
split strategy with the k-fold changes in the MIC threshold as k-fold 
AC split, where k = 2, 3, 4, or 5. The model does not encounter high-
frequency data in the AMPCliffs in the training set when using the 
AC split strategy, while some sequences in the AMPCliffs may 
appear in the training set of the random split strategy. The perfor-
mance of the random split strategy is expected to be overesti-
mated. However, our observations suggest that this common 
assumption may not always hold true in practice. 

As shown in Fig. 5(a-b), the choice of performance metric can 
significantly influence the perceived model performance. For 
instance, the difference in the metric SCC (upper panel of Fig. 5a) 
and other metrics like PCC and R2 (Fig. 5b) between random split 
and AC split with 2/3/4/5-fold changes are generally positive (neg-
ative for RMSE and MAE). This indicates that random split is indeed 
overestimated, consistent with the literature [44]. However, the 
Recall metric (lower panel of Fig. 5a) does not follow the same 
trend. As the fold change increases from 2 to 5, the model’s perfor-
mance with random split initially outperforms the AC split with 2-
fold change, then becomes competitive to the AC splits with 3- and 
4-fold changes, and eventually underperformed relative to the AC 
split with 5-fold change. This phenomenon is intriguing because 
the test set of the AC split with 2-fold change includes AMPCliffs 
with 2-fold and larger changes, whereas the test set of the AC split 
with 5-fold change only includes AMPCliffs with MIC changes of 5-
fold or greater. This result suggests that while the random split can 
predict low-frequency (2-fold to 3-fold) and relatively higher-
frequency data (3-fold to 4-fold) well, it struggles with very 
high-frequency data (5-fold and above). 

If we change the data split strategy from random split to AC 
split, the models may perform poorly in predicting exact MIC val-
ues (with lower Pearson, R2, RMSE, and MAE compared to random 
split) and general MIC ranking (lower Spearman correlation). How-
ever, they can improve the Recall of the top 50 sequences, which is 
crucial in practice as we often focus on the top k predictions. Con-
sequently, we determined that a 5-fold change is the maximum 
threshold for defining an AMPCliff. 

We further examine the results of the pre-trained language 
models (LMs) on the 2-fold and 5-fold AC splits across training, val-
idation, and test sets (Fig. 5c-d). The validation set performance for 
the 2-fold AC split is less consistent compared to the 5-fold AC 
split, which is understandable given that a 2-fold change repre-
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Fig. 5. Performance comparison between random split and AC split methods. Panels a-b show the difference in Spearman, Recall a and other performance metrics b 
Metric(random split) – Metric(AC split), varying from 2-fold to 5-fold changes in the MIC threshold. Panels c-d present scatter plots for the training/validation/test sets under 
2-fold c and 5-fold d in the MIC threshold and AC splits. Panel e displays a scatter plot of ACs with 5-fold changes in the MIC threshold from Fig. 2f, compared with random 
split, where the red line represents the diagonal line y = x. The label is the −log(MIC) value of each AMP. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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sents the minimum reproducibility tolerance for the same peptide 
on a MIC detection device [49]. This suggests that the training set 
for the 2-fold AC split contains more systematic noise. Conversely, 
the 5-fold AC split results indicate that the LMs are well-trained on 
peptides within the 5-fold change range. Although these models 
are poor at predicting ACs, they have still learned some general 
knowledge from non-AC peptides (low-frequency data) to AC pep-
tides (high-frequency data), supporting the rationale for using a 5-
fold threshold in our AMPCliff definition. For further discussion of 
the Case Studies of AMPCliff Predictions (Fig. 5e), please see Sup-
plementary Material S6.

Learned representations versus fixed type representations 

The learned representations refer to those peptide features 
derived from the pre-trained DL models, while the fixed type rep-
resentations are defined and calculated by manually formulated 
equations. To check if learned representations outperform fixed 
type representations, we compare ML models GP and SVM with 
published deep learning methods AMPSpace, CellFree-rnn, 
CellFree-cnn and peptimizer on AMPCliffs defined by ‘‘BLOSUM62 
average” with 2/3/4/5-fold changes. Notice that we add a new 
model SVM into ML methods for comparison, for checking whether 
it is suitable for AMPCliff prediction. 

Firstly, fixed type representations with ML methods outperform 
the conventional DL methods. We continue to consider Recall and 
SCC as the performance metrics since the relative order of an AMP-
Cliff pair’s predicted values is more valuable than the values them-
selves in the drug discovery process. We calculate Recall for the top 
50 of the label values and their predicted values (see Evaluation 
Metrics for the definition of Recall). Since we use −log(MIC) as 
the label value, a larger value means the AMP has better antimicro-
bial activity. As shown in Fig. 6a-b, RF gets the best SCC value with 
4-fold and 5-fold changes. XGBoost achieves the best SCC value 
with 2-fold and 3-fold changes. Meanwhile, RF and GB achieve 
the best Recall with 5-fold change and 2-fold change, respectively. 
GP gets the best Recall value with 3-fold and 4-fold changes. SVM 
performs poorly compared with the other ML methods, and none 
of the four DL methods outperform the best traditional methods 
(namely, the fixed type representations with ML methods.), which 
is consistent with the literature [31]. All of the best performances 
by AC split across 2/3/4/5-fold changes belong to the fixed type 
representations with ML methods. 

Moreover, it turns out that the fixed-type representations with 
ML methods can transfer some general patterns from low-
frequency data to high-frequency data. Table 2 shows the Recall 
of the fixed type representations with each ML method by the AC 
Split with 2/3/4/5-fold changes, namely gradually adding more 
low-frequency data to the training data. Except for XGBoost, the 
Recall of all the other ML methods increases or stays at the same 
value as the training data seeing more low-frequency data. Besides, 
the XGBoost gets 9 for 4-fold change and 10 for 3-fold change, 
which is quite close to each other. More evidence may be found 
in the Supplementary Table S2. 

The learned representations based on LMs, especially ESM2, 
have the potential to beat the fixed-type representations. Since 
SVM is the poorest model, we remove it from further analysis. Then 
we compare the four ML methods, RF, GB, XGBoost, and GP with 4 
MLMs: BERT bae version, ESM2 with 6 layers, ESM2 with 12 layers, 
and ESM2 with 33 layers. As shown in Fig. 6e-f, the largest model 
ESM2 with 33 layers beats the ML methods and achieves the best 
performances in SCC among all fold changes. Besides, there is an 
interesting ascending trend in the metric SCC of ESM2 as the model 
size gets larger. In the meantime, in terms of Recall, MLMs get the 
best Recall compared with the ML methods in general, but ESM2 
doesn’t have the same ascending trend as it does in SCC. Another 
10
noteworthy result is that the prediction values of the English 
text-based pre-trained model BERT perform similarly to ESM2 with 
12 layers. Although its SCC is the worst among all the MLMs, its 
Recall metric is competitive with ESM2. Fig. 6i calculates the statis-
tical significance of the null hypothesis of the predicted values of 
two models are the same by the Mann-Whitney U test. The p-
value smaller than 0.05 means that the predicted values of the 
compared models is significantly different. It turns out that the 
predicted values of BERT with the base version don’t have a signif-
icant difference compared with ESM2 with 12 layers among all fold 
changes. 

Meanwhile, we compare the four ML methods with four GLMs: 
GPT2, Progen2 small version, base version, and large version. As 
shown in Fig. 6g-h, it turns out that GLMs perform worse than 
ML methods in SCC and only the Recall of the medium size of Pro-
Gen2 beats ML methods on the 2-fold and 3-fold changes, and the 
second-best Recall on the 2-fold and 3-fold change are still the ML 
methods GB and GP. 

ESM2 with 33 layers beats the fixed types representations in 
SCC and the learned representations based on MLMs can beat the 
fixed type representations in Recall, while ProGen2 or the conven-
tional DL methods remain to be further improved. We speculate 
that the MLM-based learned representations can be good solutions 
for solving the AMPCliff prediction task. This training paradigm can 
capture some structural information from peptide sequences, as 
claimed in ESM2 [41] and ESM3 [53]. 

Does scaling law still work? 

Here we take the scaling laws defined by OpenAI into consider-
ation [54]. Model performance heavily depends on scale, which 
consists of three factors: the number of model parameters (exclud-
ing embeddings), the size of the dataset, and the amount of com-
puting power used for training [54]. Since we utilize the pre-
trained language models to fine-tune the AMPCliff prediction task, 
and evaluate whether there is an ascending trend on each perfor-
mance metric as the model scale gets larger. 

To study whether the scaling laws still work on the AMPCliff 
prediction task, we evaluate the prediction performance of ESM2 
with 6/12/33 layers and ProGen2 small/base/medium versions 
under the ‘‘BLOSUM62 average” condition by AC split. The analysis 
aims to answer the question: does scaling law still work on the 
AMPCliff prediction task? Note that BERT and GPT are removed 
from this analysis because they are not in the ESM2 or ProGen2 
series. 

Firstly, we investigate their performance in the metrics SCC and 
Recall, and find out that ESM2 has an ascending trend in predicting 
the relative order of AMPCliffs. As shown in Fig. 7a, there is an 
obvious SCC improvement as the model size of ESM2 increases. 
This trend exists almost in all fold changes. However, it disappears 
in the Recall metric (see Fig. 7b), which suggests that the top 50 
samples in the test dataset don’t perform better as the model size 
of ESM2 increases. At the same time, GLMs don’t show a similar 
trend as MLMs, i.e., there is neither a significant increasing trend 
in SCC nor Recall except for the 2- and 3-fold changes. This sug-
gests that GLMs are possibly good at predicting the top 50 samples 
in AMPCliffs other than the general performance. Besides, if we 
compare the other performance metrics as shown in Fig. 7c,  it
turns out that both in MLMs and GLMs, the trend of PCC is different 
from SCC which is extremely high in 2-fold change whereas R2, 
RMSE, and MAE are getting worse as the model size increases. As 
the fold change reaches to 5-fold change, the significance of the 
predicted values among the language models (both MLMs and 
GLMs) become mostly the same (p > 0.05, see Fig. 7d). The results 
indicate that although pre-trained language models fail to predict
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Fig. 6. Prediction performance with the benchmark dataset by AC split. The performance metrics a Spearman correlation coefficient and b Recall of five ML methods SVM, 
RF, GB, XGBoost, and GP on fixed type representations and four DL methods AMPSpace, CellFree-rnn, CellFree-cnn and peptimizer on the AMPCliffs defined by ‘‘BLOSUM62 
average” with 2-fold, 3-fold, 4-fold and 5-fold change. c Other prediction performance metrics of the models. d Statistically predicted value significance for pairwise model 
comparison by Mann-Whitney U test. e Spearman and f Recall of five ML methods SVM, RF, GB, XGBoost, and GP on fixed representations and four masked language model 
methods BERT, ESM2_t6, ESM2_t12 and ESM2_t33 on the AMPCliffs with 2-fold, 3-fold, 4-fold and 5-fold change. g Spearman correlation coefficient and h Recall of five ML 
methods SVM, RF, GB, XGBoost, and GP on fixed representations and four generative language model methods GPT, ProGen2-small, ProGen2-base and ProGen2-medium on 
the AMPCliffs with 2/3/4/5-fold changes. Statistically predicted value significance for pairwise model comparison by Mann-Whitney U test on i the four masked language 
models (MLMs) BERT, ESM2_t6, ESM2_t12 and ESM2_t33 and j four generative language models (GLMs) GPT, ProGen2-small, ProGen2-base and ProGen2-medium. 

Table 2 
The metric Recall of the fixed type representations with each ML method by the AC 
Split with 2/3/4/5-fold changes. The columns are the AC Split with 2-fold to 5-fold 
change, and a row represents each ML method. The ML methods use the same fixed-
type representation features (see Evaluation Metrics for the definition of Recall). 

Fold 2 3 4 5 

SVM 3 6 5 9 
LR 9 9 10 12 
L1 9 8 11 10 

ElasticNet 7 8 8 10 

GB 10 10 10 18 
XGBoost 9 10 9 18 
high-frequency data accurately in the AMPCliff framework, ESM2 
has a potential scaling law of predicting AC well. 

To investigate the capability of these LMs in general, we calcu-
late the average values of the performance metrics of each MLM or 
GLM among all fold changes. As shown in Fig. 7e, it turns out that 
except for Recall and R2, all of the other 4 metrics get better as the 
model size of ESM2 increases. Whereas no metrics had the similar 
trend on GLMs (Fig. 7f). Note that all the R2 values are negative, 
indicating that the models are poor at predicting the label value 
−log(MIC) accurately. 

We conclude the scaling law of ESM2 is available on the AMP-
Cliff prediction task, while ProGen2 doesn’t. 
11
Conclusions 

This study identified and systematically defined the activity cliff 
(AC) phenomenon in AMPs (AMPCliff) as a variant of AC, and cap-
tured structurally similar peptides with significant differences in 
MIC values of antimicrobial activities. We leveraged the GRAMPA 
dataset to illustrate AMPCliffs with S. aureus as a reference, and 
conducted a comprehensive benchmark analysis of predictive algo-
rithms in this context. Besides an additional a-helix structural 
descriptor, the total list of the other 676 fixed-type representation 
features can be found in [18]. In general, any descriptors that cap-
ture the physicochemical and structural properties of AMPs can be 
considered. Additionally, learned representations from large-scale 
pre-trained models (e.g., the ESM family) are also applicable and 
have been evaluated in our benchmarking framework. 

Accurately quantifying peptide similarity proved essential, as 
existing sequence identity measures inadequately addressed short 
peptides. By developing a similarity calculation that considers the 
average alignment column similarity, we reframed peptide similar-
ity as an amino-acid-level comparison. Our analysis of the BLO-
SUM62 substitution matrix is enriched with structural insights 
over traditional metrics like Tanimoto similarity, and underscores 
the need for a subtle similarity measure for non-canonical sub-
structures. Additionally, our results suggest that current amino-
acid-level models may benefit from greater structural detail within 
amino acid side chains, potentially enhancing models like ESM2 for 
future AMP prediction tasks. 

We also introduced the AC split strategy, and its comparison 
against random split revealed that models trained on AC split per-
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Fig. 7. Evaluating the prediction performance of MLMs and GLMs. a SCC and b Recall of three MLMs and three GLMs on the AMPCliffs defined by ‘‘BLOSUM62 average” 
with 2–5 fold changes. c Other prediction performance metrics of the models. d Statistical predicted value significance for pairwise model comparison by Mann-Whitney U 
test. The average performance of each e MLM or f GLM with 2–5 fold changes. Note that ‘‘ProGen2-s” is short for ‘‘ProGen2-small”, ‘‘ProGen2-b” is short for ‘‘ProGen2-base”, 
‘‘ProGen2-m” is short for ‘‘ProGen2-medium”. 
formed better on detecting AMPCliffs with high-frequency signals 
based on the transferable knowledge learned from non-AC pep-
tides. Our evaluation metrics, such as Recall and SCC, emphasized 
the predictive capacity across various ML and DL models. ESM2 
demonstrated superior performance and scalability in AMPCliff 
prediction, and outperformed both fixed type and GLM-based 
learned representations, particularly with larger model sizes. 

Our findings revealed limitations in current deep learning-
based representation models. To better capture the properties of 
antimicrobial peptides (AMPs), it is necessary to incorporate 
atomic-level dynamic information related to their mechanisms of 
action. For instance, AMPs that disrupt cell membranes may self-
assemble into polymeric structures that interact with membranes 
in complex ways [55], which cannot be fully represented by 
sequence information alone. Therefore, integrating molecular 
interaction trajectories between AMPs and membranes into the 
modeling process represents an important direction for future 
research. 

Limitations 

This study explores how to better define activity cliffs in pep-
tides composed of canonical amino acids. When encountering 
non-natural amino acids, although the Tanimoto Similarity is less 
rigorous than BOLSUM62, we have yet to find a better matrix that 
describes the similarity between descriptor structures. Addition-
ally, as the only publicly available peptide dataset with MIC values 
is GRAMPA, the datasets we can construct are relatively small. 
Therefore, our AMPCliff search algorithm is primarily designed 
for small datasets, as it becomes computationally time-
consuming for larger datasets (exceeding 5,000 entries). 

Besides, when the dataset is small, the deep learning algorithm 
might easily encounter overfitting problems by training. In this 
case we recommend that practitioners use the pre-trained model 
weights directly for prediction, with minimal or no fine-tuning, 
12
and instead incorporate feature selection and traditional machine 
learning methods for modeling, as suggested in the literature. 
Moreover, when both the training and test sets are small in size, 
selecting appropriate performance metrics becomes critical, as 
limited data can cause high variance in metric values. For example, 
in an extreme case where the test set contains only two samples 
with very similar MIC values, the Spearman correlation may fluctu-
ate drastically between −1 and 1. 

Finally, our model results are mostly based on fine-tuning the 
pre-trained models on antimicrobial peptides (AMPs) against S. 
aureus. They can be transferred to the close organisms like Staphy-
lococcus epidermidis (S. epidermidis), but we recommend fine-
tuning on new organisms, especially for more distantly related 
species such as E. coli. We showed the inference results of S. epider-
midis and E. coli by the ESM2 with 6 layers model trained by S. aur-
eus in Supplementary Material S7. 

Materials and methods 

Datasets 

In 2018, Jacob Witten and Zack Witten introduced the GRAMPA 
dataset [39], which remains one of the only AMP datasets contain-
ing minimum inhibitory concentration (MIC) values. Previous 
studies have utilized GRAMPA for developing machine learning 
and deep learning models in AMP design [18,19], such as AMP-
Space [18], CellFree-cnn [19], and CellFree-rnn [19], which we also 
employ here for comparative analysis on the AMPCliff prediction 
task. 

To evaluate model performance, we implemented both random 
split and our proposed AC split strategies. Traditional data splitting 
methods commonly applied in small molecule drug design − such 
as scaffold, stratified, time, and target splits − are adapted to fit 
specific data characteristics. For example, time split captures his-
torical trends in drug optimizati on [56], and scaffold split approx-
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imates these temporal patterns [57]. Target split [11] clusters data 
based on a shared target, fostering deep model learning of struc-
tural similarities, while avoiding out-of-distribution (OOD) issues 
associated with sequence diversity [11]. However, these methods 
are not ideally suited for antimicrobial peptide datasets like 
GRAMPA, which lacks time information and is highly heteroge-
neous, containing a variety of modified peptide structures absent 
in controlled corporate datasets. 

Given these limitations, we developed the AC split method, 
inspired by previous work by Deng et al. [44] and Dablander 
et al. [1], which facilitates model learning from non-AC (low-
frequency) to AC (high-frequency) peptides. In our implementa-
tion, AMPCliff pairs are progressively introduced to the training 
set by adjusting the fold-change threshold from 2 to 5, incremen-
tally adding high-frequency data to evaluate model adaptability to 
AMPCliff predictions. 

For comprehensive assessment, we employed both the AC split 
and a 5-fold stratified random split. 

Evaluation metrics 

Model evaluation procedure can be substantially influenced by 
the choices of statistical analysis, metrics, and task settings [44]. 
We selected Spearman’s rank correlation coefficient (SCC) and 
Recall as our primary evaluation metrics, prioritizing the relative 
ranking accuracy of predictions over their absolute label −log 
(MIC) values. Additional metrics include R squared (R2), Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), and Pearson’s 
correlation coefficient (PCC). Their detailed definitions may be 
found in Supplementary Material S1. 

Model training 

This study used default hyperparameter values for ML models. 
For DL models, we followed hyperparameter values reported in 
the literature. Specifically, following [18], we configured the LSTM 
with a hidden dimension of 128, embedding dimension of 50, 
dropout of 0.7, 2 layers, and unidirectional mode. For CNN and 
RNN models, we set the CNN kernel size to 5, with 64 output chan-
nels across 2 layers, followed by 3 fully connected layers [19]. The 
RNN (LSTM) model used a hidden dimension of 500 and was fol-
lowed by a single fully connected layer. Following [43], we set 
the fingerprint radius to 3 and bit count to 2048, with a CNN of ker-
nel size 2, 256 output channels across 3 layers, and a final fully 
connected layer. Detailed configurations are in Supplementary 
Table S1. We retained the default hyperparameters for language 
models as outlined in Supplementary Table S5. 

All experiments with neural network and language models 
were conducted on a single NVIDIA V100 GPU for 100 epochs 
and 50 epochs, respectively. The validation loss guided the selec-
tion of the best model during training for final testing. Batch size 
was set to 4, as smaller batches facilitate learning of the refined, 
localized features characteristic of AC, while larger batches typi-
cally aid in capturing broader and general features. To ensure a fair 
comparison, we saved all raw predictions, and evaluation metrics 
were consistently computed using identical code. 

Statistical analysis 

To assess statistically significant differences among models and 
representations, we employed methods consistent with prior work 
(Deng et al., 2023), and conducted comprehensive statistical anal-
yses on prediction performance (Supplementary Tables 9–11). 
Specifically, we utilized the non-parametric Wilcoxon rank-sum 
test to account for non-normal data distributions. A significance 
threshold of two-sided p < 0.05 was applied throughout. 
13
Code and data availability 

Resources and benchmark code are available at https://www. 
healthinformaticslab.org/supp/ or https://github.com/Kewei2023/ 
AMPCliff. 
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