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Abstract

For a federated learning model to perform well,
it is crucial to have a diverse and representative
dataset. However, the data contributors may only
be concerned with the performance on a specific
subset of the population, which may not reflect
the diversity of the wider population. This cre-
ates a tension between the principal (the FL plat-
form designer) who cares about global perfor-
mance and the agents (the data collectors) who
care about local performance. In this work, we
formulate this tension as a game between the
principal and multiple agents, and focus on the
linear experiment design problem to formally
study their interaction. We show that the statisti-
cal criterion used to quantify the diversity of the
data, as well as the choice of the federated learn-
ing algorithm used, has a significant effect on the
resulting equilibrium. We leverage this to design
simple optimal federated learning mechanisms
that encourage data collectors to contribute data
representative of the global population, thereby
maximizing global performance.

1. Introduction

Collaborative learning can be viewed as a transactional pro-
cess where participants collectively receive a reduction in
uncertainty in return for sharing their data (Karimireddy
et al., 2022). However, participants may be concerned with
uncertainty in different sub-populations. Thus a reduction
in uncertainty on the global population may not necessarily
translate to an improvement for every participant.

Consider a collaborative learning project between multi-
ple countries to study rare cancers (Moncada-Torres et al.,
2020; Geleijnse et al., 2020). Different countries operate
cancer registries with the goal of collecting comprehen-
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sive data on rare cancer cases within their jurisdictions.
These registries collaborate to pool their data and resources.
However, each registry has the responsibility to prioritize
the benefit to their own population while minimizing the
risks associated with data collection and sharing. Thus, the
global performance needs to be balanced with the specific
needs and goals of each registry.

The need to balance local and global interests becomes
even more critical when collecting data from marginal-
ized communities. Issues of equity and autonomy un-
derpin indigenous critiques of genetic research and the
sharing of genomic data (Hudson et al., 2020; Chediak,
2020). Such communities have historically faced exploita-
tion and mis/under-representation in research studies (Gra-
ham, 2015; Albain et al., 2009; Nana-Sinkam et al., 2021).
Therefore, it is essential to carefully consider the costs in-
curred by and benefits provided to them individually.

We formalize this as a game between a principal (the plat-
form designer), and multiple agents (participants) whose
needs and agency should be respected—see Fig. 1. To-
gether, they wish to determine a statistical model between
responses and variables. Each agent has access to a set
of experiment conditions relevant to specific demographic
groups within their population. They autonomously decide
how many (as well as which) samples to collect and share.
The platform then employs federated learning to train a
model on the collective data, which is then shared back to
the agents. Notably, each agent wishes to minimize the data
costs incurred while maximizing uncertainity reduction.

This can be seen as a "multi-agent" version of the classic
optimal experiment design problem (Wald, 1943; Kiefer,
1958; Kiefer & Wolfowitz, 1960; Karlin & Studden, 1966;
Atwood, 1969; Fedorov & Malyutov, 1972), where the fi-
nal allocation of samples among experiment conditions re-
sults from decisions made by multiple agents. Unlike clas-
sical theories, we introduce game-theoretic subtleties since
each agent is primarily concerned with the validity of the
model for its specific demographic group. Hence, we must
account for the strategic behaviors that emerge due to both
data diversity and cost heterogeneity. In this context, two
fundamental questions arise.
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mechanism incentivizing participation. (2) Each agent

strategically selects how many and which of their available experiment conditions to collect and share. (3) The agents engage in
collaborative learning with the principal, who utilizes the collected data points to train a statistical model. (4) The principal applies the
mechanism to the trained model for each agent and subsequently distributes the models to them.

First is efficiency—it is crucial to allocate resources such as
time, money, and materials in the most efficient and infor-
mative manner. This was the main concern of classic theory
of optimal experiment design which proposed different op-
timality (efficiency) criterion. In our version, we ask:

When is it in the agents’ best interest to follow the globally
efficient optimal experiment design?

Second is maximizing the amount of information collected.
Conventional data sharing mechanisms like federated learn-
ing face the critical issue of free-riding (Baumol, 2004;
Choi & Robertson, 2019; Sarikaya & Ercetin, 2019; Lin
et al., 2019; Ding et al., 2020; Sim et al., 2020; Xu et al.,
2021), where self-interested agents may contribute mini-
mal or no data but still benefit from an improved model.
The principal may instead want to maximize the informa-
tion generated by data contributions from all agents (with-
out regards to efficiency), raising the following challenge:

Can the principal design mechanisms to incentivize
strategic agents to contribute their fair share of data,
thereby maximizing the information produced?

The quality and diversity of data play a vital role in this
context. In this study, we address the aforementioned chal-
lenges by specifically focusing on linear experiment design
(Pukelsheim, 2006; Silvey, 2013), where diversity is char-
acterized by the Fisher information matrix and quality is
assessed using optimality criteria.

2. Principal-agents experiment design

This section introduces the problem of principal-agents ex-
periment design which studies the game-theoretic notions
and properties of experiment designs in a principal-agents
framework (Laffont & Martimort, 2009). Our framework is
summarized in Algorithm 1 with detailed discussion below.

We model the interaction between multiple agents and a
coordinating principal in linear experiment design. Con-
sider K self-interested agents. Each agent k has a local
design space X, = {z;}icq, C R? and the global de-
sign space is then X = Upcixj&r = {21,...,2,}. For

ease of presentation, assume that the indices are sorted such
that G1, ..., Gk form consecutive partitions of [n]. Then,
w = (wg,,-..,Wa,) is the global design measure with
each agent k controlling wg,. The data contribution of
agent k can thus be summarized by wg, .

Mechanism definition. The principal is given access to the
entire data contributions i.e. the global design measure w.
Then the principal sets up a mechanism to assign a subset
of this contribution to each agent k. Thus, we can define a
mechanism M as follows:

M= (MP R = R )iy st MP(w) < w.

The inequality M) (w) < w applies element-wise for all
i € [n]. Thus, a mechanism represents a re-allocation of
the design measure (and hence data) to each of the clients.
In Appendix B, we discuss implementation of mechanisms.

Agent utility. Each agent wants to minimize uncertainty
(on their design space) while also minimizing the costs of
data collection and sharing. While Eq. (9) defined the in-
formation matrix for the global design space X, agent k
only cares about X}, which is of rank 7 (that may be less
than d). We thus need to consider a local information ma-
trix (Sibson, 1974; Silvey, 1978) representing uncertainty
along direction only in X}:

M® (1) := AP M(w) AP . 1)

Here, A*) ¢ R"*"* such that AR AR T 5 projection
matrix onto span(Xj). The value of a design strategy w
for agent k on X}, using criterion f(*)(.) can then be writ-

ten as f(*) (M(k)(w)_l) . Here, f*) is an optimality cri-
terion (Pukelsheim, 2006; Silvey, 2013) that depends on k
since it may implicitly depend on the design space X. In

particular, the G-criterion takes a max over the design space
X, and the V-criterion takes an average.

Next, note that agent & only has control over w; for i € G,
i.e. it can only decide the sampling strategy over Xj. For
convenience, define wg, = (w;)icq,. Suppose that the
cost of collecting one data point is ¢(*). This can represent
both the actual cost incurred in collecting and storing the



data as well as potential privacy risks associated with stor-
ing and sharing it. Then, the total cost incurred by agent
kis ¢®) 3., w;. Putting all of this together, the utility
enjoyed by client £ under mechanism M can be written as

(u(k) o M(’“)) (w)
= (<M(k) (M(k)(w)))il) Y wie )

Here, u(¥) 0 M (¥) represents the composition of the agent’s
utility function u(¥), which depends solely on the agent’s
personal valuation, and the mechanism M (%) implemented
by the principal.

Finally, note that the cost incurred by agent k is com-
pletely independent of wge = (wj);¢c,. However, the
local information matrix M(*) () depends on the whole w
and X. In particular, if the complementary design space
xj € X\ Xy is similar to Xy and w; > 0, then the local
information matrix M) (w) as well as fj, (M(k)(w)fl)
will be larger. Thus, wge represents free outside informa-
tion given to agent k, and importantly it affects the optimal
choice of wg,,.

Remark 2.1 (Accuracy shaping). The mechanism Eq. 1
can be understood as shaping the accuracy (Karimireddy
et al., 2022) of the model that is sent to each agent. For
example, the standard federate learning mechanism Mgﬁ
would distribute the global model to all the agents. This
corresponds to setting Mgﬂ (w) = w for all agents. To in-
centivize agents to contribute high-quality data, the mech-
anism may adjust the accuracy of the model depending on
the data quality generated by each agent.

Strategic behavior of agents. In principal-agents experi-
ment design problems, theoretically interesting and practi-
cally relevant scenario arises for strategic agents, who make
rational decisions on the design wg, depending on the ac-
tions of other agents, knowing the design spaces X; and the
costs cU) for all j € [K]. We characterize the behaviors of
strategic agents through the following definition.
Definition 2.2 (Strategic responses). We say the designs
w* = (WG, W, -+, W&, ) 1s a strategic response to the
mechanism M = (MM, M) MK)) if:
* Individual Rationality: For any k € [k], if >, wi >
0 then
(u®) o MB) () > v} 3)
(k)

where v, is the maximum possible utility agent k£ can
achieve if she opts out of the collaborated learning and
trains a model using her own data, i.e.

(k) ._ (k) (AT g T AR
vy = rg}lcai(f ((Zieka% (AR Tz AR) )

— P Y ica, Wi 4)
e Pure Nash Equilibrium: (wg, ,wg,,. .., wg, ) is the
pure Nash equilibrium of the game defined by concave

utilities (u® o M*®)); ¢k and actions (wg, ke (k. i.e.
it satisfies V k € [K],V wg,, € Rf"‘l

(u(k) o/\/l(k))(w*) > (u(k) oM(’ﬂ)(ka,wgz).
Here,

(wgl,..

concatenation  i.e.

S WG )-

(wa,, weye ) denotes

* *
. 7ka_17ka7ka+1’ cen

The first condition indicates that an agent will never choose
an action that results in a worse outcome than v*, the status
quo that agent k£ can obtain no matter she takes part in the
collaboration learning or not. The second condition asserts
that an agent can not obtain higher utility by unilaterally
changing her action. Thus, the strategic response w* repre-
sents a stable fixed point to the game from which no agent
has an incentive to deviate from their chosen action.

3. Efficiency under federated learning

The first question of interest about principal-agents experi-
ment design is the efficiency of the mechanism. By clas-
sic optimal experiment design, a design measure w =
(way, ..., wa,) is efficient for optimality criterion f if
w is proportional to the optimal design measure 7 =
argmax f(M(7)71), s.t. 7 € A(X).

In this section, we explore the conditions under which the
standard federated learning mechanism which always sets
ME (w) = wis efficient. We establish that the D-criterion
is the only criterion among common criteria for which the
federated learning mechanism is efficient.

Definition 3.1 (Incentive-compatibly efficient). A mecha-
nism M is incentive-compatibly efficient for a criterion f,
if for any choice of design spaces (X})re|x], all strategic
responses w* are efficient designs for criterion f that sat-
isfy w* oc 7.

Proposition 3.2. Suppose ¢V = ... = ¢(F) = ¢ € R,.
Then, among all optimality criteria, the federated learn-
ing mechanism (MEQ (w) = w) is efficient only for D-
criterion. More precisely,

1. When all agents k use criterion f (k), the agent’s strate-
gic response is the design given by (% TG, kelK])
where T € argmax,ea(x) fp(M(m) ™).

2. For every other standard criteria (E, A, V, or G), there
exists a design space X such that federated learning
mechanism is not efficient.

When each agent incurs the same marginal cost for sam-
pling data, differences in efficiency can be attributed to the
agents’ data generation capacities rather than variations in
data acquisition costs. This setup allows for a fair compar-
ison among agents and serves as the natural framework for
studying efficiency. Our result implies that D-criterion is
the only criterion that aligns the interest of each agent with
the statistical efficiency of the multi-agent system. There-
fore, it is the most suitable for experiment design problems



involving multiple agents.

Remark 3.3 (Efficiency of D-optimality). That D-
optimality uniquely satisfies incentive-compatible effi-
ciency is remarkable. Numerous reviews and textbooks
compare and contrast the different criteria but fail to iden-
tify a single-best one (Chaloner & Verdinelli, 1995; Fe-
dorov & Hackl, 1997; Pukelsheim, 2006; Atkinson et al.,
2007; Goos & Jones, 2011). In fact, the popularity of D-
optimality stemmed from its perceived equivalence to G-
optimality, while being easier to optimization. The multi-
agent perspective provides a novel lens with which to distin-
guish them and recommend D-criterion over the rest. How-
ever, a note of caution is warranted—these results hold with
our specific linear cost model. With different cost functions,
it is possible that the conclusions differ.

The above results leaves the question of efficiency under
heterogeneous costs. The standard federated learning does
not suffice anymore, and we instead require non-trivial
mechanisms. We deferred this discussion to Appendix G.

4. Information maximization

This section addresses the second question posed in the in-
troduction. Following Proposition 3.2, we assume that ev-
ery agent k uses the D-criterion f Jgk). It is worth noting that
this choice is compatible with our information-theoretic
considerations as maximizing the D-criterion is equivalent
to minimizing the differential entropy of 6.

To achieve information maximization, we need to first un-
derstand what is the maximum information that could be
possibly generated by strategic agents. We have the follow-
ing result on the maximum achievable information.

Proposition 4.1. For any mechanism M and any strate-
gic response W under M, we have logdet M(w) <
log det M(wmax ), where we define wyayx as

arg max log det M(w), s.t. u'®) (w) > oM ()
weRY

The above proposition states that the maximum achievable
information is attained when the data collection is allo-
cated according to wy,,x. However, abundant evidence
in Appendix E show that free-riding (Baumol, 2004; Choi
& Robertson, 2019; Sarikaya & Ercetin, 2019; Lin et al.,
2019; Ding et al., 2020; Sim et al., 2020; Xu et al., 2021)
will occur under the federated learning mechanism.

Motivated by these results,
(M&’f&x)kem to incentive agents to contribute wmax

we design mechanisms

amount of data. Let Mﬁ,’f&x simply scale the design by a
constant v, < 1

Mfr]fzzx(w) = YEW, (6)

O]

for ;' := exp (ﬁ Y icc, (Wmaxi — wz)Jr) .

Here, (z)+ := max{z,0}. In this mechanism, agents are

penalized for contributing less data than required for in-
formation maximization (wyax). The k-th agent’s utility

(u® o ME@X) (w) is then given by
— log det ((A(k))TM(w)TA(k)) —c®) Dica, Wi

— 2icc, (Wmax,i — wi) -
We have the following proposition that establishes informa-
tion maximization as the unique strategic response of the
information mechanism M ..

Proposition 4.2 (Information maximization). The informa-
tion maximization design (Wmax,c, )ke(x] Eq. (5) is the
unique startegic response of the agents to the information
mechanism M .« in Eq. (6).

Proposition 4.2 establishes that information maximization
design, represented by the (wmax,a; )ke[k] is the unique
strategic response to the mechanism M. This thus
addresses the second question posed in the introduction
and offers a tentative resolution for the federated learning
community to maximizes data creation from multiple au-
tonomous parties (Graham, 2015; Albain et al., 2009; Hud-
son et al., 2020; Chediak, 2020; Zhan et al., 2021; Shi
et al., 2021), thereby generating positive societal impact.
We discuss fairness and price of anarchy (Koutsoupias &
Papadimitriou, 1999) of this mechanism in Appendix D.

5. Conclusion

In this paper, we formulated the problem of principal-
agents experiment design to capture the game theoretic
tensions between the principal and strategic agents in col-
laborative learning. We showed that under standard feder-
ated learning, strategic agents will adopt the optimal design
strategy if and only if the D-optimality criterion is used.
Additionally, we have highlighted that strategic agents of-
ten exhibit free-riding behavior, driven by factors such as
data diversity and cost heterogeneity. This observation
has motivated us to develop a mechanism that incentivizes
strategic agents to maximize the overall information. The
proposed mechanism has significant societal implications
as it promotes autonomy and equity in clinical trials, col-
laborative cancer research, etc.

Our results come with some limitations, while opening new
avenues for future research. Firstly, our framework does
not analyze concrete algorithms with realistic considera-
tions such as unknown design spaces Xj,. Overcoming this
is an important direction of future work. Furthermore, it
would be intriguing to generalize our results to mixed ef-
fect models or nonlinear models, which would broaden the
scope of our analysis and uncover additional nuances in the
principal-agents experiment design problem. Finally, our
theoretical analysis uses a somewhat stylized model for the
behavior of agents. Translating insights gained in our work
to the real world is challenging but necessary.
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A. Backgrounds on experiment design

Many scientific problems involve determining the underlying parameter 6 in relationships of type
y=0"z+e, @)

where 2 € R? represents certain experiment condition on which the data is collected, and e is standard Gaussian noise
i.e. zero meaned and unit variance. Given a set of observations (y;, z;);=1,... m, Ordinary Least Squares (OLS) yields the
estimator = (X T X)TX 7Y where X = (21, ,2,,) " € R™*?andY = (y1,...,Ym)" € R™ is the experiments/data
and responses. The variability of 6 is governed by the Fisher information matrix Z(X;6) = Y ." | x;x; . Specifically, the
expected error on a prediction for x, conditioned on X is

Ex; X) =0Tz —E(ylz))* =2 Tlz. (8)

Thus, the problem of optimal experiment design is to select the training data X which would “maximize” the information
matrix Z, thereby minimizing uncertainty. More precisely, given a design space X C R? containing all possible data points
which could be collected, the designer makes choice of a sampling strategy 7 (called design measure), which is a measures
over X. For technical simplicity, we assume that the design space is finite with X = {x1, ..., z,}. The information matrix
is defined as a function of 7:

M(r) := Yo, miwiw] . ©
From (8), it can be seen that M(7)~! is a matrix representing uncertainty along different directions under a sampling

strategy 7. To reduce this to a single scalar that can serve as an objective, it is convenient using an optimality criterion f'
which is a function from the set of symmetric matrices in R¥*?¢ — R:

max f(M(r) ™), s.t. m € A(X). (10)
Some popular choices of optimality criterion are as follows:
e E-criterion: fg(M~1) = —||[M 71, e D-criterion: fp(M ') = logdet M
* A-criterion: fa(M™1) = —tr (M) * G-criterion: fg(M ™) = —max,ecx (2" M 'z)

e V-criterion: fy (M~!) = —|—)1(‘ Ypen (@TM1z).

Notations For any vector w € R™ and index set G C [n], let wg € RIE| denote the vector formed by the coordinates of
w in the index set G (preserving the order), and let G¢ denote the complement of G. We use dF'(u, v) to denote the Gateaux
derivative of F" at u in the direction v. Let R% denote the nonnegative orthantin R%, i.e. RY = {z € R® : ; > 0,Vi € [d]}.
Denote (A, B) := tr[AT B] for A, B € R4*4. We will use supp(-) to denote support of a distribution or vector, i.e., the
set consisting of all indices corresponding to nonzero entries. Let S‘i denote the set of symmetric positive semidefinite
matrices in R?*?, matrix Loewner order < is a partial ordering on S, such that A < B iff B — A € S¢. Furthermore,
A < Bif B — Ais positive definite. We overload this notation and say = < y for two vectors =,y € R% iff 2; < y; for all
i =1,...,d. Let e; denote the one-hot vector (whose dimension will be specified in the context) with the i-th coordinate

L,

being 1 and the rest coordinate being zero. We also define 1(A) = . Finally, M represents the Moore-Penrose

5 -

inverse of matrix M.
B. Framework of principal-agents experiment design

Implementing the mechanism. The mechanism needs to return a 6% to agent k using data M *) (w). This is equivalent
to requiring that (%) satisfy the following

60 ~ N (0, MMP () (11)
Thus, ) needs to be an unbiased estimator of the ground truth with covariance M (M *) (w)) -

A straightforward method of achieving this would be to run K parallel federated learning algorithms. Each of these would
train a model (%) for agent k using only a subset of the data points as dictated by M *) (w).

'W.lo.g. we assume f(M ') = —co when M is singular, and so restrict ourselves to non-singular M (w).
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Algorithm 1 Principal-Agents Collaborative Experiment Design
1: The principal selects and publishes a mechanism M satisfying

M= (M® ‘RY — Rf)ke[m satisfying M (w) < w.

2: Each agent k decides whether to join the collaborative learning depending on Eq. (3,4).

K|

3: If joining, agent k chooses a design wg, € R‘f which maximizes her utility:

(u®) o MB)) (w) := f®) ((MW(M(H (w)))—l) Sl
If the agent is strategic, then w¢, will correspond to the Nash equilibrium

(u(k) o./\/l(k))(w*) > (u(k) o/\/l(k))(wgk,wgi), Yweg, € R‘f"" .

4: Forall i € G}, she collects w; independent samples from x;, incurring a cost ¢(*) per unit.

5: The agents commit all the collected data to a collaborative learning procedure coordinated by the principal. Based on
this aggregated data, the principal computes the OLS estimator 0.

6: Then, to each agent k, the principal sends back a possibly degraded 6*) in accordance with the published M (%)
Eq. (11).

Alternatively, the principal could present a degraded model by adding noise. After a global model 0 is trained using
federated learning on the combined data w, we add carefully tuned noise to determine 6(%) as:

0w ~ N(é L M(M® ()" = M(w)_1> .

While perhaps conceptually simpler, computing M(M(’“) (w))f1 may be equally cumbersome as running K parallel
federated learning algorithms.

Remark B.1 (Computational burden). While implementing the full mechanism may seem computationally burdensome,
note that we only incur this burden if M®) (w) # w. As we will see in the next sections, under equilibrium conditions
we will always expect to see M*) (w) = w and so no additional computation is required. The mechanism is merely a
deterrent.

Finally, our framework assumes that an agent only has access to the final output of the mechanism, but not to any interme-
diaries. This is important since if we are learning ¢ using FL, the agents may utilize the intermediary estimates (which may
be of better quality), instead of #*). Here, we can appeal to security and cryptographic solutions.

Remark B.2 (Hiding intermediaries). The entire mechanism can be implemented in an encrypted/obfuscated soft-
ware (Barak, 2016), or in a trusted execution environment (TEE) (Sabt et al., 2015). These solutions ensure that only
the final output of the mechanism can be accessed and all intermediary computations remain hidden. Thus, the agents are
prevented from cheating and follow our mechanism.

Remark B.3 (Implementing via early stopping). The information maximizing mechanism (Eq. 6) is quite simple: it scales
the design measure by a scalar v, € [0,1]. This corresponds to randomly sub-sampling a ~y, fraction of the data to
train O, Instead of implementing this via K parallel sub-samplings and federated learning runs, a more convenient
approximation may be achieved using early stopping. Intuitively, early stopping also effectively subsamples data. During
training of the global model 0 for a total of T rounds, the model at the ~y;, T round is returned to agent k as its 6k,

C. Related works

In recent years, Federated Learning (FL) (Konecny et al., 2016; McMahan et al., 2017; Kim et al., 2019; Kairouz et al.,
2021; Li et al., 2020; Mancini, 2021) has become an emerging machine learning paradigm that allows multiple distributed
clients to train a central statistical model under the orchestration of a principal. The wide application raises several ethical
concerns such as free-riding and fairness (Baumol, 2004; Fraboni et al., 2021; Mohri et al., 2019; Huang et al., 2020;
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Shi et al., 2021). To deal with these concerns, a number of works (Richardson et al., 2020; Sarikaya & Ercetin, 2019; Lin
etal., 2019; Fraboni et al., 2021; Ding et al., 2020; Zhang et al., 2022) investigate free-rider attacks and develop methods for
detection. Another line of works (Ghorbani & Zou, 2019; Jia et al., 2019; Wang et al., 2020) designs metrics for quantifying
the contribution of each agent. More related are the recent works that apply the theory of contracts and incentives (Smith,
2004; Laffont & Martimort, 2009; Bolton & Dewatripont, 2004) to FL. Among them, (Tian et al., 2021) proposed a
mechanism to achieve improved generalization accuracy by eliciting the private type information; (Sim et al., 2020; Xu
etal., 2021) propose mechanisms based on notions from the cooperative game theory literature to incentivize agents through
the model quality; (Karimireddy et al., 2022) introduces mechanisms based on accuracy-shaping to maximize the number
of data points generated by each agent.

Our work is different from the above works in that (i) we study an autonomous data generation process in which each agent
can strategically choose what experiment condition to collect data from; (ii) we explicitly model the utility and costs of self-
interested agents. These challenges motivate us to formulate our problem based on the statistical problem of experiment
design (Pukelsheim, 2006; Silvey, 2013). There is a long line of works (Smith, 1918; Wald, 1943; Kiefer, 1958; Eccleston
& Hedayat, 1974; Kiefer, 1975; Cheng, 1978) studying optimally in linear experiment design. Among them, D-criterion
is the most widely used optimality criteria (Shah et al., 1989) and our work is most relevant to (Kiefer & Wolfowitz, 1960;
Sibson, 1974). To our knowledge, there is no existing study of multi-agent systems of experiment design.

D. Further discussions of M.
D.1. Fairness

The Mnax mechanism ensures that the principal obtains the maximum possible information while preventing any agent
from free-riding. Meanwhile, it is also crucial to examine notions of fairness to ensure that none of the participating
agents are exploited. In order to address this, we analyze the utility of agents under the mechanism M, and present the
following result.

Corollary D.1 (Incentive Compatibility). Under mechanism M.y, the strategic response wpy.x satisfies
(u® 0 M) (winax) = o) for all k € [K]

The above corollary is straightforward from the optimization problem in Eq. (5). Nevertheless, it carries two important
implications. First, this corollary implies that the utility obtained by agent k through strategic participation in the collabo-

rative learning, given by (u(k) ) Mfﬂx) (Wimax), is equal to the maximum utility Uik) that the agent can obtain by training

individually. Therefore, all participating agents benefit equally from the collaborative learning process. In fact, the surplus
generated by agents is directed towards enhancing the value of the statistical model, ultimately benefiting the social welfare.
This highlights the equitable distribution of benefits and the collective progress achieved through collaboration. Secondly,
Corollary D.1 implies that the utility of agent k£ under the mechanism depends solely on the resources and capacities of
agent k itself, represented by X}, A% £(*) (%) "and is independent of other agents. Consequently, any improvements or
innovations made by agent k to enhance experimental conditions or reduce marginal costs will be fully exploited within
the mechanism. This incentivizes participating agents to enhance their own capacities and resources, promoting an en-
vironment of continuous improvement. Thus, the mechanism M.y exhibits incentive compatibility, fostering agents’
motivation to optimize their contributions.

The issue of fairness in the principal-agent experiment design problem is particularly relevant in the exchangeable data
setting, where all data points have the same value (Karimireddy et al., 2022). In this scenario, there are no inherent
distinctions between the resources and targets of different agents, therefore demanding the mechanism to avoid introducing
extrinsic unfairness among the agents. Fortunately, our proposed mechanism satisfies a monotonic notion of fairness.

Proposition D.2 (Fairness under exchangeable data regime). In the exchangeable data regime (i.e., X;’s are the same), the
information maximization mechanism M.y is fair in the sense that any strategic response W = (WG, , WGy, - - - s WGy )
satisfies that for all k € [K]

k k - K K - - -
(u® 0 MEL) (@) = (v 0 MEL) (@) = el = Il |l
This proposition states that in the exchangeable data regime, an agent must contribute more data in order to achieve a

higher utility, which aligns with existing notions of fairness in the federated learning literature (Yu et al., 2020; Donahue
& Kleinberg, 2021; 2023). When the data points are not exchangeable, fairness becomes more challenging to define due to
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the inherent heterogeneity of learning targets and resources. We leave the discussions regarding fairness in such scenarios
the subject of future research. We leave the relevant discussions to future works.
D.2. Price of Anarchy

In this section we discuss price of anarchy (Koutsoupias & Papadimitriou, 1999) of the information maximization mecha-
nism M ..

Definition D.3 (Price of Anarchy). We define the social good as

K
SG(w) = Z (u(k) o MEIQX) (w).
k=1
and price of anarchy by the ratio between the maximal social good and the social good at strategic response, i.e.

. SG(w)
POA = max SG (woma)

Price of anarchy measures the inefficiency and suboptimality resulting from strategic behaviors in principal-agents experi-
ment design. The numerator is the optimal ’centralized’ social good that can be achieved from the strategy spaces, and the
denominator captures the social welfare obtained under selfish behaviors of each agent. To characterize price of anarchy
of M ,.x, we introduce the following concept.

Definition D.4 (Benefit from Collaboration). Define the Benefit from Collaboration of client k as

n -1
A®) = max —logdet | (A®)T <Z7rixix—r> AW
i=1

reA(n)) ‘

- logdet | (A®)HT iy | AR |
ﬂerg?ék) ogde (( ) Z XX,

i€Gy

Intuitively, A(¥) describes the maximum achievable increase of information for agent & by joining the collaborative learn-
ing. We will show that the price of anarchy is bounded by the benefit from collaboration.

Proposition D.5. Define ko = arg mingc g1 ¢®). then POA can be upper bounded by
€[K]
o) K
SE AW N K (rk log <A () o0)) - [, H1> »
i (09 + rilog s — 1) i (00 + rilog s — )

i, AY
DOFA (9(k)+7"k log %—m
from data diversity. It captures the extent to which each agent, denoted by k, benefits from a more diverse collection of
data points contributed by other agents, which has the potential to improve the low-rank model of agent k. The second

(k) oK o .
ZkK=1 (rk log %675:01)’“_(C(k)_c(ko)),meax,Gk 1

K (9("">+rk log ﬁ—rk)
shared representation. It accounts for the potential exploitation of lower costs by the system in a centralized setting and
the benefits of utilizing data collected from design spaces of rank r; to improve the model across all rank 7 spaces
. S (= (™ =c®0)) lwmax, ¢y [11)
for k € [K]. Notice that the =
S (0041 log ks — i)
mitigated by the information maximization mechanism M, .

To interpret the bound, we notice that the first term,

) , represents the price of anarchy resulting

term, , captures the price of anarchy resulting from cost heterogeneity and

is a negative term that demonstrates the cost heterogeneity

E. Examples

In this section, we present several illustrative examples that highlight the strategic behaviors of self-interested agents in
different scenarios.
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E.1. Free-riding behavior

Although the federated learning mechanism M .4 achieves efficiency in the multi-agent system, it can lead to unfair Nash
equilibria in which some agents contribute much fewer data than others. This phenomenon, known as free-riding, is highly
undesirable in federated learning (Baumol, 2004; Choi & Robertson, 2019; Sarikaya & Ercetin, 2019; Lin et al., 2019;
Ding et al., 2020; Sim et al., 2020; Xu et al., 2021).
The following proposition shows that, in general, wy,,x cannot be achieved under the common federated learning mecha-
nism M4, as there exists at least one agent who can achieve higher utility by contributing fewer samples.
Proposition E.1 (Partial free-riding under federated learning mechanism). Unless Zszl 7 = d, Wmax IS ot the Nash
equilibrium of the utility functions ((u(k) o Mgd)
wmax,iavz' € Gk’ ’&71 < Wmax,i» die Gk‘r and
(k) N ( (7 (k) (k)
(“ © Mfed) ((ka ) wmava;)) > (“ © Mfed) (Wmax)

where (Wg, wmax,Gz) denotes the concatenation of Wg,, and Wimax,Gs -

))ke[K]. More precisely, there exists k € [K| and Wg, such that w; <

The condition Zszl rr = d implies that the covariates in X}, for each agent k form independent subspaces, and each
agent cannot benefit from the data from other agents. Thus, this condition is unlikely to be encountered in the study of
collaborative learning.

We illustrate two possible cases where completely free-riding by contributing no data is the optimal strategy for an agent.

Example E.2 (Free-riding due to data diversity). Consider a principal-agents experiment design problem where one agent
possesses a data set with high diversity, such that her design space covers the design space of the other agent. In such cases,
it can be demonstrated that the second agent will engage in free-riding behavior at pure Nash equilibrium. We establish the
following result to formalize this scenario.

Proposition E.3. Suppose agent k’s design space Xy, and agent ’s design space X, satisfy that {x;z] : i € G|} C
{ZieGk arir] o€ Rfk|7zi€Gk a; < 1, } then in any pure Nash equilibrium, wg, = 0.

Example E.4 (Free-riding due to cost heterogeneity). Consider another scenario where strategic agents with higher
marginal costs may engage in free-riding behavior. Intuitively, in equilibrium, an agent with a lower marginal cost ex-
periences a higher marginal increase in utility by sampling more data. If another agent possesses the same experimental
capacity but at a higher cost, she is expected to engage in free-riding at pure Nash equilibrium. More precisely, we have
the following result.

Proposition E.5. Suppose X}, = X, for some k # | and ¢®) < ¢, then in any pure Nash equilibrium, wg, = 0.

These examples highlight situations where agents have incentives to free-ride due to factors such as data diversity or cost
disparities. Such behaviors can undermine the fairness and collaboration within the multi-agent system. In the subsequent
sections, we delve into the analysis of free-riding behaviors and propose mechanisms to mitigate these issues.

E.2. Toy examples and simulations

Example E.6 (Free riding). Consider X = {z; = (1,0,0)",25 = (0,1,0)", 23 = (0,0,1) 7,24 = (0,1,1) T} and the
index sets given by G; = {i} for ¢ = 1,2,3,4, i.e. four agents each holding a rank-1 set of experiment condition. Now,
let’s assume that the cost for the agents are ¢(!) = c¢(2) = ) = ¢ < 0.5¢®).

In this setup, we can observe that the Nash equilibrium for the standard federated learning mechanism is achieved when
W] = Wg = W3 = % and wy = 0. However, in this Nash equilibrium, agent x4 contributes nothing to the collaborative
learning process while benefiting from the information provided by the second and the third agents. This behavior, where
agents exploit the contributions of others without contributing themselves, is known as free riding in federated learning.
Example E.7 (Selfish allocation). Consider u,v > 0 and X = {z;41 = u-e;41 € R" 29,40 = €1 € R” (i =
1,2,...,n—1), 29,41 = v-e; € R™} and the index sets given by G; = {2i+1,2i+2} (i =1,2,...,n—-1),G, = {2n+1}.
That is, there are n agents; the first n — 1 agents each holds a rank-2 set {u - €;11, e1 } where e; can be seen as a shared
feature and e; 11 can be seen as the unique feature; the n-th agent holds {v - e; }.

In this setup, each agent has a distinct feature and a shared feature. The first n — 1 agents may selfishly conduct experiments
only on their unique feature (u - e; 1) while hoping that other agents would experiment on the shared feature (e;). This
results in a selfish allocation of experiments, which can be highly inefficient.
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For example, when ¢(!) = ... = ¢(»=1) > (") /42 it is clear that wy; ;| = ﬁ (i=1,2,...,n),wz42 = 0 (i =
1,2,...,n — 1) is a Nash equilibrium for the standard federated learning mechanism. In this Nash equilibrium, the first
n — 1 agents only experiment on u - e;1 and in the end only the n-th agent samples from x2,4+1 = v - ;. However, when
v <L 1, z9;49 gives more information and lies in the support of optimal experiment design instead of xo,4;. This is an
example of selfish allocation in federated learning.

Example E.8 (Case study of substitutable, orthogonal, and complimentary data). Consider the following design space:
X = {z1 = (cosf,sinf) ", 2o = (1,0)",2z3 = (0,1)"}, and groups G; = 1 and G5 = 2,3. Notably, x5 and z3
are orthogonal, while the parameter 6 governs the degree of complementarity between x; and x5. We investigate the
strategic behaviors of the federated learning and information maximization mechanism by varying 6 and ¢(?) /c(!). By
direct computation, the strategic response is given by

07 6(2) < C(l)
0(711)7 ) 4+ ¢ (sin? 0 — cos?0) < 0
o 0(711)7 D — 0(2)(sin2 6 — cos?0) <0
o2 _ o
C(2>C(1)*(C(l))27(0<2))2(sin2 0—cos20)2° else
& @ < 1)
0, W+ @ (sin? 0 — cos? ) < 0
= 5 D — @ (sin?h — cos?0) < 0
M 4¢3 (sin? H—cos? ) 1
c(@c() —(c(1))2—(c(2))2(sin? f—cos? )2 else.
0(71”7 6(2) < C(l)
c(flzm W 4+ ¢ (sin? 0 — cos?0) < 0
Y=o, ) — @ (sin?h — cos? ) <0
(1) '(2)( in? 6 —cos? 0)
6(2)0(1)_0(6(1)32_(Sc(2))2(§i(:ls2 9—cosZ )2 else.

This leads to sub-optimal principal utility compared to the information maximization regime. We show the data contribution
w1, ws, w3 and the total information for varying ¢() and # in Figure 2 and Figure 3. These visualizations demonstrate
how cost heterogeneity and data diversity influence the strategic response across various mechanisms. Remarkably, the

information maximization strategy M.y yields improved data contribution and information while exhibiting a more
stable behavior.
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F. Omitted proofs

In this and the following sections, we will use supp(-) to denote support of a distribution or vector, i.e., the set consisting

of all indices corresponding to nonzero entries. Let S‘i denote the set of symmetric positive semidefinite matrices in R?*<,

matrix Loewner order < is a partial ordering on S% suchthat A < Biff B— A € Si. Furthermore, A < Bif B — Ais

positive definite. We overload this notation and say 2 < % for two vectors x,y € R% iff 2; < y; foralli =1,....d. Lete;

denote the one-hot vector (whose dimension will be specified in the context) with the i-th coordinate being 1 and the rest

coordinate being zero. We also define 1(A) = é’ AA.
B -

F.1. Proof of Proposition 3.2

Proof. We first show that when c¢(t) = ...c(5) = ¢ @ = % - is a pure Nash equilibrium. Consider the following
function of wg,

up(we, ) = —logdet ((A(k))TM ((we, . (@) A(k)> —c Y w;

1€Gy
Indeed, applying Lemma H.1 and Theorem H.5,
diiy, (@ w) ) — ;
i (Wa,, Awg,) = Z Aw;(z;z] , M(w)~!) —¢- Z Aw;
i€Gy i€Gy
< Aw;
(- ) b
= O, VA’ka

By concavity of 4y (wg, ), Wa, is the maximizer of @y
To show IR, define

-1
we;, = arg ?ulgf f(Dk) (Z w; A(k) T; xiTA(k)> —c Z Wy,

1€Gg 1€Gy
we have

(u® o ME)) (@) = an(w,)
= —logdet ((A(k))TM ((wgk,agi))’l A(k)) —c- Z wy

1€Gy
-1
> —logdet ( A(k) Z w; T, A(k)> —c- Z wy
1€Gy 1€Gy

where the first inequality follows from w¢, € argmax uy; the second inequality comes from Lemma H.2.

Next, we show the uniqueness. Suppose w is a Nash equilibrium of the tuple of utility functions ((u(k) o Mfcd) ) Ke[K]" It
follows from first-order optimality that for any Awg, such that supp(Awg, ) C supp(wg, )
0= dﬂk(@gk , Aka)

:ZAwlxxz, (w) Zsz

1€Gg i€Gy,

= Z ((mix;,M({E)_1> —¢) - Aw;.

1€Gy
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Therefore (z;z; , M(w)~1) = c holds for all i € supp(w). Notice that
i=1
= CZ @l
i=1

We thus have > | @; = <, and as a result, (2,2, , M(@/||wl||;)~") = d holds for all i € supp(w). Furthermore, for any

i ¢ supp(w) first-order optimality implies (z;z, , M(w/||w||;)~*) < d. Applying Theorem H.5, we know that w/||w||,
is a D-optimal design. This confirms that any strategic response follows the D-optimal design measure.

Finally, we show that federated learning is not efficient in any other criteria.
V-criterion.

Consider principal-agents experiment design with the accuracy function given by
f(k)(w) =-E, pm [xTM(w)_lx] .
where p(*) represents the distribution of client k’s data and is supported on G,.

In this case, the utility function under federated learning mechanism is given by
(u(k) o./\/lég) (w) = —Eppr [a:TM(w)_lx] —c Z w;.
1€Gy
The Nash equilibrium w* € R} thus gives the following system:
=¢, [€supp(w*)
<e¢, [ ¢supp(w”)
Consider the efficient allocation over the population p (supp(p) C &)

E,pw [(za ", M(w*) "'z M(w*) )] { , V1€ G,k € [K]. (12)

T = arg Wergi(r[ln])Esz [xTM(W)_lx} .

The optimal design measure requires the following system:

= (Eznp [a:xT] ,M(7*)71), 1 € supp(n*)
< (Eonp [w2 7], M(7%)7Y), 1 ¢ supp(n™)
Therefore, if the unique pure Nash equilibrium follows the optimal design measure, then p, pV), ..., p¥) must satisfy the

linear system given by Eq. (12) and Eq. (13). The solution of this linear system is generally a subspace of A([n]) that has
Zero measure.

Eop [(xz ", M(n*) " 2z M(n*) )] { , Vi € [n]. (13)

As a result, there exists a design measure such that federated learning mechanism is not efficient.
G-criterion and E-criterion.

Consider the following design space X = {(1,0,0)",(0,1,0)",(0,0,1) "} and let there be two agents with index sets
G1 = {1}, G2 = {2,3}. Tt is not to see that in this case,

1 (w) = 1) (w) = — Imax [/ M(w) 2] = — [(A®) TM(w) TA®) ||,

e k=1

Cmin{-w; !, —wy'}, k=2
Therefore the unique pure Nash equilibrium is given by wy = ¢~ /2, wy = wy = (20)’1/ 2. This is clearly not proportional
to the optimal design measure which is uniform over X'.

A-criterion.

Consider the following design space X = {(1,1)7,(1,0)7,(0,1)T} and let there be two agents with index sets G| =
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{1,2}, Gy = {3}. It is not to see that in this case,

_ 2w t+watws
—tr (A(k))TM(w)—lA(k)] — { wiw3t+wawsztwiws’
_ w1 t+wsa -9
wiw3+wrwz+wiws’ :
The pure Nash equilibrium (w1, wo, w3) follows the system:
2
(w1 + wo) —c=0
WiwW3 + WwaWs + Wiws
2 2
w
2t ws —c=0
wWw1Ws + waws + Wiws
2w? + w3 + 2w ws —0
wiw3 + waws + wiws .
The optimal design measure (71, 7o, 73 ) follows the system:
272 + 72 + 2mam N0
173 + ToTy + M1 73
2 2
UPRakE SA=0
T3 + Mg + T1T3
272 4+ 72 4 2mym
LT85 T208 A =0

T3 + MMy + T173
where ) is the Lagrangian multiplier.

If (w1, we, w3) is proportional to (71, w2, 3 ), then comparing these two systems yields 71 = 0. This is a contradiction.

O

F.2. Proof of Proposition E.3

Proof. Suppose there exists a pure Nash equilibrium w such that w; # 0 and j € G;. Then from the first order optimality,
for any Awg, such that supp(Awg,) C supp(wg,)

0= dﬂl(aGZ,AwGl)

= Z Aw;{zsz; \ M(@) ™) —c- Z Aw;

i€Gy 1€Gy
=Y ((wa! M@) ") ) - A,
i€Gy

70
a; > 0 such that z;z] = Yica, a;ziw; and Yica, @i < 1. Itfollows that
(xjx;-r,M(zT))_1> = Z iz, \M(@) ™Y < e
1€Gy
Contradiction! O

It follows that <xjx;»r, M(w)~1) = c. Similarly, (z;z], M(w)~!) < ¢ forall i € Gj. From the condition, there exists

F.3. Proof of Proposition E.5

Proof. Suppose there exists a pure Nash equilibrium w such that w; # 0 and j € G;. Then first order optimality yields for
any Awg, such that supp(Awg,) C supp(wg, )

0= Z ((xix;r7M(1'E)_1> - c(l)) - Aw;.

1€Gy
It follows that (z;z],M(w)™) = ¢, Similarly, (z;z], M(w)~!) < ¢® forall i € Gj. This yields ¢ >
(ziz] , M(w)~') = ¢ for i € supp(wg, ), which contradicts the condition. O
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F.4. Proof of Proposition 4.1

Proof. We first notice that the problem in Eq. (5) has compact feasible set and concave objective. Therefore, it has unique
maximizer wm,,x. Consider any mechanism M. The maximum possible information that can be achieved under M is
given by

max log det M(w), s.t. (u(k) o M(k)> (w) > s

weR?Y
Let @ be the maximizer of the above program, then due to M®) (w); < w;, Vi we have
u® (w) > (u(’“) o/\/l(k)) (w)

> vik).

Therefore w is in the feasible set of the optimization problem in Eq. (5). It follows from definition of wy,,, that
log det M(w) < log det M (wmax)- O

F.5. Proof of Proposition E.1

Proof. First, notice that
1™ (winax) = 017, VE € [K].
. 1  Wmax,i, if1€G
Indeed, if there exist k& € [K] such that u®) (wyay) > vik), then by setting w/ .., = (14€) - wmax, l Z F
’ Wmax,i» if ¢ ¢ Gk

of sufficiently small ¢ > 0, the constraints in Eq. (5) is still satisfied, but log det M(w/,,..) > logdet M(wpayx). This
contradicts to the fact that wy,, 1s the maximizer.

Suppose wyyax is the Nash equilibrium of ((u(k) o Mgﬁ)) K] we will show that Zfil ry = d.
ke[K

Indeed, by defining
ﬂk(ka) = log det ((A(k))TM ((kaawmax,Gi))il A(k)> - C(k) : Z Wi,
1€Gg
it follows that wmax,, 1s the maximizer of uy,. First-order optimality condition and Lemma H.1 yields that for any k and
l S Supp(wmax,Gk)
0= dﬂk(wmaX,Gkvel) - <xlxl—r; M(wmax)_1> - C(k)

As a result,
K K
Zc(k) . Z Wmax,i = Z Z wmax,i<mix;r;M(wmax)_1>
k=1 i€Gh k=14i€Gx
= <Z wmax,ixix;raM(wmax)l>
i=1
—d (14)
Define

ve(wa,) =y (0,...,0,wg,,0,...,0)

-1
= —logdet ((A(k))—r( Z wixix;r)A(k)> — ). Z w.

1€Gy 1€Gy
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Let wg;, € argmaxy,, v (we, ), We have,
k = *
(u(k) o Mgeg) (Wnas) > T (w,)
— log det ((A(k))TM ((wgk,wmax,(;;))_l A(k)) — k). Z w}

Y

-1
— log det ((A(k))T( Z w;‘xixiT)A(k)> — k. Z wy

1€EGg
k
k)

= (u(k) °© MEQ) (Wmax)
where the second inequality is due to Lemma H.2. Therefore, the above inequalities are all equalities, which implies
wg, € argmax iy (wg, ) and

-1
—log det ((A(k))TM (Wmnax) "~ A(k)) —log det ( A(k) Z Wmax,iTiT A(k)> .
1€Gy

It follows that wiax,¢, € arg max vy (we, ) and thus || Wmax, ¢, |1 = |we, Il

First-order optimality condition and Theorem H.5 yields that for any k and [ € Gy,

0 = dog(wg,, e1) = e ®
[0, [l
As aresult, |wmax,c, [[1 = [[wg, I = . Combining this and Eq (14), we have
K K
d= Zc Z wmam—z (k). Zrk.
k=1 1€Gy k=1

This establishes the first statement.

If Zszl rp > d, then the above arguments imply that there exist k¥ € [K] and ¢ € supp(Wmax,q,) such that
dy (Wmax,G, » €) < 0. It follows that by letting Wg, = Wmax,¢, — €€, for sufficiently small € > 0, we have

k ~ k
(u(k) © Mﬁe(;) ((kavwmaX»Gi)) > (u(k) © Mge(i) (wnlax) .
This completes the proof. O

F.6. Proof of Proposition 4.2
Proof. Fix k € [K]. Define

i (we, ) i= —logdet ((A")TM ((wa,, wmax.az) ' AY)
_ k) Z w; — ). Z (Wmax,i — Wi)., -
1€Gy 1€Gy

To see that wyay is @ pure NE, it suffices to show that w,ax ¢, = arg max a;(wg, ). Indeed, if wg, = arg max 4y (wg, )
and W, 7# Wmax,q, - Consider the following two cases.

Case 1: There exists i € G}, such that w; < wWmyax ;.
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- w i, ifj =1
Let w; = { . J Then

w;, otherwise
. _ -1
(i, ) = — logdet ((A®) M (@, wmaxy)) " A®)
- C(k) : Wmax,i + Z {Dj - C(k) : Z (wmax,j - {Dj)Jr
JEGK/{i} JEGK/{i}

> — logdet ((A(k))TM ((@Gk, wmaX,Gi))fl A(k))
_ k) Z w; — k. Z (Wmax,j — Tj) 4
JEGkK JEGK

= Uk ({EGk)
where the first step is due to wpax; — W, = 0 and the second step comes from Lemma H.1 and wpyax; = W; +
(Wmax,i — @i)Jr. This contradicts with w¢g, = arg max g (wg, )-
Case 2: W; > Wiax,j, Vj € G, and there exists i € G, such that w; > wiyax .
Notice that in this case log det M ((@Gk,wma&gi)) > log det M (wmax). Therefore there exists j € [K] such that

(u(j) o Mfﬁ;x) ((@Gj , wmax,g‘;)) < vﬁj), and it is obvious that such j’s must include k. As a result,

ak({EGk) - (u(k) o Mg’%) ((@Gkawmax,Gz)) < v5<k) S (u(k) o Mgf;x> (wmax) - 'L_Lk(wmax)~

Contradiction! Therefore, we have shown that (wmax,c,, )ke[ k] is a pure Nash equilibrium. Since wax is the solution of
Eq. (5), Individual Rationality is satisfied. As a result, wp,ax is a strategic response of mechanism M .

Next, we display uniqueness. Suppose for the sake of contradiction that there exists a Nash equilibrium (wg, )re(x] 7#
(Wmax,Gy ) ke[k]- We follow the above line of arguments and consider the following two cases.

Case 1: There exists k € [K] and i € G}, such that @; < Wipax,;-

~ Wmax,is 1 J=1
Let @ = ¢ ™57 =" Then
wy, otherwise

(u(k) o Mg’jgx) (@, , Barg)) = — logdet ((A<k>)TM (@, ;) A<k>)

— C(k) * | Wmax,i + Z {E] - C(k) ’ Z (wmax,j N {E])+
J€GH/{i} JECk/{1}

> — log det ((A<k>)TM (@)~ A("“))
_ k), Z W, — RGN Z (Winax,j — Tj)
JEGK JjEGK
= (u® o ME,) @).
This contradicts with wg, = arg max,,,, (u(k) o Mgfgx) ((ka , {DG;)).

Case 2: W; > Wpax,j, Vj € [n] and there exists k£ € [K] and i € G}, such that w; > wax ;-

Since log det M (w) > log det Ml (wpax ), there exists j € [K] such that (u(j) o /\/lfr]lix> (w) < o9 Obviously, there
exists ¢ € G such that w; > Wmax ;. As a result,

(w9 0 MG ) (@) < o < (uD 0 MDD, ) (W) < (49 0 M) (Winar,Tes) ) -
This means

W, ¢ arg max (a0 MYL) ((we, ) )
wc_jERlJrGjl !
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Contradiction! O

F.7. Proof of Corollary D.1

Proof. Suppose there exist k € [K] such that (u(k) o MS;ZX) (Wmax) > vik), then the definition of M, yields

(14 €) - Wnax,i, ifi€ Gy

o of sufficiently small
Wmax,i» if ¢ ¢ Gk

u(k)(’wmax) = ('Uz(k) OMI(‘Ilfg.X) (wmax) > 'USJC)- By Setting ’LU; = {

€ > 0, we have for any [ € [K],
D (w') > ol

Thus the constraints in Eq. (5) is still satisfied, but log det M (w/,,...) > log det M(wpax). This contradicts to the fact that
Wmax 18 the optimizer in Eq. 5.

O

F.8. Proof of Proposition D.2

Proof. Fix k # k' and assume (u(’“) o ./\/lgfgx> (w) > (u(w o Mgf;;) (w). By the data exchangeability and Corol-
lary D.1 we have, modulo constants 2 log ||z||2, that
tog ([[w) = ¢® - [l s = (u® 0 ME, ) ()

— )

= — logc(k) -1
Therefore ¢(*) < c*) and we have

o log([lwl]ly) +log ™ 41
”ka”1 - (k) :

Now we define
_ log (|Jw]|1) +1ogec+1

I .
Notice that f'(c) = —W < 0 for any ¢ > min;e(x) ¢, thus
o tog () + loge® +1
”ka”1 - (k)
log ([[@]1) +log c*) + 1
>
- c(k/)
= [lwg [|1-
This confirms that [|[wg, |1 > [[wey [ O

F.9. Proof of Proposition D.5

Proof. Define kg = arg minge(r] ¢*) and

n -1
9&16) = max —logdet [ (AT LT, Ak
Lax | —log (A™) ; i

o) = logdet | (ANT apr] | AP )
nen&%ék) ogdet [ (AY) Z XX,

i€Gy,
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We have

(u o ME, ) (w)

M 11 EM» - £

log det A(k))TM(w)_lA(k)) — k) Z w; — Z (Wmax,i — wz)+>

=
Il
J

( 1€Gy 1€Gy
< (9( " rlogllwll — ¢ 3w — ¢ (wimaxs wm)
i€Gy 1€Gy
< (9( + 7 log Zk(lcl) = - Tk — (C(k) - C(ko)) : |wmaX’Gk”1>

”wmax Gth k # kg

. Fur-
e, llt + 2525 — w1, & = ko

where the maximizer in the last inequality is given by ||wg, |1 = {

ther, notice that

SG(tmax) = 3 () 0 ME,) (1ma)

where the second inequality uses Corollary D.1.

It follows that

SG(w)
SG(Wmax)
_ S (e -ew) S (o S — (9 =) - fwmanll)
T Y (0%) + 7y, log s — rk) Yk (0) + ry,log 5 — 71
_ >E AW R (riog ™ — () — 50 - a1 B
S (0%) + 1) log Z5 — 1) e (0F) + ry. log & — 7i)

G. Efficiency under heterogeneous costs

In Section 3, we investigated the efficiency of federated learning with homogeneous costs. However, the proof of Proposi-
tion 3.2 demonstrates that federated learning is not efficient when costs are heterogeneous. Therefore, in this section, we
focus on mechanism designs to incentivize efficient allocation. Specifically, we consider the objective Weg = Npmax * T,
where 7* represents an optimal design measure under the D-criterion, and ny,,y is defined as

Mmax = Max n, (15)
neRy

st.u® (n 7)) > ol®) vk e (K]

The objective weg aims to maximize the total number of data while preserving efficient allocation of experiments. However,
the feasibility of the program defined by Eq. (15) is not guaranteed in general. We provide a result that establishes a
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condition under which weg is well-defined and lower bounded by wz; , Where

-1
wg, = arg max — log det < A(k) Z Wik T, A(k)> — k). Z W;.

i€Gy i€Gy

Assumption G.1 (Data compatibility). We assume for any k, k' € [K],

o (gl _,
W(nwfﬂ AL
G Il

This assumption implies that if we scale up the D-optimal design according to wg;, , the utility for any other agent k' is
still no less than the maximum utility that agent k' can achieve if she opts out of the collaborative learning and trains a
model using her own data. Therefore, 7* is compatible in the sense that no agent has an incentive to leave the collaborative
learning program if they follow 7* and each agent & contribute at least [|w, ||1 data points. Under this condition, we can
derive the following result:

Proposition G.2 (Feasibility and incentivized more contribution). Suppose Assumption G.I holds. Then the problem in
Eq. (15) is feasible. Furthermore, For all k € [K] we have nmax = D _icq, T = D icq, W

Proof. Define I}, = {n eRy uP(n-7) > o )}. Notice u(*) is concave and

o (sl
Iz, I

—1
= —logdet [ (A®)TM ('wfk”l -7r*> AB ) lwg, Ih

7, Il
-1
(T . [we (k) K)o
> —logdet | (A™) M [ [ wg,, > " A = Jlwg, [l
el ™) .
-1
> —logdet < (ARHT <Z Wi Tx > )> — . lwg, 11
1€G L
_’Uik)a

where the second step comes from Applying Lemma H.1 and the fact that u;, is concave wrt wg, ; the third step comes

from Lemma H.2. As a result, [}, is a closed interval and % € Iy for any k € [K]. We rewrite Iy, = [ag, by] where
Gk

ar < "“kal““ <b.

)
lwg, Il

Assumption G.1 implies that =5 € Iy for any k' € [K]. Therefore, Nieplr # 0 and Nmax = mingeg) by This
G

establishes feasibility and 7,05 > % .
Gy

G.1. Mechanism design for pure efficient allocation

We begin by considering pure efficient allocation, which best illustrates the nature of the problem. In this subsection, we
omit the cost functions and assume c(!) = ... = ¢(5) = (. The goal in this section is to design mechanisms M *) such
that all Nash equilibrium wrt the utility functions ((u*) o M*))) < (i) takes the form of (- 7, )re(x) where A > 0, ie.

proportional to the optimal design measure.

We define the following mechanism based on scaling the design by a constant 7, < 1:

M(k) ( ) = npw where nk—l = exp i . ((Zzin 2)(216Gk wZ . Z - > . (16)
’ +

Tk 22¢Gk Wi 1€Gg
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The intuition behind 7y, is to introduce competition among agents, penalizing those who contribute proportionally less data
icGy Ti

i¢G i
the total amount of data collected by the other agents. Therefore, the mechanism in Eq. (16) ensures that the)c marginal

probability of the aggregated design measure on each agent k, i.e., (3 ;cq, wi)/ (37, w;), aligns with the marginal
probability of the optimal design measure, i.e. (3_;cq, 77)/ (>°i, m7). By leveraging the properties of D-optimal design,
we can demonstrate that it further ensures alignment between w and 7* for each coordinate. Besides subsampling, this
mechanism can also be efficiently implemented by letting

0% =6+ ¢™ where ¢*) ~ N (0, (' — 1) - M(w) 1) .

than others. In fact, any strategic agent k under this mechanism is incentivized to contribute no less than - times

It follows that agent k’s utility is given by

(4% 0 M) (w) = ~logdet (A®) T M(w) 1 A®) — d- <(Ei¢ck T (uicq, W) _ 77;) .oan
+

ZiﬁGk Wi i€Gy

Proposition G.3 (Pure Efficient allocation). Forany A > 0, (\- T )ke[k] is a pure Nash equilibrium of the tuple of utility
Sunctions ((u(k') ° /\/lgfl)re))

relk) Furthermore, any pure Nash equilibrium takes the form of (X - TG )ke[K]-
€K ,

Proof. Fix k € Zy,\ € RT and w; = A} for all i ¢ Gy. For the sake of brevity, we define the following function of
wa,,

ik (ws,) = —logdet ((A%) M(we ,(7);¢6,)) " A®) — d- (mek T uiee, 1) g w:>
.

Zi¢Gk Wi i€G

where (wg,, , (W;)j¢c, ) denotes the concatenation of wg, and (w;);¢¢, such that

(wa,, (W0;)j¢6,)i = {

It suffices to show that ¢, := An(, is the unique maximizer of ux(wg, ).

w;, ifie Gy

w;, otherwise.

For any Awg, , Lemma H.1 gives

duy, (’LDGk , Aka)

WL, w) ! —d(zlga’“ ‘ w
<ZA s M) > Yige, i (ZA Z>+

1€Gg 1€Gg
. ¥ d . T*
= <Z AWil'i$;r,M(W*)1> . it - — (ige, ™) (Z sz)
i€y, Yiga, Ui Liga Wi \;5, +
DigG, T
< Aw; , Ny ) . G T
< D Aw (@] M(r)™) - d) - FER
i€Gy 1¢Gy
<0,
: -\—1 _ *\—1 1 _ *\—1 Zieck “:'
where the second step is due to M(w)~t = M(zx*)"! - ST = M(m*)~t - e the last step uses
i=1 Wi igGy Wi

=d, 1i€su * . . . ..
(zix] , M(m*)71) {< i ¢ ppEw*; by Theorem H.5. By concavity of @y, g, = Amg, is the unique maximizer
<d, i¢supp(w

of uy, (ka )
Therefore for any A > 0, (wg, = A - 75, )re(k) is @ Nash Equilibrium.
In what follows, we show that any pure Nash Equilibrium takes the form of (wg, = A - 75, Jre(x), A € Ry

Suppose for the sake of contradiction a Nash equilibrium (w0, ) k(] not in the form of (X - 7%, e (k]
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Fix k € [K]. Consider the following utility as a function of wg,

ﬂk(ka) _ 710g det ((A(k))TM ((kaa ({EGi))fl A(k)) _d- <(Zz¢Gk ;k)( zEGk Z ; )
+

ZlgGk Wi 1€Gy

where (wg, , Wgg ) denotes the concatenation of wg, and wge such that
w;, ifi € Gy
w;, otherwise.

(ka»’[EG;)i = {

‘We assert that

(Zigck W:)(ZzeGk Z T =0, Vk € [K]. (18)

Zi¢Gk Wi i€Gy

(Ei&Gk W:)(ZieGk w;)
ZiéGk w;

Indeed, it is obvious that

(Z"’%G"Z:Z)G(Zl%fck o) > ica, Ti <0, then define Wg, := (1 + €)wg,. By applying Lemma H.1,

=Y icq, ™ = Oforall k € [K]. (If there exists k& € [K] such that

(i) = —logdet ((A®)TM (1 + )i, (ig)) ~* AV

> —logdet ((A(k))TM (@, (Fes)) ™ A<k>)

= Uk (aGk )

holds for sufficiently small ¢ > 0. Contradiction!) Recall that 7* € A[n]. Examining (ziﬁc’iﬂ;)(%;}eck o) —Yicq, Ti 2
i¢G z

0 for all k € [K] yields Eq. (18).

By Theorem H.5, there must exist [ € [n] such that (z;z;", M(w/||w||1) ') > d. Suppose | € G, then we have
d(iga, ™)
ZigGk w;
Yige, ™ A ige, ™)

T ~ o~ N1 .
= (mz; ,M(w/||w]1)"") = ~
< > Zigck Wi Zigck Wi

duy, (W, e) > {(maz, ,M(w)™") —

>0
where the first step applies Lemma H.1; the second step uses M(w) ™! = M(w/|w||1)~* - 2@7 = M(w/||w|;)~?

L Wi
% due to Eq. (18). It follows that letting @’ = €-e;+w would increase i, for sufficiently small € > 0. Contradiction!
Ic

O

G.2. Mechanism design for efficient allocation under different cost parameters

We design the following feasible mechanism to achieve efficient allocation in Eq. (15) when the cost parameters are not
the same. Define Mg (k) as follows

M(k)( ) = prw, where (19)
(k) ( )w
-1 c * ¢ Gy ¢
P =exp|—- (Nmax - 77 —wi), + <* - 1) -1 (w; > Nmax - m))
( Tk z‘;k ' iezc::k (XCiga, W) +

In py, the first term is the same as the regularization term in M, ., and functions as incentivizing more data contribution;
the second term is similar to the regularization term in My, and serves as incentivizing alignment with optimal design
measure. Therefore, although the objective wes may take complex forms, these two simple terms together create the
incentive for each agent to follow the optimal design measure while increasing the total information. Besides subsampling,
this mechanism can also be efficiently implemented by letting

0% =8+ ¢ where ¢(*) ~ N0, (p " = 1) - M(w)™ ).
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The k-th agent’s utility is then given by
(u(k) o ./\/lg;f)) (w) = —logdet ((A(k))TM(w)_lA(k)) — ). Z (Nmax - TF — wi) (20)

1€Gy

—Tk'z <W_1> 1 (Wi > Mgy - 75) — (Zw)
+

iea, \(iga, v a,

Proposition G.4 (Data maximization and efficient allocation). The efficient allocation design (west G, ) ke|K] is the unique
strategic response to the mechanism M.

Proof. Fix k and w; = npaxm; for all ¢ ¢ Gy. Define N = Zzec Wi T4 x . Define the following function of wg,

up(we,)
—log det ((A(k))TM((ka,u’;Gz))_lA(kU <Z w; ) —clk Z (Nmax - T — wi) 4
1€Gg i€Gy,
, ) w;
_rk.z @@Gikf):_l 1 (w; > Nanax - )
et (Zigc;k w;)T; .
where (wg,, @G;) denotes the concatenation of wg, and wae such that
_ wy, ifi € Gy,
(wg,, Wae )i = { _ .
w;, otherwise.
To show that wes is a pure Nash equilibrium, it suffices to show that wg, = Nmax7g, is the unique maximizer of
Uk (wck).
Indeed, consider any wg, # Wg,,-
Case 1: there exists i € G, such that w; < npax - 7.
~ iy if w; > 4
Forall j € Gy letw; = bt ) 07 = Mmax” Ti From Lemma H.1,
Nmax * T} 5 if w; < Nmax - ;
u(Wa,,)
~ log det ((A(k))TM((ﬁGk,wgz))_lA(’“) EpPON <Z @, ) — ™37 (Mg -7 — @)
1€Gy 1€Gy

kz<wl> (@ 2 e - )
+

> —logdet ((A(k))TM((ka,wG;‘,))_lA(k)> <Z Wy ) —clk Z (Nmax - T — wi) 4

i€G i€Gg

rkz<wl> ']l(wiznmax'ﬂ-i)
+

vt iga, 0T

= Uy (wgk ) .
This yields a contradiction.

Case 2: w; > Nax - 7 for all i € Gy.
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Define €; = Yi__ _1forall j € Gy, then min;eq, €; > 0 and max;cq, €; > 0. We have

nmaxqr;.‘
ak‘(ka)
~1
= —logdet | (A®)T <Z (1 + e)wiziz, + N) AR | k) Z (Nmax - T} — wi) |
1€Gy 1€Gy

(g ) s

1€G i€Gy
—1 -1
< _1 ARNYT (%)
< og det ( “2%’,56) szxa: + N A
1€Gg
— k). Z (Nmax * T — W;), — k). (Z wl> R Z €;
1€Gy 1€Gy 1€Gy

= ug(wg,) + 7, - log <1+§gg):q> — T Z €

1€Gy
< u(wg,)-
It follows that 4y (we, ) < 4k (we, ), also a contradiction.

Combining the above two cases confirms that (nmax . ng ) re[K] is a pure NE. By definition of weg in Eq. (15), Individual
rationality is satisfied. Therefore weg is a strategic response of M.

In what follows, we show that ny 7™ is the unique pure Nash equilibrium. Consider any pure Nash equilibrium
(Wa,, ) ke|K)> we will show in the following three steps that it must be equal to (nmax - T¢, Jre[K]-

For any k € [K] define the following utility as a function of w¢,

’L_Lk(ka)
~log det ((A(’“))TM((ka,wgz))*lA(’“)> pPON (Z wi> — ™3 (a7 — w3,
1€Gy 1€Gy
w;
— - Z (@ngk)_1> 1 (Wi > Nanax - )
. (Xiga, Wi
1€Gg i¢G g +
where (wg,, waz) denotes the concatenation of w¢, and ﬁgi such that
( B w;, ifie Gy
w , Wae )i = ~ .
o TOR w;, otherwise.
It follows that g (W, ) = maxy., Ux(we,), Yk € [K].
Step 1. We first show that W; > nmaxm; for any i € [n].
. . . ~ . R Wy, if W; > nppax - T
Indeed, if there exists k € [K] and i € G}, such that w; < nmaxm;. Let w; = : 7. From
Nmax * 77-;7 if w Wy < Mmax * 77;
Lemma H.1,
uy(Wey,)
= —logdet ((A(k))TM((ﬁ)Gk,@G%))_lA(kU <Z Wy ) —clk Z (Nmax - T — i),
1€Gy 1€Gy
; vl 'UA}Z
- Z (W_1> 1 (B > Nmax - )
ey (Zigek w;)m; "
> ﬂk(’lﬂgk).
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This contradicts with the fact that w¢, is the maximizer of uy.

Step 2. 'We show that there exists A > n,., such that w = A\ - 7*.

Suppose 3 k € [K] and ¢ € Gy such that w > wf, define ¢; = Biee, T)0 1 > 0. Let

ngck Wy (ngck {Dj)ﬂ';
A wj, ifj #i
Wi =9 Cea, B i We have
Zjéck ﬂ'; ’ J
u(we,)
-1
= — IOg det (A(k))T (1 + El)ﬁ)lilizl‘: + Z 117j1'j1’}r A(k) — C(k) . Z ’L’Ej
i JEGK
b .~ (Zzgc )W N
_ k). Z (max - 7 ,wj)+,rk,. Z <m —1| - 1(@j > nmax - T5)
JjEGy JEG) ¢Gy, J +
-1
< —logdet | (1+¢)~" (AF)T Z Wz AR g — ) Z W,
JjEGK JEGK
. oa (Diga, 71w, N
J€G JEGR i 1¢G. T +

= ﬂk(ﬁ)gk) +7rg - log (]. + Ei) —TL €
< Ug (ka )
This contradicts with the fact that w¢, is the maximizer of uy.

As a result, W > ¥ holds for any ¢ € [n]. Examining this inequality for all ¢ € [n] yields that w = X - 7* for
k2 k T

some A which must be greater than or equal to 7.

Step 3. We show that A = npax.
From the definition of 1.y, for any A > n,,.x there exists k& € [K] such that
(u(k) o Méﬁ)) (A-7%) < ol®
(u(k) ) Mélgf)) (Nmax - 7%)
k * *
(u(k) © M((gﬁ‘)) ((nmax : ﬂ-Gka)‘ : ﬂ-Gz)) :

This means that A - w7, is not a NE, yielding a contradiction. It follows that (nmax . ng)

IN

IN

relK] is the unique pure NE.

O
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H. Support lemmata

Lemma H.1. We abbreviate A®) and A% (A®)T as A and P respectively. Suppose M(w) = 0. For any | € Gy, we
have
9 —logdet (ATM(w)~'A)
611)[
Furthermore, fixing wgg, the function log det (ATM(w)_lA) is concave in wg, .

= <aclxl—r,M(w)_1> > 0.

Proof. Indeed, forl € Gy,
0 —logdet (AT M(w)~*A)

1 0OATM(w)'A
’ 6wl

_1A)717A-|— 8M(’LU)_1A>

611)[

ATM(w) "1 A)
(w) )
(w)

*1A)’1,AT Z ~M(w) tese] M(w) iz )i A>
i,j€ld)

- (

< (w)~ 1A) ! ATM( ) TAAT wy) M(w)*1A>
=(I,A xleM (w)~'A)
<xlxl AAT. M M(w )_1>
= (wz] , M(w)™),

where the first step uses the fact that aY -logdetY = [Y~!;;; the third step uses the fact that WY b=

(

(ATM w

(A’
) ! ( (w)_la:lxlTM(w)_l) A>

(
(
(i
<

—Y lee jTY L+ the fourth step comes from
D ee] (ma] )iy = Y ee] (wa] )eje] = ma);
i,j€[d] i,j€[d]

the fifth and final step use the fact that AATxlxl = xlxl since AAT = P is the projection matrix on {zi}ica,-

This establishes the first statement. To show concavity, notice that
0 <mzx;r, M(w)_1>
3u)j

[—Hess¢(w)]; ; = —
= <:1:ix;r, M(w)~ 190] x; M 1>
= (x;rM(w)* xj) Vi, j € Gg.
Therefore —Hess s (w) is Hadamard product of the positive semi-definite matrix (2, M(w)_lxj)i_j e, and itself. It fol-

lows from Schur product theorem that the negative Hessian matrix —Hess is symmetric positive semidefinite everywhere
in the domain, which establishes the concavity. O

Lemma H.2. For any w such that ) ;_, wizix] is non-singular,

-1
log det ((A(k))—r <Z wmx?) A(k)> < logdet A(k) (Z WL T ) Ak

1€Gy

-1

Further, if equality holds, then for any lek we have

-1
<A(k) Z wirT ) A(k Z wha; a: + Z Wi ;T Ak,

1€Gy 1€Gy ¢ Gy,
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Proof. Fix k € [K]. We use shorthand notations Mo = >, wizizl M = 30wl A = AR Let My =
Udiag(A1, ..., A,0,...,00UT and A = UAV'T denote the Singular Value Decomposition (SVD) decomposition of
My and A respectively, where U € R¥*? and V € R"**"* are real orthogonal matrices. We write U(M — My)U T =

A A P
(A21 Aoy where Aq; € R":X7k,

Define D = diag()\y, ..., A, ). Notice that
ATMoA =VATU Udiag(\1, ..., A\, ,0,...,00UTUAVT

. I,
:V(Irerk Orkx(d—rk)) d1ag()\1,...7)\rk,0,...,0) (O kX T ) VT

Tk X (d—’l‘k)

=VDVT.

We assert that ATM 14 < (ATMOA) 71. Indeed, we have
(AT MoA) "> ATM1A (AT MyA) '

—VD2VTVATUTU <D An A”) Uty ey
A Aso
—1 —1
— VD2 (Lnixre Orexaory) ((D + A - 1‘112/122 Az) :) <0rf:€(23k)> pi2yT
— VDY? (D + Ay — A1y Azt Agy) ' DYV
<vvT
= Irk XTk

where the inequality is due to A1 — A12A2_21A21 > 0 since this is the Schur complement of M — M, > 0. As a result,
ATMTA < (AT MoA) ™",

Applying the monotonicity of log det(-), we have

n -1 -1
logdet [ (AT (Z wwm?) AW | < log det <(A(k))T (Z www?) A(’“)> .
i=1

1€Gg

This establishes the inequality. Further, if equality holds then A, — A12A2_21A21 = 0. As aresult,

ATMTA
-1
_ VATUTU <D+A11 A12> UTUAVT
Agy Ago
B (D + Ay — A1pAZt Agy) ™t % Iy xrg T
=V (Irk e Ork X(dirk)) ( * * O’I"k X (d—7k) v
=VvD VT
= (ATMyA) .
Notice that the validity above argument does not depend on w¢, and in fact holds for any w’Gk This completes the proof.

O
Claim H.3 (Monotonicity of determinant). Suppose A and B are two symmetric matrices such that A > B > 0, then
det A > det B.

Claim H.4 (Concavity of log-determinant function). Suppose A and B are two symmetric positive semidefinite matrices
such that A = B > 0, then logdet(AA + (1 — A\)B) > Alogdet B + (1 — \) log det A holds for any A € (0, 1).

The following important result of J. Kiefer and J. Wolfowitz established the equivalence of the D-optimal design and
G-optimal design.

Theorem H.5 (General equivalence theorem of G-optimal design (Kiefer & Wolfowitz, 1960)). Assume span(X’) = R<.
The followings are equivalent:
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o " = arg max log det M(7);
TEA(X)

o " = argmin max,cy ' M(7m) la;

TEA(X)

s maxyex x M(m)7lz = d.
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