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Abstract

For a federated learning model to perform well,
it is crucial to have a diverse and representative
dataset. However, the data contributors may only
be concerned with the performance on a specific
subset of the population, which may not reflect
the diversity of the wider population. This cre-
ates a tension between the principal (the FL plat-
form designer) who cares about global perfor-
mance and the agents (the data collectors) who
care about local performance. In this work, we
formulate this tension as a game between the
principal and multiple agents, and focus on the
linear experiment design problem to formally
study their interaction. We show that the statisti-
cal criterion used to quantify the diversity of the
data, as well as the choice of the federated learn-
ing algorithm used, has a significant effect on the
resulting equilibrium. We leverage this to design
simple optimal federated learning mechanisms
that encourage data collectors to contribute data
representative of the global population, thereby
maximizing global performance.

1. Introduction
Collaborative learning can be viewed as a transactional pro-
cess where participants collectively receive a reduction in
uncertainty in return for sharing their data (Karimireddy
et al., 2022). However, participants may be concerned with
uncertainty in different sub-populations. Thus a reduction
in uncertainty on the global population may not necessarily
translate to an improvement for every participant.

Consider a collaborative learning project between multi-
ple countries to study rare cancers (Moncada-Torres et al.,
2020; Geleijnse et al., 2020). Different countries operate
cancer registries with the goal of collecting comprehen-
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sive data on rare cancer cases within their jurisdictions.
These registries collaborate to pool their data and resources.
However, each registry has the responsibility to prioritize
the benefit to their own population while minimizing the
risks associated with data collection and sharing. Thus, the
global performance needs to be balanced with the specific
needs and goals of each registry.

The need to balance local and global interests becomes
even more critical when collecting data from marginal-
ized communities. Issues of equity and autonomy un-
derpin indigenous critiques of genetic research and the
sharing of genomic data (Hudson et al., 2020; Chediak,
2020). Such communities have historically faced exploita-
tion and mis/under-representation in research studies (Gra-
ham, 2015; Albain et al., 2009; Nana-Sinkam et al., 2021).
Therefore, it is essential to carefully consider the costs in-
curred by and benefits provided to them individually.

We formalize this as a game between a principal (the plat-
form designer), and multiple agents (participants) whose
needs and agency should be respected–see Fig. 1. To-
gether, they wish to determine a statistical model between
responses and variables. Each agent has access to a set
of experiment conditions relevant to specific demographic
groups within their population. They autonomously decide
how many (as well as which) samples to collect and share.
The platform then employs federated learning to train a
model on the collective data, which is then shared back to
the agents. Notably, each agent wishes to minimize the data
costs incurred while maximizing uncertainity reduction.

This can be seen as a "multi-agent" version of the classic
optimal experiment design problem (Wald, 1943; Kiefer,
1958; Kiefer & Wolfowitz, 1960; Karlin & Studden, 1966;
Atwood, 1969; Fedorov & Malyutov, 1972), where the fi-
nal allocation of samples among experiment conditions re-
sults from decisions made by multiple agents. Unlike clas-
sical theories, we introduce game-theoretic subtleties since
each agent is primarily concerned with the validity of the
model for its specific demographic group. Hence, we must
account for the strategic behaviors that emerge due to both
data diversity and cost heterogeneity. In this context, two
fundamental questions arise.
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Figure 1. Principal-agents experiment design. (1) The principal publishes a mechanism incentivizing participation. (2) Each agent
strategically selects how many and which of their available experiment conditions to collect and share. (3) The agents engage in
collaborative learning with the principal, who utilizes the collected data points to train a statistical model. (4) The principal applies the
mechanism to the trained model for each agent and subsequently distributes the models to them.

First is efficiency–it is crucial to allocate resources such as
time, money, and materials in the most efficient and infor-
mative manner. This was the main concern of classic theory
of optimal experiment design which proposed different op-
timality (efficiency) criterion. In our version, we ask:

When is it in the agents’ best interest to follow the globally
efficient optimal experiment design?

Second is maximizing the amount of information collected.
Conventional data sharing mechanisms like federated learn-
ing face the critical issue of free-riding (Baumol, 2004;
Choi & Robertson, 2019; Sarikaya & Ercetin, 2019; Lin
et al., 2019; Ding et al., 2020; Sim et al., 2020; Xu et al.,
2021), where self-interested agents may contribute mini-
mal or no data but still benefit from an improved model.
The principal may instead want to maximize the informa-
tion generated by data contributions from all agents (with-
out regards to efficiency), raising the following challenge:

Can the principal design mechanisms to incentivize
strategic agents to contribute their fair share of data,

thereby maximizing the information produced?

The quality and diversity of data play a vital role in this
context. In this study, we address the aforementioned chal-
lenges by specifically focusing on linear experiment design
(Pukelsheim, 2006; Silvey, 2013), where diversity is char-
acterized by the Fisher information matrix and quality is
assessed using optimality criteria.

2. Principal-agents experiment design
This section introduces the problem of principal-agents ex-
periment design which studies the game-theoretic notions
and properties of experiment designs in a principal-agents
framework (Laffont & Martimort, 2009). Our framework is
summarized in Algorithm 1 with detailed discussion below.

We model the interaction between multiple agents and a
coordinating principal in linear experiment design. Con-
sider K self-interested agents. Each agent k has a local
design space Xk = {xi}i∈Gk

⊂ Rd and the global de-
sign space is then X = ∪k∈[K]Xk = {x1, . . . , xn}. For

ease of presentation, assume that the indices are sorted such
that G1, . . . , GK form consecutive partitions of [n]. Then,
w = (wG1

, . . . , wGK
) is the global design measure with

each agent k controlling wGk
. The data contribution of

agent k can thus be summarized by wGk
.

Mechanism definition. The principal is given access to the
entire data contributions i.e. the global design measure w.
Then the principal sets up a mechanism to assign a subset
of this contribution to each agent k. Thus, we can define a
mechanism M as follows:
M := (M(k) : Rn

+ → Rn
+)k∈[K] s.t. M(k)(w) ≤ w .

The inequality M(k)(w) ≤ w applies element-wise for all
i ∈ [n]. Thus, a mechanism represents a re-allocation of
the design measure (and hence data) to each of the clients.
In Appendix B, we discuss implementation of mechanisms.

Agent utility. Each agent wants to minimize uncertainty
(on their design space) while also minimizing the costs of
data collection and sharing. While Eq. (9) defined the in-
formation matrix for the global design space X , agent k
only cares about Xk, which is of rank rk (that may be less
than d). We thus need to consider a local information ma-
trix (Sibson, 1974; Silvey, 1978) representing uncertainty
along direction only in Xk:

M(k)(w) := A(k)⊤M(w)A(k) . (1)

Here, A(k) ∈ Rn×rk such that A(k)A(k)⊤ is a projection
matrix onto span(Xk). The value of a design strategy w
for agent k on Xk using criterion f (k)(·) can then be writ-
ten as f (k)

(
M(k)(w)

−1
)
. Here, f (k) is an optimality cri-

terion (Pukelsheim, 2006; Silvey, 2013) that depends on k
since it may implicitly depend on the design space Xk. In
particular, the G-criterion takes a max over the design space
Xk, and the V-criterion takes an average.

Next, note that agent k only has control over wi for i ∈ Gk

i.e. it can only decide the sampling strategy over Xk. For
convenience, define wGk

= (wi)i∈Gk
. Suppose that the

cost of collecting one data point is c(k). This can represent
both the actual cost incurred in collecting and storing the
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data as well as potential privacy risks associated with stor-
ing and sharing it. Then, the total cost incurred by agent
k is c(k)

∑
i∈Gk

wi. Putting all of this together, the utility
enjoyed by client k under mechanism M can be written as(

u(k) ◦M(k)
)
(w)

:= f (k)
((

M(k)(M(k)(w))
)−1
)
− c(k)

∑
i∈Gk

wi . (2)

Here, u(k)◦M(k) represents the composition of the agent’s
utility function u(k), which depends solely on the agent’s
personal valuation, and the mechanism M(k) implemented
by the principal.

Finally, note that the cost incurred by agent k is com-
pletely independent of wGc

k
:= (wj)j /∈Gk

. However, the
local information matrix M(k)(w) depends on the whole w
and X . In particular, if the complementary design space
xj ∈ X \ Xk is similar to Xk and wj > 0, then the local
information matrix M(k)(w) as well as fk

(
M(k)(w)

−1)
will be larger. Thus, wGc

k
represents free outside informa-

tion given to agent k, and importantly it affects the optimal
choice of wGk

.
Remark 2.1 (Accuracy shaping). The mechanism Eq. 1
can be understood as shaping the accuracy (Karimireddy
et al., 2022) of the model that is sent to each agent. For
example, the standard federate learning mechanism M(k)

fed

would distribute the global model to all the agents. This
corresponds to setting M(k)

fed(w) = w for all agents. To in-
centivize agents to contribute high-quality data, the mech-
anism may adjust the accuracy of the model depending on
the data quality generated by each agent.

Strategic behavior of agents. In principal-agents experi-
ment design problems, theoretically interesting and practi-
cally relevant scenario arises for strategic agents, who make
rational decisions on the design wGk

depending on the ac-
tions of other agents, knowing the design spaces Xj and the
costs c(j) for all j ∈ [K]. We characterize the behaviors of
strategic agents through the following definition.

Definition 2.2 (Strategic responses). We say the designs
w∗ = (w∗

G1
, w∗

G2
, . . . , w∗

GK
) is a strategic response to the

mechanism M = (M(1),M(2), . . . ,M(k)) if:

• Individual Rationality: For any k ∈ [k], if
∑

i∈Gk
w∗

i >
0 then (

u(k) ◦M(k)
)
(w∗) ≥ v

(k)
∗ (3)

where v
(k)
∗ is the maximum possible utility agent k can

achieve if she opts out of the collaborated learning and
trains a model using her own data, i.e.

v
(k)
∗ := max

wGk

f (k)
((∑

i∈Gk
wi · (A(k))⊤xix

⊤
i A

(k)
)−1
)

− c(k)
∑

i∈Gk
wi. (4)

• Pure Nash Equilibrium: (w∗
G1

, w∗
G2

, . . . , w∗
GK

) is the
pure Nash equilibrium of the game defined by concave

utilities (u(k) ◦M(k))k∈[K] and actions (wGk
)k∈[K], i.e.

it satisfies ∀ k ∈ [K], ∀ wGk
∈ R|Gk|

+(
u(k) ◦M(k)

)
(w∗) ≥

(
u(k) ◦M(k)

)
(wGk

, w∗
Gc

k
).

Here, (wGk
, w∗

Gc
k
) denotes concatenation i.e.

(w∗
G1

, . . . , w∗
Gk−1

, wGk
, w∗

Gk+1
, . . . , w∗

GK
).

The first condition indicates that an agent will never choose
an action that results in a worse outcome than v∗, the status
quo that agent k can obtain no matter she takes part in the
collaboration learning or not. The second condition asserts
that an agent can not obtain higher utility by unilaterally
changing her action. Thus, the strategic response w∗ repre-
sents a stable fixed point to the game from which no agent
has an incentive to deviate from their chosen action.

3. Efficiency under federated learning
The first question of interest about principal-agents experi-
ment design is the efficiency of the mechanism. By clas-
sic optimal experiment design, a design measure w =
(wG1 , . . . , wGK

) is efficient for optimality criterion f if
w is proportional to the optimal design measure π∗ =
argmax f(M(π)−1), s.t. π ∈ ∆(X ).

In this section, we explore the conditions under which the
standard federated learning mechanism which always sets
Mk

fed(w) = w is efficient. We establish that the D-criterion
is the only criterion among common criteria for which the
federated learning mechanism is efficient.

Definition 3.1 (Incentive-compatibly efficient). A mecha-
nism M is incentive-compatibly efficient for a criterion f ,
if for any choice of design spaces (Xk)k∈[K], all strategic
responses w∗ are efficient designs for criterion f that sat-
isfy w∗ ∝ π∗.

Proposition 3.2. Suppose c(1) = · · · = c(K) = c ∈ R+.
Then, among all optimality criteria, the federated learn-
ing mechanism (M(k)

fed(w) = w) is efficient only for D-
criterion. More precisely,

1. When all agents k use criterion f
(k)
D , the agent’s strate-

gic response is the design given by (dc · π∗
Gk

)k∈[K],
where π∗ ∈ argmaxπ∈∆(X ) fD(M(π)−1).

2. For every other standard criteria (E, A, V, or G), there
exists a design space X such that federated learning
mechanism is not efficient.

When each agent incurs the same marginal cost for sam-
pling data, differences in efficiency can be attributed to the
agents’ data generation capacities rather than variations in
data acquisition costs. This setup allows for a fair compar-
ison among agents and serves as the natural framework for
studying efficiency. Our result implies that D-criterion is
the only criterion that aligns the interest of each agent with
the statistical efficiency of the multi-agent system. There-
fore, it is the most suitable for experiment design problems

3
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involving multiple agents.
Remark 3.3 (Efficiency of D-optimality). That D-
optimality uniquely satisfies incentive-compatible effi-
ciency is remarkable. Numerous reviews and textbooks
compare and contrast the different criteria but fail to iden-
tify a single-best one (Chaloner & Verdinelli, 1995; Fe-
dorov & Hackl, 1997; Pukelsheim, 2006; Atkinson et al.,
2007; Goos & Jones, 2011). In fact, the popularity of D-
optimality stemmed from its perceived equivalence to G-
optimality, while being easier to optimization. The multi-
agent perspective provides a novel lens with which to distin-
guish them and recommend D-criterion over the rest. How-
ever, a note of caution is warranted–these results hold with
our specific linear cost model. With different cost functions,
it is possible that the conclusions differ.

The above results leaves the question of efficiency under
heterogeneous costs. The standard federated learning does
not suffice anymore, and we instead require non-trivial
mechanisms. We deferred this discussion to Appendix G.

4. Information maximization
This section addresses the second question posed in the in-
troduction. Following Proposition 3.2, we assume that ev-
ery agent k uses the D-criterion f

(k)
D . It is worth noting that

this choice is compatible with our information-theoretic
considerations as maximizing the D-criterion is equivalent
to minimizing the differential entropy of θ̂.

To achieve information maximization, we need to first un-
derstand what is the maximum information that could be
possibly generated by strategic agents. We have the follow-
ing result on the maximum achievable information.

Proposition 4.1. For any mechanism M and any strate-
gic response w̃ under M, we have log detM(w̃) ≤
log detM(wmax) , where we define wmax as

arg max
w∈Rn

+

log detM(w), s.t. u(k)(w) ≥ v
(k)
∗ . (5)

The above proposition states that the maximum achievable
information is attained when the data collection is allo-
cated according to wmax. However, abundant evidence
in Appendix E show that free-riding (Baumol, 2004; Choi
& Robertson, 2019; Sarikaya & Ercetin, 2019; Lin et al.,
2019; Ding et al., 2020; Sim et al., 2020; Xu et al., 2021)
will occur under the federated learning mechanism.

Motivated by these results, we design mechanisms
(M(k)

max)k∈[K] to incentive agents to contribute wmax

amount of data. Let M(k)
max simply scale the design by a

constant γk ≤ 1

M(k)
max(w) := γkw , (6)

for γ−1
k := exp

(
c(k)

rk
·
∑

i∈Gk
(wmax,i − wi)+

)
.

Here, (x)+ := max{x, 0}. In this mechanism, agents are

penalized for contributing less data than required for in-
formation maximization (wmax). The k-th agent’s utility(
u(k) ◦M(k)

max

)
(w) is then given by

− log det
(
(A(k))⊤M(w)†A(k)

)
− c(k)

∑
i∈Gk

wi

− c(k)
∑

i∈Gk
(wmax,i − wi)+ .

We have the following proposition that establishes informa-
tion maximization as the unique strategic response of the
information mechanism Mmax.

Proposition 4.2 (Information maximization). The informa-
tion maximization design (wmax,Gk

)k∈[K] Eq. (5) is the
unique startegic response of the agents to the information
mechanism Mmax in Eq. (6).

Proposition 4.2 establishes that information maximization
design, represented by the (wmax,Gk

)k∈[K], is the unique
strategic response to the mechanism Mmax. This thus
addresses the second question posed in the introduction
and offers a tentative resolution for the federated learning
community to maximizes data creation from multiple au-
tonomous parties (Graham, 2015; Albain et al., 2009; Hud-
son et al., 2020; Chediak, 2020; Zhan et al., 2021; Shi
et al., 2021), thereby generating positive societal impact.
We discuss fairness and price of anarchy (Koutsoupias &
Papadimitriou, 1999) of this mechanism in Appendix D.

5. Conclusion
In this paper, we formulated the problem of principal-
agents experiment design to capture the game theoretic
tensions between the principal and strategic agents in col-
laborative learning. We showed that under standard feder-
ated learning, strategic agents will adopt the optimal design
strategy if and only if the D-optimality criterion is used.
Additionally, we have highlighted that strategic agents of-
ten exhibit free-riding behavior, driven by factors such as
data diversity and cost heterogeneity. This observation
has motivated us to develop a mechanism that incentivizes
strategic agents to maximize the overall information. The
proposed mechanism has significant societal implications
as it promotes autonomy and equity in clinical trials, col-
laborative cancer research, etc.

Our results come with some limitations, while opening new
avenues for future research. Firstly, our framework does
not analyze concrete algorithms with realistic considera-
tions such as unknown design spaces Xk. Overcoming this
is an important direction of future work. Furthermore, it
would be intriguing to generalize our results to mixed ef-
fect models or nonlinear models, which would broaden the
scope of our analysis and uncover additional nuances in the
principal-agents experiment design problem. Finally, our
theoretical analysis uses a somewhat stylized model for the
behavior of agents. Translating insights gained in our work
to the real world is challenging but necessary.

4
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A. Backgrounds on experiment design
Many scientific problems involve determining the underlying parameter θ in relationships of type

y = θ⊤x+ e , (7)

where x ∈ Rd represents certain experiment condition on which the data is collected, and e is standard Gaussian noise
i.e. zero meaned and unit variance. Given a set of observations (yi, xi)i=1,...,m, Ordinary Least Squares (OLS) yields the
estimator θ̂ = (X⊤X)†X⊤Y where X = (x1, · · · , xm)⊤ ∈ Rm×d and Y = (y1, . . . , ym)⊤ ∈ Rm is the experiments/data
and responses. The variability of θ̂ is governed by the Fisher information matrix I(X; θ) =

∑m
i=1 xix

⊤
i . Specifically, the

expected error on a prediction for x, conditioned on X is

E(x;X) = E
(
θ̂⊤x− E(y|x)

)2
= x⊤I†x . (8)

Thus, the problem of optimal experiment design is to select the training data X which would “maximize” the information
matrix I, thereby minimizing uncertainty. More precisely, given a design space X ⊂ Rd containing all possible data points
which could be collected, the designer makes choice of a sampling strategy π (called design measure), which is a measures
over X . For technical simplicity, we assume that the design space is finite with X = {x1, . . . , xn}. The information matrix
is defined as a function of π:

M(π) :=
∑n

i=1 πixix
⊤
i . (9)

From (8), it can be seen that M(π)−1 is a matrix representing uncertainty along different directions under a sampling
strategy π. To reduce this to a single scalar that can serve as an objective, it is convenient using an optimality criterion f 1

which is a function from the set of symmetric matrices in Rd×d → R:
max
π

f(M(π)−1), s.t. π ∈ ∆(X ) . (10)

Some popular choices of optimality criterion are as follows:

• E-criterion: fE(M−1) = −∥M−1∥2
• A-criterion: fA(M−1) = −tr

(
M−1

)
• V-criterion: fV (M−1) = − 1

|X |
∑

x∈X
(
x⊤M−1x

)
.

• D-criterion: fD(M−1) = log detM
• G-criterion: fG(M−1) = −maxx∈X

(
x⊤M−1x

)

Notations For any vector w ∈ Rn and index set G ⊂ [n], let wG ∈ R|G| denote the vector formed by the coordinates of
w in the index set G (preserving the order), and let Gc denote the complement of G. We use dF (u, v) to denote the Gateaux
derivative of F at u in the direction v. Let Rd

+ denote the nonnegative orthant in Rd, i.e. Rd
+ = {x ∈ Rd : xi ≥ 0, ∀i ∈ [d]}.

Denote ⟨A,B⟩ := tr[A⊤B] for A,B ∈ Rd×d. We will use supp(·) to denote support of a distribution or vector, i.e., the
set consisting of all indices corresponding to nonzero entries. Let Sd+ denote the set of symmetric positive semidefinite
matrices in Rd×d, matrix Loewner order ⪯ is a partial ordering on Sd+, such that A ⪯ B iff B − A ∈ Sd+. Furthermore,
A ≺ B if B −A is positive definite. We overload this notation and say x ⪯ y for two vectors x, y ∈ Rd iff xi ≤ yi for all
i = 1, . . . , d. Let ei denote the one-hot vector (whose dimension will be specified in the context) with the i-th coordinate

being 1 and the rest coordinate being zero. We also define 1(A) =

{
1, A

0, ¬A
. Finally, M† represents the Moore-Penrose

inverse of matrix M .

B. Framework of principal-agents experiment design

Implementing the mechanism. The mechanism needs to return a θ̂(k) to agent k using data M(k)(w). This is equivalent
to requiring that θ̂(k) satisfy the following

θ̂(k) ∼ N
(
θ , M

(
M(k)(w)

)−1
)
. (11)

Thus, θ̂(k) needs to be an unbiased estimator of the ground truth with covariance M
(
M(k)(w)

)−1
.

A straightforward method of achieving this would be to run K parallel federated learning algorithms. Each of these would
train a model θ̂(k) for agent k using only a subset of the data points as dictated by M(k)(w).

1W.l.o.g. we assume f(M−1) = −∞ when M is singular, and so restrict ourselves to non-singular M(w).
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Algorithm 1 Principal-Agents Collaborative Experiment Design
1: The principal selects and publishes a mechanism M satisfying

M := (M(k) : RX
+ → RX

+)k∈[K] satisfying M(k)(w) ≤ w .

2: Each agent k decides whether to join the collaborative learning depending on Eq. (3,4).
3: If joining, agent k chooses a design wGk

∈ R|GK |
+ which maximizes her utility:(

u(k) ◦M(k)
)
(w) := f (k)

((
M(k)(M(k)(w))

)−1
)
− c(k)

∑
i∈Gk

wi .

If the agent is strategic, then wGk
will correspond to the Nash equilibrium(

u(k) ◦M(k)
)
(w∗) ≥

(
u(k) ◦M(k)

)
(wGk

, w∗
Gc

k
), ∀ wGk

∈ R|Gk|
+ .

4: For all i ∈ Gk, she collects wi independent samples from xi, incurring a cost c(k) per unit.
5: The agents commit all the collected data to a collaborative learning procedure coordinated by the principal. Based on

this aggregated data, the principal computes the OLS estimator θ̂.
6: Then, to each agent k, the principal sends back a possibly degraded θ̂(k) in accordance with the published M(k)

Eq. (11).

Alternatively, the principal could present a degraded model by adding noise. After a global model θ̂ is trained using
federated learning on the combined data w, we add carefully tuned noise to determine θ̂(k) as:

θ̂(k) ∼ N
(
θ̂ , M

(
M(k)(w)

)−1 −M(w)−1
)
.

While perhaps conceptually simpler, computing M
(
M(k)(w)

)−1
may be equally cumbersome as running K parallel

federated learning algorithms.

Remark B.1 (Computational burden). While implementing the full mechanism may seem computationally burdensome,
note that we only incur this burden if M(k)(w) ̸= w. As we will see in the next sections, under equilibrium conditions
we will always expect to see M(k)(w) = w and so no additional computation is required. The mechanism is merely a
deterrent.

Finally, our framework assumes that an agent only has access to the final output of the mechanism, but not to any interme-
diaries. This is important since if we are learning θ̂ using FL, the agents may utilize the intermediary estimates (which may
be of better quality), instead of θ̂(k). Here, we can appeal to security and cryptographic solutions.

Remark B.2 (Hiding intermediaries). The entire mechanism can be implemented in an encrypted/obfuscated soft-
ware (Barak, 2016), or in a trusted execution environment (TEE) (Sabt et al., 2015). These solutions ensure that only
the final output of the mechanism can be accessed and all intermediary computations remain hidden. Thus, the agents are
prevented from cheating and follow our mechanism.

Remark B.3 (Implementing via early stopping). The information maximizing mechanism (Eq. 6) is quite simple: it scales
the design measure by a scalar γk ∈ [0, 1]. This corresponds to randomly sub-sampling a γk fraction of the data to
train θ̂(k). Instead of implementing this via K parallel sub-samplings and federated learning runs, a more convenient
approximation may be achieved using early stopping. Intuitively, early stopping also effectively subsamples data. During
training of the global model θ̂ for a total of T rounds, the model at the γkT round is returned to agent k as its θ̂(k).

C. Related works
In recent years, Federated Learning (FL) (Konečnỳ et al., 2016; McMahan et al., 2017; Kim et al., 2019; Kairouz et al.,
2021; Li et al., 2020; Mancini, 2021) has become an emerging machine learning paradigm that allows multiple distributed
clients to train a central statistical model under the orchestration of a principal. The wide application raises several ethical
concerns such as free-riding and fairness (Baumol, 2004; Fraboni et al., 2021; Mohri et al., 2019; Huang et al., 2020;
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Shi et al., 2021). To deal with these concerns, a number of works (Richardson et al., 2020; Sarikaya & Ercetin, 2019; Lin
et al., 2019; Fraboni et al., 2021; Ding et al., 2020; Zhang et al., 2022) investigate free-rider attacks and develop methods for
detection. Another line of works (Ghorbani & Zou, 2019; Jia et al., 2019; Wang et al., 2020) designs metrics for quantifying
the contribution of each agent. More related are the recent works that apply the theory of contracts and incentives (Smith,
2004; Laffont & Martimort, 2009; Bolton & Dewatripont, 2004) to FL. Among them, (Tian et al., 2021) proposed a
mechanism to achieve improved generalization accuracy by eliciting the private type information; (Sim et al., 2020; Xu
et al., 2021) propose mechanisms based on notions from the cooperative game theory literature to incentivize agents through
the model quality; (Karimireddy et al., 2022) introduces mechanisms based on accuracy-shaping to maximize the number
of data points generated by each agent.

Our work is different from the above works in that (i) we study an autonomous data generation process in which each agent
can strategically choose what experiment condition to collect data from; (ii) we explicitly model the utility and costs of self-
interested agents. These challenges motivate us to formulate our problem based on the statistical problem of experiment
design (Pukelsheim, 2006; Silvey, 2013). There is a long line of works (Smith, 1918; Wald, 1943; Kiefer, 1958; Eccleston
& Hedayat, 1974; Kiefer, 1975; Cheng, 1978) studying optimally in linear experiment design. Among them, D-criterion
is the most widely used optimality criteria (Shah et al., 1989) and our work is most relevant to (Kiefer & Wolfowitz, 1960;
Sibson, 1974). To our knowledge, there is no existing study of multi-agent systems of experiment design.

D. Further discussions of Mmax

D.1. Fairness

The Mmax mechanism ensures that the principal obtains the maximum possible information while preventing any agent
from free-riding. Meanwhile, it is also crucial to examine notions of fairness to ensure that none of the participating
agents are exploited. In order to address this, we analyze the utility of agents under the mechanism Mmax and present the
following result.

Corollary D.1 (Incentive Compatibility). Under mechanism Mmax, the strategic response wmax satisfies(
u(k) ◦M(k)

max

)
(wmax) = v

(k)
∗ for all k ∈ [K].

The above corollary is straightforward from the optimization problem in Eq. (5). Nevertheless, it carries two important
implications. First, this corollary implies that the utility obtained by agent k through strategic participation in the collabo-
rative learning, given by

(
u(k) ◦M(k)

max

)
(wmax), is equal to the maximum utility v

(k)
∗ that the agent can obtain by training

individually. Therefore, all participating agents benefit equally from the collaborative learning process. In fact, the surplus
generated by agents is directed towards enhancing the value of the statistical model, ultimately benefiting the social welfare.
This highlights the equitable distribution of benefits and the collective progress achieved through collaboration. Secondly,
Corollary D.1 implies that the utility of agent k under the mechanism depends solely on the resources and capacities of
agent k itself, represented by Xk, A

(k), f (k), c(k), and is independent of other agents. Consequently, any improvements or
innovations made by agent k to enhance experimental conditions or reduce marginal costs will be fully exploited within
the mechanism. This incentivizes participating agents to enhance their own capacities and resources, promoting an en-
vironment of continuous improvement. Thus, the mechanism Mmax exhibits incentive compatibility, fostering agents’
motivation to optimize their contributions.

The issue of fairness in the principal-agent experiment design problem is particularly relevant in the exchangeable data
setting, where all data points have the same value (Karimireddy et al., 2022). In this scenario, there are no inherent
distinctions between the resources and targets of different agents, therefore demanding the mechanism to avoid introducing
extrinsic unfairness among the agents. Fortunately, our proposed mechanism satisfies a monotonic notion of fairness.

Proposition D.2 (Fairness under exchangeable data regime). In the exchangeable data regime (i.e., Xi’s are the same), the
information maximization mechanism Mmax is fair in the sense that any strategic response w̄ = (w̄G1 , w̄G2 , . . . , w̄GK

)
satisfies that for all k ∈ [K](

u(k) ◦M(k)
max

)
(w̄) ≥

(
u(k′) ◦M(k′)

max

)
(w̄) =⇒ ∥w̄Gk

∥1 ≥ ∥w̄G′
k
∥1.

This proposition states that in the exchangeable data regime, an agent must contribute more data in order to achieve a
higher utility, which aligns with existing notions of fairness in the federated learning literature (Yu et al., 2020; Donahue
& Kleinberg, 2021; 2023). When the data points are not exchangeable, fairness becomes more challenging to define due to
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the inherent heterogeneity of learning targets and resources. We leave the discussions regarding fairness in such scenarios
the subject of future research. We leave the relevant discussions to future works.

D.2. Price of Anarchy

In this section we discuss price of anarchy (Koutsoupias & Papadimitriou, 1999) of the information maximization mecha-
nism Mmax.

Definition D.3 (Price of Anarchy). We define the social good as

SG(w) =

K∑
k=1

(
u(k) ◦M(k)

max

)
(w).

and price of anarchy by the ratio between the maximal social good and the social good at strategic response, i.e.

POA := max
w

SG(w)

SG(wmax)
.

Price of anarchy measures the inefficiency and suboptimality resulting from strategic behaviors in principal-agents experi-
ment design. The numerator is the optimal ’centralized’ social good that can be achieved from the strategy spaces, and the
denominator captures the social welfare obtained under selfish behaviors of each agent. To characterize price of anarchy
of Mmax, we introduce the following concept.

Definition D.4 (Benefit from Collaboration). Define the Benefit from Collaboration of client k as

∆(k) = max
π∈∆([n])

− log det

(A(k))⊤

(
n∑

i=1

πixix
⊤
i

)−1

A(k)


− max

π∈∆(Gk)
log det

(
(A(k))⊤

(∑
i∈Gk

πixix
⊤
i

)
A(k)

)
.

Intuitively, ∆(k) describes the maximum achievable increase of information for agent k by joining the collaborative learn-
ing. We will show that the price of anarchy is bounded by the benefit from collaboration.

Proposition D.5. Define k0 = argmink∈[K] c
(k). then POA can be upper bounded by∑K

k=1 ∆
(k)∑K

k=1

(
θ(k) + rk log

rk
c(k) − rk

) + ∑K
k=1

(
rk log

c(k) ∑K
k=1 rk

rkc(k0) − (c(k) − c(k0)) · ∥wmax,Gk
∥1
)

∑K
k=1

(
θ(k) + rk log

rk
c(k) − rk

) + 1.

To interpret the bound, we notice that the first term,
∑K

k=1 ∆(k)∑K
k=1

(
θ(k)+rk log

rk

c(k)
−rk

) , represents the price of anarchy resulting

from data diversity. It captures the extent to which each agent, denoted by k, benefits from a more diverse collection of
data points contributed by other agents, which has the potential to improve the low-rank model of agent k. The second

term,
∑K

k=1

(
rk log

c(k) ∑K
k=1 rk

rkc(k0)
−(c(k)−c(k0))·∥wmax,Gk

∥1

)
∑K

k=1

(
θ(k)+rk log

rk

c(k)
−rk

) , captures the price of anarchy resulting from cost heterogeneity and

shared representation. It accounts for the potential exploitation of lower costs by the system in a centralized setting and
the benefits of utilizing data collected from design spaces of rank rk to improve the model across all rank rk′ spaces

for k ∈ [K]. Notice that the
∑K

k=1(−(c(k)−c(k0))·∥wmax,Gk
∥1)∑K

k=1

(
θ(k)+rk log

rk

c(k)
−rk

) is a negative term that demonstrates the cost heterogeneity

mitigated by the information maximization mechanism Mmax.

E. Examples
In this section, we present several illustrative examples that highlight the strategic behaviors of self-interested agents in
different scenarios.
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E.1. Free-riding behavior

Although the federated learning mechanism Mfed achieves efficiency in the multi-agent system, it can lead to unfair Nash
equilibria in which some agents contribute much fewer data than others. This phenomenon, known as free-riding, is highly
undesirable in federated learning (Baumol, 2004; Choi & Robertson, 2019; Sarikaya & Ercetin, 2019; Lin et al., 2019;
Ding et al., 2020; Sim et al., 2020; Xu et al., 2021).

The following proposition shows that, in general, wmax cannot be achieved under the common federated learning mecha-
nism Mfed, as there exists at least one agent who can achieve higher utility by contributing fewer samples.
Proposition E.1 (Partial free-riding under federated learning mechanism). Unless

∑K
k=1 rk = d, wmax is not the Nash

equilibrium of the utility functions
((
u(k) ◦M(k)

fed

))
k∈[K]

. More precisely, there exists k ∈ [K] and w̃Gk
such that w̃i ≤

wmax,i, ∀i ∈ Gk, w̃i < wmax,i, ∃i ∈ Gk, and(
u(k) ◦M(k)

fed

)(
(w̃Gk

, wmax,Gc
k
)
)
>
(
u(k) ◦M(k)

fed

)
(wmax)

where (w̃Gk
, wmax,Gc

k
) denotes the concatenation of w̃Gk

and wmax,Gc
k
.

The condition
∑K

k=1 rk = d implies that the covariates in Xk for each agent k form independent subspaces, and each
agent cannot benefit from the data from other agents. Thus, this condition is unlikely to be encountered in the study of
collaborative learning.

We illustrate two possible cases where completely free-riding by contributing no data is the optimal strategy for an agent.
Example E.2 (Free-riding due to data diversity). Consider a principal-agents experiment design problem where one agent
possesses a data set with high diversity, such that her design space covers the design space of the other agent. In such cases,
it can be demonstrated that the second agent will engage in free-riding behavior at pure Nash equilibrium. We establish the
following result to formalize this scenario.
Proposition E.3. Suppose agent k’s design space Xk and agent l’s design space Xl satisfy that {xix

⊤
i : i ∈ Gl} ⊂{∑

i∈Gk
αixix

⊤
i : α ∈ R|Gk|

+ ,
∑

i∈Gk
αi < 1,

}
then in any pure Nash equilibrium, wGl

= 0.

Example E.4 (Free-riding due to cost heterogeneity). Consider another scenario where strategic agents with higher
marginal costs may engage in free-riding behavior. Intuitively, in equilibrium, an agent with a lower marginal cost ex-
periences a higher marginal increase in utility by sampling more data. If another agent possesses the same experimental
capacity but at a higher cost, she is expected to engage in free-riding at pure Nash equilibrium. More precisely, we have
the following result.
Proposition E.5. Suppose Xk = Xl for some k ̸= l and c(k) < c(l), then in any pure Nash equilibrium, wGl

= 0.

These examples highlight situations where agents have incentives to free-ride due to factors such as data diversity or cost
disparities. Such behaviors can undermine the fairness and collaboration within the multi-agent system. In the subsequent
sections, we delve into the analysis of free-riding behaviors and propose mechanisms to mitigate these issues.

E.2. Toy examples and simulations

Example E.6 (Free riding). Consider X = {x1 = (1, 0, 0)⊤, x2 = (0, 1, 0)⊤, x3 = (0, 0, 1)⊤, x4 = (0, 1, 1)⊤} and the
index sets given by Gi = {i} for i = 1, 2, 3, 4, i.e. four agents each holding a rank-1 set of experiment condition. Now,
let’s assume that the cost for the agents are c(1) = c(2) = c(3) = c ≤ 0.5c(4).

In this setup, we can observe that the Nash equilibrium for the standard federated learning mechanism is achieved when
w1 = w2 = w3 = 1

c and w4 = 0. However, in this Nash equilibrium, agent x4 contributes nothing to the collaborative
learning process while benefiting from the information provided by the second and the third agents. This behavior, where
agents exploit the contributions of others without contributing themselves, is known as free riding in federated learning.
Example E.7 (Selfish allocation). Consider u, v > 0 and X = {x2i+1 = u · ei+1 ∈ Rn, x2i+2 = e1 ∈ Rn (i =
1, 2, . . . , n−1), x2n+1 = v·e1 ∈ Rn} and the index sets given by Gi = {2i+1, 2i+2} (i = 1, 2, . . . , n−1), Gn = {2n+1}.
That is, there are n agents; the first n − 1 agents each holds a rank-2 set {u · ei+1, e1} where e1 can be seen as a shared
feature and ei+1 can be seen as the unique feature; the n-th agent holds {v · e1}.

In this setup, each agent has a distinct feature and a shared feature. The first n−1 agents may selfishly conduct experiments
only on their unique feature (u · ei+1) while hoping that other agents would experiment on the shared feature (e1). This
results in a selfish allocation of experiments, which can be highly inefficient.
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For example, when c(1) = · · · = c(n−1) ≥ c(n)/v2, it is clear that w2i+1 = 1
c(i)

(i = 1, 2, . . . , n), w2i+2 = 0 (i =
1, 2, . . . , n − 1) is a Nash equilibrium for the standard federated learning mechanism. In this Nash equilibrium, the first
n− 1 agents only experiment on u · ei+1 and in the end only the n-th agent samples from x2n+1 = v · e1. However, when
v ≪ 1, x2i+2 gives more information and lies in the support of optimal experiment design instead of x2n+1. This is an
example of selfish allocation in federated learning.

Example E.8 (Case study of substitutable, orthogonal, and complimentary data). Consider the following design space:
X = {x1 = (cos θ, sin θ)⊤, x2 = (1, 0)⊤, x3 = (0, 1)⊤}, and groups G1 = 1 and G2 = 2, 3. Notably, x2 and x3

are orthogonal, while the parameter θ governs the degree of complementarity between x1 and x2. We investigate the
strategic behaviors of the federated learning and information maximization mechanism by varying θ and c(2)/c(1). By
direct computation, the strategic response is given by

w1 =


0, c(2) < c(1)

1
c(1)

, c(1) + c(2)(sin2 θ − cos2 θ) < 0
1

c(1)
, c(1) − c(2)(sin2 θ − cos2 θ) < 0

c(2)−c(1)

c(2)c(1)−(c(1))2−(c(2))2(sin2 θ−cos2 θ)2
, else

w2 =


1

c(2)
, c(2) < c(1)

0, c(1) + c(2)(sin2 θ − cos2 θ) < 0
1

c(2)
, c(1) − c(2)(sin2 θ − cos2 θ) < 0

c(1)+c(2)(sin2 θ−cos2 θ)
c(2)c(1)−(c(1))2−(c(2))2(sin2 θ−cos2 θ)2

, else.

w3 =


1

c(2)
, c(2) < c(1)

1
c(2)

, c(1) + c(2)(sin2 θ − cos2 θ) < 0

0, c(1) − c(2)(sin2 θ − cos2 θ) < 0
c(1)−c(2)(sin2 θ−cos2 θ)

c(2)c(1)−(c(1))2−(c(2))2(sin2 θ−cos2 θ)2
, else.

.

This leads to sub-optimal principal utility compared to the information maximization regime. We show the data contribution
w1, w2, w3 and the total information for varying c(2) and θ in Figure 2 and Figure 3. These visualizations demonstrate
how cost heterogeneity and data diversity influence the strategic response across various mechanisms. Remarkably, the
information maximization strategy Mmax yields improved data contribution and information while exhibiting a more
stable behavior.
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(a) (b)

(c) (d)

Figure 2. Comparison between federated learning mechanism and information maximization mechanism for different c(2) with fixed
c(1) = 2, θ = π/4.

(a) (b)

(c) (d)

Figure 3. Comparison between federated learning mechanism and information maximization mechanism for different θ with fixed c(1) =
2, c(2) = 2.5.
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F. Omitted proofs
In this and the following sections, we will use supp(·) to denote support of a distribution or vector, i.e., the set consisting
of all indices corresponding to nonzero entries. Let Sd+ denote the set of symmetric positive semidefinite matrices in Rd×d,
matrix Loewner order ⪯ is a partial ordering on Sd+, such that A ⪯ B iff B − A ∈ Sd+. Furthermore, A ≺ B if B − A is
positive definite. We overload this notation and say x ⪯ y for two vectors x, y ∈ Rd iff xi ≤ yi for all i = 1, . . . , d. Let ei
denote the one-hot vector (whose dimension will be specified in the context) with the i-th coordinate being 1 and the rest

coordinate being zero. We also define 1(A) =

{
1, A

0, ¬A
.

F.1. Proof of Proposition 3.2

Proof. We first show that when c(1) = · · · c(K) = c, w̃ = d
c · π∗ is a pure Nash equilibrium. Consider the following

function of wGk

ūk(wGk
) = − log det

(
(A(k))⊤M

(
(wGk

, (w̃Gc
k
)
)−1

A(k)
)
− c ·

∑
i∈Gk

wi

Indeed, applying Lemma H.1 and Theorem H.5,

dūk(w̃Gk
,∆wGk

) =
∑
i∈Gk

∆wi⟨xix
⊤
i ,M(w̃)−1⟩ − c ·

∑
i∈Gk

∆wi

≤
(

d

∥w̃∥1
− c

)
·
∑
i∈Gk

∆wi

= 0, ∀∆wGk
.

By concavity of ūk(w̃Gk
), w̃Gk

is the maximizer of ūk.

To show IR, define

w∗
Gk

= argmax
wGk

f
(k)
D

(∑
i∈Gk

wi · (A(k))⊤xix
⊤
i A

(k)

)−1
− c

∑
i∈Gk

wi,

we have (
u(k) ◦M(k)

fed

)
(w̃) ≥ ūk(w

∗
Gk

)

= − log det
(
(A(k))⊤M

(
(w∗

Gk
, w̃Gc

k
)
)−1

A(k)
)
− c ·

∑
i∈Gk

w∗
i

≥ − log det

(
(A(k))⊤(

∑
i∈Gk

w∗
i xix

⊤
i )A

(k)

)−1

− c ·
∑
i∈Gk

w∗
i

= v
(k)
∗

where the first inequality follows from w̃Gk
∈ argmax ūk; the second inequality comes from Lemma H.2.

Next, we show the uniqueness. Suppose w̃ is a Nash equilibrium of the tuple of utility functions
((
u(k) ◦Mfed

))
k∈[K]

. It
follows from first-order optimality that for any ∆wGk

such that supp(∆wGk
) ⊂ supp(w̃Gk

)

0 = dūk(w̃Gk
,∆wGk

)

=
∑
i∈Gk

∆wi⟨xix
⊤
i ,M(w̃)−1⟩ − c(k) ·

∑
i∈Gk

∆wi

=
∑
i∈Gk

(
⟨xix

⊤
i ,M(w̃)−1⟩ − c

)
·∆wi.
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Therefore ⟨xix
⊤
i ,M(w̃)−1⟩ = c holds for all i ∈ supp(w̃). Notice that

d =

〈
n∑

i=1

w̃ixix
⊤
i ,M(w̃)−1

〉

= c

n∑
i=1

w̃i.

We thus have
∑n

i=1 w̃i =
d
c , and as a result, ⟨xix

⊤
i ,M(w̃/∥w̃∥1)−1⟩ = d holds for all i ∈ supp(w̃). Furthermore, for any

i /∈ supp(w̃) first-order optimality implies ⟨xix
⊤
i ,M(w̃/∥w̃∥1)−1⟩ ≤ d. Applying Theorem H.5, we know that w̃/∥w̃∥1

is a D-optimal design. This confirms that any strategic response follows the D-optimal design measure.

Finally, we show that federated learning is not efficient in any other criteria.

V-criterion.

Consider principal-agents experiment design with the accuracy function given by
f (k)(w) = −Ex∼p(k)

[
x⊤M(w)−1x

]
.

where p(k) represents the distribution of client k’s data and is supported on Gk.

In this case, the utility function under federated learning mechanism is given by(
u(k) ◦M(k)

fed

)
(w) = −Ex∼p(k)

[
x⊤M(w)−1x

]
− c

∑
i∈Gk

wi.

The Nash equilibrium w∗ ∈ Rn
+ thus gives the following system:

Ex∼p(k)

[
⟨xx⊤,M(w∗)−1xlxlM(w∗)−1⟩

]{= c, l ∈ supp(w∗)

≤ c, l /∈ supp(w∗)
, ∀l ∈ Gk, k ∈ [K]. (12)

Consider the efficient allocation over the population p (supp(p) ⊂ X )
π∗ = arg min

π∈∆([n])
Ex∼p

[
x⊤M(π)−1x

]
.

The optimal design measure requires the following system:

Ex∼p

[
⟨xx⊤,M(π∗)−1xlxlM(π∗)−1⟩

]{= ⟨Ex∼p

[
xx⊤] ,M(π∗)−1⟩, l ∈ supp(π∗)

≤ ⟨Ex∼p

[
xx⊤] ,M(π∗)−1⟩, l /∈ supp(π∗)

, ∀l ∈ [n]. (13)

Therefore, if the unique pure Nash equilibrium follows the optimal design measure, then p, p(1), . . . , p(K) must satisfy the
linear system given by Eq. (12) and Eq. (13). The solution of this linear system is generally a subspace of ∆([n]) that has
zero measure.

As a result, there exists a design measure such that federated learning mechanism is not efficient.

G-criterion and E-criterion.

Consider the following design space X = {(1, 0, 0)⊤, (0, 1, 0)⊤, (0, 0, 1)⊤} and let there be two agents with index sets
G1 = {1}, G2 = {2, 3}. It is not to see that in this case,

f
(k)
G (w) = f

(k)
E (w) = −max

i∈Gk

[
x⊤
i M(w)−1xi

]
= − ∥(A(k))⊤M(w)−1A(k)∥2

=

{
−w−1

1 , k = 1

min{−w−1
2 ,−w−1

3 }, k = 2.

Therefore the unique pure Nash equilibrium is given by w1 = c−1/2, w2 = w3 = (2c)−1/2. This is clearly not proportional
to the optimal design measure which is uniform over X .

A-criterion.

Consider the following design space X = {(1, 1)⊤, (1, 0)⊤, (0, 1)⊤} and let there be two agents with index sets G1 =

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

{1, 2}, G2 = {3}. It is not to see that in this case,

−tr
[
(A(k))⊤M(w)−1A(k)

]
=

{
− 2w1+w2+w3

w1w3+w2w3+w1w3
, k = 1

− w1+w2

w1w3+w2w3+w1w3
, k = 2.

The pure Nash equilibrium (w1, w2, w3) follows the system:
(w1 + w2)

2

w1w3 + w2w3 + w1w3
− c = 0

w2
2 + w2

3

w1w3 + w2w3 + w1w3
− c = 0

2w2
1 + w2

3 + 2w1w3

w1w3 + w2w3 + w1w3
− c = 0.

The optimal design measure (π1, π2, π3) follows the system:
2π2

1 + π2
2 + 2π2π1

π1π3 + π2π3 + π1π3
− λ = 0

π2
2 + π2

3

π1π3 + π2π3 + π1π3
− λ = 0

2π2
1 + π2

3 + 2π1π3

π1π3 + π2π3 + π1π3
− λ = 0

where λ is the Lagrangian multiplier.

If(w1, w2, w3) is proportional to (π1, π2, π3), then comparing these two systems yields π1 = 0. This is a contradiction.

F.2. Proof of Proposition E.3

Proof. Suppose there exists a pure Nash equilibrium w̃ such that w̃j ̸= 0 and j ∈ Gl. Then from the first order optimality,
for any ∆wGl

such that supp(∆wGl
) ⊂ supp(w̃Gl

)

0 = dūl(w̃Gl
,∆wGl

)

=
∑
i∈Gl

∆wi⟨xix
⊤
i ,M(w̃)−1⟩ − c ·

∑
i∈Gl

∆wi

=
∑
i∈Gl

(
⟨xix

⊤
i ,M(w̃)−1⟩ − c

)
·∆wi.

It follows that ⟨xjx
⊤
j ,M(w̃)−1⟩ = c. Similarly, ⟨xix

⊤
i ,M(w̃)−1⟩ ≤ c for all i ∈ Gk. From the condition, there exists

αi > 0 such that xjx
⊤
j =

∑
i∈Gk

αixix
⊤
i and

∑
i∈Gk

αi < 1. It follows that

⟨xjx
⊤
j ,M(w̃)−1⟩ =

∑
i∈Gk

αi⟨xix
⊤
i ,M(w̃)−1⟩ < c.

Contradiction!

F.3. Proof of Proposition E.5

Proof. Suppose there exists a pure Nash equilibrium w̃ such that w̃j ̸= 0 and j ∈ Gl. Then first order optimality yields for
any ∆wGl

such that supp(∆wGl
) ⊂ supp(w̃Gl

)

0 =
∑
i∈Gl

(
⟨xix

⊤
i ,M(w̃)−1⟩ − c(l)

)
·∆wi.

It follows that ⟨xjx
⊤
j ,M(w̃)−1⟩ = c(l). Similarly, ⟨xix

⊤
i ,M(w̃)−1⟩ ≤ c(k) for all i ∈ Gk. This yields c(k) ≥

⟨xix
⊤
i ,M(w̃)−1⟩ = c(l) for i ∈ supp(w̃Gl

), which contradicts the condition.
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F.4. Proof of Proposition 4.1

Proof. We first notice that the problem in Eq. (5) has compact feasible set and concave objective. Therefore, it has unique
maximizer wmax. Consider any mechanism M. The maximum possible information that can be achieved under M is
given by

max
w∈Rn

+

log detM(w), s.t.
(
u(k) ◦M(k)

)
(w) ≥ v

(k)
∗ .

Let w̃ be the maximizer of the above program, then due to M(k)(w)i ≤ wi, ∀i we have

u(k)(w) ≥
(
u(k) ◦M(k)

)
(w)

≥ v
(k)
∗ .

Therefore w̃ is in the feasible set of the optimization problem in Eq. (5). It follows from definition of wmax that
log detM(w̃) ≤ log detM(wmax).

F.5. Proof of Proposition E.1

Proof. First, notice that

u(k) (wmax) = v
(k)
∗ , ∀k ∈ [K].

Indeed, if there exist k ∈ [K] such that u(k) (wmax) > v
(k)
∗ , then by setting w′

max,i =

{
(1 + ϵ) · wmax,i, if i ∈ Gk

wmax,i, if i /∈ Gk

of sufficiently small ϵ > 0, the constraints in Eq. (5) is still satisfied, but log detM(w′
max) > log detM(wmax). This

contradicts to the fact that wmax is the maximizer.

Suppose wmax is the Nash equilibrium of
((

u(k) ◦M(k)
fed

))
k∈[K]

, we will show that
∑K

i=1 rk = d.

Indeed, by defining

ūk(wGk
) := − log det

(
(A(k))⊤M

(
(wGk

, wmax,Gc
k
)
)−1

A(k)
)
− c(k) ·

∑
i∈Gk

wi,

it follows that wmax,Gk
is the maximizer of ūk. First-order optimality condition and Lemma H.1 yields that for any k and

l ∈ supp(wmax,Gk
)

0 = dūk(wmax,Gk
, el) = ⟨xlx

⊤
l ,M(wmax)

−1⟩ − c(k).

As a result,
K∑

k=1

c(k) ·
∑
i∈Gk

wmax,i =

K∑
k=1

∑
i∈Gk

wmax,i⟨xix
⊤
i ,M(wmax)

−1⟩

=

〈
n∑

i=1

wmax,ixix
⊤
i ,M(wmax)

−1

〉
= d. (14)

Define
vk(wGk

) = u(k) (0, . . . ,0, wGk
,0, . . . ,0)

= − log det

(
(A(k))⊤(

∑
i∈Gk

wixix
⊤
i )A

(k)

)−1

− c(k) ·
∑
i∈Gk

wi.
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Let w∗
Gk

∈ argmaxwGk
vk(wGk

), We have,(
u(k) ◦M(k)

fed

)
(wmax) ≥ ūk(w

∗
Gk

)

= − log det
(
(A(k))⊤M

(
(w∗

Gk
, wmax,Gc

k
)
)−1

A(k)
)
− c(k) ·

∑
i∈Gk

w∗
i

≥ − log det

(
(A(k))⊤(

∑
i∈Gk

w∗
i xix

⊤
i )A

(k)

)−1

− c(k) ·
∑
i∈Gk

w∗
i

= v
(k)
∗

=
(
u(k) ◦M(k)

fed

)
(wmax)

where the second inequality is due to Lemma H.2. Therefore, the above inequalities are all equalities, which implies
w∗

Gk
∈ argmax ūk(wGk

) and

− log det
(
(A(k))⊤M (wmax)

−1
A(k)

)
= − log det

(
(A(k))⊤(

∑
i∈Gk

wmax,ixix
⊤
i )A

(k)

)−1

.

It follows that wmax,Gk
∈ argmax vk(wGk

) and thus ∥wmax,Gk
∥1 = ∥w∗

Gk
∥1.

First-order optimality condition and Theorem H.5 yields that for any k and l ∈ Gk

0 = dv̄k(w
∗
Gk

, el) =
rk

∥w∗
Gk

∥1
− c(k).

As a result, ∥wmax,Gk
∥1 = ∥w∗

Gk
∥1 = rk

c(k) . Combining this and Eq. (14), we have

d =

K∑
k=1

c(k) ·
∑
i∈Gk

wmax,i =

K∑
k=1

c(k) · rk
c(k)

=

K∑
k=1

rk.

This establishes the first statement.

If
∑K

k=1 rk > d, then the above arguments imply that there exist k ∈ [K] and i ∈ supp(wmax,Gk
) such that

dūk(wmax,Gk
, ei) < 0. It follows that by letting w̃Gk

= wmax,Gk
− ϵei for sufficiently small ϵ > 0, we have(

u(k) ◦M(k)
fed

) (
(w̃Gk

, wmax,Gc
k
)
)
>
(
u(k) ◦M(k)

fed

)
(wmax) .

This completes the proof.

F.6. Proof of Proposition 4.2

Proof. Fix k ∈ [K]. Define

ūk(wGk
) := − log det

(
(A(k))⊤M

(
(wGk

, wmax,Gc
k
)
)−1

A(k)
)

− c(k) ·
∑
i∈Gk

wi − c(k) ·
∑
i∈Gk

(wmax,i − wi)+ .

To see that wmax is a pure NE, it suffices to show that wmax,Gk
= argmax ūk(wGk

). Indeed, if w̃Gk
= argmax ūk(wGk

)
and w̃Gk

̸= wmax,Gk
. Consider the following two cases.

Case 1: There exists i ∈ Gk such that w̃i < wmax,i.
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Let w̃′
j =

{
wmax,i, if j = i

w̃j , otherwise
. Then

ūk(w̃
′
Gk

) := − log det
(
(A(k))⊤M

(
(w̃′

Gk
, wmax,Gc

k
)
)−1

A(k)
)

− c(k) ·

wmax,i +
∑

j∈Gk/{i}

w̃j

− c(k) ·
∑

j∈Gk/{i}

(wmax,j − w̃j)+

> − log det
(
(A(k))⊤M

(
(w̃Gk

, wmax,Gc
k
)
)−1

A(k)
)

− c(k) ·
∑
j∈Gk

w̃j − c(k) ·
∑
j∈Gk

(wmax,j − w̃j)+

= ūk(w̃Gk
)

where the first step is due to wmax,i − w̃′
i = 0 and the second step comes from Lemma H.1 and wmax,i = w̃i +

(wmax,i − w̃i)+. This contradicts with w̃Gk
= argmax ūk(wGk

).

Case 2: w̃j ≥ wmax,j , ∀j ∈ Gk and there exists i ∈ Gk such that w̃i > wmax,i.

Notice that in this case log detM
(
(w̃Gk

, wmax,Gc
k
)
)
> log detM (wmax). Therefore there exists j ∈ [K] such that(

u(j) ◦M(j)
max

)(
(w̃Gj

, wmax,Gc
j
)
)
< v

(j)
∗ , and it is obvious that such j’s must include k. As a result,

ūk(w̃Gk
) =

(
u(k) ◦M(k)

max

) (
(w̃Gk

, wmax,Gc
k
)
)
< v

(k)
∗ ≤

(
u(k) ◦M(k)

max

)
(wmax) = ūk(wmax).

Contradiction! Therefore, we have shown that (wmax,Gk
)k∈[K] is a pure Nash equilibrium. Since wmax is the solution of

Eq. (5), Individual Rationality is satisfied. As a result, wmax is a strategic response of mechanism Mmax.

Next, we display uniqueness. Suppose for the sake of contradiction that there exists a Nash equilibrium (w̃Gk
)k∈[K] ̸=

(wmax,Gk
)k∈[K]. We follow the above line of arguments and consider the following two cases.

Case 1: There exists k ∈ [K] and i ∈ Gk such that w̃i < wmax,i.

Let w̃′
j =

{
wmax,i, if j = i

w̃j , otherwise
. Then(

u(k) ◦M(k)
max

) (
(w̃′

Gk
, w̃Gc

k
)
)
:= − log det

(
(A(k))⊤M

(
(w̃′

Gk
, w̃Gc

k
)
)−1

A(k)
)

− c(k) ·

wmax,i +
∑

j∈Gk/{i}

w̃j

− c(k) ·
∑

j∈Gk/{i}

(wmax,j − w̃j)+

> − log det
(
(A(k))⊤M (w̃)

−1
A(k)

)
− c(k) ·

∑
j∈Gk

w̃j − c(k) ·
∑
j∈Gk

(wmax,j − w̃j)+

=
(
u(k) ◦M(k)

max

)
(w̃) .

This contradicts with w̃Gk
= argmaxwGk

(
u(k) ◦M(k)

max

) (
(wGk

, w̃Gc
k
)
)
.

Case 2: w̃j ≥ wmax,j , ∀j ∈ [n] and there exists k ∈ [K] and i ∈ Gk such that w̃i > wmax,i.

Since log detM (w̃) > log detM (wmax), there exists j ∈ [K] such that
(
u(j) ◦M(j)

max

)
(w̃) < v

(j)
∗ . Obviously, there

exists i ∈ Gj such that w̃i > wmax,i. As a result,(
u(j) ◦M(j)

max

)
(w̃) < v

(j)
∗ ≤

(
u(j) ◦M(j)

max

)
(wmax) ≤

(
u(j) ◦M(j)

max

)(
(wmax,Gj

, w̃Gc
j
)
)
.

This means
w̃Gj

/∈ arg max
wGj

∈R
|Gj |
+

(
u(j) ◦M(j)

max

)(
(wGj

, w̃Gc
j
)
)
.
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Contradiction!

F.7. Proof of Corollary D.1

Proof. Suppose there exist k ∈ [K] such that
(
u(k) ◦M(k)

max

)
(wmax) > v

(k)
∗ , then the definition of Mmax yields

u(k)(wmax) =
(
u(k) ◦M(k)

max

)
(wmax) > v

(k)
∗ . By setting w′

i =

{
(1 + ϵ) · wmax,i, if i ∈ Gk

wmax,i, if i /∈ Gk

of sufficiently small

ϵ > 0, we have for any l ∈ [K],

u(l)(w′) ≥ v
(l)
∗ .

Thus the constraints in Eq. (5) is still satisfied, but log detM(w′
max) > log detM(wmax). This contradicts to the fact that

wmax is the optimizer in Eq. 5.

F.8. Proof of Proposition D.2

Proof. Fix k ̸= k′ and assume
(
u(k) ◦M(k)

max

)
(w̄) ≥

(
u(k′) ◦M(k′)

max

)
(w̄). By the data exchangeability and Corol-

lary D.1 we have, modulo constants 2 log ∥x∥2, that

log (∥w̄∥1)− c(k) · ∥w̄Gk
∥1 =

(
u(k) ◦M(k)

max

)
(w̄)

= v
(k)
∗

= − log c(k) − 1.

Therefore c(k) ≤ c(k
′) and we have

∥w̄Gk
∥1 =

log (∥w̄∥1) + log c(k) + 1

c(k)
.

Now we define

f(c) =
log (∥w̄∥1) + log c+ 1

c
.

Notice that f ′(c) = − log(∥w̄∥1)+log c
c2 < 0 for any c ≥ minl∈[K] c

(l), thus

∥w̄Gk
∥1 =

log (∥w̄∥1) + log c(k) + 1

c(k)

≥ log (∥w̄∥1) + log c(k
′) + 1

c(k′)

= ∥w̄G′
k
∥1.

This confirms that ∥w̄Gk
∥1 ≥ ∥w̄G′

k
∥1.

F.9. Proof of Proposition D.5

Proof. Define k0 = argmink∈[K] c
(k) and

θ
(k)
∗ := max

π∈∆([n])
− log det

(A(k))⊤

(
n∑

i=1

πixix
⊤
i

)−1

A(k)


θ(k) := max

π∈∆(Gk)
log det

(
(A(k))⊤

(∑
i∈Gk

πixix
⊤
i

)
A(k)

)
.
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We have
SG(w)

=

K∑
k=1

(
u(k) ◦M(k)

max

)
(w)

=

K∑
k=1

(
− log det

(
(A(k))⊤M(w)−1A(k)

)
− c(k) ·

∑
i∈Gk

wi − c(k) ·
∑
i∈Gk

(wmax,i − wi)+

)

≤
K∑

k=1

(
θ
(k)
∗ + rk log ∥w∥1 − c(k) ·

∑
i∈Gk

wi − c(k) ·
∑
i∈Gk

(wmax,i − wi)+

)

≤
K∑

k=1

(
θ
(k)
∗ + rk log

∑K
k=1 rk
c(k0)

− rk − (c(k) − c(k0)) · ∥wmax,Gk
∥1

)

where the maximizer in the last inequality is given by ∥wGk
∥1 =

{
∥wmax,Gk

∥1, k ̸= k0

∥wmax,Gk
∥1 +

∑K
k=1 rk
c(k0) − ∥wmax∥1, k = k0

. Fur-

ther, notice that

SG(wmax) =

K∑
k=1

(
u(k) ◦M(k)

max

)
(wmax)

=

K∑
k=1

v
(k)
∗

=

K∑
k=1

(
θ(k) + rk log

rk
c(k)

− rk

)
where the second inequality uses Corollary D.1.

It follows that
SG(w)

SG(wmax)

≤

∑K
k=1

(
θ
(k)
∗ − θ(k)

)
∑K

k=1

(
θ(k) + rk log

rk
c(k) − rk

) + ∑K
k=1

(
rk log

c(k) ∑K
k=1 rk

rkc(k0) − (c(k) − c(k0)) · ∥wmax,Gk
∥1
)

∑K
k=1

(
θ(k) + rk log

rk
c(k) − rk

) + 1

=

∑K
k=1 ∆

(k)∑K
k=1

(
θ(k) + rk log

rk
c(k) − rk

) + ∑K
k=1

(
rk log

c(k) ∑K
k=1 rk

rkc(k0) − (c(k) − c(k0)) · ∥wmax,Gk
∥1
)

∑K
k=1

(
θ(k) + rk log

rk
c(k) − rk

) + 1.

G. Efficiency under heterogeneous costs
In Section 3, we investigated the efficiency of federated learning with homogeneous costs. However, the proof of Proposi-
tion 3.2 demonstrates that federated learning is not efficient when costs are heterogeneous. Therefore, in this section, we
focus on mechanism designs to incentivize efficient allocation. Specifically, we consider the objective weff = nmax · π∗,
where π∗ represents an optimal design measure under the D-criterion, and nmax is defined as

nmax = max
n∈R+

n, (15)

s.t. u(k)(n · π∗) ≥ v
(k)
∗ , ∀k ∈ [K].

The objective weff aims to maximize the total number of data while preserving efficient allocation of experiments. However,
the feasibility of the program defined by Eq. (15) is not guaranteed in general. We provide a result that establishes a
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condition under which weff is well-defined and lower bounded by w∗
Gk

, where

w∗
Gk

= argmax− log det

(
(A(k))⊤(

∑
i∈Gk

wixix
⊤
i )A

(k)

)−1

− c(k) ·
∑
i∈Gk

wi.

Assumption G.1 (Data compatibility). We assume for any k, k′ ∈ [K],

u(k′)

(
∥w∗

Gk
∥1

∥π∗
Gk

∥1
· π∗

)
≥ v

(k′)
∗ .

This assumption implies that if we scale up the D-optimal design according to w∗
Gk

, the utility for any other agent k′ is
still no less than the maximum utility that agent k′ can achieve if she opts out of the collaborative learning and trains a
model using her own data. Therefore, π∗ is compatible in the sense that no agent has an incentive to leave the collaborative
learning program if they follow π∗ and each agent k contribute at least ∥w∗

Gk
∥1 data points. Under this condition, we can

derive the following result:

Proposition G.2 (Feasibility and incentivized more contribution). Suppose Assumption G.1 holds. Then the problem in
Eq. (15) is feasible. Furthermore, For all k ∈ [K] we have nmax ·

∑
i∈Gk

π∗
i ≥

∑
i∈Gk

w∗
i .

Proof. Define Ik =
{
n ∈ R+ : u(k)(n · π∗) ≥ v

(k)
∗

}
. Notice u(k) is concave and

u(k)

(
∥w∗

Gk
∥1

∥π∗
Gk

∥1
· π∗

)

= − log det

(A(k))⊤M

(
∥w∗

Gk
∥1

∥π∗
Gk

∥1
· π∗

)−1

A(k)

− c(k) · ∥w∗
Gk

∥1

≥ − log det

(A(k))⊤M

w∗
Gk

,

(
∥w∗

Gk
∥1

∥π∗
Gk

∥1
· π∗

j

)
j /∈Gk

−1

A(k)

− c(k) · ∥w∗
Gk

∥1

≥ − log det

(
(A(k))⊤

(∑
i∈Gk

w∗
i xix

⊤
i

)
A(k)

)−1

− c(k) · ∥w∗
Gk

∥1

= v
(k)
∗ ,

where the second step comes from Applying Lemma H.1 and the fact that uk is concave wrt wGk
; the third step comes

from Lemma H.2. As a result, Ik is a closed interval and
∥w∗

Gk
∥1

∥π∗
Gk

∥1
∈ Ik for any k ∈ [K]. We rewrite Ik = [ak, bk] where

ak ≤
∥w∗

Gk
∥1

∥π∗
Gk

∥1
≤ b.

Assumption G.1 implies that
∥w∗

Gk
∥1

∥π∗
Gk

∥1
∈ Ik′ for any k′ ∈ [K]. Therefore, ∩k∈[k]Ik ̸= ∅ and nmax = mink∈[k] bk. This

establishes feasibility and nmax ≥
∥w∗

Gk
∥1

∥π∗
Gk

∥1
.

G.1. Mechanism design for pure efficient allocation

We begin by considering pure efficient allocation, which best illustrates the nature of the problem. In this subsection, we
omit the cost functions and assume c(1) = · · · = c(K) = 0. The goal in this section is to design mechanisms M(k) such
that all Nash equilibrium wrt the utility functions

((
u(k) ◦M(k)

))
k∈[K]

takes the form of (λ · π∗
Gk

)k∈[K] where λ > 0, i.e.
proportional to the optimal design measure.

We define the following mechanism based on scaling the design by a constant ηk ≤ 1:

M(k)
pure(w) = ηkw where η−1

k = exp

 d

rk
·

(
(
∑

i/∈Gk
π∗
i )(
∑

i∈Gk
wi)∑

i/∈Gk
wi

−
∑
i∈Gk

π∗
i

)
+

 . (16)
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The intuition behind ηk is to introduce competition among agents, penalizing those who contribute proportionally less data

than others. In fact, any strategic agent k under this mechanism is incentivized to contribute no less than
∑

i∈Gk
π∗
i∑

i/∈Gk
π∗
i

times

the total amount of data collected by the other agents. Therefore, the mechanism in Eq. (16) ensures that the marginal
probability of the aggregated design measure on each agent k, i.e., (

∑
i∈Gk

wi)/(
∑n

i=1 wi), aligns with the marginal
probability of the optimal design measure, i.e. (

∑
i∈Gk

π∗
i )/(

∑n
i=1 π

∗
i ). By leveraging the properties of D-optimal design,

we can demonstrate that it further ensures alignment between w and π∗ for each coordinate. Besides subsampling, this
mechanism can also be efficiently implemented by letting

θ̂(k) = θ̂ + ζ(k), where ζ(k) ∼ N
(
0, (η−1

k − 1) ·M(w)−1
)
.

It follows that agent k’s utility is given by(
u(k) ◦M(k)

pure

)
(w) = − log det

(
(A(k))⊤M(w)−1A(k)

)
− d ·

(
(
∑

i/∈Gk
π∗
i )(
∑

i∈Gk
wi)∑

i/∈Gk
wi

−
∑
i∈Gk

π∗
i

)
+

. (17)

Proposition G.3 (Pure Efficient allocation). For any λ > 0, (λ ·π∗
Gk

)k∈[K] is a pure Nash equilibrium of the tuple of utility

functions
((

u(k) ◦M(k)
pure

))
k∈[K]

. Furthermore, any pure Nash equilibrium takes the form of (λ · π∗
Gk

)k∈[K].

Proof. Fix k ∈ Z+, λ ∈ R+ and w̄i = λπ∗
i for all i /∈ Gk. For the sake of brevity, we define the following function of

wGk

ūk(wGk
) = − log det

(
(A(k))⊤M((wGk

, (w̄j)j /∈Gk
))−1A(k)

)
− d ·

(
(
∑

i/∈Gk
π∗
i )(
∑

i∈Gk
wi)∑

i/∈Gk
w̄i

−
∑
i∈Gk

π∗
i

)
+

where (wGk
, (w̄j)j /∈Gk

) denotes the concatenation of wGk
and (w̄j)j /∈Gk

such that

(wGk
, (w̄j)j /∈Gk

)i =

{
wi, if i ∈ Gk

w̄i, otherwise.

It suffices to show that w̄Gk
:= λπ∗

Gk
is the unique maximizer of ūk(wGk

).

For any ∆wGk
, Lemma H.1 gives

dūk (w̄Gk
,∆wGk

)

=

〈∑
i∈Gk

∆wixix
⊤
i ,M(w̄)−1

〉
−

d(
∑

i/∈Gk
π∗
i )∑

i/∈Gk
w̄i

(∑
i∈Gk

∆wi

)
+

=

〈∑
i∈Gk

∆wixix
⊤
i ,M(π∗)−1

〉
·
∑

i/∈Gk
π∗
i∑

i/∈Gk
w̄i

−
d(
∑

i/∈Gk
π∗
i )∑

i/∈Gk
wi

(∑
i∈Gk

∆wi

)
+

≤
∑
i∈Gk

∆wi

(
⟨xix

⊤
i ,M(π∗)−1⟩ − d

)
·
∑

i/∈Gk
π∗
i∑

i/∈Gk
w̄i

≤ 0,

where the second step is due to M(w̄)−1 = M(π∗)−1 · 1∑n
i=1 w̄i

= M(π∗)−1 ·
∑

i/∈Gk
π∗
i∑

i/∈Gk
w̄i

; the last step uses

⟨xix
⊤
i ,M(π∗)−1⟩

{
= d, i ∈ supp(π∗)

≤ d, i /∈ supp(π∗)
by Theorem H.5. By concavity of ūk, w̄Gk

:= λπ∗
Gk

is the unique maximizer

of ūk(wGk
).

Therefore for any λ > 0, (wGk
= λ · π∗

Gk
)k∈[K] is a Nash Equilibrium.

In what follows, we show that any pure Nash Equilibrium takes the form of (wGk
= λ · π∗

Gk
)k∈[K], λ ∈ R+.

Suppose for the sake of contradiction a Nash equilibrium (w̃Gk
)k∈[K] not in the form of (λ · π∗

Gk
)k∈[K].
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Fix k ∈ [K]. Consider the following utility as a function of wGk

ūk(wGk
) = − log det

(
(A(k))⊤M

(
(wGk

, (w̃Gc
k
)
)−1

A(k)
)
− d ·

(
(
∑

i/∈Gk
π∗
i )(
∑

i∈Gk
wi)∑

i/∈Gk
w̃i

−
∑
i∈Gk

π∗
i

)
+

where (wGk
, w̃Gc

k
) denotes the concatenation of wGk

and w̃Gc
k

such that

(wGk
, w̃Gc

k
)i =

{
wi, if i ∈ Gk

w̃i, otherwise.

We assert that
(
∑

i/∈Gk
π∗
i )(
∑

i∈Gk
w̃i)∑

i/∈Gk
w̃i

−
∑
i∈Gk

π∗
i = 0, ∀k ∈ [K]. (18)

Indeed, it is obvious that
(
∑

i/∈Gk
π∗
i )(

∑
i∈Gk

w̃i)∑
i/∈Gk

w̃i
−
∑

i∈Gk
π∗
i ≥ 0 for all k ∈ [K]. (If there exists k ∈ [K] such that

(
∑

i/∈Gk
π∗
i )(

∑
i∈Gk

w̃i)∑
i/∈Gk

w̃i
−
∑

i∈Gk
π∗
i < 0, then define ŵGk

:= (1 + ϵ)w̃Gk
. By applying Lemma H.1,

ūk(ŵGk
) = − log det

(
(A(k))⊤M

(
((1 + ϵ)w̃Gk

, (w̃Gc
k
)
)−1

A(k)
)

> − log det
(
(A(k))⊤M

(
(w̃Gk

, (w̃Gc
k
)
)−1

A(k)
)

= ūk(w̃Gk
)

holds for sufficiently small ϵ > 0. Contradiction!) Recall that π∗ ∈ ∆[n]. Examining
(
∑

i/∈Gk
π∗
i )(

∑
i∈Gk

w̃i)∑
i/∈Gk

w̃i
−
∑

i∈Gk
π∗
i ≥

0 for all k ∈ [K] yields Eq. (18).

By Theorem H.5, there must exist l ∈ [n] such that ⟨xlx
⊤
l ,M(w̃/∥w̃∥1)−1⟩ > d. Suppose l ∈ Gk, then we have

dūk (w̃Gk
, el) ≥

〈
xlx

⊤
l ,M(w̃)−1

〉
−

d(
∑

i/∈Gk
π∗
i )∑

i/∈Gk
w̃i

=
〈
xlx

⊤
l ,M(w̃/∥w̃∥1)−1

〉
·
∑

i/∈Gk
π∗
i∑

i/∈Gk
w̃i

−
d(
∑

i/∈Gk
π∗
i )∑

i/∈Gk
w̃i

> 0

where the first step applies Lemma H.1; the second step uses M(w̃)−1 = M(w̃/∥w̃∥1)−1 · 1∑n
i=1 w̃i

= M(w̃/∥w̃∥1)−1 ·∑
i/∈Gk

π∗
i∑

i/∈Gk
w̃i

due to Eq. (18). It follows that letting w̃′ = ϵ·el+w̃ would increase ūk for sufficiently small ϵ > 0. Contradiction!

G.2. Mechanism design for efficient allocation under different cost parameters

We design the following feasible mechanism to achieve efficient allocation in Eq. (15) when the cost parameters are not
the same. Define Meff(k) as follows

M(k)
eff (w) = ρkw, where (19)

ρ−1
k = exp

(
c(k)

rk
·
∑
i∈Gk

(nmax · π∗
i − wi)+ +

∑
i∈Gk

(
(
∑

i/∈Gk
π∗
i )wi

(
∑

i/∈Gk
w̄i)π∗

i

− 1

)
+

· 1 (wi ≥ nmax · πi)

)
In ρk, the first term is the same as the regularization term in Mmax and functions as incentivizing more data contribution;
the second term is similar to the regularization term in Mpure and serves as incentivizing alignment with optimal design
measure. Therefore, although the objective weff may take complex forms, these two simple terms together create the
incentive for each agent to follow the optimal design measure while increasing the total information. Besides subsampling,
this mechanism can also be efficiently implemented by letting

θ̂(k) = θ̂ + ζ(k), where ζ(k) ∼ N
(
0, (ρ−1

k − 1) ·M(w)−1
)
.
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The k-th agent’s utility is then given by(
u(k) ◦M(k)

eff

)
(w) = − log det

(
(A(k))⊤M(w)−1A(k)

)
− c(k) ·

∑
i∈Gk

(nmax · π∗
i − wi)+ (20)

− rk ·
∑
i∈Gk

(
(
∑

i/∈Gk
π∗
i )wi

(
∑

i/∈Gk
wi)π∗

i

− 1

)
+

· 1 (wi ≥ nmax · πi)− c(k)

(∑
i∈Gk

wi

)
.

Proposition G.4 (Data maximization and efficient allocation). The efficient allocation design (weff,Gk
)k∈[K] is the unique

strategic response to the mechanism Meff .

Proof. Fix k and w̄i = nmaxπ
∗
i for all i /∈ Gk. Define N =

∑
i/∈Gk

w̄ixix
⊤
i . Define the following function of wGk

ūk(wGk
)

= − log det
(
(A(k))⊤M((wGk

, w̄Gc
k
))−1A(k)

)
− c(k) ·

(∑
i∈Gk

wi

)
− c(k) ·

∑
i∈Gk

(nmax · π∗
i − wi)+

− rk ·
∑
i∈Gk

(
(
∑

i/∈Gk
π∗
i )wi

(
∑

i/∈Gk
w̄i)π∗

i

− 1

)
+

· 1 (wi ≥ nmax · πi)

where (wGk
, w̄Gc

k
) denotes the concatenation of wGk

and w̄Gc
k

such that

(wGk
, w̄Gc

k
)i =

{
wi, if i ∈ Gk

w̄i, otherwise.

To show that weff is a pure Nash equilibrium, it suffices to show that w̄Gk
:= nmaxπ

∗
Gk

is the unique maximizer of
ūk(wGk

).

Indeed, consider any wGk
̸= w̄Gk

.

Case 1: there exists i ∈ Gk such that wi < nmax · π∗
i .

For all j ∈ Gk let w̃j =

{
wj , if wj ≥ nmax · π∗

j

nmax · π∗
j , if wj < nmax · π∗

j

. From Lemma H.1,

ūk(w̃Gk
)

= − log det
(
(A(k))⊤M((w̃Gk

, w̄Gc
k
))−1A(k)

)
− c(k) ·

(∑
i∈Gk

w̃i

)
− c(k) ·

∑
i∈Gk

(nmax · π∗
i − w̃i)+

− rk ·
∑
i∈Gk

(
(
∑

i/∈Gk
π∗
i )w̃i

(
∑

i/∈Gk
w̄i)π∗

i

− 1

)
+

· 1 (w̃i ≥ nmax · πi)

> − log det
(
(A(k))⊤M((wGk

, w̄Gc
k
))−1A(k)

)
− c(k) ·

(∑
i∈Gk

wi

)
− c(k) ·

∑
i∈Gk

(nmax · π∗
i − wi)+

− rk ·
∑
i∈Gk

(
(
∑

i/∈Gk
π∗
i )wi

(
∑

i/∈Gk
w̄i)π∗

i

− 1

)
+

· 1 (wi ≥ nmax · πi)

= ūk(wGk
).

This yields a contradiction.

Case 2: wi ≥ nmax · π∗
i for all i ∈ Gk.
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Define ϵj =
wj

nmax·π∗
j
− 1 for all j ∈ Gk, then mini∈Gk

ϵi ≥ 0 and maxi∈Gk
ϵi > 0. We have

ūk(wGk
)

= − log det

(A(k))⊤

(∑
i∈Gk

(1 + ϵi)w̄ixix
⊤
i +N

)−1

A(k)

− c(k) ·
∑
i∈Gk

(nmax · π∗
i − wi)+

− c(k) ·

(∑
i∈Gk

wi

)
− rk ·

∑
i∈Gk

ϵi

≤ − log det

(1 + max
i∈Gk

ϵi

)−1

(A(k))⊤

(∑
i∈Gk

w̄ixix
⊤
i +N

)−1

A(k)


− c(k) ·

∑
i∈Gk

(nmax · π∗
i − w̄i)+ − c(k) ·

(∑
i∈Gk

w̄i

)
− rk ·

∑
i∈Gk

ϵi

= ūk(w̄Gk
) + rk · log

(
1 + max

i∈Gk

ϵi

)
− rk ·

∑
i∈Gk

ϵi

< ūk(w̄Gk
).

It follows that ūk(wGk
) < ūk(w̄Gk

), also a contradiction.

Combining the above two cases confirms that
(
nmax · π∗

Gk

)
k∈[K]

is a pure NE. By definition of weff in Eq. (15), Individual
rationality is satisfied. Therefore weff is a strategic response of Meff .

In what follows, we show that nmaxπ
∗ is the unique pure Nash equilibrium. Consider any pure Nash equilibrium

(w̃Gk
)k∈[K], we will show in the following three steps that it must be equal to (nmax · π∗

Gk
)k∈[K].

For any k ∈ [K] define the following utility as a function of wGk

ūk(wGk
)

= − log det
(
(A(k))⊤M((wGk

, w̃Gc
k
))−1A(k)

)
− c(k) ·

(∑
i∈Gk

wi

)
− c(k) ·

∑
i∈Gk

(nmax · π∗
i − wi)+

− rk ·
∑
i∈Gk

(
(
∑

i/∈Gk
π∗
i )wi

(
∑

i/∈Gk
w̃i)π∗

i

− 1

)
+

· 1 (wi ≥ nmax · πi)

where (wGk
, w̃Gc

k
) denotes the concatenation of wGk

and w̃Gc
k

such that

(wGk
, w̃Gc

k
)i =

{
wi, if i ∈ Gk

w̃i, otherwise.

It follows that ūk(w̃Gk
) = maxwGk

ūk(wGk
), ∀k ∈ [K].

Step 1. We first show that w̃i ≥ nmaxπ
∗
i for any i ∈ [n].

Indeed, if there exists k ∈ [K] and i ∈ Gk such that w̃i < nmaxπ
∗
i . Let ŵj =

{
w̃j , if w̃j ≥ nmax · π∗

j

nmax · π∗
j , if w̃j < nmax · π∗

j

. From

Lemma H.1,
ūk(ŵGk

)

= − log det
(
(A(k))⊤M((ŵGk

, w̃Gc
k
))−1A(k)

)
− c(k) ·

(∑
i∈Gk

ŵi

)
− c(k) ·

∑
i∈Gk

(nmax · π∗
i − ŵi)+

− rk ·
∑
i∈Gk

(
(
∑

i/∈Gk
π∗
i )ŵi

(
∑

i/∈Gk
w̃i)π∗

i

− 1

)
+

· 1 (ŵi ≥ nmax · πi)

> ūk(w̃Gk
).
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This contradicts with the fact that w̃Gk
is the maximizer of ūk.

Step 2. We show that there exists λ ≥ nmax such that w̃ = λ · π∗.

Suppose ∃ k ∈ [K] and i ∈ Gk such that
(
∑

j /∈Gk
π∗
i )w̃i∑

j /∈Gk
w̃i

> π∗
i , define ϵi =

(
∑

j /∈Gk
π∗
j )w̃i

(
∑

j /∈Gk
w̃j)π∗

i
− 1 > 0. Let

ŵj =

w̃j , if j ̸= i
(
∑

j /∈Gk
w̃j)π

∗
i∑

j /∈Gk
π∗
j

, if j = i
. We have

ūk(w̃Gk
)

= − log det

(A(k))⊤

(1 + ϵi)ŵixix
⊤
i +

∑
j ̸=i

w̃jxjx
⊤
j

−1

A(k)

− c(k) ·

∑
j∈Gk

w̃j


− c(k) ·

∑
j∈Gk

(
nmax · π∗

j − w̃j

)
+
− rk ·

∑
j∈Gk

(
(
∑

l/∈Gk
π∗
l )w̃j

(
∑

l/∈Gk
w̃l)π∗

j

− 1

)
+

· 1 (ŵj ≥ nmax · πj)

≤ − log det

(1 + ϵi)
−1

(A(k))⊤

∑
j∈Gk

ŵjxjx
⊤
j

−1

A(k)

− rk · ϵi − c(k) ·

∑
j∈Gk

ŵj


− c(k) ·

∑
j∈Gk

(
nmax · π∗

j − ŵj

)
+
− rk ·

∑
j∈Gk,j ̸=i

(
(
∑

l/∈Gk
π∗
l )ŵj

(
∑

l/∈Gk
w̃l)π∗

j

− 1

)
+

· 1 (ŵj ≥ nmax · πj)

= ūk(ŵGk
) + rk · log (1 + ϵi)− rk · ϵi

< ūk(ŵGk
).

This contradicts with the fact that w̃Gk
is the maximizer of ūk.

As a result,
(
∑

i/∈Gk
π∗
i )w̃i∑

i/∈Gk
w̃i

≥ π∗
i holds for any i ∈ [n]. Examining this inequality for all i ∈ [n] yields that w̃ = λ · π∗ for

some λ which must be greater than or equal to nmax.

Step 3. We show that λ = nmax.

From the definition of nmax, for any λ > nmax there exists k ∈ [K] such that(
u(k) ◦M(k)

eff

)
(λ · π∗) < v

(k)
∗

≤
(
u(k) ◦M(k)

eff

)
(nmax · π∗)

≤
(
u(k) ◦M(k)

eff

)(
(nmax · π∗

Gk
, λ · π∗

Gc
k
)
)
.

This means that λ · π∗
Gk

is not a NE, yielding a contradiction. It follows that
(
nmax · π∗

Gk

)
k∈[K]

is the unique pure NE.
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H. Support lemmata
Lemma H.1. We abbreviate A(k) and A(k)(A(k))⊤ as A and P respectively. Suppose M(w) ≻ 0. For any l ∈ Gk, we
have

∂ − log det
(
A⊤M(w)−1A

)
∂wl

=
〈
xlx

⊤
l ,M(w)−1

〉
> 0.

Furthermore, fixing wGc
k
, the function log det

(
A⊤M(w)−1A

)
is concave in wGk

.

Proof. Indeed, for l ∈ Gk

∂ − log det
(
A⊤M(w)−1A

)
∂wl

= −
〈(

A⊤M(w)−1A
)−1

,
∂A⊤M(w)−1A

∂wl

〉
= −

〈(
A⊤M(w)−1A

)−1
, A⊤ ∂M(w)−1

∂wl
A

〉

= −

〈(
A⊤M(w)−1A

)−1
, A⊤

 ∑
i,j∈[d]

−M(w)−1eie
⊤
j M(w)−1(xlx

⊤
l )i,j

A

〉

= −
〈(

A⊤M(w)−1A
)−1

, A⊤ (−M(w)−1xlx
⊤
l M(w)−1

)
A
〉

=
〈(

A⊤M(w)−1A
)−1

, A⊤M(w)−1AA⊤xlx
⊤
l M(w)−1A

〉
=
〈
I, A⊤xlx

⊤
l M(w)−1A

〉
=
〈
xlx

⊤
l AA

⊤,M(w)−1
〉

=
〈
xlx

⊤
l ,M(w)−1

〉
,

where the first step uses the fact that ∂
∂Yi,j

log detY = [Y −1]j,i; the third step uses the fact that ∂
∂Yi,j

Y −1 =

−Y −1eie
⊤
j Y

−1; the fourth step comes from∑
i,j∈[d]

eie
⊤
j (xlx

⊤
l )i,j =

∑
i,j∈[d]

eie
⊤
i (xlx

⊤
l )eje

⊤
j = xlx

⊤
l ;

the fifth and final step use the fact that AA⊤xlx
⊤
l = xlx

⊤
l since AA⊤ = P is the projection matrix on {xi}i∈Gk

.

This establishes the first statement. To show concavity, notice that

[−Hessf (w)]i,j = −
∂
〈
xix

⊤
i ,M(w)−1

〉
∂wj

=
〈
xix

⊤
i ,M(w)−1xjx

⊤
j M(w)−1

〉
=
(
x⊤
i M(w)−1xj

)2 ∀i, j ∈ Gk.

Therefore −Hessf (w) is Hadamard product of the positive semi-definite matrix
(
x⊤
i M(w)−1xj

)
i,j∈Gk

and itself. It fol-
lows from Schur product theorem that the negative Hessian matrix −Hessf is symmetric positive semidefinite everywhere
in the domain, which establishes the concavity.

Lemma H.2. For any w such that
∑n

i=1 wixix
⊤
i is non-singular,

log det

(
(A(k))⊤

(∑
i∈Gk

wixix
⊤
i

)
A(k)

)
≤ log det

(A(k))⊤

(
n∑

i=1

wixix
⊤
i

)−1

A(k)

−1

.

Further, if equality holds, then for any w′
Gk

we have(
A(k))⊤(

∑
i∈Gk

w′
ixix

⊤
i )A

(k)

)−1

= (A(k))⊤

∑
i∈Gk

w′
ixix

⊤
i +

∑
i/∈Gk

wixix
⊤
i

−1

A(k).
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Proof. Fix k ∈ [K]. We use shorthand notations M0 =
∑

i∈Gk
wixix

⊤
i ,M =

∑n
i=1 wixix

⊤
i , A = A(k). Let M0 =

Udiag(λ1, . . . , λrk , 0, . . . , 0)U
⊤ and A = UΛV ⊤ denote the Singular Value Decomposition (SVD) decomposition of

M0 and A respectively, where U ∈ Rd×d and V ∈ Rrk×rk are real orthogonal matrices. We write U(M − M0)U
⊤ =(

A11 A12

A21 A22

)
where A11 ∈ Rrk×rk .

Define D = diag(λ1, . . . , λrk). Notice that
A⊤M0A = V Λ⊤U⊤Udiag(λ1, . . . , λrk , 0, . . . , 0)U

⊤UΛV ⊤

= V
(
Irk×rk 0rk×(d−rk)

)
diag(λ1, . . . , λrk , 0, . . . , 0)

(
Irk×rk

0rk×(d−rk)

)
V ⊤

= V DV ⊤.

We assert that A⊤M−1A ⪯
(
A⊤M0A

)−1
. Indeed, we have(

A⊤M0A
)1/2

A⊤M−1A
(
A⊤M0A

)1/2
= V D1/2V ⊤V Λ⊤U⊤U

(
D +A11 A12

A21 A22

)−1

U⊤UΛV ⊤V D1/2V ⊤

= V D1/2
(
Irk×rk 0rk×(d−rk)

)((D +A11 −A12A
−1
22 A21)

−1 ⋆
⋆ ⋆

)(
Irk×rk

0rk×(d−rk)

)
D1/2V ⊤

= V D1/2
(
D +A11 −A12A

−1
22 A21

)−1
D1/2V ⊤

≤ V V ⊤

= Irk×rk

where the inequality is due to A11 − A12A
−1
22 A21 ⪰ 0 since this is the Schur complement of M − M0 ⪰ 0. As a result,

A⊤M−1A ⪯
(
A⊤M0A

)−1
.

Applying the monotonicity of log det(·), we have

log det

(A(k))⊤

(
n∑

i=1

wixix
⊤
i

)−1

A(k)

 ≤ log det

(
(A(k))⊤

(∑
i∈Gk

wixix
⊤
i

)
A(k)

)−1

.

This establishes the inequality. Further, if equality holds then A11 −A12A
−1
22 A21 = 0. As a result,

A⊤M−1A

= V Λ⊤U⊤U

(
D +A11 A12

A21 A22

)−1

U⊤UΛV ⊤

= V
(
Irk×rk 0rk×(d−rk)

)((D +A11 −A12A
−1
22 A21)

−1 ⋆
⋆ ⋆

)(
Irk×rk

0rk×(d−rk)

)
V ⊤

= V D−1V ⊤

=
(
A⊤M0A

)−1
.

Notice that the validity above argument does not depend on wGk
and in fact holds for any w′

Gk
. This completes the proof.

Claim H.3 (Monotonicity of determinant). Suppose A and B are two symmetric matrices such that A ⪰ B ≻ 0, then
detA ≥ detB.
Claim H.4 (Concavity of log-determinant function). Suppose A and B are two symmetric positive semidefinite matrices
such that A ⪰ B ≻ 0, then log det(λA+ (1− λ)B) ≥ λ log detB + (1− λ) log detA holds for any λ ∈ (0, 1).

The following important result of J. Kiefer and J. Wolfowitz established the equivalence of the D-optimal design and
G-optimal design.
Theorem H.5 (General equivalence theorem of G-optimal design (Kiefer & Wolfowitz, 1960)). Assume span(X ) = Rd.
The followings are equivalent:
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• π∗ = argmax
π∈∆(X )

log detM(π);

• π∗ = argmin
π∈∆(X )

maxx∈X x⊤M(π)−1x;

• maxx∈X x⊤M(π)−1x = d.
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