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ABSTRACT

Committee-based models (ensembles or cascades) construct models by combining
existing pre-trained ones. While ensembles and cascades are well-known tech-
niques that were proposed before deep learning, they are not considered a core
building block of deep model architectures and are rarely compared to in recent
literature on developing efficient models. In this work, we go back to basics and
conduct a comprehensive analysis of the efficiency of committee-based models.
We find that even the most simplistic method for building committees from exist-
ing, independently pre-trained models can match or exceed the accuracy of state-
of-the-art models while being drastically more efficient. These simple committee-
based models also outperform sophisticated neural architecture search methods
(e.g., BigNAS). These findings hold true for several tasks, including image classi-
fication, video classification, and semantic segmentation, and various architecture
families, such as ViT, EfficientNet, ResNet, MobileNetV2, and X3D. Our results
show that an EfficientNet cascade can achieve a 5.4x speedup over B7 and a ViT
cascade can achieve a 2.3x speedup over ViT-L-384 while being equally accurate.

1 INTRODUCTION
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Figure 1: Committee-based models achieve a
higher accuracy than single models on Ima-
geNet while using fewer FLOPs. For example,
although Inception-v4 (‘Incep-v4’) outperforms
all single ResNet models, a ResNet cascade can
still outperform Incep-v4 with fewer FLOPs.

Optimizing the efficiency of neural networks
is important for real-world applications as they
can only use limited computational resources
and often have requirements on response time.
There has been considerable work in this direc-
tion (Howard et al., 2017; Zhang et al., 2018; Tan
& Le, 2019), but they mostly focus on design-
ing novel network architectures that can achieve
a favorable speed-accuracy trade-off. Here, we do
not present any novel method or architecture de-
sign. Instead, we focus on analyzing the accuracy
and efficiency of a simple paradigm: committee-
based models. We use the term “committee” to
refer to model ensembles or cascades, which in-
dicates that they are built using multiple indepen-
dent models.

Committee-based models have been extensively
studied and used before deep learning (Breiman,
1996; Schapire, 1990; Freund & Schapire, 1997;
Viola & Jones, 2001). However, when com-
∗Work done during an internship at Google.
†Work done as part of the Google AI Residency Program.
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paring the efficiency of deep models, committee-based models are rarely considered in recent
work (Howard et al., 2017; Zhang et al., 2018; Tan & Le, 2019). There still lacks a systematic
understanding of their efficiency in comparison with single models – models that only use one net-
work. Such an understanding is informative for both researchers to push the frontier of efficient
models and practitioners to select model designs in real-world applications.

To fill this knowledge gap, we conduct a comprehensive analysis of the efficiency of committee-
based models. To highlight the practical benefit of committee-based models, we intentionally choose
the simplest possible method, which directly uses off-the-shelf, independently pre-trained models to
build ensembles or cascades. We ensemble multiple pre-trained models via a simple average over
their predictions (Sec. 3). For cascades, we sequentially apply each model and use a simple heuristic
(e.g., maximum probability in the prediction) to determine when to exit from the cascade (Sec. 4).

We show that even this method already outperforms state-of-the-art architectures found by costly
neural architecture search (NAS) methods. Note that this method works with off-the-shelf models
and does not use specialized techniques. For example, it differs from Boosting (Schapire, 1990)
where each new model is conditioned on previous ones, and does not require the weight generation
mechanism in previous efficient ensemble methods (Wen et al., 2020). This method does not require
the training of an early exit policy (Bolukbasi et al., 2017; Guan et al., 2018) or the specially designed
multi-scale architecture (Huang et al., 2018) in previous work on building cascades.

To be clear, the contribution of this paper is not in the invention of model ensembles and cascades, as
they have been known for decades, and is not in a new proposed method to build them. Instead, it is
in the thorough evaluation and comparison of committee-based models with commonly used model
architectures. Our analysis shows that committee-based models provide a simple complementary
paradigm to achieve superior efficiency without tuning the architecture. One can often improve
accuracy while reducing inference and training cost by building committees out of existing networks.

Our findings generalize to a wide variety of tasks, including image classification, video classifica-
tion, and semantic segmentation, and hold true for various architecture families: ViT (Dosovitskiy
et al., 2021), EfficientNet (Tan & Le, 2019), ResNet (He et al., 2016), MobileNetV2 (Sandler et al.,
2018), and X3D (Feichtenhofer, 2020). We summarize our findings as follows:

• Ensembles are more cost-effective than a single model in the large computation regime (Sec. 3).
For example, an ensemble of two separately trained EfficientNet-B5 models matches B7 accuracy,
a state-of-the-art ImageNet model, while having almost 50% less FLOPs (20.5B vs. 37B).

• Cascades outperform single models in all computation regimes (Sec. 4&5). Our cascade matches
B7 accuracy while using on average 5.4x fewer FLOPs. Cascades can also achieve a 2.3x speedup
over ViT-L-384, a Transformer architecture, while matching its accuracy on ImageNet.

• We further show that (1) the efficiency of cascades is evident in both FLOPs and on-device latency
and throughput (Sec. 5.1); (2) cascades can provide a guarantee on worst-case FLOPs (Sec. 5.2);
(3) one can build self-cascades using a single model with multiple inference resolutions to achieve
a significant speedup (Sec. 6).

• Committee-based models are applicable beyond image classification (Sec. 7) and outperform
single models on the task of video classification and semantic segmentation. Our cascade outper-
forms X3D-XL by 1.2% on Kinetics-600 (Carreira et al., 2018) while using fewer FLOPs.

2 RELATED WORK

Efficient Neural Networks. There has been significant progress in designing efficient neural net-
works. In early work, most efficient networks, such as MobileNet (Howard et al., 2017; Sandler
et al., 2018) and ShuffleNet (Howard et al., 2019), were manually designed. Recent work started to
use neural architectures search (NAS) to automatically learn efficient network designs (Zoph et al.,
2018; Cao et al., 2019; Tan et al., 2019; Tan & Le, 2019; Chaudhuri et al., 2020). They mostly fcous
on improving the efficiency of single models by designing better architectures, while we explore
committee-based models without tuning the architecture.

Ensembles. Ensemble learning has been well studied in machine learning and there have been many
seminal works, such as Bagging (Breiman, 1996), Boosting (Schapire, 1990), and AdaBoost (Freund
& Schapire, 1997). Ensembles of neural networks have been used for many tasks, such as image
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classification (Szegedy et al., 2015; Huang et al., 2017a), machine translation (Wen et al., 2020),
active learning (Beluch et al., 2018), and out-of-distribution robustness (Lakshminarayanan et al.,
2017; Fort et al., 2019; Wenzel et al., 2020). But the efficiency of model ensembles has rarely been
systematically investigated. Recent work indicated that ensembles can be more efficient than single
models for image classification (Kondratyuk et al., 2020; Lobacheva et al., 2020). Our work further
substantiates this claim through the analysis of modern architectures on large-scale benchmarks.

Cascades. A large family of works have explored using cascades to speed up certain tasks. For
example, the seminal work from Viola & Jones (2001) built a cascade of increasingly complex
classifiers to speed up face detection. Cascades have also been explored in the context of deep
neural networks. Bolukbasi et al. (2017) reduced the average test-time cost by learning a policy to
allow easy examples to early exit from a network. A similar idea was also explored by Guan et al.
(2018). Huang et al. (2018) proposed a specially designed architecture Multi-Scale DenseNet to
better incorporate early exits into neural networks. Given a pool of models, Streeter (2018) presented
an approximation algorithm to produce a cascade that can preserve accuracy while reducing FLOPs
and demonstrated improvement over state-of-the-art NAS-based models on ImageNet. Different
from previous work that primarily focuses on developing new methods to build cascades, we show
that even the most straightforward method can already provide a significant speedup without training
an early exit policy (Bolukbasi et al., 2017; Guan et al., 2018) or designing a specialized multi-scale
architecture (Huang et al., 2018).

Dynamic Neural Networks. Dynamic neural networks allocate computational resources based on
the input example, i.e., spending more computation on hard examples and less on easy ones (Han
et al., 2021). For example, Shazeer et al. (2017) trained a gating network to determine what parts
in a high-capacity model should be used for each example. Recent work (Wu et al., 2018; Veit &
Belongie, 2018; Wang et al., 2018) explored learning a policy to dynamically select layers or blocks
to execute in ResNet based on the input image. Our analysis shows that cascades of pre-trained
models are actually a strong baseline for dynamic neural networks.

3 ENSEMBLES ARE ACCURATE, EFFICIENT, AND FAST TO TRAIN

Model ensembles are useful for improving accuracy, but the usage of multiple models also intro-
duces extra computational cost. When the total computation is fixed, which one will give a higher
accuracy: single models or ensembles? The answer is important for real-world applications but this
question has rarely been systematically studied on modern architectures and large-scale benchmarks.

We investigate this question on ImageNet (Russakovsky et al., 2015) with three architecture families:
EfficientNet (Tan & Le, 2019), ResNet (He et al., 2016), and MobileNetV2 (Sandler et al., 2018).
Each architecture family contains a series of networks with different levels of accuracy and com-
putational cost. Within each family, we train a pool of models, compute the ensemble of different
combinations of models, and compare these ensembles with the single models in the family.

We denote an ensemble of n image classification models by {M1, . . . ,Mn}, where Mi is the ith
model. Given an image x, αi = Mi(x) is a vector representing the logits for each class. To ensemble
the n models, we compute the mean of logits1 αens = 1

n

∑
i αi and predicts the class for image x by

applying argmax to αens. The total computation of the ensemble is FLOPsens =
∑
i FLOPs(Mi),

where FLOPs(·) gives the FLOPs of a model.

We show the top-1 accuracy on ImageNet and FLOPs of single models and ensembles in Figure 2.
Since there are many possible combinations of models to ensemble, we only show those Pareto
optimal ensembles in the figure. We see that ensembles are more cost-effective than large single
models, e.g., EfficientNet-B5/B6/B7 and ResNet-152/200. But in the small computation regime,
single models outperform ensembles. For example, the ensemble of 2 B5 matches B7 accuracy
while using about 50% less FLOPs. However, ensembles use more FLOPs than MobileNetV2 when
they have a similar accuracy.

1We note that the mean of probabilities is a more general choice since logits can be arbitrarily scaled. In our
experiments, we observe that they yield similar performance with the mean of logits being marginally better.
The findings in our work hold true no matter which choice is used.
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(c) MobileNetV2

Figure 2: Ensembles work well in the large computation regime and cascades show benefits in all
computation regimes. These cascades are directly converted from ensembles without optimizing
the choice of models (see Sec. 4). Black dots represent single models. Ensembles: Ensembles
are more cost-effective than large single models, e.g., EfficientNet-B5/B6/B7 and ResNet-152/200.
Cascades: Converting ensembles to cascades significantly reduces the FLOPs without hurting the
full ensemble accuracy (each star is on the left of a square).

A possible explanation of why model ensembles are more powerful at large computation than at
small computation comes from the perspective of bias-variance tradeoff. Large models usually have
small bias but large variance, where the variance term dominates the test error. Therefore, ensembles
are beneficial at large computation as they can reduce the variance in prediction (Breiman, 1996).
For small models, the bias term dominates the test error. Ensembles can reduce the variance, but
this cannot compensate the fact that the bias of small models is large. Therefore, ensembles are less
powerful at small computation.

Our analysis indicates that instead of using a large model, one should use an ensemble of multiple
relatively smaller models, which would give similar performance but with fewer FLOPs. In practice,
model ensembles can be easily parallelized (e.g., using multiple accelerators), which may provide
further speedup for inference. Moreover, often the total training cost of an ensemble is much lower
than that of an equally accurate single model (see appendix for more details).

4 FROM ENSEMBLES TO CASCADES

In the above we have identified the scenarios where ensembles outperform or underperform single
models. Specifically, ensembles are not an ideal choice when only a small amount of computation
is allowed. In this section, we show that by simply converting an ensemble to a cascade, one can
significantly reduce the computation and outperform single models in all computation regimes.

Algorithm 1 Cascades

Input: Models {Mi}. Thresholds {ti}. Test image x.
for k = 1, 2, . . . , n do
αcas = 1

k

∑k
i=1 αi = 1

k

∑k
i=1Mi(x)

FLOPscas =
∑k
i=1 FLOPs(Mi)

Early exit if confidence score g(αcas) ≥ tk
end for
Return αcas and FLOPscas

Applying an ensemble is wasteful for
easy examples where a subset of models
will give the correct answer. Cascades
save computation via early exit - po-
tentially stopping and outputting an an-
swer before all models are used. The to-
tal computation can be substantially re-
duced if we accurately determine when
to exit from cascades. For this pur-
pose, we need a function to measure how
likely a prediction is correct. This func-
tion is termed confidence (more details in Sec. 4.1). A formal procedure of cascades is provided in
Algorithm 1. Note that our cascades also average the predictions of the models having been used so
far. So for examples where all models are used, the cascade effectively becomes an ensemble.

4.1 CONFIDENCE FUNCTION

Let g(·) : RN → R be the confidence function, which maps maps predicted logits α to a confi-
dence score. The higher g(α) is, the more likely the prediction α is correct. Previous work (Huang
et al., 2017b; Streeter, 2018) tried several simple metrics to indicate the prediction confidence, such
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Figure 3: Different metrics for the confidence
function. For a EfficientNet-B0 model, we se-
lect the top-k% validation images with highest
confidence scores and compute the classification
accuracy within the selected images. The higher
the accuracy is at a certain k, the better the confi-
dence metric is. All the metrics perform similarly
in estimating how likely a prediction is correct.
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Figure 4: Cascades with different confidence
thresholds. Each black dot is a single model
and each square is an ensemble of models. Each
colored dot represents a cascade with a specific
t1(0 ≤ t1 ≤ 1). As t1 increases from 0 to 1,
the cascade uses more and more computation and
changes from a single model (first model in the
cascade; t1 = 0) to the ensemble (t1 = 1).

as the the maximum probability in the predicted distribution, the gap between the top-2 logits or
probabilities, and the (negative) entropy of the distribution. As shown in Figure 3, all the metrics
demonstrate reasonably good performance on measuring the confidence of a prediction, i.e., estimat-
ing how likely a prediction is correct (see appendix for more details and results). In the following
experiments, we adopt the maximum probability metric, i.e., g(α) = max(softmax(α))2.

For a cascade of n models {Mi}, we also need (n − 1) thresholds {ti} on the confidence score,
where we use ti to decide whether a prediction is confident enough to exit after applying model
Mi (see Algorithm 1). As we define g(·) as the maximum probability, ti is in [0, 1]. A smaller ti
indicates more images will be passed to the next modelMi+1. A cascade will reduce to an ensemble
if all the thresholds {ti} are set to 1. tn is unneeded, since the cascade will stop after applying the
last model Mn, no matter how confident the prediction is.

We can flexibly control the trade-off between the computation and accuracy of a cascade through
thresholds {ti}. To understand how the thresholds influence a cascade, we visualize several 2-model
cascades in Figure 4. For each cascade, we sweep t1 from 0 and 1 and plot the results. Note that all
the curves in Figure 4 have a plateau, indicating that we can significantly reduce the average FLOPs
without hurting the accuracy if t1 is properly chosen. We select the thresholds {ti} on held-out
validation images according to the target FLOPs or validation accuracy. In practice, we find such
thresholds via grid search. Note that the thresholds are determined after all models are trained. We
only need the logits of validation images to determine {ti}, so computing the cascade performance
for a specific choice of thresholds is fast, which makes grid search computationally possible.

4.2 CONVERTING ENSEMBLES TO CASCADES

For each ensemble in Figure 2, we convert it to a cascade that uses the same set of models. During
conversion, we set the confidence thresholds such that the cascade performs similar to the ensemble
while the FLOPs are minimized. By design in cascades some inputs incur more FLOPs than others.
So we report the average FLOPs computed over all images in the test set.

We see that cascades consistently use less computation than the original ensembles and outperform
single models in all computation regimes and for all architecture families. Taking 2 EfficientNet-B2
as an example (see Figure 2a), the ensemble initially obtains a similar accuracy to B3 but uses more
FLOPs. After converting this ensemble to a cascade, we successfully reduce the average FLOPs
to 1.3B (1.4x speedup over B3) and still achieve B3 accuracy. Cascades also outperform small
MobileNetV2 models in Figure 2c.

2As a side observation, when analyzing the confidence function, we notice that models in our experiments
are often slightly underconfident. This contradicts the common belief that deep neural networks tend to be
overconfident (Guo et al., 2017). Please see appendix for more details.
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Figure 5: Cascades of EfficientNet, ResNet, MobileNetV2 or ViT models on ImageNet. Compared
with single models, cascades can obtain a higher accuracy with similar cost (red squares) or achieve
a significant speedup while being equally accurate (green squares; e.g., 5.4x speedup for B7). The
benefit of cascades generalizes to all four architecture families and all computation regimes.
Numerical results are also available in Table 13&14 in appendix.

5 MODEL SELECTION FOR BUILDING CASCADES

The cascades in Figure 2 do not optimize the choice of models and directly use the set of models
in the original ensembles. For best performance, we show that one can design cascades to match a
specific target FLOPs or accuracy by selecting models to be used in the cascade.

LetM be the set of available models, e.g., models in the EfficientNet family. Given a target FLOPs
β, we select n models M = {Mi ∈ M} and confidence thresholds T = {ti} by solving the
following problem:

max
{Mi∈M},{ti}

Accuracy (C (M,T ))

s.t. FLOPs (C (M,T )) ≤ β,
(1)

where C (M,T ) is the cascade of models {Mi} with thresholds {ti}, Accuracy(·) gives the val-
idation accuracy of a cascade, and FLOPs(·) gives the average FLOPs. Similarly, we can also
build a cascade to match a target validation accuracy γ by minimizing FLOPs (C (M,T )) with the
constraint Accuracy (C (M,T )) ≥ γ.

Note that this optimization is done after all models inM were independently trained. The difficulty
of this optimization depends on the size of M and the number of models in the cascade n. The
problem will be challenging if |M| or n is large. In our case, |M| and n are not prohibitive, e.g.,
|M| = 8 and n ≤ 4 for EfficientNet family. We are therefore able to solve the optimization problem
with exhaustive search. See appendix for more details.

5.1 TARGETING FOR A SPECIFIC FLOPS OR ACCURACY

For each single EfficientNet, ResNet or MobileNetV2, we search for a cascade to match its FLOPs
(red squares in Figure 5a-5d) or its accuracy (green squares in Figure 5a-5d). Notably, in addition
to convolutional networks, we also consider a Transformer architecture – ViT (Dosovitskiy et al.,
2021). We build a cascade of ViT-Base and ViT-Large to match the cost or accuracy of ViT-Large
(Figure 5e). For ViT, we measure the speedup in throughput (more details on throughput below).
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Table 1: Online latency measured on TPUv3.
Compared with Efficient-B6 or B7, our cas-
cade achieves a 3.8x or 5.5x reduction in la-
tency respectively.

Top-1 (%) Latency (ms) Speedup

B6 83.7 57.1
Cascade* 83.7 15.1 3.8x
B7 84.1 126.6
Cascade* 84.2 23.2 5.5x
* The cascade that matches B6 or B7 accuracy in Fig. 5b.

Table 2: Offline throughput (images processed
per second) measured on TPUv3. Compared
with Efficient-B6 or B7, our cascade achieves a
3.0x or 3.5x increase in throughput respectively.

Top-1 (%) Throughput (/s) Speedup

B6 83.7 138
Cascade* 83.7 415 3.0x
B7 84.1 81
Cascade* 84.2 280 3.5x
* The cascade that matches B6 or B7 accuracy in Fig. 5b.

When building cascades, we consider all networks in the same family as the set of available models.
The same model type is allowed to be used for multiple times in a cascade but they will be different
models trained separately. For ImageNet experiments, the search is conducted on a small set of
held-out training images and cascades are evaluated on the original validation set. We provide more
experimental details in appendix.

Results in Figure 5 further substantiate our finding that cascades are more efficient than single mod-
els in all computation regimes. For small models, we can outperform MobileNetV2-1.0@224 by
1.4% using equivalent FLOPs. For large models, we can obtain 2.3x speedup over ViT-L-384 and
5.4x over EfficientNet-B7 while matching their accuracy.

To better understand how a cascade works, we compute the percentage of images that exit from the
cascade at each stage. The cascade above that matches B7 accuracy contains four models: [B3, B5,
B5, B5]. In this cascade, 67.3% images only consume the cost of B3 and only 5.5% images use all
four models. This saves a large amount of computation compared with using B7 for all the images.

On-device Latency and Throughput. In the above, we mostly use average FLOPs to measure the
computational cost. We now report the latency and throughput of cascades on TPUv3 in Table 1& 2
to confirm that the reduction in FLOPs can translate to the real speedup on hardware.

Cascades are useful for online processing with a fixed batch size 1. Using batch size 1 is sub-optimal
for hardware, but it still happens in real-world applications, e.g., mobile phone cameras processing
a single image (Wadhwa et al., 2018) or servers that need to rapidly return the result without waiting
for enough queries to form a batch. Table 1 shows the average latency of cascades on TPUv3 with
batch size 1. Cascades are up to 5.5x faster than single models with comparable accuracy.

Cascades are also useful for offline data processing, where work can be batched to fully utilize
the hardware. We can apply the first model in the cascade to all examples, and then select only a
subset of examples to apply the second model and so forth. Table 2 reports the throughput (images
processed per second) of cascades on TPUv3 via batch processing. Cascades have significantly
higher throughput than comparable models. We provide more results in appendix.

Table 3: Comparison with SOTA NAS methods.
Cascades outperform novel architectures found by
costly NAS methods.

Top-1 (%) FLOPs (B)

BigNASModel-L (Yu et al., 2020) 79.5 0.59
OFALarge (Cai et al., 2020) 80.0 0.60
Cream-L (Peng et al., 2020) 80.0 0.60
Cascade* 80.1 0.67

BigNASModel-XL (Yu et al., 2020) 80.9 1.0
Cascade* 81.2 1.0
* The cascade that matches B1 or B2 FLOPs in Figure 5a.

Comparison with NAS. We also compare
with state-of-the-art NAS methods, e.g., Big-
NAS (Yu et al., 2020), OFA (Cai et al., 2020)
and Cream (Peng et al., 2020), which can find
architectures better than EfficientNet. But as
shown in Table 3, a simple cascade of Effi-
cientNet without tuning the architecture already
outperforms these sophisticated NAS methods.
The strong performance and simplicity of cas-
cades should motivate future research to in-
clude them as a strong baseline when proposing
novel architectures.

5.2 GUARANTEE ON WORST-CASE FLOPS

Up until now we have been measuring the computation of a cascade using the average FLOPs across
all images. But for some images, it is possible that all the models in the cascade need to be applied.
In this case, the average FLOPs cannot fully indicate the computational cost of a cascade. For
example, the cascade that matches B5 or B6 accuracy in Figure 5b has higher worst-case FLOPs

7
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Table 4: Cascades can be built with a guarantee on worst-case FLOPs. We use ‘with’ or ‘w/o’ to
indicate whether a cascade can provide such a guarantee or not. Cascades with such a guarantee
are assured to use fewer FLOPs than single models in the worst-case scenario, and also achieve a
considerable speedup in average-case FLOPs.

Average-case Worst-case Average-case Average-case Worst-case Average-case
Top-1 (%) FLOPs (B) FLOPs (B) Speedup Top-1 (%) FLOPs (B) FLOPs (B) Speedup

B5 83.3 10.3 10.3 B6 83.7 19.1 19.1
w/o* 83.4 3.4 14.2 3.0x w/o* 83.7 4.1 25.9 4.7x
with 83.3 3.6 9.8 2.9x with 83.7 4.2 15.0 4.5x
* Cascades from Figure 5b.

Table 5: Self-cascades. In the column of self-cascades, the two numbers represent the two resolu-
tions r1 and r2 used in the cascade. Self-cascades use fewer FLOPs than comparable single models.

EfficientNet Top-1 (%) FLOPs (B) Self-cascades Top-1 (%) FLOPs (B) Speedup

B2 80.0 1.0 B1-240-300 80.1 0.85 1.2x
B3 81.3 1.8 B2-260-380 81.3 1.6 1.2x
B4 82.5 4.4 B3-300-456 82.5 2.7 1.7x
B5 83.3 10.3 B4-380-600 83.4 6.0 1.7x
B6 83.7 19.1 B5-456-600 83.8 12.0 1.6x
B7 84.1 37 B6-528-600 84.1 22.8 1.6x

than the comparable single models (see ‘w/o’ in Table 4). Therefore, we now consider worst-case
FLOPs of a cascade, the sum of FLOPs of all models in the cascade.

We can easily find cascades with a guarantee on worst-case FLOPs by adding one more constraint:∑
i FLOPs(Mi) ≤ βworst, where βworst is the upper bound on the worst-case FLOPs of the cascade.

With the new condition, we re-select models in the cascades to match of accuracy of B5 or B6. As
shown in Table 4, compared with single models, the new cascades achieve a significant speedup in
average-case FLOPs and also ensure its worst-case FLOPs are smaller. The new cascades with the
guarantee on worst-case FLOPs are useful for applications with strict requirement on response time.

6 SELF-CASCADES

Cascades typically contain multiple models. This requires training multiple models and combining
them after training. What about when only one model is available? We demonstrate that one can
convert a single model into a cascade by passing the same input image at different resolutions to the
model. Here, we leverage the fact that resizing an image to a higher resolution than the model is
trained on often yields a higher accuracy (Touvron et al., 2019) at the cost of more computation. We
call such cascades as “self-cascades” since these cascade only contain the model itself.

Given a model M , we build a 2-model cascade, where the first model is applying M at resolution
r1 and the second model is applying M at a higher resolution r2(r2 > r1). We build self-cascades
using EfficientNet models. Since each EfficientNet is defined with a specific resolution (e.g., 240
for B1), we set r1 to its original resolution and set r2 to a higher resolution. We set the confidence
threshold such that the self-cascade matches the accuracy of a single model.

Table 5 shows that self-cascades easily outperform single models, i.e., obtaining a similar accuracy
with fewer FLOPs. Table 5 also suggests that if we want to obtain B7 accuracy, we can train a B6
model and then build a self-cascade, which not only uses much fewer FLOPs during inference, but
also takes much shorter time to train.

Self-cascades provide a way to convert one single model to a cascade which will be more efficient
than the original single model. The conversion is almost free and does not require training any
additional models. They are useful when one does not have resources to train additional models or
the training data is unavailable (e.g., the model is downloaded).

7 APPLICABILITY BEYOND IMAGE CLASSIFICATION

We now demonstrate that the benefit of cascades generalizes beyond image classification.

7.1 VIDEO CLASSIFICATION

Similar to image classification, a video classification model outputs a vector of logits over possible
classes. We use the same procedure as above to build cascades of video classification models.
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Table 6: Cascades of X3D models on Kinetics-600. We outperform X3D-XL by 1.2%.

Single Models Cascades - Similar FLOPs Cascades - Similar Accuracy
Top-1 (%) FLOPs (B) Top-1 (%) FLOPs (B) ∆Top-1 Top-1 (%) FLOPs (B) Speedup

X3D-M 78.8 6.2 × 30 80.3 5.7 × 30 1.5 79.1 3.8 × 30 1.6x
X3D-L 80.6 24.8 × 30 82.7 24.6 × 30 2.1 80.8 7.9 × 30 3.2x
X3D-XL 81.9 48.4 × 30 83.1 38.1 × 30 1.2 81.9 13.0 × 30 3.7x

We consider the X3D (Feichtenhofer, 2020) architecture family for video classification, which is the
state-of-the-art in terms of both the accuracy and efficiency. The X3D family contains a series of
models of different sizes. Specifically, we build cascades of X3D models to match the FLOPs or
accuracy of X3D-M, X3D-L or X3D-XL on Kinetics-600 (Carreira et al., 2018).

The results are summarized in Table 6, where cascades significantly outperform the original X3D
models. Following X3D Feichtenhofer (2020), ‘×30’ in Table 6 means we sample 30 clips from
each input video during evaluation (see appendix for more details). Our cascade outperforms X3D-
XL, a state-of-the-art video classification model, by 1.2% while using fewer average FLOPs. Our
cascade can also match the accuracy of X3D-XL with 3.7x fewer average FLOPs.

7.2 SEMANTIC SEGMENTATION Table 7: Cascades of DeepLabv3 models on Cityscapes.

mIoU FLOPs (B) Speedup

ResNet-50 77.1 348 -
ResNet-101 78.1 507 -

Cascade - full 78.4 568 0.9x
Cascade - s = 512 78.1 439 1.2x
Cascade - s = 128 78.2 398 1.3x

In semantic segmentation, models
predict a vector of logits for each
pixel in the image. This differs from
image classification, where the model
makes a single prediction for the en-
tire image. We therefore revisit the
confidence function definition to han-
dle such dense prediction tasks.

Similar to before, we use the maximum probability to measure the confidence of the prediction for
a single pixel p, i.e., g(αp) = max(softmax(αp)), where αp is the predicted logits for pixel p.
Next, we need a function gdense(·) to rate the confidence of the dense prediction for an image, so
that we can decide whether to apply the next model to this image based on this confidence score.
For this purpose, we define gdense(·) as the average confidence score of all the pixels in the image:
gdense(R) = 1

|R|
∑
p∈R g(αp), where R represents the input image.

In a cascade of segmentation models, we decide whether to pass an image R to the next model
based on gdense(·). Since the difficulty to label different parts in one image varies significantly, e.g.,
roads are easier to segment than traffic lights, making a single decision for the entire image can be
inaccurate and leads to a waste of computation. Therefore, in practice, we divide an image into grids
and decide whether to pass each grid to the next model separately.

We conduct experiments on Cityscapes (Cordts et al., 2016) and use mean IoU (mIoU) as the metric.
We build a cascade of DeepLabv3-ResNet-50 and DeepLabv3-ResNet-101 (Chen et al., 2017) and
report the reults in Table 7. s is the size of the grid. The full image resolution is 1024×2048, so
s = 512 means the image is divided into 8 grids. If we operate on the full image level (‘full’), the
cascade will use more FLOPs than ResNet-101. But if operating on the grid level, the cascade can
successfully reduce the computation without hurting the performance. For example, the smaller grid
size (‘s = 128’) yields 1.3x reduction in FLOPs while matching the mIoU of ResNet-101.

8 CONCLUSION

We show that committee-based models, i.e., model ensembles or cascades, provide a simple comple-
mentary paradigm to obtain efficient models without tuning the architecture. Notably, cascades can
match or exceed the accuracy of state-of-the-art models on a variety of tasks while being drastically
more efficient. Moreover, the speedup of model cascades is evident in both FLOPs and on-device la-
tency and throughput. The fact that these simple committee-based models outperform sophisticated
NAS methods, as well as manually designed architectures, should motivate future research to include
them as strong baselines whenever presenting a new architecture. For practitioners, committee-based
models outline a simple procedure to improve accuracy while maintaining efficiency that only needs
off-the-shelf models.
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for active learning in image classification. In CVPR, 2018.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks
for efficient inference. In ICML, 2017.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In ICLR, 2020.

Shengcao Cao, Xiaofang Wang, and Kris M. Kitani. Learnable embedding space for efficient neural
architecture compression. In ICLR, 2019.

Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew Zisserman. A short
note about kinetics-600. arxiv:1808.01340, 2018.

Shraman Ray Chaudhuri, Elad Eban, Hanhan Li, Max Moroz, and Yair Movshovitz-Attias. Fine-
grained stochastic architecture search. arXiv:2006.09581, 2020.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv:1706.05587, 2017.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In CVPR, 2016.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. 2021.

Christoph Feichtenhofer. X3d: Expanding architectures for efficient video recognition. In CVPR,
2020.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape per-
spective. arXiv:1912.02757, 2019.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Jiaqi Guan, Yang Liu, Qiang Liu, and Jian Peng. Energy-efficient amortized inference with cascaded
deep classifiers. In IJCAI, 2018.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In ICML, 2017.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. arXiv:2102.04906, 2021.

10



Published as a conference paper at ICLR 2022

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In ICCV,
2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv:1704.04861, 2017.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. In ICLR, 2017a.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017b.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q Weinberger.
Multi-scale dense networks for resource efficient image classification. In ICLR, 2018.

Dan Kondratyuk, Mingxing Tan, Matthew Brown, and Boqing Gong. When ensembling smaller
models is more efficient than single large models. arXiv:2005.00570, 2020.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In NeurIPS, 2017.

Ekaterina Lobacheva, Nadezhda Chirkova, Maxim Kodryan, and Dmitry P Vetrov. On power laws
in deep ensembles. In NeurIPS, 2020.

Houwen Peng, Hao Du, Hongyuan Yu, Qi Li, Jing Liao, and Jianlong Fu. Cream of the crop:
Distilling prioritized paths for one-shot neural architecture search. In NeurIPS, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. IJCV, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
ICLR, 2017.

Matthew Streeter. Approximation algorithms for cascading prediction models. In ICML, 2018.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
CVPR, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In CVPR, 2016.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In ICML, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, 2019.

Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test resolution
discrepancy. In NeurIPS, 2019.

Andreas Veit and Serge Belongie. Convolutional networks with adaptive inference graphs. In ECCV,
2018.

11



Published as a conference paper at ICLR 2022

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features.
In CVPR, 2001.

Neal Wadhwa, Rahul Garg, David E Jacobs, Bryan E Feldman, Nori Kanazawa, Robert Carroll,
Yair Movshovitz-Attias, Jonathan T Barron, Yael Pritch, and Marc Levoy. Synthetic depth-of-
field with a single-camera mobile phone. ACM Transactions on Graphics (TOG), 37(4):1–13,
2018.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dy-
namic routing in convolutional networks. In ECCV, 2018.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. In ICLR, 2020. URL https://openreview.net/forum?
id=Sklf1yrYDr.

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter ensembles for
robustness and uncertainty quantification. In NeurIPS, 2020.

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen Grauman,
and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. In CVPR, 2018.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural archi-
tecture search with big single-stage models. In ECCV, 2020.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In CVPR, 2018.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In CVPR, 2018.

12

https://openreview.net/forum?id=Sklf1yrYDr
https://openreview.net/forum?id=Sklf1yrYDr


Published as a conference paper at ICLR 2022

A ON-DEVICE LATENCY AND THROUGHPUT

We report the on-device latency and throughput of cascades to confirm that the reduction in FLOPs
can translate to the real speedup on hardware. The latency or throughput of a model is highly
dependent on the batch size. So we consider two scenarios: (1) online processing, where we use a
fixed batch size 1, and (2) offline processing, where we can batch the examples.

Online Processing. Cascades are useful for online processing with a fixed batch size 1. Using batch
size 1 is sub-optimal for the utilization of accelerators like GPU or TPU, but it still happens in some
real-world applications, e.g., mobile phone cameras processing a single image (Wadhwa et al., 2018)
or servers that need to rapidly return the result without waiting for enough queries to form a batch.
We report the average latency of cascades on TPUv3 with batch size 1 in Table 8. Cascades achieve
a similar accuracy to single models but use a much smaller average latency to return the prediction.

Offline Processing. Cascades are also useful for offline processing of large-scale data. For example,
when processing all frames in a large video dataset, we can first apply the first model in the cascade
to all frames, and then select a subset of frames based on the prediction confidence to apply following
models in the cascade. In this way all the processing can be batched to fully utilize the accelerators.
We report the throughput of cascades on TPUv3 in Table 9, which is measured as the number of
images processed per second. We use batch size 16 when running models on TPUv3 for the case
of offline processing. As shown in Table 9, cascades achieve a much higher throughput than single
models while being equally accurate. For clarification, only the throughput of ViT in Table 14 is
measured on RTX 3090 while the throughput for other models is measured on TPUv3.

B DETAILS OF IMAGENET MODELS

When analyzing the efficiency of ensembles or cascades on ImageNet, we consider four architecture
families: EfficientNet (Tan & Le, 2019), ResNet (He et al., 2016), MobileNetV2 (Sandler et al.,
2018), and ViT (Dosovitskiy et al., 2021). All the single models are independently trained with their
original training procedure. We do not change the training schedule or any other hyper-parameters.

• The EfficientNet family contains 8 architectures (EfficientNet-B0 to B7). We train each architec-
ture separately for 4 times with the official open-source implementation3 provided by the authors.
So, in total there are 32 EfficientNet models.

• For ResNet, we consider 4 architectures (ResNet-50/101/152/200) and train each architecture for
2 times using an open-source TPU implementation4. There are 8 ResNet models in total.

• For MobileNetV2, we directly download the pre-trained checkpoints from its official open-
source implementation5. We use 5 MobileNetV2 models: MobileNetV2-0.75@160, 1.0@160,
1.0@192, 1.0@224, and 1.4@224. Each model is represented in the form of w@r, where w is
the width multiplier and r is the image resolution.

• For ViT, we directly use the pre-trained checkpoints provided by the Hugging Face Team6. We
use 4 ViT models: ViT-B-224, ViT-L-224, ViT-B-384, and ViT-L-384.

Training each EfficientNet architecture for 4 times (in total 32 models) may sound computationally
expensive. We note that it is unnecessary to train each architecture for 4 times to find a well-
performing ensemble or cascade. We train a large pool of EfficientNet models mainly for the pur-
pose of analysis so that we can try a diverse range of model combinations, e.g., the cascade of 4
EfficientNet-B5. We analyze the influence of the size and diversity of the model pool in Sec. E.4.

3https://github.com/tensorflow/tpu/tree/master/models/official/
efficientnet

4https://github.com/tensorflow/tpu/tree/master/models/official/resnet
5https://github.com/tensorflow/models/tree/master/research/slim/nets/

mobilenet
6For example, ViT-B-224: https://huggingface.co/google/vit-base-patch16-224
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Table 8: Average latency on TPUv3 for the case of online processing with batch size 1. Cascades
are much faster than single models in terms of the average latency while being similarly accurate.

Top-1 (%) Latency (ms) Speedup

B1 79.1 3.7
Cascade* 79.3 3.0 1.2x
B2 80.0 5.2
Cascade* 80.1 3.7 1.4x
B3 81.3 9.7
Cascade* 81.4 5.9 1.7x
B4 82.5 16.6
Cascade* 82.6 9.6 1.7x
B5 83.3 27.2
Cascade* 83.4 14.3 1.9x
B6 83.7 57.1
Cascade* 83.7 15.1 3.8x
B7 84.1 126.6
Cascade* 84.2 23.2 5.5x
* The cascade that matches the accuracy of EfficientNet-

B1 to B7 in Figure 5 or the right column of Table 13.

Table 9: Throughput on TPUv3 for the case of offline processing. Throughput is measured as the
number of images processed per second. Cascades achieve a much larger throughput than single
models while being equally accurate.

Top-1 (%) Throughput (/s) Speedup

B1 79.1 1436
Cascade* 79.3 1798 1.3x
B2 80.0 1156
Cascade* 80.1 1509 1.3x
B3 81.3 767
Cascade* 81.4 1111 1.4x
B4 82.5 408
Cascade* 82.6 656 1.6x
B5 83.3 220
Cascade* 83.4 453 2.1x
B6 83.7 138
Cascade* 83.7 415 3.0x
B7 84.1 81
Cascade* 84.2 280 3.5x
* The cascade that matches the accuracy of EfficientNet-B1

to B7 in Figure 5 or the right column of Table 13.

C ENSEMBLES ARE ACCURATE, EFFICIENT, AND FAST TO TRAIN

C.1 EXPERIMENTAL DETAILS

We analyze the efficiency of ensembles of EfficientNet, ResNet, or MobileNetV2 on ImageNet.
For EfficientNet, we consider ensembles of two to four models of either the same or different ar-
chitectures. Note that we only try different combinations of architectures used in the ensemble,

14



Published as a conference paper at ICLR 2022

Table 10: Training time (TPUv3 days) of EfficientNet.

B0 B1 B2 B3 B4 B5 B6 B7

9 12 15 24 32 48 128 160

Table 11: Training time (TPU v3 days) of ensembles. We use the ‘+’ notation to indicate the models
in enmsebles. Ensembles are faster than single models in both training and inference while achieve
a similar accuracy.

Top-1 (%) FLOPs (B) Training

B6 83.7 19.1 128
B3+B4+B4 83.6 10.6 88

B7 84.1 37 160
B5+B5 84.1 20.5 96
B5+B5+B5 84.3 30.8 144

but not the combinations of models. For example, when an ensemble contains an EfficientNet-B5,
while we have multiple B5 models available, we just randomly pick one but do not try all possible
choices. The FLOPs range of ResNet or MobileNetV2 models is relatively narrow compared with
EfficientNet, so we only consider ensembles of two models for ResNet and MobileNetV2.

C.2 TRAINING TIME OF ENSEMBLES

In Sec. 3, we show that ensembles match the accuracy of large single models with fewer inference
FLOPs. We now show that the total training cost of an ensemble if often lower than an equally
accurate single model.

We show the training time of single EfficinetNet models in Table 10. We use 32 TPUv3 cores to
train B0 to B5, and 128 TPUv3 cores to train B6 or B7. All the models are trained with the public
official implementation of EfficientNet. We choose the ensemble that matches the accuracy of B6
or B7 and compute the total training time of the ensemble based on Table 10. As shown in Table 11,
the ensemble of 2 B5 can match the accuracy of B7 while being faster in both training and inference.

D FROM ENSEMBLES TO CASCADES

D.1 CONFIDENCE FUNCTION

The higher the confidence score g(α) is, the more likely the prediction given by α is correct. In
Sec 4.1, we compare different choices for the confidence function in Figure 3. For a specific con-
fidence function, we select the top-k% images with highest confidence scores. Then we compute
the classification accuracy within the selected images. If a higher confidence score indicates that the
prediction is more likely to be correct, the accuracy should drop as as k increases.

Figure 3 is generated with a EfficientNet-B0 model trained on ImageNet, where we sweep k from
0 to 100 and compute the accuracy within the selected top-k% images from the ImageNet vali-
dation set. When k = 100, all the images are selected so the accuracy is exactly the accuracy of
EfficientNet-B0 (77.1%). The ‘Upper Bound’ curve represents the best possible performance for the
metric. It has 100% accuracy when k ≤ 77.1, i.e., all the selected images are correctly classified.
The accuracy starts to drop when k becomes larger, since some misclassified images are inevitably
chosen. We observe all the metrics demonstrate reasonably good performance in estimating how
likely a prediction is correct, where the entropy performs slightly worse than other metrics.

We also compare the performance of the cascade of ViT-B-224 and ViT-L-224 on ImageNet with
different confidence functions in Table 12. For each confidence function, we set the threshold such
that the cascade has a similar throughput when using different confidence functions (∼409 images
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(c) MobileNet-1.0@192
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Figure 6: Confidence vs. accuracy for EfficientNet-B3, ResNet-50, MobileNet-1.0@192, and X3D-
M on their respective dataset. ‘Original’ refers to the original prediction and ‘Calibration’ refers
to the prediction after calibration. We divide the confidence into several intervals. Then for each
interval, we visualize the accuracy of images whose confidence is within this interval. The original
prediction is slightly underconfident, i.e., the confidence p is slightly lower than the actual accuracy
of images whose prediction confidence is p. After calibration, the confidence almost equals to the
actual accuracy.

Table 12: Performance of the cascade of ViT-B-224 and ViT-L-224 on ImageNet with different
confidence functions. For each confidence function, we set the threshold such that the cascade has a
similar throughput when using different confidence functions (∼409 images per second). The table
shows that different confidence functions give a similar accuracy.

Top-1 (%)

Max Prob 82.3
Logit Gap 82.2
Prob Gap 82.3
Entropy Gap 82.1

per second). We observe that the cascade achieves a similar accuracy with different confidence
functions.

D.2 CALIBRATION OF MODELS

As a side observation, when analyzing the confidence function, we notice that models in our ex-
periments are often slightly underconfident, i.e., the confidence p is slightly lower than the actual
accuracy of images whose prediction confidence is p (see the ‘Original’ curve in Figure 6). This
observation contradicts the common belief that deep neural networks tend to be overconfident (Guo
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et al., 2017). We conjecture this is due to that our models are trained with label smoothing (Szegedy
et al., 2016). Here, the confidence of a prediction is defined as the probability associated with the
predicted class (Guo et al., 2017), which is equivalent to the maximum probability in the predicted
distribution.

A model is considered as calibrated if the confidence of its prediction correctly estimates the true
correctness likelihood (neither overconfident nor underconfident). The calibration of models can
influence the ensemble performance when we ensemble models via simple averaging. If models in
an ensemble are poorly calibrated, overconfident models may dominate the prediction, making those
underconfident models useless in the ensemble.

For models in our experiments, we also have tried calibrating them before computing the ensem-
ble performance. To calibrate a model, we use Platt scaling via a learned monotonic calibration
network. As shown in the ‘Calibration’ curve in Figure 6, the calibration improves the connection
between the prediction confidence and accuracy, i.e., the confidence after calibration almost equals
to the actual accuracy. But we notice that calibrating models only has a small influence on the final
ensemble performance in our experiments, which might be because these models are just slightly
underconfident before calibration. Therefore, we do not calibrate any model when computing the
ensemble in all our experiments.

D.3 DETERMINE THE THRESHOLDS

Given the nmodels {Mi} in a cascade, we also need (n−1) thresholds {ti} on the confidence score.
We can flexibly control the trade-off between the computation and accuracy of a cascade through
thresholds {ti}.
We determine the thresholds {ti} based on the target FLOPs or accuracy on validation images. In
practice, we find such thresholds via grid search, i.e., enumerating all possible combinations for
{ti}. Note that the thresholds are determined after all models are trained. We only need the logits
of validation images to determine {ti}, so computing the cascade performance for a specific choice
of thresholds is fast, which makes grid search computationally possible. As ti is a real number, we
make sure two trials of ti are sufficiently different by only considering the percentiles of confidence
scores as possible values. When n > 2, there might be multiple choices of {ti} that can give the
target FLOPs or accuracy. In that case, we choose {ti} that gives the higher accuracy or fewer
FLOPs. Many choices for {ti} can be easily ruled out as the FLOPs or accuracy of a cascade
changes monotonically with respect to any threshold ti.

In practice, we often want the accuracy of a cascade to match the accuracy of a single model. To do
that, we determine the thresholds such that the cascade matches the accuracy of the single model on
validation images. Such thresholds usually enable the cascade to have a similar test accuracy to the
single model.

For ImageNet, we randomly select ∼25k training images and exclude them from training. We
use these held-out training images to determine the confidence thresholds. The final accuracy is
computed on the original ImageNet validation set.

E MODEL SELECTION FOR BUILDING CASCADES

E.1 TARGETING FOR A SPECIFIC FLOPS OR ACCURACY

We can build cascades to match a specific FLOPs or accuracy by optimizing the choice of models
and confidence thresholds, e.g., solving Eq. 1 when targeting for a specific FLOPs. Note that this
optimization is done after all models in M are trained. The optimization complexity is exponential
in |M| and n, and the problem will be challenging if |M| and n are large. In our experiments, |M|
and n are not prohibitive. Therefore, we solve the optimization problem with exhaustive search.
One can also use more efficient procedures such as the algorithm described in (Streeter, 2018).

Same as the our analysis of ensembles, we do not search over different models of the same architec-
ture, but only search combination of architectures. Therefore, for EfficientNet, |M| = 8 and n ≤ 4
and we have in total 4672 = (84 + 83 + 82) possible combinations of models. Note that the search
is cheap to do as it is conducted after all the models are independently trained. No GPU training is
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Table 13: Cascades of EfficientNet, ResNet or MobileNetV2 models on ImageNet. This table con-
tains the numerical results for Figure 5a-5d. Middle: Cascades obtain a higher accuracy than single
models when using similar FLOPs. Right: Cascades achieve a similar accuracy to single models
with significantly fewer FLOPs (e.g., 5.4x fewer for B7). The benefit of cascades generalizes to
all three convolutional architecture families and all computation regimes.

Single Models Cascades - Similar FLOPs Cascades - Similar Accuracy
Top-1 (%) FLOPs (B) Top-1 (%) FLOPs (B) ∆Top-1 Top-1 (%) FLOPs (B) Speedup

EfficientNet
B1 79.1 0.69 80.1 0.67 1.0 79.3 0.54 1.3x
B2 80.0 1.0 81.2 1.0 1.2 80.1 0.67 1.5x
B3 81.3 1.8 82.4 1.8 1.1 81.4 1.1 1.7x
B4 82.5 4.4 83.7 4.1 1.2 82.6 2.0 2.2x
B5 83.3 10.3 84.4 10.2 1.1 83.4 3.4 3.0x
B6 83.7 19.1 84.6 17.5 0.9 83.7 4.1 4.7x
B7 84.1 37 84.8 39.0 0.7 84.2 6.9 5.4x

ResNet
R101 77.9 7.2 79.3 7.3 1.4 78.2 4.9 1.5x
R152 78.8 10.9 80.1 10.8 1.3 78.9 6.2 1.8x
R200 79.0 14.4 80.4 14.2 1.3 79.2 6.8 2.1x

MobileNetV2
1.0@160 68.8 0.154 69.5 0.153 0.6 69.1 0.146 1.1x
1.0@192 70.7 0.22 71.8 0.22 1.1 70.8 0.18 1.2x
1.0@224 71.8 0.30 73.2 0.30 1.4 71.8 0.22 1.4x
1.4@224 75.0 0.58 76.1 0.56 1.1 75.1 0.43 1.4x

Table 14: Cascades of ViT models on ImageNet. This table contains the numerical results for
Figure 5e. 224 or 384 indicates the image resolution the model is trained on. Throughput is measured
on NVIDIA RTX 3090. Our cascades can achieve a 1.0% higher accuracy than ViT-L-384 with a
similar throughput or achieve a 2.3x speedup over it while matching its accuracy. The benefit of
cascades generalizes to Transformer architectures.

Single Models Cascades - Similar Throughput Cascades - Similar Accuracy
Top-1 (%) Throughput (/s) Top-1 (%) Throughput (/s) ∆Top-1 Top-1 (%) Throughput (/s) Speedup

ViT-L-224 82.0 192 83.1 221 1.1 82.3 409 2.1x
ViT-L-384 85.0 54 86.0 69 1.0 85.2 125 2.3x

involved in the search. We pre-compute the predictions of each model on a held-out validation set
before search. During the search, we try possible models combinations by loading their predictions.
We can usually find optimal model combinations within a few CPU hours.

In practice, we first train each EfficientNet model separately for 4 times and pre-compute their
predicted logits. Then for each possible combination of models, we load the logits of models and
determine the thresholds according to the target FLOPs or accuracy. Finally, we choose the best
cascade among all possible combinations. Similar as above, we choose models and thresholds on
held-out training images for ImageNet experiments. No images from the ImageNet validation set
are used when we select models for a cascade.

For ResNet and MobileNetV2, we only tried 2-model cascades due to their relatively narrow FLOPs
range. Therefore, the number of possible model combinations is very small (< 20). For ViT, we
only tried 2 cascades: ViT-B-224 + ViT-L-224 and ViT-B-384 + ViT-L-384.

E.2 CASCADES CAN BE SCALED UP

One appealing property of single models is that they can be easily scaled up or down based on
the available computational resources one has. We show that such property is also applicable to
cascades, i.e., we can scale up a base cascade to respect different FLOPs constraints. This avoids
the model selection procedure when designing cascades for different FLOPs, which is required for
cascades in Table 13.
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Table 15: A Family of Cascades C0 to C7. C0 to C7 significantly outperform single EfficientNet
models in all computation regimes. C1 and C2 also compare favorably with state-of-the-art NAS
methods, such as BigNAS (Yu et al., 2020), OFA (Cai et al., 2020) and Cream (Peng et al., 2020).
This shows that the cascades can also be scaled up or down to respect different FLOPs constraints
as single models do. This is helpful for avoiding the model selection procedure when designing
cascades for different FLOPs.

Model Top-1 (%) FLOPs (B) ∆Top-1 Model Top-1 (%) FLOPs (B) ∆Top-1

C0 78.1 0.41 C3 82.2 1.8
EfficientNet-B0 77.1 0.39 1.0 EfficientNet-B3 81.3 1.8 0.9
C1 80.3 0.71 C4 83.7 4.2
EfficientNet-B1 79.1 0.69 1.2 EfficientNet-B4 82.5 4.4 1.2
BigNASModel-L 79.5 0.59 0.8 C5 84.3 10.2
OFALarge 80.0 0.60 0.3 EfficientNet-B5 83.3 10.3 1.0
Cream-L 80.0 0.60 0.3 C6 84.6 18.7
C2 81.2 1.0 EfficientNet-B6 83.7 19.1 0.9
EfficientNet-B2 80.0 1.0 1.2 C7 84.8 32.6
BigNASModel-XL 80.9 1.0 0.3 EfficientNet-B7 84.1 37 0.7

Specifically, we build a 3-model cascade to match the FLOPs of EfficientNet-B0. We call this
cascade C0 (see below for details of building C0). Then, simply by scaling up the architectures in
C0, we obtain a family of cascades C0 to C7 that have increasing FLOPs and accuracy. The models
in C0 are from the EfficientNet family. The results of C0 to C7 in Table 15 show that simply scaling
up C0 gives us a family of cascades that consistently outperform single models in all computation
regimes. This finding enhances the practical usefulness of cascades as one can select cascades from
this family based on available resources, without worrying about what models should be used in the
cascade.

Details of building C0. The networks in EfficientNet family are obtained by scaling up the depth,
width and resolution of B0. The scaling factors for depth, width and resolution are defined as
d = αφ, w = βφ and r = γφ, respectively, where α = 1.2, β = 1.1 and γ = 1.15, as suggested in
Tan et al. (Tan & Le, 2019). One can control the network size by changing φ. For example, φ = 0
gives B0, φ = 1 gives B2, and φ = 7 gives B7.

We build a 3-model cascade C0 to match the FLOPs of EfficientNet-B0 by solving Eq. 1 on held-out
training images from ImageNet. When building C0, we consider 13 networks from EfficientNet
family. As we want C0 to use similar FLOPs to B0, we make sure the 13 networks include both
networks smaller than B0 and networks larger than B0. Their φ are set to -4.0, -3.0, -2.0, -1.0, 0.0,
0.25, 0.5, 0.75, 1.0, 1.25, 1.50, 1.75, 2.0, respectively.

The φ of the three models in C0 are -2.0, 0.0 and 0.75. Then simply scaling up the architectures
in C0, i.e., increasing the φ of each model in C0, gives us a family of cascades C0 to C7 that have
increasing FLOPs and accuracy. The thresholds in C0 to C7 are determined such that their FLOPs
are similar to B0 to B7.

E.3 EXIT RATIOS

To better understand how a cascade works, we compute the exit ratio of the cascade, i.e., the per-
centage of images that exit from the cascade at each stage. Specifically, we choose the cascades in
Table 13&4 that match the accuracy of B1 to B7 and report their exit ratios in Table 16. For all the
cascades in Table 16, most images only consume the cost of the first model in the cascade and only a
few images have to use all the models. This shows that cascades are able to allocate fewer resources
to easy images and explains the speedup of cascades over single models.

E.4 MODEL POOL ANALYSIS

E.4.1 NUMBER OF MODELS IN CASCADES

We study the influence of the number of models in cascades on the performance. Concretely, we
consider the EfficientNet family and follow the same experimental setup as in Sec. E.1. We sweep
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Table 16: Exit ratios of cascades. We use the ‘+’ notation to indicate the models in cascades.

Exit Ratio (%) at Each Stage
Top-1 (%) FLOPs (B) Model 1 Model 2 Model 3 Model 4

B1 79.1 0.69
B0+B1 79.3 0.54 78.7 21.3

B2 80.0 1.0
B0+B1+B3 80.1 0.67 73.2 21.4 5.4

B3 81.3 1.8
B0+B3+B3 81.4 1.1 68.0 26.4 5.7

B4 82.5 4.4
B1+B3+B4 82.6 2.0 67.9 15.3 16.8

B5 83.3 10.3
B2+B4+B4+B4 83.4 3.4 67.6 21.2 0.0 11.2
B2+B4+B4* 83.3 3.6 57.7 26.0 16.3

B6 83.7 19.1
B2+B4+B5+B5 83.7 4.1 67.6 21.2 5.9 5.3
B3+B4+B4+B4* 83.7 4.2 67.3 16.2 10.9 5.6

B7 84.1 37
B3+B5+B5+B5 84.2 6.9 67.3 21.6 5.6 5.5
* Cascades from Table 4 with a guarantee on worst-case FLOPs.
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Figure 7: Impact of the number of models in cascades.

the target FLOPs from 1 to 40 and find cascades of 2, 3 or 4 models. As shown in Figure 7, the
performance of cascades keeps improving as the number of models increases. We see a big gap
between 2-model cascades and 3-model cascades, but increasing the number of models from 3 to 4
demonstrates a diminishing return.

As mentioned above, for EfficientNet cascades, we tried in total 4672 = (84 + 83 + 82) possible
combinations of models. Since 3-model cascades can obtain very close performance to 4-model
cascades, one could try much fewer combinations to obtain similar results.

E.5 SIZE OF THE MODEL POOL

As mentioned in Sec. B, we train each EfficientNet architecture for 4 times so that we can try a
diverse range of model combinations. We now empirically show that naively adding more models
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Table 17: Max, min, mean, and standard deviation of the performance of 8 single B5 models, 28
possible 2-B5 ensembles, and 56 possible 2-B5 cascades.

max min mean std

Single Model
Accuracy (%) 83.40 83.29 83.34 0.04

2-B5 Ensembles
Accuracy (%) 84.18 83.97 84.10 0.05

2-B5 Cascades
Accuracy (%) 84.17 83.96 84.09 0.05
FLOPs (B) 13.35 12.32 12.62 0.29

Table 18: Cascades of models of same architectures vs. Cascades of models of different architec-
tures. The ‘+’ notation indicates the models used in cascades.

Top-1 (%) FLOPs (B) Speedup

B4 82.5 4.4
B3+B3+B3 82.6 2.7 1.6x
B1+B3+B4 82.6 2.0 2.2x
B5 83.3 10.3
B4+B4 83.3 5.1 2.1x
B2+B4+B4+B4 83.4 3.4 3.0x
B6 83.7 19.1
B4+B4+B4 83.8 6.0 3.2x
B2+B4+B5+B5 83.7 4.1 4.7x
B7 84.1 37
B5+B5 84.1 13.1 2.8x
B3+B5+B5+B5 84.2 6.9 5.4x

of the same architecture to the pool only has a small influence on the performance of ensembles or
cascades.

We train 8 EfficientNet-B5 models separately and build 2-B5 ensembles or cascades using any two of
these models. The FLOPs of these 2-B5 ensembles are the same (20.5B). For each cascade, we tune
the confidence threshold such that the cascade achieves a similar accuracy to the full ensemble. We
show the max, min, mean, and standard deviation of the performance of these different ensembles
or cascades in Table 17 and observe that the performance variation is small. Therefore, we conclude
that adding more models of the same architecture only has modest influence on the performance.

E.5.1 DIVERSITY OF THE MODEL POOL

We study the influence of the diversity of architectures in the model pool on the performance. We
compare cascades of models of same architectures and cascades of models of different architectures
in Tables 18. As shown in Table 18, while cascades of same-architecture models can already signif-
icantly reduce the FLOPs compared with a similarly accurate single model, adding more variations
in the architecture can significantly improve the performance of cascades.

F APPLICABILITY BEYOND IMAGE CLASSIFICATION

F.1 VIDEO CLASSIFICATION

We conduct video classification on Kinetics-600 (Carreira et al., 2018). Following X3D (Feichten-
hofer, 2020), we sample 30 clips from each input video when evaluating X3D models on Kinetics-
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600. The 30 clips are the combination of 10 uniformly sampled temporal crops and 3 spatial crops.
The final prediction is the mean of all individual predictions.

F.2 SEMANTIC SEGMENTATION

Confidence Function. We notice that many pixels are unlabeled in semantic segmentation datasets,
e.g., Cityscapes (Cordts et al., 2016), and are ignored during training and evaluation. These unla-
beled pixels may introduce noise when we average the confidence score of all the pixels. To filter
out unlabeled pixels in the image, we only consider pixels whose confidence is higher than a preset
threshold tunlab. So we update the definition of gdense(·) as follows: gdense(R) = 1

|R′|
∑
p∈R′ g(αp),

where R′ = {p | g(αp) > tunlab, p ∈ R}.
Experimental Details. We conduct experiments on the Cityscapes (Cordts et al., 2016) dataset,
where the full image resolution is 1024×2048. We train DeepLabv3 (Chen et al., 2017) mod-
els on the train set of Cityscapes and report the mean IoU (mIoU) over classes on the validation
set. The threshold tunlab to filter out unlabeled pixels is set to 0.5. For DeepLabv3-ResNet-50 or
DeepLabv3-ResNet-101, we follow the original architecture of ResNet-50 or ResNet-101, except
that the first 7x7 convolution is changed to three 3x3 convolutions (see resnet_v1_beta in the
official DeepLab imeplmentation7).

7https://github.com/tensorflow/models/blob/master/research/deeplab/
core/resnet_v1_beta.py
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