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ABSTRACT

Semi-supervised learning (SSL) has proven to be effective in enhancing general-
ization when working with limited labeled training data. Existing SSL algorithms
based on pseudo-labels rely on heuristic strategies or uncalibrated model confi-
dence and are unreliable when imbalanced class distributions bias pseudo-labels.
In this paper, we introduce SEmi-supervised learning with pseudo-label optimiza-
tion based on VALidation data (SEVAL) to reduce the class bias and enhance the
quality of pseudo-labelling for imbalanced SSL. First, we develop a curriculum for
adjusting logits, improving the accuracy of the pseudo-labels generated by biased
models. Second, we establish a curriculum for class-specific thresholds, ensuring
the correctness of pseudo-labels on a per-class basis. Importantly, SEVAL adapts
to specific tasks by learning refinement and thresholding parameters from a par-
tition of the training dataset in a class balanced way. Our experiments show that
SEVAL surpasses current methods based on pseudo-label refinement and thresh-
old adjustment, delivering more accurate and effective pseudo-labels in various
imbalanced SSL situations. Owing to its simplicity and flexibility, SEVAL can
readily be incorporated to boost the efficacy of numerous other SSL techniques.

1 INTRODUCTION

Semi-supervised learning (SSL) algorithms are trained on datasets that contain both labelled and
unlabelled samples Chapelle et al. (2009). SSL improves representation learning and refines decision
boundaries without relying on large volumes of labeled data, which are labor-intensive to collect.

Numerous SSL algorithms have been introduced, with one of the most prevalent assumptions being
entropy minimization, which requires the decision boundaries to lie in low density areas Wang et al.
(2022a). In order to achieve this, pseudo-labels are introduced in the context of SSL Scudder (1965),
and this concept has been extended to numerous variants, including recent developments Laine &
Aila (2016); Berthelot et al. (2019b;a); Sohn et al. (2020); Zhang et al. (2021); Wang et al. (2022b).
In the pseudo-label framework, models trained with labelled data periodically classify the unlabelled
samples and samples that are confidently classified are incorporated into the training set.

The success of pseudo-label based SSL algorithms hinges on the quality of the pseudo-labels Chen
et al. (2023). Nevertheless, when implemented in real-world applications, the performance of these
SSL algorithms often experiences a significant degradation due to the prevalence of class imbal-
ance in real-world datasets Liu et al. (2019). In particular, when exposed to imbalanced training
data, the model tends to become sensitive to the majority class Cao et al. (2019); Li et al. (2020).
Consequently, this sensitivity impacts the generated pseudo-labels, introducing a bias in the process.

In this paper, we propose SEmi-supervised learning with pseudo-label optimization based on VALi-
dation data (SEVAL), a learning strategy aimed at enhancing the performance of pseudo-label based
SSL algorithms when trained on imbalanced training datasets. We break down the designs of pre-
dominant imbalanced SSL algorithms into components, and introduce substantial enhancements to
various components, substantiated by detailed experiments and analysis. Specifically, SEVAL re-
fines the decision boundaries of pseudo-labels by learning a curriculum for the logit offsets. The
optimization process of SEVAL closely resembles that of AutoML, as both involve the learning of a
set of hyper-parameters from a partition of the training dataset before proceeding with the standard
training process Zoph & Le (2016); Ho et al. (2019). In this way, SEVAL can adapt to the specific
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task by learning from the imbalanced data itself, resulting in a better fit. Moreover, SEVAL opti-
mizes confidence thresholds to select pseudo-labels that are fair to different classes. The learned
thresholds can effectively prioritize the selection of samples from the high-precision class, a com-
mon occurrence in imbalanced SSL but typically overlooked by current model confidence-based
dynamic threshold solutions Zhang et al. (2021); Guo & Li (2022).

The contributions of this paper are as follow:

• We propose to establish a curriculum of pseudo-label adjustment offsets to reduce the class
bias of pseudo-labels for imbalanced SSL algorithms. It can be viewed as an enhanced ex-
tension of heuristic post-hoc logit adjustment techniques, better suited to underlying tasks
and delivering improved accuracy in both pseudo-labeling and inference.

• We propose to learn a curriculum of thresholds to select confidently classified pseudo-labels
based on a labelled validation dataset using a novel optimization function. The obtained
thresholds notably improve the performance of the minority class, accommodating all four
threshold adjustment scenarios, whereas existing methods falter in two out of the four.

• We combine the two techniques into a learning framework, SEVAL, and find that it can out-
perform state-of-the-art pseudo-label based methods under various imbalanced SSL sce-
narios. SEVAL does not demand any supplementary computation after the curricula are
acquired and offers flexibility for integration into other SSL algorithms.

2 RELATED WORK

Semi-supervised learning. SSL has been a longstanding research focus. The majority of SSL
approaches have been developed under the assumption of consistency, wherein samples with similar
features are expected to exhibit proximity in the label space Chapelle et al. (2009); Zhou et al.
(2003). Apart from graph-based methods Iscen et al. (2019); Kamnitsas et al. (2018), perturbation-
based methods Xie et al. (2020); Miyato et al. (2018) and generative model-based methods Li et al.
(2017); Gong et al. (2023), a more straightforward solution is using pseudo-labels to periodically
learn from the model itself to encourage entropy minimization Grandvalet & Bengio (2004).

Deep neural networks are particularly suited for pseudo-label-based approaches due to their strong
classification accuracy, enabling them to generate high-quality pseudo-labels Lee et al. (2013);
Van Engelen & Hoos (2020). Several methods have been explored to generate pseudo-labels with a
high level of accuracy Wang et al. (2022a); Xu et al. (2021). For example, Mean-Teacher Tarvainen
& Valpola (2017) calculates the pseudo-label using the output of an exponential moving average
(EMA) model along the training iterations; MixMatch Berthelot et al. (2019b) derives pseudo-
labels by averaging the model predictions across various transformed versions of the same sam-
ple; FixMatch Sohn et al. (2020) estimates pseudo-labels of a strongly augmented sample with
the model confidence on its weakly augmented version; Built upon FixMatch, FlexMatch and
FreeMatch Zhang et al. (2021); Wang et al. (2022b) choose confidently classified samples based
on the model’s learning progress, which results in the selection of more samples if the model is not
learning effectively. SEVAL can seamlessly adapt current pseudo-label based SSL algorithms to
real world application by tackling the class imbalance bias of pseudo-labels.

Imbalanced semi-supervised learning. The potential and practical implications of SSL have cap-
tured the attention of numerous research studies. There are mainly three groups of methods to tackle
the challenge of class imbalance in SSL. The first group of methods alters the cost function com-
puted using the labeled samples to train a balanced classifier, consequently leading to improved
pseudo-labels. The research on long-tailed recognition, which focuses on building balanced clas-
sifiers through adjusted cost functions or model structures in a completely supervised learning en-
vironment, frequently inspires those works Chawla et al. (2002); Kang et al. (2019); Menon et al.
(2020); Zhang et al. (2023); Tian et al. (2020). BiS He et al. (2021) and SimiS Chen et al. (2022)
resample the labelled and pseudo-labelled training datasets to build balanced classifier. ABC decou-
ples the feature learning and classifier learning with a two head model architecture Lee et al. (2021).
SAW reweights unlabeled samples from different classes based on the learning difficulties Lai et al.
(2022b). The second category of methods refines the pseudo-labels to achieve a balanced distri-
bution across classes. DARP Kim et al. (2020) refines pseudo-labels by aligning their distribution
with the target distribution. SaR Lai et al. (2022a) aligns pseudo-labels to true distributions us-
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ing distribution alignment (DA)-based mitigation vector. Adsh Guo & Li (2022) utilizes adaptive
threshold to ensure that similar number of pseudo-labels are selected for each class. Finally, some
hybrid methods simultaneously adjust the cost functions and refine the pseudo-labels. For instance,
apart from bootstrap sampling strategy, CReST+ Wei et al. (2021) utilize DA to adjust the class bias
of pseudo-labels. DASO Oh et al. (2022) improves pseudo-labels with semantic pseudo-labels and
regularizes the feature encoder by aligning balanced semantic prototypes. ACR Wei & Gan (2023)
is a holistic approach that builds upon the successes of ABC, FixMatch and MixMatch, and utilizes
logit adjustment (LA) to refine pseudo-labels Menon et al. (2020), yielding impressive results.

SEVAL seamlessly integrates into SSL pipelines without necessitating alterations to the model ar-
chitecture, data sampling process, or additional pseudo-label calculations. In addition, unlike many
imbalanced SSL algorithms such as Adsh, DARP and CreST+, SEVAL does not make any assump-
tions on the distribution of unlabelled data, thus it can be applied to scenarios where the distributions
of labelled and unlabelled data are distinct without any modifications.

3 PRELIMINARIES

We consider the problem of C-class imbalanced semi-supervised classification. Let X ⊂ Rd

be the feature space and Y = {1, 2, . . . , C} be the label space. For a labelled training dataset
X = {(xi, yi)}Ni=1 with a total of N labelled samples, where each (xi, yi) ∈ (X × Y ), the class
distribution is imbalanced, with varying numbers of samples per class, denoted nc. Assuming n is
a vector that contains nc for different class c in a descending order, we define the imbalance ratio γ
as γ = maxj(nj)/minj(nj) (typically exceeds 10). We also have access to M unlabelled samples,
represented as U = {ui}Mi=1, which contain mc samples for class c. After optimization, we expect
the model perform well on a separate test dataset T which have uniform class distributions.

A model f is a function that produces the class conditionals PX (y|x) = pX
i ∈ RC given a la-

belled sample xi, with its c’th element pXic ∈ [0, 1] corresponding to the c’th class. The predicted
probability pX

i is obtained by applying the softmax function to the network output zX
i = f(xi)

such that pXic = σ(zX
i )c = ez

X
ic∑C

j=1 e
zX
ij

. The model f is commonly optimized by minimizing

Lcls =
1
N

∑N
i=1 H(yi,p

X
i ) in the supervised learning setting, where H is the cross-entropy loss.

In order to optimize with unlabelled data, pseudo-labeling techniques are commonly adopted to
regularize the network parameters by learning from the model itself Lee et al. (2013). Rather than
relying on the actual ground truth label, we generate a pseudo-label probability vector qi ∈ RC for
an unlabelled sample ui. The pseudo-label ŷi is then determined as argmaxj qij . Note that, here
we describe the case of hard pseudo-label for simplicity, but the method generalizes to the case of
soft pseudo-label. With a model prediction pU

i = f(ui), the model is optimized to minimize:

Lu =
1

M

M∑
i=1

1(max
j

(qij) ≥ τ)H(ŷi,p
U
i ), (1)

where 1 is the indicator function, and τ is a predefined threshold that filters out pseudo-labels with
low confidence. Generating pseudo-labels constitutes a crucial stage in the implementation of semi-
supervised learning algorithms Laine & Aila (2016); Sohn et al. (2020); Berthelot et al. (2019b;a).
Specifically, FixMatch Sohn et al. (2020) produces the pseudo-label of a strongly-augmented (i.e.
RandAugment Cubuk et al. (2020)) version As(ui) based on the model prediction of its weakly-
augmented (i.e. flipped and shifted) copy Aw(ui). Specifically, the semi-supervised algorithm is
optimized with As(ui) using the pseudo-label probability calculated as qi = σ(f(Aw(ui))). Given
its simplicity and strong performance, we employ FixMatch as our primary baseline for the majority
of experiments conducted in this study.

When trained with imbalanced training data X , the model f will be biased at inference time. There-
fore, in this case the generated pseudo-labels probability qi by common SSL algorithms would
become more sensitive to the majority class and make the model bias even worse.

In this study, we focus on the method to refine the qi under this circumstance. At the same time,
we expand the threshold to operate on a class-specific basis and acquiring a set of τ ∈ RC values
to achieve accuracy fairness. The model can then dynamically select the appropriate thresholds
based on its prediction. In the following section, we will bypass the computation of pseudo-label
probability qi and concentrate on our contributions.
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4 SEVAL
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Estimate offset 𝝅 ∈ ℝ!  
based on class prior of 

labelled samples 𝒏

Estimate thresholds 𝝉 ∈ ℝ!  
based on maximum class 

probability (MCP) 𝑃′"

Existing 
Methods:

SEVAL: Learn a 
curriculum of logit 

offsets 𝝅 ∈ ℝ!

Learn a 
curriculum of 

threshold 𝝉 ∈ ℝ!

: Unlabelled samples 𝒖# from two classes
/ : Original/Regularized decision boundary : Selected unlabelled samples 𝒖# with wrong pseudo labels
/ /

/
: Selected unlabelled samples 𝒖# with correct pseudo labels

𝝅 𝝉

𝝅∗
𝝉∗

A few labelled 
validation data 𝒱

Figure 1: Overview of SEVAL optimization process which consists of two learning strategies aiming
at mitigating bias in pseudo-labels within imbalanced SSL scenarios: 1) Pseudo-label refinement
and 2) Threshold Adjustment. The curriculum for parameter learning is determined through the
evaluation of validation data performance, ensuring greater accuracy while preventing overfitting.

Figure 1 shows an overview of SEVAL. It comprises two optimization processes including pseudo-
label refinement and threshold adjustment. Importantly, we propose to optimize these parameters
using a separate labelled validation dataset. Independent of the training dataset X and U , we assume
we have access to a validation dataset V = {(xi,yi)}Ki=1, which contains kc samples for class c. We
make no assumptions regarding kc; that is, V can either be balanced or imbalanced. The method is
presented in details in the following sections.

4.1 LEARNING PSEUDO-LABEL REFINEMENT

For an unlabeled sample ui, we determine its pseudo-label probability qi based on its corresponding
pseudo-label logit ẑU

i . In the process of pseudo-label refinement, we aim to adjust the decision
boundaries for ẑU

i with offset π ∈ RC to reduce class biases.

Here derive the theoretical optimal thresholds based on Bayes theorem. Given that the test distribu-
tion T shares identical class conditionals with the training dataset X (i.e., PX (X|Y ) = PT (X|Y ))
and deviates solely in terms of class priors (PX (Y ) ̸= PT (Y )), we can assert:

Theorem 1 Given that a Bayes classifier f∗(y|x) is optimized on PX (X,Y ),

fT (y|x) =
f∗(y|x)PT (y)

PX (y)
, (2)

is the optimal Bayes classifier on PT (X,Y ), where PX (X|Y ) = PT (X|Y ) and PX (Y ) ̸= PT (Y ).

Corollary 1.1 The Bayes classifier fU (y|x) = fT (y|x) should be also optimal on the resampled

validation dataset
PU (X,Y )PT (Y )

PU (Y )
, where PT (X|Y ) = PU (X|Y ) and PT (Y ) ̸= PU (Y ).

The theorem provides insight into the formulation of pseudo-label offsets: it is contingent not on
the distribution of unlabeled data, PU , but rather on the distribution of test data, PT . From this
analytical viewpoint, we present a summarized Table 1 of current pseudo-label refinement solutions.
DA Berthelot et al. (2019a); Wei et al. (2021); Kim et al. (2020) is a commonly employed technique
to make balanced prediction for different classes which align the predicted class priors P̃U (Y ) to true
class priors of U , making the model being fair Bridle et al. (1991). It only reduces the calibration
errors but cannot be optimal because it does not take PT into account. LA adjust the network
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prediction from argmaxc ẑ
U
ic to argmaxc(ẑ

U
ic − β log πc), where β is a hyper-parameter and π is

determined as the empirical class frequency Menon et al. (2020); Zhou & Liu (2005); Lazarow et al.
(2023). It shares similar design with Eq. 1, however, recall that theorem 1 provides a justification for
employing logit thresholding when optimal probabilities f∗(y|x) are accessible. Although neural
networks strive to mimic these probabilities, it is not realistic for LA as the classifier is not optimal
during training and neural networks are often uncalibrated and over confident Guo et al. (2017).

DA LA DASO SEVAL

Estimation
of fU(y|x)

f(y|x)PU(y)

P̃U(y)

f(y|x)PT (y)

PX (y)

Blending similarity
based pseudo-label

f(y|x)PT (y)

π∗

Note
Ignoring PT (Y ),
thus failing when
PT (Y ) ̸= PU(Y ).

Inaccurate as f is
suboptimal and
uncalibrated.

Relying on the
effectiveness of

blending strategies.

Optimizing the decision boundary
on U using V as a proxy without

assuming a specific f .

Table 1: Theoretical comparisons of SEVAL and other pseudo-label refinement methods including
distribution alignment (DA) Berthelot et al. (2019a); Wei et al. (2021); Kim et al. (2020); Lai et al.
(2022a), logit adjustment (LA) Wei & Gan (2023); Menon et al. (2020) and DASO Oh et al. (2022).

Therefore, in this study, we further harness its potential by optimizing π from the data itself. Assum-
ing the validation data distribution has the same class conditional likelihood as others and PT (Y )
is uniform, SEVAL can directly estimate the optimal decision boundary as required in Theorem 1.
Specifically, the optimal offsets π, are optimized using the labelled validation data V with:

π∗ = argmin
π

1

K

K∑
i=1

H(yi,p
V
i ) = argmin

π

1

K

K∑
i=1

H(yi, σ(z
V
i − logπ)). (3)

Subsequently, we can compute the refined pseudo-label logit as ẑU
i − logπ∗, which are expected to

become more accurate on a class-wise basis. Of note, we utilize the final learned π∗ to refine the
test results and expect it to perform better than LA.

4.2 LEARNING THRESHOLD ADJUSTMENT

Dynamic thresholds have been previously explored in the realm of SSL. Nevertheless, we contend
that existing confidence-based threshold methods may falter in two of four scenarios of imbalanced
SSL, specifically when a class exhibits high recall and high precision or low recall and low precision.

Hypothesis 1 A better thresholds τ for choosing effective pseudo-labels can be derived from class-
specific precision, instead of recall.

Existing dynamic threshold approaches Zhang et al. (2021); Wang et al. (2022b); Guo & Li (2022)
derive the threshold for class c based on the maximum class probability (MCP) of class c, i.e. P ′

c =
1
Kc

∑K
i=1 1ic maxj p

U
ij , where 1ic = 1(argmaxj(p

V
ij) = c) is 1 if the predicted most probable class

is c an 0 otherwise. The class-wise probability P ′
c, can be used to estimate the model learning status,

or accuracy Guo et al. (2017) (which is equivalent to recall when assessed on a per-class basis since
negative samples are not considered) of test samples Garg et al. (2022); Li et al. (2022). Thus, current
dynamic methods like FlexMatch also employ it to approximate the threshold for selecting confident
pseudo-labels. Nevertheless, it is crucial to recognize that thresholds are not solely reliant on recall.
In contrast, as demonstrated in Figure 2, precision should be the determining factor for thresholds.
While Case 1 and Case 2 are the most common scenarios, current MCP-based approaches struggle to
estimate thresholds effectively in other situations. We substantiate this assertion in the experimental
section, where we find that Case 3 frequently arises for the minority class in imbalanced SSL and is
currently not adequately addressed, as shown in appendix Section D.

However, precision cannot be determined by confidence scores alone, and an external labelled
dataset is required. Thus, here we propose a novel strategy to learn the optimal thresholds based
on an external validation dataset V . We optimize the thresholds in a manner that ensures the se-
lected samples from different classes achieve the same accuracy level of t. This is achieved by:

τ∗c =

{
argminτc

∣∣ 1
sc

∑K
i=1 1ic1(yi = c)1(maxj(p

V
ij) > τc)− t

∣∣ if t < αc

0 otherwise
, (4)
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Figure 2: Two-moons toy experiments illustrating the relationship between threshold choice and
model performance for class . Current MCP-based dynamic thresholding methods such as Flex-
Match Zhang et al. (2021), emphasizing recall, may not be reliable for Case 3 and Case 4.

where sc =
∑K

i=1 1ic1(maxj(p
V
ij) > τc) is the number of samples predicted as class c with confi-

dence larger than τc, where αc =
1
Kc

∑K
i=1 1ic1(yi = c) is the average accuracy of all the samples

predicted as class c and Kc =
∑K

i=1 1ic is the number of samples predicted as c.

Importantly, optimized thresholds are inversely related to precision and possess practical utility in
handling classes with varying accuracy. Therefore, we believe this cost function is better suited for
fair threshold optimization across diverse class difficulties. In practical scenarios, we often face dif-
ficulties in directly determining the threshold through Eq. 4 due to the imbalances in validation data
and constraints arising from a limited sample size. To address these issues, we employ normalized
cost functions and group-based learning, detailed further in appendix Section C.

After obtaining the optimal refinement parameters, for pseudo-label ŷi = argmaxj(qij)

and predicted class y′i = argmaxj(p
U
ij), we can calculate the unlabelled loss Lu =

1
M

∑M
i=1 1(maxj(qij) ≥ τ

(l)
y′
i
)H(ŷi,p

U
i ) to update our classification model parameters.

4.3 CURRICULUM LEARNING

In practice, we learn the curriculum of π and τ based on a partition of labelled training dataset X
thus we do not require additional samples. Specifically, before standard SSL process, we partition
X into two subset X ′ and V ′ which contain the same number of samples to learn the curriculum.

In order to ensure curriculum stability, we update the parameters with exponential moving average
(EMA). Specifically, when we learn a curriculum of length L, after several iterations, we optimize
π and τ sequentially based on current model status. We then calculate the curriculum for step l
as π(l) = ρππ

(l−1) + (1 − ρπ)π
(l)∗ and use this to refine pseudo-label before the next SEVAL

parameter update. We provide more implementation details in appendix Section A.

5 EXPERIMENTS

We conduct experiments on imbalanced SSL benchmark including CIFAR-10-LT, CIFAR-100-
LT Krizhevsky et al. (2009) and STL-10-LT Coates et al. (2011) under the same codebase follow-
ing Oh et al. (2022). Specifically, we choose wide ResNet-28-2 Zagoruyko & Komodakis (2016) as
the feature extractor and train the network at a resolution of 32×32. We train the neural networks for
250,000 iterations with fixed learning rate of 0.03. We control the imbalance ratios for both labelled
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and unlabelled data (γl and γu) and exponentially decrease the number of samples per class. More
experiment details are given in appendix section C.

In most experiments, we employ FixMatch to calculate the pseudo-label and make the prediction
using the EMA version of the classifier following Sohn et al. (2020). We report the average test
accuracy along with its variance, derived from three distinct random seeds.

5.1 MAIN RESULTS

Method type CIFAR10-LT CIFAR100-LT STL10-LT
γl = γu = 100 γl = γu = 10 γl = 20, γu: unknown

Algorithm LTL PLR THA n1 = 500 n1 = 1500 n1 = 50 n1 = 150 n1 = 150 n1 = 450
m1 = 4000 m1 = 3000 m1 = 400 m1 = 300 M = 100, 000

Supervised 47.3±0.95 61.9±0.41 29.6±0.57 46.9±0.22 39.4±1.40 51.7±2.21
w/ LA Menon et al. (2020) ✓ 53.3±0.44 70.6±0.21 30.2±0.44 48.7±0.89 42.0±1.24 55.8±2.22

FixMatch Sohn et al. (2020) 67.8±1.13 77.5±1.32 45.2±0.55 56.5±0.06 47.6±4.87 64.0±2.27
w/ DARP Kim et al. (2020) ✓ 74.5±0.78 77.8±0.63 49.4±0.20 58.1±0.44 59.9±2.17 72.3±0.60
w/ FlexMatch Zhang et al. (2021) ✓ 74.0±0.64 78.2±0.45 49.9±0.61 58.7±0.24 48.3±2.75 66.9±2.34
w/ Adsh Guo & Li (2022) ✓ 73.0±3.46 77.2±1.01 49.6±0.64 58.9±0.71 60.0±1.75 71.4±1.37
w/ FreeMatch Wang et al. (2022b) ✓ ✓ 73.8±0.87 77.7±0.23 49.8±1.02 59.1±0.59 63.5±2.61 73.9±0.48
w/ SEVAL-PL ✓ ✓ 77.7±1.38 79.7±0.53 50.8±0.84 59.4±0.08 67.4±0.79 75.2±0.48

w/ ABC Wei et al. (2021) ✓ 78.9±0.82 83.8±0.36 47.5±0.18 59.1±0.21 58.1±2.50 74.5±0.99
w/ CReST+ Wei et al. (2021) ✓ ✓ 76.3±0.86 78.1±0.42 44.5±0.94 57.1±0.65 56.0±3.19 68.5±1.88
w/ DASO Oh et al. (2022) ✓ ✓ 76.0±0.37 79.1±0.75 49.8±0.24 59.2±0.35 65.7±1.78 75.3±0.44
w/ ACR Wei & Gan (2023) ✓ ✓ ✓ 80.2±0.78 83.8±0.13 50.6±0.13 60.7±0.23 65.6±0.11 76.3±0.57
w/ SEVAL ✓ ✓ ✓ 82.8±0.56 85.3±0.25 51.4±0.95 60.8±0.28 67.4±0.69 75.7±0.36

Table 2: Accuracy on CIFAR10-LT, CIFAR100-LT and STL10-LT. We divide SSL algorithms into
different groups including long-tailed learning (LTL), pseudo-label refinement (PLR) and thresh-
old adjustment (THA). PLR and THA based methods only modify pseudo-label probability qi and
threshold τ , respectively. Best results within the same category are in bold for each configuration.

We compare SEVAL with different kinds of SSL algorithms and summarize the results of test accu-
racy in Table 2. In order to fairly compare the algorithm performance, in this table, we mark SSL
algorithms based on the way they tackle the imbalance challenge. In particular, techniques such
as DARP, which exclusively manipulate the probability of pseudo-labels π, are denoted as pseudo-
label refinement (PLR). In contrast, approaches like FlexMatch, which solely alter the threshold
τ , are termed as threshold adjustment (THA). We denote other methods that apply regularization
techniques to the model’s cost function using labeled data as long-tailed learning (LTL). Besides the
results from SEVAL, we also report results of SEVAL-PL, which forgoes any post-hoc adjustments
on test samples. This ensures that its results are directly comparable with its counterparts.

As shown in Table 2, SEVAL-PL outperform other PLR and THA based methods such as DARP,
FlexMatch and FreeMatch with a considerable margin. This indicates that SEVAL can provide better
pseudo-label for the models by learning a better curriculum for π and τ .

When compared with other hybrid methods including ABC, CReST+, DASO, ACR, SEVAL demon-
strates significant advantages in most scenarios. Relying solely on the strength of pseudo-labeling,
SEVAL delivers highly competitive performance in the realm of imbalanced SSL. Importantly, given
its straightforward framework, SEVAL can be integrated with other SSL concepts to enhance accu-
racy, a point we delve into later in the ablation study. We provide a summary of additional experi-
mental results conducted under diverse realistic or extreme settings in appendix Section B.

5.1.1 THRESHOLD ADJUSTMENT

Quantity and quality are two crucial factors for pseudo-labels, as highlighted in Chen et al. (2023).
Specifically, quantity denotes the count of accurately labeled samples generated by pseudo-label
algorithms, whereas quality represents the ratio of accurately labeled samples after confidence-based
thresholding. Having just high quantity or just high quality isn’t enough for effective pseudo-labels.
For instance, setting exceedingly high thresholds might lead to the selection of a limited number of
accurately labeled samples (high quality). However, this is not always the ideal approach, and the
opposite holds true for quantity.

In order to access the effectiveness of pseudo-label, we propose a metric called correctness, which
is a combination of quantity and quality. Factoring in the potential imbalance of unlabeled data, we
utilize a class frequency based weight term ωU = 1/m to normalize this metric, yielding:

7
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(a) (b) (c)

Figure 3: (a) The evolution of Correctness across training iterations. SEVAL can build better trade-
off between quality and quantity. (b) The evolution of Gain across training iterations. SEVAL
accumulates a higher accuracy advantage than its counterparts. (c) The evolution of test accuracy
across training iterations. SEVAL-PL outperforms other pseudo-label refinement methods.

Correctness =
C∑M

i=1 ω
U
yi︸ ︷︷ ︸

Quantity

C∑M
i=1 ω

U
yi
1(maxj(qij) ≥ τy′

i
)︸ ︷︷ ︸

Quality

, (5)

where, C =
∑M

i=1 ω
U
yi
1(ŷi = yi)1(maxj(qij) ≥ τy′

i
) is the relative number of correctly labelled

samples. We show correctness of SEVAL with FixMatch, FlexMatch and FreeMatch in Figure 3(a).
We observe that FlexMatch and FreeMatch can both improve correctness, while SEVAL can boost
even more. We observe that the test accuracy follows a trend similar to correctness, as shown in
Figure 3(c). This demonstrates that the thresholds set by SEVAL not only ensure a high quantity but
also attain high accuracy for pseudo-labels, making them efficient in the model’s learning process.

5.1.2 PSEUDO-LABEL REFINEMENT

Both sample-specific accuracy and class-specific accuracy are crucial measures to evaluate the qual-
ity of pseudo-labels. A low sample-specific accuracy can lead to noisier pseudo-labels, adversely
affecting model performance. Meanwhile, a low class-specific accuracy often indicates a bias to-
wards the dominant classes. Therefore, in order to comprehensively and quantitatively investigate
the accuracy of pseudo-label refined by different approaches, here we define G as the sum of accu-
racy gain and balanced accuracy gain of pseudo-label over training iterations. Specifically, given the
pseudo-label ŷi and predicted class y′i of unlabelled dataset U , we calculate G as:

G =

∑M
i=1[1(ŷ

′
i = yi)− 1(ŷi = yi)]

M︸ ︷︷ ︸
Sample-Wise Accuracy Gain

+

C∑
c=1

M∑
i=1

1(ŷ′
i = c)1(ŷ′

i = yi)− 1(ŷi = c)1(ŷi = yi)

mcC︸ ︷︷ ︸
Class-Wise Accuracy Gain

. (6)

To evaluate the cumulative impact of pseudo-labels, we calculate G(iter) as the accuracy gain at
training iteration iter and monitor Gain =

∑iter
j=1 G(j)/iter throughout the training iterations. The

results of SEVAL along with DARP and adjusting pseudo-label logit ẑUc with LA are summarized
in Figure 3(b). We note that SEVAL consistently delivers a positive Gain throughout the training
iterations. In contrast, DARP and LA tend to reduce the accuracy of pseudo-labels during the later
stages of the training process.

After a warm-up period, DARP adjusts the distribution of pseudo-labels to match the inherent dis-
tribution of unlabeled data. However, it doesn’t guarantee the accuracy of the pseudo-labels, thus
not optimal. While LA can enhance class-wise accuracy, it isn’t always the best fit for every stage
of the model’s learning. Consequently, noisy pseudo-labels from the majority class can impede
the model’s training. SEVAL learns a smooth curriculum of parameters for pseudo-label refine-
ment from the data itself, therefore bringing more stable improvements. We can further validate
the effectiveness of SEVAL from the test accuracy curves shown in Figure 3(c) where SEVAL-PL
outperforms LA and DARP.
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(a) (b) (c)

Figure 4: (a) Test accuracy when SEVAL is adapted to pseudo-label based SSL algorithms other than
FixMatch under the setting of CIFAR-10 n1 = 1500. SEVAL can readily improve the performance
of other SSL algorithsm. (b) Test accuracy when SEVAL employs varied types of post-hoc adjust-
ment parameters. The learned post-hoc parameters consistently enhance performance, particularly
in CIFAR-10 experiments. (c) Test accuracy when SEVAL is optimized using different validation
samples under the setting of CIFAR-10 n1 = 500. SEVAL requires few validation samples to learn
the optimal curriculum of parameters.

5.2 ABLATION STUDY

5.2.1 FLEXIBILITY AND COMPATIBILITY

We apply SEVAL to other pseudo-label based SSL algorithms including Mean-Teacher, MixMatch
and ReMixMatch and report the results with the setting of CIFAR-100 n1 = 50 in Figure 4(a). We
find SEVAl can bring substantial improvements to these methods and is more effective than DASO.
Of note the results of ReMixMatch w/SEVAL is higher than the results of FixMatch w/ SEVAL in
Table 2 (86.7 vs 85.3). This may indicates that ReMixMatch is fit imbalanced SSL better. Due to its
simplicity, SEVAL can be readily combined with other SSL algorithms that focus on LTL instead
of PLR and THA. For example, SEVAL pairs effectively with the semantic alignment regularization
introduced by DASO. By incorporating this loss into our FixMatch experiments with SEVAL, we
were able to boost the test accuracy from 51.4 to 52.4 using the CIFAR-100 n1 = 50 configuration.

We compared with the post-hoc adjustment process with LA in Figure 4(b). We find that the post-
hoc parameters can improve the model performance significantly in the setting of CIFAR-10. In
other cases, our post-hoc adjustment doesn’t lead to a decrease in prediction accuracy. However, LA
sometimes does, as seen in the case of STL-10. This could be due to the complexity of the confusion
matrix in those instances, where the class bias is not adequately addressed by simple offsets.

5.2.2 DATA-EFFICIENCY

Here we explore if SEVAL requires a substantial number of validation samples for curriculum learn-
ing. To do so, we keep the training dataset the same and optimize SEVAL parameters using balanced
validation dataset with varied numbers of labelled samples using the CIFAR-10 n1 = 500 configu-
ration, as shown in Figure 4(c). We find that SEVAL consistently identifies similar π and τ . When
we train the model using these curricula, there aren’t significant differences even when the valida-
tion samples per class ranges from 10 to 500. This suggests that SEVAL is both data-efficient and
resilient. We conduct stress tests on SEVAL and observe its effectiveness, even with only 40 labelled
samples in total, as detailed in the appendix Section B.3.

6 CONCLUSION AND FUTURE WORK

In this study, we present SEVAL and highlight its benefits in imbalanced SSL across a wide range
of application scenarios. SEVAL sheds new light on pseudo-label generalization, a foundation for
many leading SSL algorithms. SEVAL is both straightforward and potent, requiring no extra com-
putation once the curriculum is acquired. As such, it can effortlessly be integrated into other SSL
algorithms and paired with LTL methods to address class imbalance. Moreover, we believe that the
concept of optimizing parameters or accessing unbiased learning status using a partition of labelled
training dataset could spark further innovations in long-tailed recognition and SSL. We feel the spe-
cific interplay between label refinement and threshold adjustment remains an intriguing question for
subsequent research.
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A ALGORITHM

Algorithm 1 SEVAL parameter estimation process, π∗, τ ∗← ESTIM
(
V, {zV

i }Ki=1

)
Require:
V = {(xi, yi)}Ki=1: validation data, {zV

i }Ki=1: network prediction of V .
C: Number of classes, t: Requested per class accuracy of the pseudo-label, k: Number of sample per class
for V .

1: π∗ = argminπ
1
K

∑K
i=1H(yi, σ(z

V
i − logπ))

▷ In practice, the parameter estimation process is achieved by bound-constrained solvers.
2: ωV = 1/k ▷ The minority class is assigned higher weights to prioritize class-specific accuracy.
3: for c in C do
4: Calculate class-wise accuracy αc = 1

Kc

∑K
i=1 ω

V
yi1ic1(yi = c)

▷ For each class c, 1ic = 1(argmaxj(p
V
ij) = c) and Kc =

∑K
i=1 ω

V
yi1ic

5: if αc > t then
6: τ∗

c = argminτc

∣∣ 1
sc

∑K
i=1 ω

V
yi1ic1(yi = c)1(maxj(p

V
ij) > τc)− t

∣∣
▷ sc =

∑K
i=1 ω

V
yi1ic1(maxj(p

V
ij) > τc) is the relative number of samples predicted as class c

with confidence larger than τc
7: else
8: τ∗

c = 0 ▷ The quality of the pseudo-labels is satisfactory, and we make use of all of them.
9: end if

10: end for

Algorithm 2 Imbalanced semi-supervised learning with SEVAL.

Require:
X = {(xi, yi)}Ni=1: labelled training data, U = {ui}Mi=1: unlabelled training data, f(·): network for
classification.
T : Total training iterations, C: Number of classes, L: length of the curriculum, ρπ , ρτ : Momentum decay
ratio of offsets and thresholds.

1: Initialize the SEVAL parameters as l = 1, π(l) =
[
1, 1, . . . , 1

]︸ ︷︷ ︸
C

and τ (l) =
[
0.95, 0.95, . . . , 0.95

]︸ ︷︷ ︸
C

.

▷ Estimate a curriculum of the SEVAL parameters based on a partition of the training dataset.
2: Randomly partition X into two subsets, X ′ = {(xi, yi)}Ki=1 and V ′ = {(xi, yi)}Ki=1, each containing an

equal number of data points.
3: for iter in [1, . . . , T ] do
4: Calculate the pseudo-label logit for unlabelled data U and obtain {ẑU

i }Mi=1. ▷ Note: FixMatch achieves
this by utilizing two augmented versions of the unlabelled data.

5: Calculate the pseudo-label probability qi = σ(ẑU
i − logπ(l)).

6: For pseudo-label ŷi = argmaxj qij and predicted class y′
i = argmaxj p

U
ij , calculate the unlabelled

loss Lu = 1
M

∑M
i=1 1(maxj(qij) ≥ τ

(l)

y′
i
)H(ŷi,pU

i ).

7: Update the network f with labelled loss Lcls calculated using X ′ and Lu via SGD optimizer.
8: if iter%(T/L) = 0 then
9: l = iterL/T

10: Calculate the prediction on V ′ using EMA model and obtain {zV
i }Ki=1.

11: π(l)∗, τ (l)∗ = ESTIM(V ′, {zV
i }Ki=1)

12: π(l) = ρππ
(l−1) + (1− ρπ)π

(l)∗, τ (l) = ρττ
(l−1) + (1− ρτ )τ

(l)∗

13: end if
14: end for

▷ Standard SSL process.
15: for iter in [1, . . . , T ] do
16: l = ⌈iterL/T ⌉
17: Calculate the pseudo-label logit for unlabelled data U and obtain {ẑU

i }Mi=1.
18: Calculate the pseudo-label probability qi = σ(ẑU

i − logπ(l)).
19: Calculate the unlabelled loss Lu = 1

M

∑M
i=1 1(maxj(qij) ≥ τ

(l)

y′
i
)H(ŷi,pU

i ).
20: Update the network f with labelled loss Lcls calculated using X and Lu via SGD optimizer.
21: end for

▷ Post-hoc processing with final learned parameters.
22: Given a test sample xi, the logit is adjusted from zi to zi − logπ(L)∗.
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B ADDITIONAL EXPERIMENTS

In this section, we present additional experimental results conducted under various settings to assess
the generalizability of SEVAL.

B.1 VARIED IMBALANCED RATIOS

Similar to results in Table 2, we evaluate SEVAL on CIFAR10-LT with different imbalanced ratios.
We find SEVAL consistently outperform its counterparts with different γl. Since SEVAL doesn’t
make any assumptions about the distribution of unlabeled data, it can be robustly implemented in
this context when γl ̸= γu. We find SEVAL can outperform its counterparts even more under such
settings.

Method type CIFAR10-LT
γl = 100, γu = 1 γl = 100, γu = 1/100 γl = γu = 150

Algorithm LTL PLR THA n1 = 500 n1 = 1500 n1 = 500 n1 = 1500 n1 = 500 n1 = 1500
m1 = 4000 m1 = 3000 m1 = 4000 m1 = 3000 m1 = 4000 m1 = 3000

FixMatch Sohn et al. (2020) 73.0±3.81 81.5±1.15 62.5±0.94 71.8±1.70 62.9±0.36 72.4±1.03
w/ DARP Kim et al. (2020) ✓ 82.5±0.75 84.6±0.34 70.1±0.22 80.0±0.93 67.2±0.32 73.6±0.73
w/ SEVAL-PL ✓ ✓ 89.4±0.53 89.2±0.02 77.7±0.91 80.9±0.66 71.9±1.10 74.7±0.63

w/ CReST+ Wei et al. (2021) ✓ ✓ 82.2±1.53 86.4±0.42 62.9±1.39 72.9±2.00 67.5±0.45 73.7±0.34
w/ DASO Oh et al. (2022) ✓ ✓ 86.6±0.84 88.8±0.59 71.0±0.95 80.3±0.65 70.1±1.81 75.1±0.77
w/ SEVAL ✓ ✓ ✓ 90.3±0.61 90.6±0.47 79.2±0.83 82.9±1.78 79.8±0.42 83.3±0.40

Table 3: Accuracy on CIFAR10-LT with different imbalanced ratios. Best results within the same
category are in bold for each configuration.

B.2 RESULTS ON SEMI-AVES

We further apply SEVAL to the realistic imbalanced SSL dataset, Semi-Aves Su & Maji (2021),
which captures a situation where a portion of the unlabelled data originates from previously unseen
classes. This dataset, contained 200 classes with different with long-tailed distribution. In addition
to labelled data, Semi-Aves also contains imbalanced unlabelled data Uin and unlabelled open-set
data Uout from other 800 classes. Following previous works Su et al. (2021); Oh et al. (2022), we
conduct experiments using Uin or a combination of Uin and Uout.

We summarize the results in Table 4. This dataset poses a challenge due to the limited number of
samples in the tail class, with only around 15 samples per class. It has been observed that SEVAL
performs effectively in such a demanding scenario.

Method type Semi-Aves

Algorithm LTL PLR THA U = Uin U = Uin + Uout

FixMatch Sohn et al. (2020) 59.9±0.08 52.6±0.14
w/ DARP Kim et al. (2020) ✓ 60.3±0.24 54.7±0.06
w/ SEVAL-PL ✓ ✓ 60.6±0.18 56.4±0.10

w/ CReST+ Wei et al. (2021) ✓ ✓ 60.0±0.03 54.3±0.59
w/ DASO Oh et al. (2022) ✓ ✓ 59.3±0.28 56.6±0.32
w/ SEVAL ✓ ✓ ✓ 60.7±0.17 56.7±0.15

Table 4: Accuracy on Semi-Aves. Best results within the same category are in bold for each config-
uration.
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B.3 LOW LABELLED DATA SCHEME

SEVAL acquires a curriculum of parameters by partitioning the training dataset. An inherent ques-
tion arises: can SEVAL still be effective when there are extremely limited labeled samples? In this
context, we subject SEVAL to a stress-test by training it with a very small amount of labeled training
data.

In the first experimental configuration, we maintain the imbalance ratio while diminishing the count
of labeled samples (n1 = 200). In this extreme scenario, only two samples are labeled for the tail
class. In the second configuration, we employ a balanced labeled training dataset, but with a total of
100 and 40 samples for training.

We summarize the results in Table 5. We find SEVAL work well in both settings. This indicates
SEVAL can be a safe choice even when very few labelled dataset.

Method type CIFAR10-LT
γl = γu = 100 γl = 1, γu = 100

Algorithm LTL PLR THA n1 = 200 n1 = 10 n1 = 4
m1 = 4000 m1 = 4000 m1 = 4000

FixMatch Sohn et al. (2020) 64.3±0.83 65.3±0.80 44.7±3.33
w/ FreeMatch Wang et al. (2022b) ✓ ✓ 67.4±1.09 58.4±0.76 50.7±1.95
w/ SEVAL-PL ✓ ✓ 69.3±0.66 68.3±0.56 51.5±1.51

w/ DASO Oh et al. (2022) ✓ ✓ 67.2±1.25 61.2±0.96 48.6±2.81
w/ SEVAL ✓ ✓ ✓ 71.2±0.80 68.9±0.25 52.7±1.83

Table 5: Accuracy on CIFAR10-LT under the setting of extremely few labeled samples. Best results
within the same category are in bold for each configuration.

B.4 ABLATION STUDY

To closely examine the distinct contributions of π and τ , we carry out an ablation study where
SEVAL optimizes just one of them, respectively termed SEVAL-PLR and SEVAL-THA. As sum-
marized in Table 6, SEVAL-PLR and SEVAL-THA can still outperform their counterparts, DARP
and FlexMatch, respectively. When tuning both parameters, SEVAL-PL can achieve the best results.

Method type CIFAR10-LT CIFAR100-LT

Algorithm LTL PLR THA n1 = 500, m1 = 4000 n1 = 150, m1 = 300
γl = γu = 100 γl = γu = 10

FixMatch Sohn et al. (2020) 67.8±1.13 56.5±0.06
w/ DARP Kim et al. (2020) ✓ 74.5±0.78 58.1±0.44
w/ SEVAL-PLR ✓ 76.7±0.82 59.3±0.30
w/ FlexMatch Zhang et al. (2021) ✓ 74.0±0.64 58.7±0.24
w/ SEVAL-THA ✓ 77.0±0.93 59.1±0.18
w/ SEVAL-PL ✓ ✓ 77.7±1.38 59.4±0.08

Table 6: Comparison of SEVAL when only optimizing π (SEVAL-PLR) or only optimizing τ
(SEVAL-THA). SEVAL outperforms counterparts with identical parameter settings under differ-
ent imbalanced SSL scenarios. SEVAL-PL, with its sequential optimization of both π and τ , yields
further improvements in accuracy.
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B.5 INTEGRATION WITH OTHER SSL FRAMEWORKS

As an extension to results in Figure 4, we summarize the results when introducing SEVAL into other
SSL frameworks in Table 7.

We summarize the implementation details of those methods in Section C.

CIFAR10-LT CIFAR100-LT

Algorithm n1 = 1500, m1 = 3000 n1 = 150, m1 = 300
γl = γu = 100 γl = γu = 10

Mean Teacher Tarvainen & Valpola (2017) 68.6±0.88 52.1±0.09
w/ DASO Oh et al. (2022) 70.7±0.59 52.5±0.37
w/ SEVAL 77.6±0.63 53.8±0.24

MixMatch Berthelot et al. (2019b) 65.7±0.23 54.2±0.47
w/ DASO Oh et al. (2022) 70.9±1.91 55.6±0.49
w/ SEVAL 81.8±0.82 57.8±0.26

ReMixMatch Berthelot et al. (2019a) 77.0±0.55 61.5±0.57
w/ DASO Oh et al. (2022) 80.2±0.68 62.1±0.69
w/ SEVAL 86.7±0.71 63.1±0.38

Table 7: Accuracy on CIFAR10-LT based on SSL methods other than FixMatch. Best results within
the same category are in bold for each configuration.

B.6 SENSITIVITY ANALYSIS

We perform experiments with SEVAL, varying the core hyperparameters, and present the results
in Table 8. Our findings indicate that SEVAL exhibits robustness, showing insensitivity to hyper-
parameter variations within a reasonable range.

CIFAR10-LT, γl = 100
Hyper-parameter n1 = 500, m1 = 4000

t = 0.6 82.5±0.45
t = 0.7 82.2±0.11
t = 0.75 (reported) 82.8±0.56

ρπ = 0.995 81.4±0.36
ρπ = 0.999 (reported) 82.8±0.56
ρπ = 0.9995 82.5±0.35

ρτ = 0.995 81.5±0.38
ρτ = 0.999 (reported) 82.8±0.56
ρτ = 0.9995 82.9±0.09

Table 8: Sensitivity analysis of hyper-parameters t, ρπ and ρτ . Best results are in bold for each
configuration.

C IMPLEMENTATION DETAILS

C.1 LEARNING WITH IMBALANCED VALIDATION DATA

As the labelled training dataset X is imbalanced, in practice, it is hard to obtain a balanced split V
to learn a curriculum of threshold τ . However, when we optimize τ using an imbalanced validation
V following Eq. 4, the optimized results would be biased. More precisely, the majority class con-
sistently exhibits high precision, leading to a lower threshold, while the opposite holds true for the
minority class.

Therefore, we utilize the class frequency of the labelled validation data k to normalize the cost
function. Specifically, we calculate the class weight as ωV = 1/k. Then we replace all the 1ic with
ωV
yi
1ic in Eq. 4, obtaining:
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τ∗c =

{
argminτc

∣∣ 1
sc

∑K
i=1 ω

V
yi
1ic1(yi = c)1(maxj(p

V
ij) > τc)− t

∣∣ if t < αc

0 otherwise
, (7)

where sc =
∑K

i=1 ω
V
yi
1ic1(maxj(p

V
ij) > τc) is the relative number of samples predicted as class

c with confidence larger than τc, where αc = 1
Kc

∑K
i=1 ω

V
yi
1ic1(yi = c) is the average balanced

accuracy of all the samples predicted as class c and Kc =
∑K

i=1 ω
V
yi
1ic is the relative number of

samples predicted as c.

This modification can normalize the number of samples within the cost function. Consequently, we
can directly learn the thresholds τ using imbalanced validation data.

C.2 LEARNING THRESHOLDS WITHIN GROUPS

When we learn τ based on the validation data V , the optimization process could be unstable as
sometimes we have very few samples per class (e.g. less than 10 samples). In this case, even if we
can re-weight the validation samples based on their class prior k, it is hard to have enough samples to
obtain stable τ curriculum for the minority classes, especially when minc kc < 10. Assuming equal
class priors should result in similar thresholds, we propose to optimize thresholds within groups,
pinpointing the ideal ones that fulfill the accuracy requirement for every classes within the group.

We assume the samples of different classes kc are arranged in descending order. In other words,
k1 is the maximum, and kC is the minimum. Instead of optimizing τc for an individual class c, we
optimize for groups such that the learned τb can satisfy the accuracy requirements for B classes.
Specifically, the optimal τ̃ ∈ RC/B is determined as:

τ̃∗b =

{∑bB+B
c=bB+1 argminτ̃b

∣∣ 1
s̃b

∑K
i=1 1ic1(yi = c)1(maxj(p

V
ij) > τ̃b)− t

∣∣ if t < α̃b

0 otherwise
, (8)

where s̃b =
∑bB+B

c=bB+1

∑K
i=1 1ic1(maxj(p

V
ij) > τ̃b) is the number of samples that are chosen in

this group based on the threshold τ̃b and α̃b = 1∑bB+B
c=bB+1 Kc

∑bB+B
c=bB+1

∑K
i=1 1ic1(yi = c) is the

average accuracy of all the samples predicted as class in this group. If we set B = 1, Eq. 8 becomes
equivalent to Eq. 4.

Furthermore, in practice, we find that in the setting of imbalanced SSL, sometimes the minority
classes very few samples and the thresholds cannot be optimized correctly based on Eq. 8. In
this case, we also set the learned τ̃∗b to be 0, in order to leverage more data from the minority
classes. Formally, we denote K̃b =

∑bB+B
c=bB+1

∑K
i=1 ω

V
1ic as the relative number of predicted

samples within group b. When K̃b <
∑K

i=1
BωV

e1C
or

∑K
i=1 1(yi = c) < e2, where e1 and e2 are

hyper-parameters that we both set to 10 for all experiments, we also have τ̃∗b = 0 and keep their
corresponding πc within group b as low as πc = minj(πj). This implies:

• In instances where the models exhibit a pronounced bias, limiting their capability to detect
over 10% of the samples within a particular group, we adjust the associated thresholds and
consequently increase our sample selection.

• When a group comprises fewer than 10 samples, the feasibility of optimizing thresholds
based on proportion diminishes, necessitating an enhanced sample selection.

C.3 BENCHMARKS

We conduct experiments following Oh et al. (2022) for experiments of CIFAR10-LT, CIFAR100-
LT and STL10-LT. We take some baseline results from the DASO paper Oh et al. (2022) to Table 2,
Table 3 and Table 7. including the results of supervised baselines, DARP, CReST+, ABC and DASO.

As DASO Oh et al. (2022) does not supply the code for the Semi-Aves experiments, we conduct all
the experiments for this setting ourselves. We train ResNet-50 He et al. (2016) which is pretrained on
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ImageNet Deng et al. (2009) for the task of Semi-Aves following Su & Maji (2021). In accordance
with Oh et al. (2022), we merge the training and validation datasets provided by the challenge,
yielding a total of 5,959 samples for training which come from 200 classes. We conduct experiments
utilizing 26,640 unlabeled samples which share the same label space with X in the U = Uin setting,
and 148,848 unlabeled samples of which 122,208 are from open-set classes in the U = Uin + Uout

setting. For experiments on Semi-Aves, we set the base learning rate as 0.005. We train the network
for 45,000 iterations. The learning rate is linear warmed up during the first 25,00 iterations, and
degrade after 15,000 and 30,000, with a factor of 10. We choose training batch size as 32. The
images are firstly cropped to 256 × 256. During training, the images are then randomly cropped to
224× 224. At inference time, the images are cropped in the center with size 224× 224.

C.4 HYPER-PARAMETERS

Here we summarize all the hyper-parameters we choose in this experiments to ease reproducibility.

Hyper-parameter
CIFAR10-LT, γl = 100 CIFAR100-LT, γl = 10 STL10-LT, γl = 20 Semi-Aves
n1 = 500 n1 = 1500 n1 = 50 n1 = 150 n1 = 150 n1 = 450 U = Uin U = Uin + Uoutm1 = 4000 m1 = 3000 m1 = 400 m1 = 300 M = 100, 000

T 250,000 250,000 250,000 45,000
t 0.75 0.5 0.65 0.7 0.6 0.9 0.99
tV 0.9 0.65 0.7 0.95 0.85 —–
L 500 100 500 90
C 10 100 10 200
B 2 25 10 2 1 10
ρπ 0.999 0.95 0.9 0.995 0.99 0.9
ρτ 0.999 0.95 0.9 0.9995 0.999 0.99 0.9

Table 9: Experiment-specific hyper-parameters. tV is the required accuracy if we directly optimize
τ along the training process using a separate validation dataset.

C.5 SEVAL WITH OTHER SSL ALGORITHMS

Here, we provide implementation details of how SEVAL can be integrated into other pseudo-labeling
based SSL algorithms. Specifically, we apply SEVAL to Mean Teacher Tarvainen & Valpola (2017),
MixMatch Berthelot et al. (2019b) and ReMixMatch Berthelot et al. (2019a). These algorithms
produce pseudo-label ŷi based on its corresponding pseudo-label probability qi and logit ẑU

i in
different ways. SEVAL can be easily adapted by refining qi using the learned offset π.

It should be noted that these SSL algorithms do not include the process of filtering out pseudo-labels
with low confidence. Therefore, for simplicity and fair comparison, we do not include the threshold
adjustment into these methods. We expect that SEVAL can enhance performance through threshold
adjustment and plan to explore this further in the future.

C.5.1 MEAN TEACHER

Mean Teacher generates pseudo-label logit ẑU
i based on a EMA version of the prediction models.

SEVAL calculates the pseudo-label probability as qi = σ(ẑU
i − logπ∗), which is expected to have

less bias towards the majority class.

C.5.2 MIXMATCH

MixMatch calculates ŷi based on multiple transformed version of an unlabelled sample ui. SEVAL
adjusts each one of them with π, separately.

C.5.3 REMIXMATCH

ReMixMatch proposes to refine pseudo-label probability qi with distribution alignment to match
the marginal distributions. SEVAL adjusts the the probability using qi = σ(ẑU

i − logπ∗) before
ReMixMatch’s process including distribution alignment and temperature sharpening.
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D ANALYSIS OF LEARNED THRESHOLDS

We try to determine the effectiveness of thresholds by looking into the precision of different classes,
which should serve as approximate indicators of suitable thresholds. We show an example when
optimized thresholds and learning status of FixMatch on CIFAR-10 n1 = 500 in Figure 5, SEVAL
learned τc is low for the class that have high precision. In contrast, MCP P ′

c, does not show clear
correction with precision. Specifically, as highlighted with the red circle, Pc remains high for classes
that exhibit high precision. Consequently, confidence-based threshold methods such as FlexMatch
will tune the threshold to be high for classes with large Pc, inadequately addressing Case 3 and Case
4 as elaborated upon in the method section.

Figure 5: The correlation of SEVAL learned τc and MCP P ′
c between test precision of FixMatch on

CIFAR10. Each point represents a class c and the size of the points indicate the number of samples
in the labelled training dataset nc. Note the P ′

c is the basis of current dynamic threshold method to
derive thresholds. However, as highlighted by red arrows, P ′

c does not correlated with precision thus
Pc based on methods will fail Case 3 and Case 4 in Figure 2.

E FINE-GRAINED EVALUATION

Here we report class-wise performance of SEVAL and its counterparts in Figure 6. SEVAL can
make neural networks more sensitive to minority classes.

(a) (b) (c)

CIFAR10-LT
𝛾! = 𝛾" = 100, 𝑛# = 500, 𝑚# = 4000

Figure 6: Class-wise performance for different SSL methods. Class indexes are arranged in descend-
ing order according to their class frequencies. When compared with alternative methods, SEVAL
achieves overall better performance with higher recall on minority classes and higher precision on
majority classes.

20


	Introduction
	Related Work
	Preliminaries
	SEVAL
	Learning Pseudo-Label Refinement
	Learning Threshold Adjustment
	Curriculum Learning

	Experiments
	Main Results
	Threshold Adjustment
	Pseudo-Label Refinement

	Ablation Study
	Flexibility and Compatibility
	Data-Efficiency


	Conclusion and Future Work
	Algorithm
	Additional Experiments
	Varied Imbalanced Ratios
	Results on Semi-Aves
	Low labelled data scheme
	Ablation study
	Integration with other SSL frameworks
	Sensitivity Analysis

	Implementation Details
	Learning with imbalanced validation data
	Learning thresholds within groups
	Benchmarks
	Hyper-parameters
	SEVAL with other SSL algorithms
	Mean Teacher
	MixMatch
	ReMixMatch


	Analysis of Learned Thresholds
	Fine-grained Evaluation

