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Abstract

Multiplication layers are a key component in various influential neural network modules,
including self-attention and hypernetwork layers. In this paper, we investigate the ap-
proximation capabilities of deep neural networks with intermediate neurons connected by
simple multiplication operations. We consider two classes of target functions: generalized
bandlimited functions, which are frequently used to model real-world signals with finite
bandwidth, and Sobolev-Type balls, which are embedded in the Sobolev Space Wr,2. Our
results demonstrate that multiplicative neural networks can approximate these functions
with significantly fewer layers and neurons compared to standard ReLU neural networks,
with respect to both input dimension and approximation error. These findings suggest that
multiplicative gates can outperform standard feed-forward layers and have potential for
improving neural network design.

1 Introduction

Deep learning with large neural networks has seen tremendous success in solving a wide range of tasks
in recent years, including image classification (He et al., 2016; Dosovitskiy et al., 2021; Zhai et al., 2021),
language processing (Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020), interacting with open-ended
environments (Silver et al., 2016; Arulkumaran et al., 2019), and code synthesis (Chen et al., 2021).

Recent empirical studies have shown that neural networks that incorporate multiplication operations between
intermediate neurons (Durbin & Rumelhart, 1989; Urban & van der Smagt, 2015; Trask et al., 2018), such as
self-attention layers (Vaswani et al., 2017) and hypernetworks (Ha et al., 2016; Krueger et al., 2017; Littwin
& Wolf, 2019), are particularly effective. For example, self-attention layers have been widely successful in
computer vision (Dosovitskiy et al., 2021; Zhai et al., 2021) and language processing (Cheng et al., 2016;
Parikh et al., 2016; Paulus et al., 2017; Vaswani et al., 2017). It has also been shown that one can achieve
reasonable performance with Transformers even without applying non-linear activation functions (Levine
et al., 2020). Additionally, hypernetworks, which use multiplication to generate network weights seem to
improve the performance of neural networks on various meta-learning tasks (von Oswald et al., 2020; Littwin
& Wolf, 2019; Bensadoun et al., 2021). However, the benefits of multiplication layers are not well understood
from a theoretical perspective.

In this work, we study the expressive power of neural networks with multiplication layers. Specifically, we
want to evaluate the number of neurons and layers needed to approximate a given function within a given
error tolerance using a specific architecture. A classic result in the theory of deep learning shows that neural
networks can approximate any smooth target function, known as the universal approximation property, with
as few as one hidden layer (Cybenko, 1989; Hornik et al., 1989; ichi Funahashi, 1989; Leshno et al., 1991).
However, these papers do not provide specific information about the type of architecture and number of
parameters required to achieve a given level of accuracy. This is a crucial question, as a high requirement
for these resources could limit the universality of neural networks and explain their limited success in some
practical applications.

Previous work has demonstrated that functions in Sobolev spaces can be approximated by a one-hidden layer
neural network with analytic activation functions (Mhaskar, 1996). However, the number of neurons required
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to approximate these functions with an error of at most ϵ in the L∞ norm scales as O(ϵ−d/r), where d is the
input dimension, r is the smoothness degree of the target function, and ϵ > 0 is the error rate. This raises
the question of whether the curse of dimensionality, the phenomenon whereby the complexity of a model
grows exponentially with the input dimension, is inherent to neural networks.

On the other hand, DeVore et al. (1989) proved that any continuous function approximator that approximates
all Sobolev functions of order r and dimension d within error ϵ requires at least Ω(ϵ−d/r) parameters in the
L∞ norm. This result meets the bound of Mhaskar (1996) and confirms that neural networks cannot avoid
the curse of dimensionality for the Sobolev space when approximating in the L∞ norm. A key question is
whether neural networks can overcome this curse of dimensionality for certain sets of target functions, and
what kind of architectures provide the best guarantees for approximating these functions.

To overcome the curse of dimensionality, various studies (Mhaskar et al., 2017; Poggio et al., 2020; Kohler
& Krzyżak, 2017; Montanelli & Du, 2019; Blanchard & Bennouna, 2022b; Galanti & Wolf, 2020) have
investigated the approximation capabilities of neural networks in representing other classes of functions
with weaker notions of distance, such as the L2 distance. For example, Mhaskar et al. (2017); Poggio
et al. (2020) showed that smooth, compositionally sparse functions with a degree of smoothness r can be
approximated with the L∞ distance up to error ϵ using deep neural networks with O(dϵ−2/r) neurons. Other
structural constraints have been applied to functions with structured input spaces (Mhaskar, 2010; Nakada
& Imaizumi, 2022; Schmidt-Hieber, 2019), compositions of functions (Kohler & Krzyżak, 2017), piecewise
smooth functions (Petersen & Voigtländer, 2017; Imaizumi & Fukumizu, 2018). A different line of research
has focused on understanding the types of functions that certain neural network architectures can implement
with regularity constraints. For example, E et al. (2021) showed that the space of 2-layer neural networks is
equivalent to the Barron space when the size of their weights is restricted. They further showed that Barron
functions can be approximated within ϵ using 2-layer networks with O(ϵ−2) neurons. Another line of research
has considered spectral conditions on the function space, allowing functions to be expressed as infinite-width
limits of shallow networks (Barron, 1991; Klusowski & Barron, 2016). In (Blanchard & Bennouna, 2022b)
they considered the space of Korobov functions, which are functions that are practically useful for solving
partial differential equations (PDEs). They showed any Korobov function can be approximated up to error ϵ
in L2 distance with a 2-layer neural network with ReLU activation function with O(ϵ−1 log(1/ϵ)1.5(d−1)+1)
and with a O(log(d))-depth network with O(ϵ−0.5 log(1/ϵ)1.5(d−1)+1) neurons.

In a recent paper, Montanelli et al. (2021) provided approximation guarantees were established for generalized
bandlimited functions. These functions are commonly used to model signals that have a finite range of
frequencies (e.g., waves, video, and audio signals), which is known as a finite bandwidth. The solutions to many
PDEs in physics are bandlimited functions, as the physical phenomena modeled by these PDEs typically have
a finite range of frequencies. For example, the solutions to the wave equation, which models the propagation of
waves, are bandlimited functions. In (Montanelli et al., 2021), it was shown that any bandlimited function can
be approximated to within error ϵ using a ReLU neural network of depth O(log2(1/ϵ)) with O(ϵ−2 log2(1/ϵ))
neurons with the L2 distance.

In this paper, we study the approximation abilities of multiplicative neural network architectures with the L2
distance. In particular, we prove that a multiplicative neural network of depth O(log( 1

ϵ )) with O(ϵ−2 log( 1
ϵ ))

neurons can approximate any generalized bandlimited function up to an error of ϵ (with constants depending
on the dimension and on the band). Additionally, we also study the approximation guarantees of neural
networks for approximating functions in Sobolev-Type balls of order r. We show that for the same error
tolerance ϵ, multiplicative neural networks can approximate these functions with depth O(d2ϵ−1/r) and
O(d2ϵ−(1+1/r)) neurons, while standard ReLU neural networks require depth O(d2ϵ−2/r) and O(d2ϵ−(2+2/r))
neurons. These results demonstrate the superior performance of multiplicative gates compared to standard
fully-connected layers. In Table 1 we contrast our new bounds with preexisting bounds on the approximation
power of neural networks for the Sobolev space, bandlimited functions, and the Sobolev-Type ball.
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Space Model # neurons Depth Reference
Wr,p C∞, non-poly O(ϵ−d/r) O(1) (Mhaskar, 1996)
Wr,∞ ReLU O(ϵ−d/r log 1

ϵ ) O(log 1
ϵ ) (Yarotsky, 2017)

Bandlimited functions ReLU O(ϵ−2 log2 1
ϵ ) O(log2 1

ϵ ) (Montanelli et al., 2021)
Bandlimited functions Multiplicative O(ϵ−2 log 1

ϵ ) O(log 1
ϵ ) This paper

B2r,2 ⊊ Wr,2 ReLU O(d2ϵ−(2+2/r)) O(d2ϵ−2/r) This paper
B2r,2 ⊊ Wr,2 Multiplicative O(dϵ−(2+1/r)) O(dϵ−1/r) This paper

B1,1 Sigmodial O(dϵ−2) O(1) (Barron, 1993)

Table 1: Approximation results for Sobolev Wr,p, Bandlimited and B2r,2 functions by ReLU and multiplicative
neural networks. The number of neurons and the depth are given in O notation.

2 Problem Setup

We are interested in determining how complex (i.e., number of trainable parameters, number of neurons and
layers) a model ought to be in order to theoretically guarantee approximation of an unknown target function
f up to a given approximation error ϵ > 0.

Formally, we consider a Banach space of functions V (for example, Lp([0, 1]d)), equipped with a norm ∥·∥V
(for example, ∥ · ∥Lp([0,1]d)), and a set of target functions U ⊆ V. We also consider a set of approximators H
and seek to quantify the ability of these approximators to approximate U using the following quantity

dV(H, U) = inf
f̂∈H

sup
f∈U

∥f̂ − f∥V ,

which measures the maximal approximation error for approximating a target function f ∈ U using candidates
f̂ from H. Typically, H is a parametric set of functions (e.g., neural networks of a certain architecture) and
we denote by f̂θ ∈ H a function that is parameterized by a vector of parameters θ ∈ RN . For simplicity, we
avoid writing θ in the subscript when it is obvious from context.

2.1 Target Function Spaces

It is generally impossible to approximate arbitrary target functions using standard neural networks, as
demonstrated in Theorem 7.2 in (Devroye et al., 1996). As a result, we often consider specific spaces of target
functions that satisfy certain smoothness assumptions in order to obtain non-trivial results. In this work, we
focus specifically on target functions U that satisfy the following smoothness assumptions. In this paper, we
will focus on approximating functions on the unit cube B = [0, 1]d, with |B| = 1, the volume of B.

Sobolev spaces. Sobolev spaces are one of the most extensively studied classes of functions in approximation
theory (DeVore & Lorentz, 1993; Yarotsky, 2017; Liang & Srikant, 2017). These spaces consist of smooth
functions with bounded derivatives up to a certain order and are particularly useful in the study of partial
differential equations (PDEs).

We first define the Lp norm of a given function f : Ω → R as ∥f∥Lp(Ω) = (
∫

Ω|f(x)|p dx)1/p, where Ω is a
measurable space equipped with a Sigma-algebra Σ and a measure µ. A function f is said to be in Lp(Ω) if
∥f∥Lp(Ω) < ∞.

Let r ∈ N and p ∈ [1, ∞). The Sobolev space Wr,p(B) consists of functions f : B → R with r-distributional
derivatives in Lp. The Sobolev norm ∥·∥Wr,p(B) is defined as

∥f∥Wr,p(B) =
∑

α:|α|1≤r

∥Dαf∥Lp(B),

where α = (α1, . . . , αd) ∈ {0, . . . , r}d, |α|1 = α1 + · · · + αd, and Dαf is the respective distributional derivative.
When p = ∞, the essential supremum norm is used. We also present the semi-norm:

|f |r,p =
∑

α : |α|=r

∥Dαf(x)∥Lp(B).
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Classic results in the literature show that the number of parameters needed to approximate functions in
Wr,∞ up to error ϵ is lower bounded by Ω(ϵ−d/r) (DeVore et al., 1989). This exponential dependence on d is
known as the “curse of dimensionality”.

Generalized Bandlimited functions. Generalized bandlimited functions are functions whose spectrum,
or the set of frequencies that make up the function, is limited to a certain band or range of frequencies. This
property makes bandlimited functions well-suited for certain applications, such as signal processing, where it
is important to ensure that the signal does not contain frequencies outside of a certain range.

Generalized bandlimited functions are defined using their generalized Fourier transform given by an analytic
function K : R → C (known as the kernel) and a scalar M ≥ 1 (the band). Formally, for a given function
f : Rd → R, we denote the set of all functions F : [−M, M ]d → C that retrieve f from the frequencies
ω ∈ [−M, M ]d using the kernel K as follows:

Sf,K =
{

F : [−M, M ]d → R | f(x) =
∫

[−M,M ]d F (ω)K(ω · x) dω
}

.

We define Ff = arg minF ∈Sf,K
∥F∥L2([−M,M ]d) to be the smallest L2-norm function in Sf,K . For instance,

when K(x) = exp(ix), the function Ff corresponds to the normalized standard Fourier transform of f , which
is given by F = 1

(2π)d (Ff)(ω) = 1
(2π)d

∫
Rd f(x) exp(−iω · x) dx.

The space HK,M (B) of generalized bandlimited functions is a Hilbert space of functions that can be represented
as a weighted sum of the function K over a finite domain. This space is equipped with an inner product and
a norm, which allow us to measure the similarity and magnitude of these functions, respectively. We define
HK,M (B) as the functions f : B → R such that

HK,M (B) =
{

∀x ∈ B, f(x) =
∫

[−M,M ]d F (ω)K(ω · x) dω | F : [−M, M ]d → C is in L2([−M, M ]d)
}

.

The inner product and norm in this space are defined as follows: ⟨f, g⟩HK,M (B) =
∫

[−M,M ]d Ff (ω)Fg(ω) dω

and norm ∥f∥HK,M (B) = ∥Ff ∥L2([−M,M ]d).

One of the key properties of generalized bandlimited functions is that they can be completely reconstructed
from a discrete set of samples. This is known as the Shannon-Nyquist theorem (Shannon, 1984), and it is
an important result in the field of signal processing and communication. An interesting consequence of this
theorem is that even in high-dimensions, where seemingly unpredictable geometrical phenomena may occur
(e.g. Blum et al. (2020), Chapter 2), still perfectly reconstruct a function given it’s values at the Nyquist
frequency. For more details, see Appendix A.

Sobolev-Type Balls. Sobolev-Type balls are sets of functions that satisfy smoothness constraints on
higher-order derivatives (Barron, 1993; Jones, 1992; Pinkus, 1985; Wahba, 1990; Blanchard & Bennouna,
2022a). One such constraint is that the magnitude of the function’s Fourier transform, |Ff(ω)|, decays fast
enough as |ω| approaches infinity. These constraints are imposed by comparing the magnitude of the Fourier
transform of the function, Ff(ω), with the magnitude of |ω|r for some number r > 0. In this paper we define
a generalized form of Sobolev-type balls:

Br,ρ =
{

f : Rd → R, f ∈ L2(Rd) : 1
(2π)d

∫
Rd

|(Ff)(ω)| dω,
1

(2π)d

∫
Rd

|ω|r|(Ff)(ω)|ρ dω ≤ 1
}

.

In (Barron, 1993), they explored the ability of neural networks to approximate functions in the space
P1 = {f ∈ L2(Rd) |

∫
Rd |ω||(Ff)(ω)| < ∞}. We now demonstrate that any function in P1 has a normalized

representation in B1,1. For this, we show that the conditions on P1 allow us to bound ∥Ff∥L1(Rd). Namely,∫
Rd

|(Ff)(ω)| dω =
∫

[−1,1]d

|(Ff)(ω)| dω +
∫
Rd\[−1,1]d

|(Ff)(ω)| dω

≤ C1

(∫
[−1,1]d

|(Ff)(ω)|2 dω

)1/2

+
∫
Rd\[−1,1]d

|ω||(Ff)(ω)| dω

≤ C1∥f∥2 +
∫
Rd

|ω||(Ff)(ω)| dω,
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for C1 > 0. Therefore, any function in the space P1 can be scaled to a function in B1,1. Specifically, they
showed that sigmoidal neural networks with a bounded depth and O(dϵ−2) neurons can approximate such
functions with error at most ϵ.

In this paper we will focus on the space B2r,2. In Lemma 2 in the appendix we show that this space is
embedded as a proper subspace of Wr,2, with the following norm:

∥f∥B2r,2 =
(

1
(2π)d

∫
Rd

(1 + |ω|2r)|(Ff)(ω)|2 dω

)1/2
. (1)

It is worth mentioning that Pinkus (1985) showed that using traditional basis functions, functions of the space
P2 = {f ∈ L2(Rd) |

∫
Rd |ω|2r|(Ff)(ω)|2 < ∞} may be approximated with error at most ϵ using O(ϵ−d/2r)

parameters. In this paper, we show that by enforcing an additional constraint on the L1 norm of the Fourier
coefficients, we can circumvent exponential dependence on the dimension d.

2.2 Neural Network Architectures

In the previous section, we described a setting in which a class of candidate functions H serve as approximators
to a class of target functions U . In this work, we compare the approximation guarantees of standard multi-
layered perceptrons and a generic set of neural networks that incorporate multiplication operations. Our goal
is to understand whether multiplication layers can provide better guarantees to approximate bandlimited
functions and members of B2r,2.

Multilayered perceptrons. A multilayered perceptron is a type of neural network architecture that
consists of L layers of linear transformations interspersed with element-wise non-linear activation functions
(e.g., the ReLU function). Typically, the last layer does not include a non-linear activation.
Definition 1 (Multilayered perceptron). A multilayered perceptron is a function f = yL,1 : Rp0 → R defined
by a set of univariate functions

⋃L
i=0{yi,j}pi

j=1. Each function yi,j : Rp0 → R (also known as a neuron) is
recursively computed in the following manner

yL,j(x) = ⟨wL,j , yL−1(x)⟩ + bL,j

yi,j(x) = σ(⟨wi,j , yi−1(x)⟩ + bi,j)
y0,j(x) = xj ,

where i ∈ [L − 1], j ∈ [pi], and wi,j ∈ Rpi−1 and bi,j ∈ R are the weights and a bias of the neuron yi,j and
yi = (y1, . . . , ypi

). The function σ : R → R is a non-linear activation function.

In this work, we focus on neural networks with ReLU activations, which are defined as σ(x) = max(0, x).
However, it is worth noting that other activation functions have been proposed in the literature, such as
sigmoidal functions that are measurable functions η that satisfy η(x) → 0 as x → −∞ and η(x) → 1 as
x → ∞.

Multiplicative neural networks. In this work, we are interested in comparing the approximation abilities
of standard ReLU networks, with that of neural networks that incorporate multiplication layers (also known as
product units (Durbin & Rumelhart, 1989)). In order to fully understand the added benefits of multiplication
gates, we ask the following question: Are multiplications between neurons sufficient to substitute the non-linear
activations in multilayered perceptrons?
Definition 2 (Multiplicative network). A multiplicative neural network is a function f = yL,1 : Rp0 → R
defined by a set of univariate functions

⋃L
i=1{yi,j}pi

j=1. Each function yi,j : Rp0 → R (also known as a neuron)
is recursively computed in the following manner

yi,j(x) = ⟨wi,j , yi−1(x)⟩ + ai,jyi−1,j1(x)yi−1,j2(x) + bi,j

y0,j(x) = xj ,

where ai,j , bi,j ∈ R, wi,j ∈ Rpi−1 are trainable parameters and yi = (y1, . . . , ypi).
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A multiplicative network differs from standard multilayered perceptrons in two main ways. First, we
do not incorporate non-linearities (ReLU activations) between the intermediate layers. In addition, each
neuron incorporates a multiplication gate between two preceding neurons. The total number of trainable
parameters in a multiplicative layer is pi+1pi + 2pi, which is pi more parameters than a fully-connected layer.
Following Yarotsky (2017); Blanchard & Bennouna (2022a) we measure the complexity of a neural network
using its depth L and the number of neurons G =

∑L−1
i=1 pi it includes.

Self-Attention and multiplicative layers. Let us describe a single-headed self-attention operation in the
original Transformer (Vaswani et al., 2017). Each layer i ∈ [L] of a depth-L Transformer encoder is defined
as follows. The input to the ith layer is a sequence of N tokens, denoted by xi = {xi,j}N

j=1, where each
xi,j ∈ Rdx represents the jth token of the ith layer. To compute the output of the ith layer at a particular
position e ∈ [N ], we use the following formula:

f i,e
SA(xi) =

N∑
j=1

softmaxj

(
1√
da

⟨W Q,ixi,e, W K,ixi,e⟩
)

W V,ixi,j ,

where softmaxj(f(x)) = exp(f(x)j)/
∑

j′ exp(f(x)j′) is the softmax operator, and the trainable weight
matrices W K,i, W Q,i, W V,i ∈ Rda×dx convert the representation from its dimension dx into the attention
dimension da = dx, creating ‘Key’, ‘Query’, and ‘Value’ representations, resp. As can be seen, the self-attention
layers use multiplicative connections when computing the following inner product ⟨W Q,ixi,e, W K,ixi,e⟩. This
operation computes multiplications between the coordinates of transformations of the same token xi,e. In
other words, it can be thought of as computing a multiplicative layer on an input vector xi,e. As a side note, in
addition to self-attention layers, transformers also incorporate commonly used layers such as fully-connected
layers, residual connections, and normalization layers, which are not the focus of this paper.

3 Representation Power of Multiplicative Neural Networks

In this section, we explore the expressive power of neural networks with multiplication layers. We first
demonstrate that these networks can easily represent polynomial functions, which we then use to approximate
bandlimited functions. This allows us to approximate functions in the space B2r,2 without suffering from the
curse of dimensionality. Specifically, we prove the following lemma:
Lemma 1. For any polynomial pn : R → R of degree n of the form pn(x) =

∑n
k=0 ckxk, there exists a

multiplicative neural network fPOL
n : R3 → R, of depth Ln = O(n) with Gn = O(n) neurons that satisfies

fPOL
n (x, x, c0) = pn(x) for c0 ∈ R, and x ∈ R.

With this lemma in hand, we can show how to use multiplicative networks to approximate analytic kernel
functions K : R → C by leveraging their ability to represent polynomials. By approximating a certain class
of polynomials, we can demonstrate how to use these networks to approximate analytic kernels. Once we
have the ability to approximate analytic kernels, we can use Maurey’s Theorem (see Lemma 3) to express
any function f ∈ HM as a finite sum of kernel superpositions, and construct a network that approximates
this sum.

Approximating of real-valued analytic functions. In this section, we show how to approximate certain
real-valued analytic functions. For this purpose, we recall the notion of the Bernstein s-ellipse, which is a
geometric shape defined on the complex plane that is useful in approximation theory.
Definition 3. Let M ≥ 1, s > 1 be two scalars. The Bernstein s-ellipse on [−M, M ] is defined as follows

EM
s =

{
x + iy ∈ C : x2

(aM
s )2 + y2

(bM
s )2 = 1

}
,

whose semi-major and semi-minor axes are aM
s = M s+s−1

2 and bM
s = M s−s−1

2 .

The parameter s controls the shape of the ellipse, and the parameter M determines its size. For example, when
s = 2, the ellipse is a circle centered at the origin with a radius M . As s increases, the ellipse becomes more
elongated and its semi-minor axis decreases. The semi-major and semi-minor axes of the ellipse determine its
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maximal and minimal values, respectively. Before stating our result in Theorem 2, we recall the following
theorem of Trefethen (2019):
Theorem 1 (Theorem 8.2 of Trefethen (2019)). Let M > 0, s > 2 be scalars and K : [−M, M ] → R be an
analytic function that is analytically continuable to the ellipse EM

s , where it satisfies supx∈EM
s

|K(x)| ≤ CK

for some constant CK > 0. For every n ∈ N, there exists a polynomial hn : R → C of degree n, such that,

∥hn − K∥L∞([−M,M ]) ≤ 2CKs−n

s − 1 .

Theorem 1 states that any analytic function K that is bounded on the Bernstein s-ellipse EM
s can be

accurately approximated by a polynomial hn of degree n, with the error decreasing exponentially as the
degree n increases.

As we show next, the use of multiplication layers in neural networks can improve the efficiency of function ap-
proximation in certain cases. The following theorem shows that deep multiplicative networks can approximate
real-valued analytic functions on bounded intervals.
Theorem 2. Let M ≥ 1, s > 2, CK > 0 and ϵ ∈ (0, 1) be scalars. Then, for any real-valued analytic
function K : [−M, M ] → R that is analytically continuable to the ellipse EM

s where |K(x)| ≤ CK , there
exists a deep multiplicative network fMA : [−M, M ]3 → R (MA stands for ‘Multiplicative Analytic’) of depth
Lϵ = O( 1

log2 s log2
CK

ϵ ) with Gϵ = O( 1
log2 s log2

CK

ϵ ) neurons that satisfies

∥fMA(x, x, x) − K(x)∥L∞([−M,M ]) ≤ ϵ.

Theorem 2 establishes that deep multiplicative networks with second-degree multiplications can approximate
any real-valued analytic function that is bounded on the Bernstein s-ellipse EM

s with error bounded by a
quantity that decreases exponentially with the depth of the network.

In (Montanelli et al., 2021), the authors show that the kernel may be approximated with depth Lϵ =
O( 1

log2
2 s

log2
2

CK

ϵ ) with Gϵ = O( 1
ϵ2 log2

2 s
log2

2
CK

ϵ ) neurons. In contrast, our approach achieves a O(log(1/ϵ))
improvement in depth and a O(log(1/ϵ2)) in number of neurons, resulting in an exponentially faster convergence
to the target function.

Approximation of bandlimited functions. As a next step, we study the ability of neural networks to
approximate bandlimited functions. We start by showing how bandlimited functions can be approximated
using analytic kernels. For this purpose, we will use Maurey’s theorem (Pisier, 1980-1981; Vitali D. Milman,
1986) that states that for Hilbert subspaces with a bounded norm, any function in the convex hull can be
easily approximated using points from the subspace, where the rate of approximation is dependent on the
number of points used.

The following theorem shows that a deep multiplicative network can approximate in B = [0, 1]d, a bandlimited
function up to a given error tolerance using a relatively small number of neurons and depth.
Theorem 3. Let ϵ ∈ (0, 1), M > 1, d ≥ 2, and K : R → C be an analytic kernel that holds the assumptions
of Theorem 2 with respect to s > 2, CK > 0, and bounded by a constant DK ∈ (0, 1] on [−dM, dM ]. Let f
be a real-valued function in HK,M (B). Further, let F : [−M, M ]d → C be a square-integrable function such
that f(x) =

∫
[−M,M ]d F (ω)K(ω · x) dω. We define CF =

∫
Rd |F (ω)| dω =

∫
[−M,M ]d |F (ω)| dω. Then, there

exists a deep multiplicative network fMBL : B → R (MBL stands for ‘Multiplicative bandlimited’) of depth
Lϵ = O

(
1

log2 s log2
CF CK

ϵ

)
with Gϵ = O

(
C2

F

ϵ2 log2 s log2
CF CK

ϵ

)
neurons that satisfies ∥fMBL − f∥L2(B) ≤ ϵ.

The above theorem shows that one can approximate bandlimited functions up to error ϵ using multiplicative
neural networks of depth Lϵ = O(log(1/ϵ)) using Gϵ = O

(
ϵ−2 log(1/ϵ)

)
neurons. In comparison, Montanelli

et al. (2021) showed that one can approximate bandlimited functions to the same level of approximation
using standard ReLU networks of depths Lϵ = O

(
log2(1/ϵ)

)
with Gϵ = O

(
ϵ−2 log2(1/ϵ)

)
neurons. This result

demonstrates the inherent parameter efficiency of multiplicative neural networks in comparison with standard
ReLU networks.

7
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Approximation of Smooth Functions. We now turn to show results for Sobolev-Type functions. We
use the results on bandlimited functions shown in Theorem 3 to approximate functions in B2r,2 ⊊ Wr,2. We
show that using slightly stronger assumptions, we get an approximation rate comparable to those shown by
Barron (1993) (where the network is a shallow sigmodial network model) using multiplicative neural networks
(i.e. without non-linear activations). Further, since these are in fact in Wr,2, we may better characterize such
functions.
Theorem 4. Let d ≥ 2, r ∈ N, f ∈ B2r,2 and ϵ > 0. There exists a deep ReLU network fRS (stand-
ing for “ReLU Sobolev”) with a depth of Lϵ = O(d2ϵ−2/r) and Gϵ = O(d2ϵ−(2+2/r)) neurons, such that∥∥fRS − f

∥∥
L2(B) ≤ ϵ.

Theorem 5. Let d ≥ 2, r ∈ N, f ∈ B2r,2 and ϵ > 0. There exists a deep ReLU network fMS (standing
for “Multiplicative Sobolev”) with a depth of Lϵ = O(dϵ−1/r) and Gϵ = O(dϵ−(2+(1/r))) neurons, such that∥∥fMS − f

∥∥
L2(B) ≤ ϵ.

Proof. Let f ∈ B2r,2. We would like to approximate f using a bandlimited function fM and then approximate
fM using a multiplicative neural network fBL = fMS. Let M > 1 be a band.

We recall the Inverse Fourier transform given by (F−1g)(x) = 1
(2π)d

∫
Rd g(ω) exp(iω · x) dω. We define the

bandlimiting of f : Rd → R as fM = F−1(Ff1[−M,M ]d), such that fM ∈ HK,M (B) for K(x) = exp(ix) and
F = 1

(2π)d Ff . We have

∥f − fM ∥L2(B) ≤
(

1
(2π)d

∥∥Ff − Ff1[−M,M ]d

∥∥2
L2(Rd)

)1/2

=
(

1
(2π)d

∫
Rd\[−M,M ]d

|Ff(ω)|2 dω

)1/2

.

For any ω ∈ Rd \ [−M, M ]d, we have |M−1ω|2r ≥ 1. Therefore,(
1

(2π)d

∫
Rd\[−M,M ]d

|Ff(ω)|2 dω

)1/2

≤

(
1

(2π)d

∫
Rd\[−M,M ]d

∣∣M−1ω
∣∣2r|Ff(ω)|2 dω

)1/2

≤ M−r

(
1

(2π)d

∫
Rd

|ω|2r|Ff(ω)|2 dω

)1/2

≤ M−r,

where the final inequality is due to f ∈ B2r,2. For any ϵ > 0, we set M = (2/ϵ)1/r. We will construct a neural
network fMS to approximate the bandlimited function fM , such that

∥fM − fMS∥L2(B) ≤ ϵ/2.

Assuming we have constructed such fMS, then by the triangle inequality we then arrive at

∥f − fMS∥L2(B) ≤ ∥f − fM ∥L2(B) + ∥fM − fMS∥L2(B) ≤ M−r + ϵ/2 ≤ ϵ.

We define a function F : [−M, M ]d → C as follows

F (ω) = 1
(2π)d

(Ff)(ω).

We then have the following identity

fM (x) =
∫

[−M,M ]d

F (ω)K(ω · x) dω =
∫

[−M,M ]d

1
(2π)d Ff(ω) exp(iω · x) dω.

8
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We may now work under the conditions of Theorem 3. We consider that CF =
∫

[−M,M ]d |F (ω)| dω =
1

(2π)d

∫
[−M,M ]d |Ff(ω)| dω ≤ 1, where the inequality is due to the definition of B2r,2. The kernel K(t) = exp(it)

takes as input t = ω · x, for x ∈ B and ω ∈ [−M, M ]d. Therefore, t ∈ [−dM, dM ], and K : [−dM, dM ] → R.
We note that K is continuable to the Bernstein 4-ellipse EdM

4 . We notice that adM
4 = dM(4 + 4−1)/2 is the

larger axis, and therefore the maximal norm of K on EdM
s is given by K(adM

4 ):

CK = max
t

|K(t)| ≤ exp(dM 4+4−1

2 ).

Further, for any t ∈ R we have |K(t)| ≤ 1 = DK .

We now approximate fM with a multiplicative network. Using the results of Theorem 3, there exists a
deep multiplicative neural network fMS that approximates the bandlimited function fM in L2(B) with error
bounded by ϵ/2 and depth

Lϵ ≤ C1
1

log2 4 log2
2CKCF

ϵ

≤ C2
1

log2 4 log2
exp(dM 4+4−1

2 )
ϵ

≤ C2

(
3dϵ−1/r + log2(1/ϵ)

)
≤ C3 · dϵ−1/r,

(2)

for some constants C1, C2, C3 > 0. In addition, the number of neurons can be bounded by

Gϵ ≤ C ′
1C2

F · ϵ−2 log2
2CKCF

ϵ

≤ C ′
2 · ϵ−2log2

exp(dM 4+4−1

2 )
ϵ

≤ C ′
2 · ϵ−2(3d(2/ϵ)1/r + log2(1/ϵ))

≤ C ′
3 · dϵ−(2+1/r),

(3)

for some constants C ′
1, C ′

2, C ′
3 > 0.

Theorems 4-5 provide insights into several interesting properties of the Sobolev-Type ball B2r,2. First, we
see that approximating these functions does not suffer from the curse of dimensionality that occurs when
approximating the full Sobolev space. Secondly, for both ReLU networks and multiplicative networks, the
bound becomes tighter as the smoothness r increases, which is a desirable property for approximation error
bounds. In fact, as r approaches infinity, the bound approaches the one proposed in (Barron, 1993). Lastly,
we show that for the same error tolerance ϵ, multiplicative neural networks can approximate a target function
f ∈ B2r,2 with a depth of O(d2ϵ−1/r) and O(d2ϵ−(1+1/r)) neurons, while standard ReLU neural networks
require a depth of O(d2ϵ−2/r) and O(d2ϵ−(2+2/r)) neurons. This result demonstrates that multiplicative
neural networks have stronger approximation guarantees when approximating functions in the Sobolev-Type
space.

4 Conclusions

Previous papers have studied the approximation guarantees of standard fully-connected neural networks to
approximate functions in the Barron space B1,1 (Barron, 1993), the space of bandlimited functions (Montanelli
et al., 2021), and the Korobov space (Blanchard & Bennouna, 2022a). These studies have shown that fully-
connected networks can approximate a wide range of smooth functions without suffering from the curse of
dimensionality and have provided insights into the tradeoffs between the width and depth of neural networks
in learning certain types of functions. However, these results are limited to variants of fully-connected network
and do not provide information about other types of architectures.

9
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In this paper, we extend these results by exploring the approximation guarantees of both multiplicative neural
networks and standard fully-connected networks to approximate bandlimited functions and members of the
Sobolev-Type ball B2r,2. Our results show that multiplicative neural networks achieve stronger approximation
guarantees compared to standard ReLU networks. In addition, we show that, unlike the Barron space and the
space of bandlimited functions, B2r,2 is a subset of the Sobolev space Wr,2. Therefore, our results demonstrate
that it is possible to avoid the curse of dimensionality for wide subsets of the Sobolev space.

10
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A Examples

Example 1. Let f ∈ L2(Rd) such that f is Bandlimited function with band π (i.e., supp(Ff) ⊂ [−π, π]d). Let
ϕ(x) = sinc(x) = sin(πx)/πx, and ϕk = ϕ(· − k) for all k ∈ Zd. By the Shannon-Nyquist theorem (Shannon,
1984), we have:

f(x) =
∑

k∈Zd

⟨f, ϕk⟩ϕk(x) =
∑

k∈Zd

f(k)ϕ(x − k).

This means that every Bandlimited function can be completely determined using a discrete set of integer
samples. This result is particularly surprising for high-dimensional functions (d is large) since the maximal
distance between a point x and a sampling point grows with d. For example, the vertex of the unit cube in Rd

is of distance
√

d/2 away from its center. Despite this, we can still recover samples from the integer vertices,
even when the distances scale as

√
d. This property is useful when recovering high-dimensional functions

using neural networks. See Figure 1 for illustration.

1
2

√
2

2 √
3

2

Figure 1: Illustration of Example 1. A bandlimited function f can be reconstructed using a discrete set of
values, despite the fact that the distances in each cube grow as O(

√
d).

B Proofs

Definition 4. For two Banach spaces V1 and V2, we say that V1 is embedded in V2 if ∥u∥V2 ≤ C∥u∥V1 for
some constant C and for u ∈ V1.

Lemma 2. Let r > 0 and d ≥ 2. Then, B2r,2 is embedded as a proper subspace of Wr,2.

Proof. Since f ∈ B2r,2, we have f ∈ L2(Rd), and therefore, ∥f∥2 < ∞. Additionally, by Robert A. Adams
(2003)(Theorem 5.2), there exists a constant C1 > 0 such that

∥f∥Wr,2 ≤ C1(∥f∥2 + |f |r,2),

where C1 is dependant on r and the dimension d. Therefore, it remains to prove that |f |r,2 is bounded. For
this, we use some properties of multivariate function spaces.

We begin with the following claim that we will use in advance. Let ω ∈ Rd, d ≥ 2, we have

|ω|2r = ∥ω∥2r
l2

=
(

d∑
m=1

ω2
m

)r

=
∑

∥α∥1=r

(
r

α1, . . . , αd

)
· (ωα)2, (4)

where ωα =
∏d

i=1 ωαi for α ∈ Rd.

By Jensen’s inequality,

|f |2r,2 =

 ∑
α:|α|=r

∥Dαf∥2

2

≤ dr
∑

α:|α|=r

∥Dαf∥2
2
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By Parseval’s Identity in Rd (Albrecht et al., 2021):

∥Dαf∥2
2 = 1

(2π)d

∫
Rd

|F(Dαf)(ω)|2 dω = 1
(2π)d

∫
Rd

|(Ff)(ω)|2|ωα|2 dω.

Hence, by (4) ∑
α:|α|=r

∥Dαf∥2
2 =

∑
α:|α|=r

1
(2π)d

∫
Rd

|(Ff)(ω)|2|ωα|2 dω

≤ 1
(2π)d

∫
Rd

|(Ff)(ω)|2
 ∑

α:|α|=r

(
r

α1, . . . , αd

)
· |ωα|2

 dω

= 1
(2π)d

∫
Rd

|Ff(ω)|2|ω|2r dω.

where the inequality follows from the fact that
(

r
α1,...,αd

)
≥ 1. Finally, we conclude that

∥f∥Wr,2 ≤ C1(∥f∥2 + |f |r,2) ≤ C1

(
∥f∥2 + dr

(2π)d/2

(∫
Rd |(Ff)(ω)|2|ω|2r dω

)1/2
)

≤ C2∥f∥B2r,2 ,

for some C1, C2 > 0, where the second inequality is due to the definition of ∥·∥B2r,2 as given in equation 1.

To see that B2r,2 is a proper subspace of Wr,2, let us define as an example, the function f ∈ Wr,2(Rd
)

through its Fourier transform:

Ff(ω) =
{

1 |ω| ≤ 1
|ω|−(r+(d+ϵ)/2) |ω| > 1

for any ϵ > 0.

Indeed, f ∈ Wr,2(Rd
)

since:∫
Rd

|ω|2r|Ff(ω)|2 dω =
∫

|ω|≤1
|ω|2r|Ff(ω)|2dω +

∫
|ω|>1

|ω|2r|Ff(ω)|2 dω

≤ 1 +
∫

|ω|>1
|ω|−(d+ϵ) dω < ∞.

However, for this example Ff(ω) /∈ L1 in the cases where the dimension is relatively higher than the
smoothness index. That is, whenever

r + (d + ϵ)/2 ≤ d ⇔ 2r + ϵ ≤ d.

This implies that f does not satisfy the condition 1
(2π)d

∫
Rd |Ff(ω)|dω ≤ 1 which is required in B2r,2. We see

that the L1 condition on the Fourier transform of functions in B2r,r allows us to circumvent the curse of
dimensionality when approximating in Sobolev spaces.

Lemma 1. For any polynomial pn : R → R of degree n of the form pn(x) =
∑n

k=0 ckxk, there exists a
multiplicative neural network fPOL

n : R3 → R, of depth Ln = O(n) with Gn = O(n) neurons that satisfies
fPOL

n (x, x, c0) = pn(x) for c0 ∈ R, and x ∈ R.

Proof. Let pn(x) =
∑n

k=0 ckxk be a polynomial of degree n and pn,i =
∑i

k=0 ckxk its partial sum up to term
i. We construct a network fPOL

n whose ith layer satisfies:

(fPOL
n )i(x, x, c0) = (x, xi+1, pn,i(x)).
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Figure 2: Illustration of the multiplicative network in Proof of Lemma 1, where the polynomial degree n = 2.

At layer i, the model weights for the three neurons are defined as:

wi,1 = (1, 0, 0), ai,2 = 1 for (j1, j2) = (1, 2) , wi,3 = (0, ci, 1)

The rest of the weights are zeros.

We argue that at any layer i ≥ 0, neuron 1 contains x, neuron 2 contains xi+1 and neuron 3 contains pn,i(x).
Let yi+1,1, yi+1,2, yi+1,3 be the three neurons in layer i + 1. Since the only non-zero weight affecting the first
neuron is in wi+1,1, yi+1,1 = yi,1 = x by the assumption. The only non-zero weight affecting the second
neuron appears in ai=1,2, and therefore yi+1,2 = yi,1yi,2 = xi+1. Lastly, yi+1,3 depends only on wi+1,3, and so
yi+1,3 = ci+1yi,2 +yi,3 = pn,i(x)+ci+1xi+1 := pn,i+1(x). We conclude using the fact that pn,n(x) = pn(x).

Theorem 2. Let M ≥ 1, s > 2, CK > 0 and ϵ ∈ (0, 1) be scalars. Then, for any real-valued analytic
function K : [−M, M ] → R that is analytically continuable to the ellipse EM

s where |K(x)| ≤ CK , there
exists a deep multiplicative network fMA : [−M, M ]3 → R (MA stands for ‘Multiplicative Analytic’) of depth
Lϵ = O( 1

log2 s log2
CK

ϵ ) with Gϵ = O( 1
log2 s log2

CK

ϵ ) neurons that satisfies

∥fMA(x, x, x) − K(x)∥L∞([−M,M ]) ≤ ϵ.

Proof. Let M ≥ 1, s > 2, CK > 0, ϵ ∈ (0, 1) and let K be an analytic function with the required assumptions.
As a first step, we approximate K with a polynomial hn of degree n ≥ 2 (to be defined later). Then, we
realize hn with a deep multiplicative network using Lemma 1. We recall the polynomial hn described in
Theorem 1. For any integer n ≥ 2, we have

∥hn − K∥L∞([−M,M ]) ≤ CKs−n

s−1 = O(CKs−n).

By choosing n = 1
log2 s log2

CK

ϵ(s−1) ≤ 1
log2 s log2

CK

ϵ we obtain the following relation:

ϵ(s − 1)
CK

= 2log2( ϵ(s−1)
CK

)

= 2− 1
log2 s (log2( CK

ϵ(s−1) )) log2 s

= s− 1
log2 s (log2( CK

ϵ(s−1) )) = s−n.

(5)

In particular,
∥hn − K∥L∞([−M,M ]) ≤ CKs−n

s−1 ≤ ϵ,

for s ≥ 1. Given that hn is a polynomial of degree n, by Lemma 1, there exists fPOL and c0 = hn,0 such that
hn(x) = fPOL(x, x, c0), and achieve the desired result.
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Let us now recall Maurey’s Theorem (Pisier, 1980-1981; Vitali D. Milman, 1986) which will assist us in the
proof of Theorem 3.
Lemma 3 (Maurey’s theorem). Let V be a Hilbert space with norm ∥·∥V . Suppose there exists Q ⊂ V
such that for every q ∈ Q, ∥q∥V ≤ b for some b > 0. Then, for every f in the convex hull of Q and every
integer n ≥ 1, there exists a fn in the convex hull of n points in Q and a constant c > b2 − ∥f∥2

V such that
∥fn − f∥2

V ≤ c
n .

Theorem 3. Let ϵ ∈ (0, 1), M > 1, d ≥ 2, and K : R → C be an analytic kernel that holds the assumptions
of Theorem 2 with respect to s > 2, CK > 0, and bounded by a constant DK ∈ (0, 1] on [−dM, dM ]. Let f
be a real-valued function in HK,M (B). Further, let F : [−M, M ]d → C be a square-integrable function such
that f(x) =

∫
[−M,M ]d F (ω)K(ω · x) dω. We define CF =

∫
Rd |F (ω)| dω =

∫
[−M,M ]d |F (ω)| dω. Then, there

exists a deep multiplicative network fMBL : B → R (MBL stands for ‘Multiplicative bandlimited’) of depth
Lϵ = O

(
1

log2 s log2
CF CK

ϵ

)
with Gϵ = O

(
C2

F

ϵ2 log2 s log2
CF CK

ϵ

)
neurons that satisfies ∥fMBL − f∥L2(B) ≤ ϵ.

Proof. Let f ∈ HK,M (B). Further, let F (ω) = |F (ω)| · exp(iθ(ω)), the polar representation of F (ω). The
following holds:

f(x) = Re
(∫

[−M,M ]d

F (ω)K(ω · x) dω

)

= Re
(∫

[−M,M ]d

CF exp(iθ(ω))K(ω · x) |F (ω)|
CF

dω

)

=
∫

[−M,M ]d

CF [cos(θ(ω))KR(ω · x) − sin(θ(ω))KI(ω · x)] |F (ω)|
CF

dω,

(6)

where KR, KI are the real and imaginary parts of K respectively. Given that the integral represents f as an
infinite convex combination of functions in

QK,M =
{

γ[cos(β)KR(ω · x) − sin(β)KI(ω · x)]
∣∣∣ |γ| ≤ CF , β ∈ R, ω ∈ [−M, M ]d

}
,

then f is in the closure of the convex hull of QK,M . Due to the fact that x ∈ [0, 1]d and ω ∈ [−M, M ]d,
t = ω · x ∈ [−dM, dM ]. By the definition of DK , functions in QK,M are bounded in the L2(B)-norm by
2CF DK ≤ 2CF . Using Lemma 3, there exist real coefficients {bj} and {βj}, and vectors ωj ∈ [−M, M ]d for
1 ≤ j ≤ ⌈1/ϵ2

0⌉, such that:

fϵ0(x) =
⌈1/ϵ2

0⌉∑
j=1

bj [cos(βj)KR(ωj · x) − sin(βj)KI(ωj · x)],
⌈1/ϵ2

0⌉∑
j=1

|bj | ≤ CF ,

for 0 < ϵ0 < 1 to be defined at a later time, such that

∥fϵ0(x) − f(x)∥L2(B) ≤ 2CF ϵ0.

We are now ready to approximate fϵ0(x) using a deep multiplicative neural network fMBL on B. We notice
that KR(x) and KI(x) are analytic kernels that hold the assumptions of Theorem 2. They can therefore be
approximated to ϵ0 error using networks fRMA, f IMA of depth and number of neurons

Gϵ0 ∼ Lϵ0 = O( 1
log2 s

log2
CK

ϵ0
),

where RMA stands for ‘Real Multiplicative Analytic’ and IMA stands for ‘Imaginary Multiplicative Analytic’.
Let us define the multiplicative network fMBL(x) by

fMBL(x) =
⌈1/ϵ2

0⌉∑
j=1

bj

[
cos(βj)fRMA(ωj · x) − sin(βj)f IMA(ωj · x)

]
.
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This network has depth Lϵ0 = O( 1
log2 s log2

CK

ϵ0
) and Gϵ0 = O( 1

ϵ2
0 log2 s

log2
CK

ϵ0
) neurons.

∥fMBL(x) − fϵ0(x)∥L∞(B) ≤
⌈1/ϵ2

0⌉∑
j=1

|bj |∥fRMA(ωj · x) − KR(ωj · x)∥L∞(B)

+
⌈1/ϵ2

0⌉∑
j=1

|bj |∥f IMA(ωj · x) − KI(ωj · x)∥L∞(B)

≤ 2CF ϵ0,

that implies

∥fMBL(x) − f(x)∥L2(B) ≤ ∥fMBL(x) − fϵ0(x)∥L2(B) + ∥fϵ0(x) − f(x)∥L2(B) ≤ 4CF ϵ0,

where the last inequality is due to the fact that

∥g∥L2(B) =
(∫

B

|g|2
)1/2

≤ ∥g∥L∞(B) = ∥g∥L∞(B).

Taking ϵ0 = ϵ/(4CF ) achieves the sought result.

We further investigate how the constant CK from Theorem 3 behaves as functions of M and s. Let
K(x) = exp(ix) be an example kernel, x ∈ [−M, M ]d. We notice that aM

s = M(s + s−1)/2 for s > 2, is the
larger axis, and therefore the maximal norm of K on EM

s is given by K(aM
s ):

max
x

|K(x)| ≤ exp(M s+s−1

2 ) = CK(s, M).

In our setting, inputs are in the interval t = ω · x ∈ [−dM, dM ], so we may use the bounding constant

max
t

|K(t)| ≤ exp(dM s+s−1

2 ) = CK(s, dM).

The resulting network fMBL then has depth

Lϵ = O
(

1
log2 s

(
dM

s + s−1

2 + log2
CF

ϵ

))
and

Gϵ = O
(

C2
F

ϵ2 log2 s

(
dM

s + s−1

2 + log2
CF

ϵ

))
neurons. In this scenario, we see that both a large band M and a large dimension d will linearly affect the
first term.
Theorem 4. Let d ≥ 2, r ∈ N, f ∈ B2r,2 and ϵ > 0. There exists a deep ReLU network fRS (stand-
ing for “ReLU Sobolev”) with a depth of Lϵ = O(d2ϵ−2/r) and Gϵ = O(d2ϵ−(2+2/r)) neurons, such that∥∥fRS − f

∥∥
L2(B) ≤ ϵ.

Proof. Let f ∈ B2r,2, and M > 1. Similar to the proof of Theorem 5, we define the bandlimiting of f : Rd → R
by

fM = F−1(Ff1[−M,M ]d).

Let us define F : [−M, M ]d → C:

F (ω) = 1
(2π)d

(Ff)(ω),
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and K(x) = exp(ix). We then have the following identity:

fM (x) =
∫

[−M,M ]d

F (ω)K(ω · x) dω =
∫

[−M,M ]d

1
(2π)d Ff(ω) exp(iω · x) dω.

It is then easy to see that fM ∈ HK,M (B). We choose M = (2/ϵ)1/r. Using the same derivations as in the
proof of Theorem 5, we seek to approximate fM with a network fRS such that

∥fM − fRS∥L2(B) ≤ ϵ/2.

We then arrive at
∥f − fRS∥L2(B) ≤ ∥f − fM ∥L2(B) + ∥fM − fRS∥L2(B)

≤ M−r + ϵ/2 ≤ ϵ.
(7)

We consider that CF =
∫

[−M,M ]d |F (ω)| dω = 1
(2π)d

∫
[−M,M ]d |Ff(ω)| dω ≤ 1, where the inequality is due to

the definition of B2r,2. The kernel K(t) = exp(it) takes as input t = ω · x, for x ∈ B and ω ∈ [−M, M ]d.
Therefore, t ∈ [−dM, dM ], and K : [−dM, dM ] → R. We note that K is continuable to the Bernstein 4-ellipse
EdM

4 . We notice that adM
4 = dM(4 + 4−1)/2 is the larger axis, and therefore the maximal norm of K on

EdM
s is given by K(adM

4 ):
CK = max

t
|K(t)| ≤ exp(dM 4+4−1

2 ).

Further, for any t ∈ R we have |K(t)| ≤ 1 = DK .

Using Theorem 3.2 from (Montanelli et al., 2021) we can construct a deep ReLU network fRS such that

∥fM − fRS∥L2(B) ≤ ϵ/2

whose depth is
Lϵ ≤ C1

1
log2

2 4
log2

2
2CF CK

ϵ

≤ C2
1

log2
2 4

(
log2

exp(dM 4+4−1

2 )
ϵ

)2

≤ 12C2

(
d

(
2
ϵ

) 1
r

− log2
1
ϵ

)2

≤ C3d2ϵ− 2
r ,

(8)

for some constants C1, C2, C3 > 0. In addition, the number of neurons can be bounded by

Gϵ ≤ C ′
1C2

F

1
ϵ2 log2

2 4
log2

2
2CKCF

ϵ

≤ C ′
2

1
ϵ2 log2

2 4

(
log2

exp(dM 4+4−1

2 )
ϵ

)2

≤ 12C ′
2

ϵ2

(
d

(
2
ϵ

) 1
r

− log2
1
ϵ

)2

≤ C ′
3d2ϵ−(2+ 2

r ),

(9)

for some constants C ′
1, C ′

2, C ′
3 > 0.
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