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Abstract001

Prior research indicates that although large lan-002
guage models (LLMs) can precisely articulate003
the theoretical probability distributions associ-004
ated with optimal strategic choices, their actual005
decision-making systematically diverges from006
these prescriptions—a phenomenon we define007
as the cognitive–behavioural gap in LLMs.008
For example, in a Rock–Paper–Scissors (RPS)009
game, LLMs correctly identify the strategy010
of Nash equilibrium as selecting each action011
(Rock, Paper, Scissors) with equal probability012
1
3 , but their observed choice systematically de-013
viate from this uniform distribution. Through014
a comprehensive evaluation of 20 state-of-the-015
art LLMs, we identify two critical contribu-016
tions: (1) we demonstrate that intrinsic biases017
inherited from pre-training corpora alone are018
insufficient to explain the observed deviations;019
(2) we introduce a semantic-free paradigm that020
strips away intrinsic biases to isolate pure po-021
sitional bias-LLMs exhibit distinct position022
preferences—for example, o1 favours the first023
option, DeepSeek-V3 peaks the middle and024
DeepSeek-R1 shows a bimodal bias toward first025
and last positions. Our findings advocate in-026
novation to bridge the gap between strategic027
reasoning and decision-making in LLMs.028

1 Introduction029

Large language models (LLMs) have demonstrated030

remarkable capabilities in strategic reasoning tasks,031

from solving mathematical games (Ahn et al.,032

2024) to simulating negotiations (Bianchi et al.,033

2024). However, existing research shows that the034

stochastic decision-making of LLMs remains de-035

ficient (Van Koevering and Kleinberg, 2024), and036

LLMs deviate from ideal randomness in tasks as037

simple as coin-flipping (Van Koevering and Klein-038

berg, 2024), dice-rolling (Liu, 2023), and pseudo-039

random number generation (Hopkins and Renda,040

2023). In particular, such deviations persist when041

LLMs explicitly attempt to approximate mixed-042

strategy Nash equilibrium (Silva, 2024; Poje et al.,043

As the opponent prepares to 
take a shot,  I should mix my 
strategy: randomly select one  
direction from three option 

with an equal probability  �
�
.

Reasoning

(a) Reasoning

Given this reasoning, 
I'll select my action.

I choose: Right.

Woo, it always 
go right to save 

the ball.

(b) Behaviour

Figure 1: A toy example in an embodied-intelligence
setting: two LLM-driven robots face off in a penalty
shootout.

2024). For instance, in the Rock–Paper–Scissors 044

(RPS) game, (Xu et al., 2024) reports that GPT-4 045

correctly identifies the Nash equilibrium as uniform 046

randomization (33.3% per action) yet selects Rock 047

in 67% of 100 independent trials—approximately 048

twice the theoretical frequency. 049

This limitation may pose an obstacle to real- 050

world deployments, for instance, LLM-driven 051

agents in embodied intelligence. Consider a simpli- 052

fied, illustrative scenario involving two robots en- 053

gaged in a penalty shootout, as depicted in Figure 1. 054

In this hypothetical situation, an LLM-controlled 055

goalkeeper correctly identifies the Nash equilib- 056

rium strategy, which is diving left, center, or right 057

with equal probability. But if its actual decisions 058

skew, say, 70% to the right, an opposing kicker can 059
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learn and exploit that bias, dramatically undermin-060

ing the goalkeeper’s effectiveness.061

Meister et al. (2024) describe a defect in which062

LLMs can articulate the correct target distribution063

yet fail to reproduce it through probabilistic sam-064

pling. We refer to this discrepancy as the "cogni-065

tive–behavioural gap". Prior work frequently as-066

cribes these sampling failures to intrinsic biases067

inherited from the pre-training corpora (Xu et al.,068

2024; Guo et al., 2024). However, this explana-069

tion remains speculative and under-justified: the070

available evidence is confined to a small subset of071

models and experimental setups, and no systematic,072

cross-model investigation has isolated corpus-level073

biases from other potential confounders.074

In this work, we center our analysis on RPS,075

whose unique mixed-strategy Nash equilibrium076

prescribes uniform random play. We comprehen-077

sively evaluate 20 state-of-the-art LLMs to ex-078

amine how LLMs fail to emulate this stochastic079

decision-making. We find that nearly all advanced080

LLMs (e.g., GPT-4.5 (OpenAI, 2025a), DeepSeek-081

R1 (Guo et al., 2025)) exhibit systematic biases,082

with empirical action distributions deviating from083

the probability distributions they explicitly derive.084

We establish two key contributions:085

(1) Demonstrating the intrinsic biases in pre-086

training corpora alone fails to explain the gap.087

We first examine whether LLM choice reflects088

token frequencies in their training data, but we089

found a clear mismatch-most LLMs over-selected090

rock despite paper being most common in cor-091

pora. Thus, We introduce a semantic-free prompt-092

ing paradigm by replacing each RPS action with a093

random 10-character string to remove all lexical-094

frequency and semantic cues. Empirical results095

show that LLMs continue to exhibit pronounced096

choice skews, confirming that corpus-level in-097

trinsic biases alone cannot explain the cogni-098

tive–behavioural gap in LLM stochastic decision-099

making.100

(2) Highlighting the effect of positional bias.101

Notably, our method of the semantic-free paradigm102

isolates positional bias from corpus-level intrin-103

sic bias. Under this setting, we permute the or-104

der of the three actions within otherwise identical105

prompts. By removing word frequency and seman-106

tic cues, we isolate pure positional bias in stochas-107

tic decision-making. Under these conditions, dis-108

tinct LLMs display characteristic position prefer-109

ences—for example, o1 favours the first-listed op-110

tion, DeepSeek-V3 peaks on middle entries, and111

DeepSeek-R1 shows a bimodal bias toward both 112

the initial and final positions. 113

The remainder of this paper is structured as fol- 114

lows: Section 2 synthesises related work on the gap 115

of randomness behaviour in LLMs. Section 3 in- 116

troduces the background of our research. Section 4 117

presents empirical results to declare our findings. 118

Section 5 concludes our empirical findings. 119

2 Related Work 120

Recent work has highlighted significant challenges 121

in LLMs’ abilities to generate truly random sam- 122

ples. For instance, when GPT-4 "rolls" a virtual 123

die, it outputs some faces far more often than the 124

theoretical 1
6 frequency. In longer sequences, the 125

marginal distribution becomes nearly uniform, yet 126

adjacent numbers repeat less often than chance 127

would predict (Liu, 2023). Even the ostensibly 128

simpler task of producing binary sequences is af- 129

fected: GPT-4 and LLaMA 3 reproduce human-like 130

cognitive biases in simulated coin flips, whereas 131

GPT-3.5 exhibits behaviour that more closely ap- 132

proximates randomness (Van Koevering and Klein- 133

berg, 2024). These errors persist even when models 134

are asked to sample from arbitrary target distribu- 135

tions (Hopkins and Renda, 2023), suggesting that 136

the difficulty is agnostic to output space. The gap 137

is also evident in game-theoretic settings. In RPS, 138

for example, Xu et al. (2024) show that GPT-4 139

correctly states the uniform mixed-strategy Nash 140

equilibrium yet still chooses rock in 67% of in- 141

dependent rounds—roughly twice the prescribed 142

33% frequency. A similar mismatch has been doc- 143

umented in other game scenarios like Matching 144

Pennis, Chick Games, etc. across GPT-3.5 and 145

GPT-4 (Silva, 2024; Poje et al., 2024), indicating 146

a consistent failure to translate theoretical distribu- 147

tions into action. 148

Xu et al. (2024) attributes the cognitive- 149

behavioural gap, in which the mismatch between 150

LLMs’ stated understanding of probability and 151

their generated outputs to intrinsic bias inherited 152

from the pre-training corpora. Several studies doc- 153

ument a "frequency effect" as the factor of intrinsic 154

bias, where token prevalence in pre-training cor- 155

pora systematically skews LLM outputs (Lovering 156

et al., 2024; Wei et al., 2021; McCoy et al., 2024). 157

Building upon this claim, we want to uncover how 158

more frequent words can dominate stochastic gener- 159

ation even when uniform randomness is prescribed. 160

Separately, recent work has brought attention to 161

2



positional bias—the tendency of LLMs to favour162

answer options based on their placement within the163

prompt (Pezeshkpour and Hruschka, 2023). For164

example, Lovering et al. (2024) show that when165

LLMs are asked to choose between two colours,166

GPT-4o-mini consistently selects the first option,167

while LLaMA-3.1-8B favours the second. How-168

ever, such colour preference questions inherently169

engage corpus-driven biases about common colour170

associations. To further study it, we disentangle the171

source of biases and accurately measure the impact172

of positional bias on LLM decision-making.173

3 Background174

3.1 Rock-Paper-Scissors175

Rock–Paper–Scissors (RPS)—also known as176

Rochambeau or Jan-Ken-Pon—is a canonical game177

whose unique solution is a mixed-strategy Nash178

equilibrium. In RPS, each participant’s strategy179

space in RPS is given by:180

S = {R,P,S}, (1)181

where R represents action option Rock, P repre-182

sents Paper, S represents Scissors. The game rules183

establish a cyclic dominance: R beats S, S cuts184

P , and P wraps R; identical actions result in a185

tie. Each player has a probability Pi to choose an186

action i, where i ∈ {R,P,S}.187

After confirming that every LLM can identify188

the mixed-strategy Nash equilibrium of RPS (i.e.,189

a uniform Pi =
1
3 distribution over {R,P,S}), we190

evaluate whether they can implement it. For each191

LLM, we run T independent rounds ( T = 100192

in our experiments). In every round t, LLM is193

required to commit a single action At ∈ {R,P,S}.194

We define the empirical selection frequencies:195

P̂i =
1

T

T∑
t=1

1
{
At = i

}
, i ∈ {R,P,S}.

(2)196

We then compare the vector P̂ = (P̂R, P̂P , P̂S)197

with the ideal uniform vector (13 ,
1
3 ,

1
3) in the game198

round t though a probabilistic analysis framework.199

The resulting divergence scores measure how far200

each LLM’s decision departs from equilibrium-201

consistent, truly random play.202

3.2 Evaluation of Stochastic Processes203

Inspired by (Gupta et al., 2025), we adopt an evalu-204

ation of stochastic processes framework that quan-205

tifies the divergence between the theoretical uni- 206

form distribution 1
3–1

3–1
3 in RPS and the empirical 207

choice distribution produced by LLMs. Given a 208

fixed prompt, PM (A | prompt) represents the con- 209

ditional probability of action A estimated by the 210

LLM M in a 100-trial sampling procedure. To han- 211

dle potential invalid actions outside of S, the linear 212

normalization approach is used: 213

P̂M (A) =
PM (A | prompt)∑

A′∈S PM (A′ | prompt)
. (3) 214

To quantify the discrepancy between the normal- 215

ized empirical distribution P̂M (A) and the target 216

distribution P ∗(A) prescribed under rational play, 217

we compute the Total Variation Distance (TVD): 218

δ
(
P ∗, P̂M

)
=

1

2

∑
A∈S

∣∣P ∗(A)− P̂M (A)
∣∣. (4) 219

where δ
(
P ∗, P̂M

)
∈ [0, 1]; a value of 0 denotes 220

perfect alignment, whereas larger values indicate 221

greater divergence from the expected distribution. 222

In the context of RPS, the strategic distribution 223

is P ∗(A) = 1
3 ,∀A ∈ {R,P,S}, and hence, 224

δ
(
P ∗, P̂M

)
∈ [0, 23 ]. 225

4 Experiment 226

We begin with a case study to visualize action 227

distributions of 20 LLMs to confirm the presence 228

of a cognitive–behavioural gap. Then, we exam- 229

ine its underlying determinants by systematically 230

analysing two factors: (1) intrinsic bias inherited 231

from pre-training corpora, and (2) positional bias 232

arising from the ordering of answer options within 233

prompts. More experiments, discussions, and ex- 234

planations can be found in Appendix A. 235

4.1 Experiment Setup 236

Models. The evaluated architectures encompass 237

conical and Long Chian-of-Thought (CoT) rea- 238

soning LLMs. Selected models include GPT-4.5- 239

preview-2025-02-27 (OpenAI, 2025a), o3-mini 240

(OpenAI, 2025b), o1-2024-12-17 (Jaech et al., 241

2024), o1-mini-2024-09-12, GPT-4o-2024-08-06 242

(Hurst et al., 2024), GPT-4-turbo (Achiam et al., 243

2023), GPT-3.5-turbo (Ye et al., 2023), Claude-3- 244

7-sonnet-20250219 (Anthropic, 2025), Claude-3- 245

5-sonnet-20240620 (Anthropic, 2024b), claude-3- 246

haiku-20240307 (Anthropic, 2024a), Gemini-2.0- 247

pro-exp-02-05 (Google DeepMind, 2025), Gemini- 248

2.0-flash, Gemini-1.5-pro-latest (Team et al., 249
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2024), Gemini-1.5-flash-latest, Meta-LLaMA-3.1-250

8B-Instruct (Grattafiori et al., 2024), Meta-LLaMA-251

3.1-405B-Instruct, DeepSeek-V3-250324 (Liu252

et al., 2024), DeepSeek-R1-250120 (Guo et al.,253

2025), Grok-3 (xAI, 2025), and Qwen-2.5-max254

(Team, 2024).255

Configurations. All model evaluations were256

conducted in a vanilla state using the official API257

interface1. To ensure statistical significance, each258

experimental scenario was tested on 100 indepen-259

dent games, with a new session established for260

each call to eliminate any contextual interference.261

We conduct an initial experiment involving 1,000262

independent generations from the LLMs in Ap-263

pendix A.1. The results show that 100 runs are264

sufficient to approximate the model’s output distri-265

bution. The experimental parameters were fixed at266

temperature = 1, top-p = 1, and repetition penalties267

were disabled, ensuring nondeterministic genera-268

tion and consistent experimental settings.269

4.2 Cognitive-Behavioural Gap270

In this section, we corroborate the finding of (Meis-271

ter et al., 2024) that LLMs are better at describ-272

ing probability distributions than at sampling from273

them. we tested the individual LLMs using the274

same Prompt2 provided by (Xu et al., 2024).275

Prompt: You are playing the RPS game. You
should first reason about the Nash equilibrium
of this game, and then choose one action from
{R,P,S} based on your reasoning. Please
choose an exact action.

276

In the experimental results, all tested LLMs cor-277

rectly state that the unique equilibrium in RPS is278

to choose {R,P,S} with equal probability 1
3 , an279

example is provided in Appendix A.2. We then280

compare this uniform benchmark with the action281

choice frequencies over 100 independent rounds.282

Figure 2 plots the empirical distributions, while283

Table 1 reports the numerical results that record284

the mean total variation distance, δ, between each285

model’s output and the theoretical baseline. It is286

striking to find that several models like GPT-o3-287

1All API accesses strictly followed the license agreements
and terms of service of respective API providers (OpenAI, An-
thropic, Google, Meta, etc.), used solely for academic research
purposes without commercial benefit. Our experimental pro-
tocol complied with all prescribed usage limitations including
rate limits, output restrictions, and content policies outlined in
each provider’s academic access terms.

2Noted that RPS in real Prompt is expressed as
Rock-Paper-Scissors, and {R,P,S} are Rock, Paper,
Scissors, respectively.

■ Rock ■ Paper ■ Scissors

Figure 2: The choice distribution of LLMs when play-
ing Rock-Paper-Scissors. The x-axis lists the evaluated
LLM models, while the y-axis reports the share of rock,
paper, and scissors selections that normalized over
100 independent games.

Models TVD (↓) Models TVD (↓)
GPT-4.5-preview 0.257 Gemini-2.0-flash 0.277

o3-mini 0.647 Gemini-2.0-pro 0.233
o1-mini 0.287 Gemini-1.5-flash 0.567

o1 0.203 Gemini-1.5-pro 0.657
GPT-4o 0.163 LLaMA-3.1-8B 0.247

GPT-4-turbo 0.107 LLaMA-3.1-405B 0.313
GPT-3.5 0.217 DeepSeek-V3 0.507

Claude-3.7 0.637 DeepSeek-R1 0.397
Claude-3.5 0.333 Grok-3 0.213
Claude-3 0.537 Qwen-2.5-Max 0.667

Table 1: The mean total variation distance (TVD, ↓)
across tested LLMs, larger values indicate greater diver-
gence from the expected probability 1

3 .

mini, Claude-3.7, and Grok-3 exhibit extreme skew 288

(δ > 0.6), effectively locking onto a single action. 289

These quantitative results substantiate the gap in 290

stochastic decision-making. 291

4.3 Intrinsic Bias 292

Recent work has documented a frequency effect, 293

whereby token frequency in pre-training corpora 294

systematically biases LLM outputs (Lovering et al., 295

2024; Wei et al., 2021; McCoy et al., 2024). We 296

therefore hypothesize that LLMs’ stochastic deci- 297

sions will reflect these frequency priors: actions 298

labelled by higher-frequency tokens should be cho- 299

sen more often. We expect LLMs to dispropor- 300

tionately favour actions whose labels appear most 301

frequently in their training data. Since the pre- 302

training corpora of closed-source LLMs are inac- 303

cessible, we estimate their token-frequency priors 304

using large public datasets as proxies. Prior work 305

shows that GPT-4o and Gemini 1.5 Pro replicate 306

the lexical frequency ordering of the Corpus of 307

Contemporary American English (COCA) with 308

near-perfect fidelity (Davies, 2025), validating this 309
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Corpus Name rock paper scissors

English Corpora

COCA 87,552 126,476 4,195

COHA 41,262 73,508 2,206

Google Books (American English) 7,000,769 19,070,293 511,265

Google Books (British) 2,307,015 5,225,572 120,782

n-gram Language Models

C4 10,670,341 23,690,184 492,327

RedPajama 72,721,463 106,761,993 1,406,924

Dolma 113,672,854 274,465,797 4,943,023

Table 2: Open-source corpora.

proxy approach for assessing the relative frequen-310

cies of rock, paper, and scissors.311

Building on this insight, we analyze the312

occurrence frequency of rock, paper, and313

scissors in open-source corpora hosted on314

English-Corpora.org3, Google Books n-grams4,315

Colossal Clean Crawled Corpus (C4) (Raffel et al.,316

2020)5, RedPajama (Weber et al., 2024) 6, Dolma317

(Soldaini et al., 2024)7. The result places paper318

first, rock second, and scissors third.319

If the occurrence frequency of rock, paper, and320

scissors constitutes the main reason for stochas-321

tic decision-making of LLMs, then they should322

over-produce P . However, our experiments reveal323

that the majority of LLMs disproportionately select324

R, even though paper is the most frequent token in325

reference corpora. This finding indicates that token326

frequency alone cannot account for the observed327

bias. We therefore turn to a second form of intrinsic328

bias: semantic salience arising from human cogni-329

tive associations. For example, rock is commonly330

linked to strength metaphors in language (Zhang331

et al., 2021) and exhibits a mild selection advantage332

among human players in RPS games (Dyson et al.,333

2016). Such semantic priors may drive the persis-334

tent rock preference in LLM decision-making.335

To isolate non-lexical factors, we introduce336

a semantic-free paradigm in which each ac-337

tion label is replaced by a randomly gener-338

ated, non-pronounceable 10-character string (i.e.,339

orxtlwsjuf, qrfnrzsosi, bvmfdwqdes). The340

rest of the prompt, including the RPS rules and341

the prescription of the mixed-strategy Nash equi-342

librium, remains unchanged (see Appendix A.2).343

3https://www.english-corpora.org//
4https://books.google.com/ngrams/
5https://huggingface.co/datasets/allenai/c4
6https://huggingface.co/datasets/

togethercomputer/RedPajama-Data-1T
7https://huggingface.co/datasets/allenai/dolma

■ orxtlwsjuf ■ qrfnrzsosi ■ bvmfdwqdes

Figure 3: The choice distributions of LLMs in a
semantic-free variant of Rock–Paper–Scissors game,
where a randomly-generated, semantic-free string re-
places each action label.

As Figure 3 shows, the models’ choices remain 344

far from the uniform distribution. This finding 345

indicates that, although intrinsic biases—whether 346

due to word frequency or semantic associa- 347

tions—undeniably shape LLM choices, they alone 348

are insufficient to explain the persistent divergence 349

from the uniform mixed-strategy equilibrium. 350

4.4 Positional Bias 351

Inspired by Pezeshkpour and Hruschka (2023), 352

which demonstrates that LLMs are highly sensi- 353

tive to option order and, when uncertain, tend to 354

favour specific positions. However, their experi- 355

ments are confined to reasoning tasks rather than 356

stochastic decision-making. We therefore extend 357

the investigation to a purely stochastic setting, test- 358

ing whether positional bias similarly distorts LLM 359

decision-making on randomness. 360

4.4.1 Rock-Paper-Scissors 361

Firstly, we extend experiments on RPS games to ex- 362

amine the existence of positional bias. We conduct 363

a fully crossed model experiment incorporating all 364

six permutations of the R/P /S triad. The canonical 365

R-P-S sequence serves as the control condition, 366

while the remaining five permutations constitute 367

the treatment set. Every prompt follows a fixed 368

template: 369

Prompt: You are playing the [RPS/RSP/PSR
/PRS/SPR/SRP] game. You should first rea-
son about the Nash equilibrium of this game,
and then choose one action from [{R,P,S}/
{R,S,P}/{P,S,R}/{P,R,S}/{S,P,R}/
{S,R,P}] based on your reasoning. Please
choose an exact action.

370

As a result, we find that even if we change lexical 371

5
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(a) Rock-Paper-Scissors (b) Rock-Scissors-Paper

(c) Paper-Scissors-Rock (d) Paper-Rock-Scissors

(e) Scissors-Paper-Rock (f) Scissors-Rock-Paper
■ Rock ■ Paper ■ Scissors

Figure 4: The choice distribution variations of LLMs across Rock-Paper-Scissors Prompt order permutations.
Six lexical permutations were used to describe the game in the prompt. The x-axis lists the evaluated LLM models,
while the y-axis reports the share of rock, paper, and scissors selections that normalized over 100 independent
games. Panels (a)–(d) use the same x-axis and y-axis labels as panels (e) and (f).

permutations, all the tested LLMs still can identify372

the mix-strategy Nash equilibrium, and consider373

the rational choice is to select each action with374

probability 1
3 . Figure 4 shows that the empirical375

action frequencies of most LLMs shift across the376

six prompt permutations, confirming that option377

order—the hallmark of positional bias—influences378

their decisions. Diverse decision patterns emerged379

among several models:380

Rock preference:11 of the 20 evaluated LLMs381

consistently favour R across all six permutations382

of option order, indicating a stable bias that is unaf-383

fected by re-ordering.384

Median preference: Qwen 2.5 Max consistently385

selects the middle-positioned action, choosing R or386

P near 100% frequency when centrally placed, but387

exhibiting a bimodal distribution when S occupies388

the middle position.389

Counter pattern: Interestingly, GPT-4.5-390

preview systematically chooses the action that de-391

feats the first item in the prompt sequence. When392

the list starts with R, the model selects in P ≈393

70%±10% of trials; when it starts with P , it shifts394

to S (≈ 50%±1%); and when it starts with S, it 395

moves to R (≈ 75%±2% ). Qualitative inspec- 396

tion of the model’s response suggests that it im- 397

plicitly treats the first-listed option as the oppo- 398

nent’s likely move and therefore responds with the 399

counter-action that would win. 400

In this experiment, we retained intrinsic bias, 401

which continues to skew LLMs toward R—but 402

permuted the positions of the answer options. The 403

resulting shifts in choice distributions reveal the 404

additional influence of positional bias. 405

4.4.2 Semantic-Free Paradigm 406

To further disentangle the effect of positional bias 407

in Prompt from the confounding influence of in- 408

trinsic biases in the corpus, we continue to imple- 409

ment the semantic-free paradigm to illustrate this 410

effect. Under this controlled setting, we permute 411

the order of the three actions and compare the re- 412

sulting choice distributions across models. Because 413

of page-length constraints, this part of the exper- 414

iments is restricted to four models: GPT-4o, o1, 415

DeepSeek-V3, and DeepSeek-R1. 416
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Make 
DecisionsPrompt

In a three-action game with a mixed-
strategy Nash equilibrium, you must 
select exactly one of the three 
available actions:

Action 1 Action 2 Action 3

Ascending Order Descending Order

Middle Posistion Front and Back

① ②

③ ④

Preference

Positional Bias

Figure 5: The Positional Bias of Prompt may interfere with decisions of LLMs in mixed-strategy Nash equilibrium.

(a) (b) (c)

(d) (e) (f)

■ String 1: orxtlwsjuf ■ String 2: qrfnrzsosi ■ String 3: bvmfdwqdes

Figure 6: The six lexical permutations used to describe the game illustrate the positional bias on LLMs’
decision-making. Each subfigure reports the normalised choice distribution across LLMs. The replaced element for
rock, paper, scissors are orxtlwsjuf, qrfnrzsosi, or bvmfdwqdes, respectively.

As depicted in Figure 6, our evaluation across417

six permutation conditions reveals that none of the418

tested LLMs achieved a uniform distribution. In-419

stead, three distinct position-dependent patterns420

emerged as introduced in the previous context:421

(1) o1 and DeepSeek-R1 exhibited ascending-422

order preference, selecting the first-position option423

with 55%-77% probability when "String 1" led424

the sequence, and diminished to 2%-36% when425

"String 1" moved to terminal positions, demon-426

strating position-index correlated sensitivity; (2)427

GPT-4o and DeepSeek-V3 consistently preferred428

median-position options across all valid permuta-429

tions; This positional bias dominance persists even430

when intrinsic biases are eliminated, confirming431

spatial encoding’s critical role in LLM decision-432

making. Moreover, Long CoT reasoning models433

(o1 and DeepSeek-R1) consistently over-select the434

first option in the sequence, whereas GPT-4o and435

DeepSeek-V3 reliably favour the middle option.436

However, this three-option game offers limited ev-437

idence of positional bias. To bolster our findings, 438

we extend our experiments to games with larger 439

action sets to examine whether this bias persists or 440

changes as the choice space grows. 441

4.4.3 Multi-option Games 442

To clarify whether positional bias in LLM decisions 443

arises from absolute positions or relative ordering, 444

we extend our experiments to n-option sequential 445

games (n = 4, 5, 6, 7) with unique uniform mixed- 446

strategy Nash equilibrium solutions, where the the- 447

oretical solution of each action evolves as 1
n . The 448

experimental prompt builds upon the previous de- 449

sign outlined in Appendix A.2, with the modifi- 450

cation of the cycle patterns’ length. As shown in 451

Table 3, once the prompt contains more than four 452

options (n > 4), all models largely discard their 453

earlier ordinal preferences, and all models tend to 454

abandon ordinal preferences. Specifically, GPT-4o 455

and DeepSeek-V3 redistribute decision weights to- 456

ward the first-position selection while maintaining 457
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Length Sequence Models (%)

4o o1 V3 R1

4

nalmozkzhf 41 70 14 73
qlqfwlklnw 33 6 4 0
riwpharsgy 26 15 82 19
vfjhmayacd 0 9 0 8

5

jjhgelerzs 13 53 9 57
hcqefmxrac 12 6 0 0
ulqgtnwpwg 66 22 90 2
yfhodxulzn 7 19 1 0
dozxichhrn 2 0 0 41

6

oxaatanhzh 18 48 20 60
nrpjvitdeb 8 2 0 1
jmakgkoepx 24 17 77 4
zgpkjexdwt 41 23 3 3
vyanqddyfn 7 0 0 0
jkaawzkgya 2 10 0 32

7

crrzcdsfrk 20 71 27 73
zsydssgddt 7 1 0 0
oeoaiylxad 31 7 12 0
xgranflukp 15 20 45 5
vcwoazslgz 14 1 0 0
cmorbvkjzi 8 0 3 11
jmllurvola 5 0 13 11

Table 3: Results of the extended-sequence experiment:
for each LLM, the percentage frequency with which op-
tions are selected across 4-, 5-, 6-, and 7-option games.

primary preference on median indices. Further, we458

find that o1 exhibits stabilized first-position selec-459

tion probability and secondarily prefers third and460

fourth elements, whereas DeepSeek-R1 develops a461

bimodal distribution peaking at terminal positions462

of the sequence. These findings demonstrate that,463

in longer sequences, position preference rather than464

relative order drives LLM action selection in uni-465

form play, thereby highlighting positional rather466

than ordinal mechanisms as the core contributor to467

stochastic decision-making.468

4.5 Support Experiments469

The supplementary material provides additional470

experimental blocks that extend our findings.471

(1) Model scale does not mitigate randomness472

deficits. In Appendix A.3, we compare LLMs of473

increasing model scale within the same architecture474

family and find that larger scales do not reduce the475

cognitive–behavioural gap in RPS. Thus, simply476

scaling up an LLM is insufficient to eliminate its477

shortcomings in stochastic decision-making.478

(2) Generalization to other mixed-strategy479

games. In Appendix A.4, we extend our evaluation480

to two additional mixed-strategy games—Matching481

Pennies and Morra. The cognitive–behavioural gap 482

persists in both cases, confirming that the random- 483

ness shortfall is not peculiar to RPS but generalises 484

across diverse strategic settings 485

(3) Temperature tunning. In Appendix A.5, 486

we vary the LLM sampling temperature—from low 487

(deterministic) to high (high-entropy) settings— to 488

examine whether LLMs’ decision is influenced by 489

output entropy. Our results indicate that the cogni- 490

tive–behavioural gap persists across the tempera- 491

ture range, indicating that observed biases cannot 492

be attributed to the entropy of the sampling step. 493

(4) Prompt-design sensitivity. In Appendix A.6, 494

we demonstrate that prompt designs featuring re- 495

peated terminology or embedded human-centric 496

stereotypes significantly alter model decisions. 497

These findings emphasize the necessity of care- 498

ful prompt hygiene in tasks involving strategic 499

decision-making by LLMs. 500

(5) Effect of Human cognitive bias . In Ap- 501

pendix A.7, we aim to examine how a specific form 502

of intrinsic bias—human cognitive bias—shapes 503

the stochastic decision-making behaviour of LLMs. 504

Guided by Social Role Theory (Eagly and Wood, 505

2012), we prompt each LLM to adopt specific de- 506

mographic identities encompassing gender and age. 507

The resulting choice distributions systematically 508

mirror established human cognitive biases, con- 509

firming that LLM agents inherit and express hu- 510

man cognitive priors from training data in their 511

decision-making processes. 512

(6) Effect of Language Context. In Ap- 513

pendix A.8, we examine whether language modu- 514

lates an LLM’s randomness. We extend the RPS 515

experiment with prompts in English, Chinese, and 516

Japanese. Despite the choice probabilities slightly 517

shifting, the ranking of actions remains unchanged, 518

indicating that the bias persists across languages, 519

likely because semantically equivalent tokens map 520

to similar internal representations. 521

5 Conclusion 522

Our findings expose two intertwined sources of bias 523

that undermine LLMs’ ability to make truly random 524

decisions. First, intrinsic bias—statistical regulari- 525

ties inherited from pre-training corpora—skews 526

LLMs toward high-frequency or semantically 527

salient options. Second, positional bias: the mere 528

placement of answer options within a prompt sys- 529

tematically distorts choice probabilities. 530
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Limitations531

While this study provides critical insights into532

LLMs’ stochastic decision-making deficiencies,533

several limitations need to be considered:534

(1) Narrow Scope of Game Environments.535

Our analysis focuses primarily on RPS-like games,536

which have a unique mixed-strategy Nash Equilib-537

rium. While these are canonical examples, they538

represent simplified decision spaces with discrete539

actions and perfect symmetry. Therefore, this de-540

cision strategy of choosing actions with equilib-541

rium probability is easily deducible. Real-world542

strategic scenarios often involve continuous action543

spaces, imperfect information, and asymmetric re-544

wards, which may elicit different failure patterns.545

(2) Static Experimental Design. Our evalua-546

tion relies on single-round decision paradigms with547

independent trials. Real strategic interactions typi-548

cally involve adaptive play across multiple rounds549

where opponents learn and counter-strategize. Un-550

fortunately, our experiments cannot allow for a con-551

trolled analysis of sequential rounds in gameplay,552

as LLMs can leverage historical context to artifi-553

cially regulate their own randomness. For example,554

Liu (2023) prompts GPT-4 to generate a sequence555

of 280 random numbers, and the resulting distribu-556

tion is notably closer to uniform—suggesting that557

access to prior context enables the model to self-558

correct and effectively approximate randomness.559

(3) Limited Model Diversity. Despite evaluat-560

ing 20 state-of-the-art models, our study excludes561

less prominent architectures (e.g., CodeGemma for562

programming tasks) and smaller-scale models (<8B563

parameters).564

(4) Lack of Mitigation Strategies. While we di-565

agnose the problem space, we do not propose tech-566

nical solutions to correct the cognitive-behavioural567

gap. Recent work suggests contrastive decoding568

may reduce positional bias, but systematic evalua-569

tion remains a future work.570

Risk571

The positional biases we identify create systematic572

patterns that adversaries could reverse-engineer to573

manipulate LLM-powered systems (e.g., gaming574

AI negotiation agents by strategically ordering op-575

tions). Practitioners might attribute positional bias576

effects to semantic preferences or domain knowl-577

edge gaps, leading to misguided mitigation.578
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A Appendix 770

This is an Appendix. 771

A.1 A Thousand Trail Experiment 772

In the main text, each experiment was probed with 773

100 independent generations. To assess whether 774

this sample size accurately captures the model’s ac- 775

tion distribution, we replicated the procedure with 776

1,000 independent trials. As shown in Table 4, the 777

ten 100-trial subsets exhibit only minor variation 778

in action frequencies. The aggregate 1,000-trial 779

run yields proportions for Rock, Paper, and Scis- 780

sors that are virtually identical to the per-subset 781

means, and within any 100-trial subset the count 782

for a given action deviates by no more than ±5 783

from its expected value. These results indicate that 784

a 100-trial sample is sufficient to characterise the 785

statistical distribution of the LLMs’ decisions. 786

A.2 Prompt Design 787

In this section, we explain how we prompt each 788

LLM in the experiment, and provide an example 789

response from GPT-4o. 790

Rock-Paper-Scissors 791

Prompt: You are playing the Rock-Paper-
Scissors game. You should first reason about the
Nash equilibrium of this game, and then choose
one action from Rock, Paper, and Scissors based
on your reasoning. Please choose an exact ac-
tion.
Response: In the game of Rock-Paper-Scissors,
a Nash equilibrium occurs when each player
chooses each of the three possible actions (Rock,
Paper, or Scissors) with equal probability, mean-
ing each action is chosen 1/3 of the time. This
ensures that no player has an advantage over the
others, given that the game is symmetric and
each choice can be directly countered by another.
Since the optimal strategy in terms of Nash equi-
librium is to randomize and choose each action
with equal likelihood, no action is better than
the others to guarantee a win against an oppo-
nent also playing optimally. Therefore, in this
instance, I will randomly choose one of the three
actions. Let’s say I choose "[Action]".

792

Semantic-Free Paradigm 793
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Order

Rock-Paper-Scissors Sequence

Game Rounds
Action 1-100 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900 901-1000 Total

R-P-S Rock 41 39 43 50 47 43 43 38 47 41 432
Paper 46 44 42 36 36 42 35 45 36 32 394
Scissors 13 17 15 14 17 15 22 17 17 27 174

R-S-P Rock 47 46 52 44 55 43 55 43 49 48 482
Paper 27 44 33 35 24 43 33 42 29 34 344
Scissors 26 10 15 21 21 14 12 15 22 18 174

P-S-R Rock 73 64 72 72 65 72 73 80 71 76 718
Paper 12 14 8 10 7 8 5 6 14 8 92
Scissors 15 22 20 18 28 20 22 14 15 16 172

P-R-S Rock 66 79 67 80 73 71 82 74 80 80 752
Paper 21 8 13 7 10 11 6 10 6 8 100
Scissors 13 13 20 13 17 18 12 16 14 12 148

S-P-R Rock 70 65 73 68 68 61 65 69 66 59 664
Paper 27 34 27 27 30 37 31 27 31 34 305
Scissors 3 1 0 5 2 2 4 4 3 7 31

S-R-P Rock 93 92 89 89 94 91 96 92 92 89 917
Paper 6 7 9 9 5 9 3 8 8 10 74
Scissors 1 1 2 2 1 0 1 0 0 1 9

R=Rock, P=Paper, S=Scissors, Total Rounds = 1,000

Table 4: GPT-4o Rock-Paper-Scissors experiment complete record.

Prompt: You are playing a strategy game, which
is played between two players, each of whom
simultaneously chooses one of three elements to
compete with another player: orxtlwsjuf, qrfnrz-
sosi, or bvmfdwqdes. The rules follow a cyclic
pattern: [orxtlwsjuf defeats qrfnrzsosi, qrfnrzsosi
defeats bvmfdwqdes, and bvmfdwqdes defeats
orxtlwsjuf.] If both players select the same ele-
ment, the round is a tie. You should first reason
about the Nash equilibrium of this game, and
then choose one action from [orxtlwsjuf, qrfnrz-
sosi, and bvmfdwqdes] based on your reasoning.
Please choose an exact action.
Response: This game is similar to the clas-
sic Rock-Paper-Scissors game, featuring three
choices with cyclical dominance. In such games,
each player has no pure strategy that guarantees
a win, so the Nash equilibrium involves play-
ers randomizing their choices. To find the Nash
equilibrium, we can assign equal probability to
each element: orxtlwsjuf, qrfnrzsosi, and bvmfd-
wqdes. This means each player chooses one of
the three elements with a probability of 1/3. Now,
applying this randomization strategy in practice,
I’ll choose one action based on equal probability
among the three options: I choose "[Action]".
NOTE: The blue text is re-ordered to formu-
late the six lexical permutations.

794

(a) (b)

Figure 7: Total variation distance (TVD) between the
baseline and the empirical choice distribution for each of
the six possible lexical permutations. Results are shown
for successive checkpoints in the GPT and Claude
model families. TVD remains high—and in several
cases increases—as model size and generation advance,
indicating that scaling has not yet closed the cogni-
tive–behavioural gap in stochastic decision-making.

A.3 Model Scale Does Not Mitigate 795

Randomness Deficits 796

In the main text experiments, we observe an inter- 797

esting phenomenon: as models become increas- 798

ingly intelligent (larger model scale), the flaws 799

in their stochastic decision-making capabilities do 800

not improve. For instance, in both the GPT and 801

Claude model series, despite successive iterations 802

and upgrades, their stochastic decision-making abil- 803

ities have not demonstrated corresponding enhance- 804

ments. Building on our three-option RPS tests, we 805
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(a) (b)

Figure 8: Results are shown for successive checkpoints
in the LLaMa-3 and Qwen-2.5 families.

evaluate six permutation variants to measure mean806

TVD from the uniform baseline. Figure 7 compares807

GPT-series and Claude-series checkpoints. Sur-808

prisingly, later generations—GPT-4.5 and Claude-809

3.7—exhibit larger TVD values than GPT-3.5 and810

Claude-3, indicating that greater in-context reason-811

ing capability does not translate into more faithful812

random sampling.813

To control for architecture while varying scale,814

we run the same experiment on LLaMA-3 models815

(8B, 70B, 405B) and Qwen-2.5 models (14B, 32B,816

72B). As Figure 8 shows, TVD either plateaus or817

increases with parameter count: LLaMA-3-405b818

recorded a mean TVD of 0.472 ± 0.087 versus819

0.167 ± 0.091 for LLaMA-3-8b. Qwen-2.5 dis-820

plays a similar but weaker trend. Collectively, these821

results show that increasing the model scale cannot822

resolve the cognitive–behavioural gap in random-823

ness; sometimes model scaling exacerbates it.824

A.4 Generalization to Mixed Strategy Nash825

Equilibrium Games826

Extending our analysis beyond the RPS game, we827

evaluated two further mixed-strategy benchmarks:828

Matching Pennies and Morra. The game descrip-829

tion and Prompt design of the Matching Pennies830

game are as follows:831

Prompt: The Matching Pennies game is a two-
player, zero-sum game where each player se-
cretly chooses either heads (H) or tails (T ). If
both players choose the same option, the player
who chose first wins the coin, and if they choose
differently, the second player wins.

832

The game description and Prompt design of the833

Morra game are as follows:834

Figure 9: The choice distribution of LLMs in Match-
ing Pennis game. The expected probability of each
action is 1

2 .

Prompt: The Morra game is a two-player game
where each player simultaneously shows some
fingers (e.g., 1-5) and calls out a guess for the
total sum of both players’ fingers. If a player’s
guess matches the actual total, they score a point;
if both guess correctly, the round is tied or re-
played, and the first to reach a predetermined
score wins.

835

(a)

(b)

Figure 10: The choice distribution of LLMs in the
Morra game. The expected probability for display-
ing the figure is 1

5 . The expected probability for
sum-guessing is 1

10 .

In the zero-sum Matching Pennies game as de- 836

picted in Figure 9, GPT-4o chose Heads in 81% 837

of trials, while GPT-o1 and both DeepSeek vari- 838

ants were nearly deterministic of choosing Heads. 839

An analogous pattern appears in the Morra game. 840

When asked to display a random number of fin- 841

gers, most tested models heavily over-sample a 842
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Figure 11: Each of the six options ought to be selected
with equal probability 1

6 , but the choice distribution
produced by the LLMs departs from this benchmark.

single option except DeepSeek-V3. In the sub-843

sequent sum-guessing phase as depicted in Fig-844

ure 10, predictions cluster around specific totals845

(e.g., six) with probabilities ranging from 45% to846

98%. Across these games, LLMs consistently devi-847

ate from the uniform strategies prescribed by equi-848

librium theory. These findings furnish additional849

evidence that current LLMs cannot faithfully im-850

plement mixed-strategy randomization.851

In a follow-up experiment, we test how LLMs re-852

spond to explicit instructions. The action space con-853

sists of six randomly generated strings presented854

in alphabetical order, and the prompt specifies that855

each option should be chosen with equal probabil-856

ity in 1
6 .857

Prompt: In a stochastic decision-making
paradigm involving six equiprobable options: ox-
aatanhzh, nrpjvitdeb, jmakgkoepx, zgpkjexdwt,
vyanqddyfn, and jkaawzkgya. Each discrete el-
ement maintains an equivalent selection proba-
bility of 1

6 . The experimental procedure neces-
sitates the execution of a single Bernoulli trial,
requiring participants to output one categorical
outcome strictly conforming to the prescribed
discrete uniform distribution parameters. You
should choose an exact element.

858

As depicted in Figure 11, all tested models859

nonetheless display a pronounced central-option860

bias: selections cluster on the middle items at rates861

far above the theoretical baseline. This implies that862

the generative mechanism of the LLMs may inter-863

nalize statistical features of human cognitive biases:864

its sampling approach based on likelihood estima-865

tion unconsciously reinforces the pattern of posi-866

tional preferences implicit in the training method-867

ology when dealing with undifferentiated options.868

(a) (b)

(c) (d)

■ Rock ■ Paper ■ Scissors

Figure 12: The choice distribution of LLMs in different
temperature settings. The larger the temperature, the
more random the output token.

A.5 Effect of Sampling Temperature 869

In a temperature-ablation study, we vary the sam- 870

pling temperature across six settings and slightly 871

rephrase the prompt so that each model outputs a 872

single token—Rock(R), Paper(P), or Sc(S). 873

Prompt: You are playing the RPS game. You
should consider the Nash equilibrium of this
game, and then choose one action. Your an-
swer should include only one exact action from
{R,P,S}. Your answer is:

874

For each independent trial, we retrieve the top- 875

20 token probabilities and renormalise the mass 876

assigned to those three options. As depicted in 877

Figure 12, higher temperatures did push the ob- 878

served choices closer to the model’s probability 879

prior, yet even at the highest setting the distribution 880

remained far from the target 1
3 -13 -13 . Across the to- 881

tal 600 trials, GPT-4o selected Rock 64.3%±7.2%, 882

Paper 18.1%± 7.3%, and Scissors 17.6%± 2.8%; 883

DeepSeek-V3 chose Paper exclusively (100% ± 884

0%). Probability traces for o1 and DeepSeek-R1 885

were unavailable because their chain-of-thought 886

interfaces suppress token-level scores, but their em- 887

pirical frequencies show the same bias. Overall, 888

temperature tuning alone cannot eliminate the cog- 889

nitive–behavioural gap: the skew originates up- 890

stream of the sampler, not in its entropy setting. 891
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Lexical-frequency Interference

Prompt
You are playing a Rock-Paper-Scissors game. The rules are 
straightforward: rock beats scissors by crushing them, 
scissors beat paper by cutting it, and paper beats rock by 
covering it. If both players choose the same shape, the 
round is a tie. 
[While skipping rocks across the lake, he realized the 
first rock was too small, so he picked up another rock, 
but that rock was too smooth, and after trying three 
more rocks, he finally found a rock that skipped 
perfectly across the water.] 
You should first consider the Nash equilibrium of this 
game and then describe the Nash equilibrium of this game, 
then select exactly one of the three actions—Rock, Paper, 
or Scissors—based on your reasoning.

Should I 
choose 
Rock?

Make 
Decisions

Pragmatic Implicature  

Should I 
choose 
Rock?

Make 
Decisions

Prompt
You should analyze and select the dominant action in a Rock-
Paper-Scissors game by following these steps. 
Step 1: Understand the structure of the Rock-Paper-Scissors 
game.
Step 2: Identify the Nash equilibrium in the Rock-Paper-Scissors 
game. 
Step 3: Choose an action to play based on the Nash equilibrium. 
[If the opponent is expected to choose Scissors, then playing 
Rock is an advantageous strategy because selecting Rock will 
win the game. If the opponent is expected to choose Rock, 
choosing Rock turns the game into a draw. If the opponent is 
expected to choose Paper, Rock becomes a disadvantageous 
option.]
The same reasoning applies when considering all three possible 
action: Rock, Paper and Scissors; each choice can be justified 
based on the opponent's potential moves. These considerations 
align with Nash equilibrium strategies. 

Figure 13: Superficial prompt features may interfere with LLMs’ decision-making.

A.6 Effect of Implicit Biasing via Prompting892

Recent studies underscore the pivotal role of893

prompt design in mitigating LLMs biases. (Cherep894

et al., 2024) shows that human-aligned few-shot895

prompting can improve distributional alignment,896

highlighting the hypersensitivity of LLMs to897

prompt engineering. Two dimensions prove espe-898

cially critical in this context: contextual robustness899

and sequential dependency. In terms of contextual900

robustness, (Silva, 2024) reports substantial per-901

formance declines in LLMs confronted with rule902

variations in canonical games, suggesting limited903

generalisation beyond training distributions. In904

terms of sequential dependency, (Chen et al., 2024)905

demonstrates that premise ordering has a direct906

impact on reasoning fidelity, with dominant perfor-907

mance attained when the sequence of contextual908

information aligns with the model’s intermediate909

inference steps.910

To systematically examine how suboptimal911

prompting strategies affect LLM decision-making,912

we conducted a controlled experiment manipulat-913

ing the lexical frequency and pragmatic implica-914

ture strength. As demonstrated in Figure 13, our915

paradigm employs rock as the prototypical action916

verb, with other action prompts maintaining identi-917

cal constraint configurations across experimental918

conditions.919

In a lexical-frequency interference condition,920

the game rules remain neutral. Still, the se-921

mantic prominence of one element (rock, paper, 922

or scissors) is selectively amplified, probing 923

whether irrelevant frequency shifts skew the mixed 924

strategy. As depicted in Figure 14 (a-c), increasing 925

the relative token frequency of any single action 926

{R,P,S} within the prompt consistently elevates 927

LLMs’ probability of selecting that same action. 928

In a pragmatic implicature condition, we embed 929

subtly evaluative conditionals within an otherwise 930

neutral template, testing how covert frames redirect 931

choice probabilities. As depicted in Figure 14 (d–f), 932

providing a prompt that highlights a single action 933

as an illustrative example systematically shifts the 934

model’s play toward that action: for every model 935

except R in DeepSeek-V3, the exemplified element 936

becomes the most frequently selected move. 937

In both experiments we designate one action 938

from {R,P,S} as the default option. Echoing the 939

findings of (Cherep et al., 2024), LLMs are highly 940

sensitive to such default cues, and even this subtle 941

prompt manipulation reliably prevents them from 942

sampling the uniformly mixed strategy prescribed 943

by the Nash equilibrium. 944

A.7 Effect of Human Cognitive Bias 945

Beyond the intrinsic bias arising from LLM archi- 946

tectures and training methodologies, human cog- 947

nitive biases also play a non-negligible role. Ac- 948

cording to empirical evidence presented in (Dyson 949

et al., 2016), although participants in multi-round 950
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(a) (b) (c)

(d) (e) (f)

■ Rock ■ Paper ■ Scissors

Figure 14: (a) - (c): The choice distribution of LLMs in a lexical-frequency interference condition. (d) - (f):
The choice distribution of LLMs in an implicit-framing condition. Each subfigure reports the normalised choice
distribution, averaged over 100 independent games, for prompts deliberately biased toward Rock, Paper, or Scissors,
respectively.

Human Cognitive Bias

Gender Bias 

Child

Adult

old
Age Intelligence

Age Bias 

>

Make 
Decisions

&

&

Male

Female

>

Make 
Decisions

Figure 15: An explanation of human bias may interfere
with LLMs’ decision-making.

games generally exhibit near-uniform selections,951

there is a statistically slight preference for Rock. In952

the same way, (Zhang et al., 2021) indicates that953

human subjects typically associate R with strength954

metaphors and consequently prefer it during play.955

(Brockbank and Vul, 2024) demonstrates that in956

repeated game settings, participants dynamically957

adjust their strategies based on previous outcomes, 958

indicating adaptive decision-making that system- 959

atically departs from random selection and causes 960

observable statistical patterns. (WRPSA, 2023) 961

examines how gender factors influence decision- 962

making tendencies in the game of RPS. Drawing 963

on data collected from 1,218 participants across 964

17 countries, the study finds that men are more in- 965

clined to choose rock, whereas women exhibit a 966

greater tendency to choose scissors. 967

Consequently, the Uneven distribution of differ- 968

ent groups, i.e. gender, age, or culture, leads to 969

biases in model performance. As depicted in Fig- 970

ure 15, we build on the evidence of human cogni- 971

tive biases in LLMs (Navigli et al., 2023), we draw 972

on Social Role Theory (Eagly and Wood, 2012) 973

and employ prompt engineering to systematically 974

manipulate the decision-maker’s perceived iden- 975

tity—gender, age, and cultural background. This 976

design allows us to investigate how implicit identity 977

cues trigger human cognitive biases that, in turn, 978

shape strategic behaviour in game-theoretic tasks. 979

Gender bias: Motivated by the gender differ- 980

ences reported for humans in RPS by (WRPSA, 981

2023), we examine LLMs inherit analogous gender 982

biases and how such biases modulate their strate- 983

gic choices. We conduct a role-playing experi- 984

ment in which each model is prompted to act as 985

either a male or a female player. Although all 986

models explicitly assert that gender is irrelevant to 987

the mixed-strategy Nash equilibrium, their empiri- 988

cal behaviour often contradicts that claim: except 989
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■ Rock ■ Paper ■ Scissors

Figure 16: Gender bias in action selection across LLMs.
Grouped bar charts compare the distribution of Rock, Pa-
per, and Scissors between male (left) and female (right).

DeepSeek-V3, every tested LLM exhibits a signifi-990

cant shift in action probabilities (Figure 16). When991

cast in the male role, LLMs increase their prob-992

ability of choosing R; conversely, in the female993

role, the same models display a substantial rise in994

the selection of P . This gender-conditioned diver-995

gence mirrors the human patterns, suggesting that996

gender biases present in the semantic associations997

influence the models’ ostensibly random decision998

processes.999

Prompt: You are a [male/female] participant in
a RPS game. You should first reason about the
Nash equilibrium of this game from the [male/fe-
male] perspective, and then choose one action
from {R,P,S} based on your reasoning. Please
choose an exact action.

1000

Age bias: Building on the hypothesis that LLMs1001

may internalise societal age stereotypes—such as1002

children act on impulse, elders act with1003

foresight, we ran a three-level role-playing ex-1004

periment in which each model was instructed to1005

play RPS as a child, an adult, or an elderly per-1006

son. Inspection of the models’ reply reveals that1007

the child role is justified by intuitive reasoning (e.g.,1008

"kids think making a fist looks powerful"),1009

whereas the elderly role foregrounds strategic in-1010

ference (e.g., "Elderly person analyses the1011

opponent’s pattern."). Figure 17(a) reports1012

the TVD between each role-condition distribu-1013

tion and the uniform Nash baseline. TVD de-1014

creases monotonically with age, yet never reaches1015

zero, indicating persistent deviation from dominate1016

play. Figure 17(b) further shows that, except for1017

DeepSeek-R1, the adult condition is virtually in-1018

distinguishable from the unspecific role baseline,1019

suggesting that LLMs default to an adult cognitive1020

frame. DeepSeek-V3 exhibits the strongest age ef-1021

(a) (b)

Figure 17: Age bias in action selection across LLMs.
(a) Total variation distance (TVD) vs. people with dif-
ferent age groups. (b) Total variation distance (TVD)
vs. different LLMs. All results compare the distribution
of Rock, Paper, and Scissors across LLMs under age
progression.

■ Rock ■ Paper ■ Scissors

Figure 18: Examination of the language impact across
LLMs. Grouped bar charts compare Rock, Paper, and
Scissors choices across LLMs under the diverse lan-
guage of game instructions (English vs. Chinese vs.
Japanese).

fect: TVD = 0.567 in the child role versus 0.127 1022

in the elderly role, underscoring how age cues can 1023

substantially bias the model’s ostensibly random 1024

decisions. 1025

Prompt: You are a [child/adult/elderly person]
playing the RPS game. You should first reason
about the Nash equilibrium of this game based
on your age perspective, and then choose one
action from {R,P,S} based on your reasoning.
Please choose an exact action.

1026

Collectively, our experiments indicate that LLMs 1027

inherit latent human-cognitive priors from their 1028

training corpora. These ingrained biases system- 1029

atically shape the models’ strategic decisions and 1030

likely constitute one impediment to generating ac- 1031

tions that approximate true statistical randomness. 1032

A.8 Effect of Language Context 1033

Language encodes culture, leading to systematic 1034

representational differences across linguistic com- 1035

munities (Hershcovich et al., 2022). When a model 1036

is trained on culturally skewed data, these imbal- 1037

ances can surface in its behaviour. Figurative de- 1038
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vices, such as metaphors, idioms, other images,1039

and rich expressions, exemplify how cultural con-1040

ventions shape lexical semantics. We conduct a1041

cross-lingual instruction experiment in English,1042

Chinese, and Japanese to test whether such traces1043

influence strategic reasoning. Each prompt conveys1044

identical game semantics but differs in language.1045

Prompt:
Chinese: 假设你正在玩石头剪刀布(RPS)的
游戏。请先思考并分析这个游戏的纳什均
衡，然后根据你的分析在“石头”(R)、“剪
刀”(S)和“布”(P)中做出选择。
Japanese: あなたはじゃんけん(RPS)ゲー
ムをプレイしています。まずこのゲー
ムのナッシュ均衡について推論し、そ
の推論に基づいて「グー」(R)「チョ
キ」(S)「パー」(P) の中から1つのアク
ションを選択する必要があります。正確
なアクションを選んでください。

1046

Figure 18 shows the empirical selection proba-1047

bilities for {R,P,S} when the prompt is presented1048

in English, Chinese, and Japanese. Although the1049

exact percentages differ slightly across languages,1050

a common pattern emerges. For example, GPT-1051

4o consistently over-selects Rock—rendered as "石1052

头" in Chinese and "グー" in Japanese—regardless1053

of the linguistic context. This stability suggests1054

that the bias may not be strictly linked to the1055

lexical frequency in any single language, and1056

may reflect language-independent semantic asso-1057

ciations internalised during pre-training. Further1058

work is needed to determine whether these asso-1059

ciations arise from shared conceptual metaphors1060

(e.g., "rock" as strength) or multilingual embed-1061

ding alignments.1062
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