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Abstract
Rapid cross-domain adaptation of learned poli-
cies is a key enabler for efficient robot deploy-
ment to new environments. Especially sim-to-real
transfer remains a core challenge in reinforcement
learning (RL), due to the unavoidable difference
in world dynamics. While naı̈ve policy updates
with fine-tuning are unstable due to noisy gradi-
ents under domain shifts, other methods typically
learn a new policy from scratch, relying on data
points from the source and target domains using
selective data sharing or reward shaping. How-
ever, neither approach is suitable for time-efficient
policy adaptation or adaptation without access to
an efficient simulator during deployment. On the
other hand, we propose a value conditioned policy
fine tuning that leverages the existing Q-function
to estimate trust regions for a stable policy update.
In practice, this can be achieved simply by com-
bining gradients from the pre-trained and current
Q-functions. We conduct extensive experiments
on the MuJoCo dynamics adaptation benchmark
for online adaptation, demonstrating competitive
performance compared to existing state-of-the-art
methods with over 3.5x times faster runtime.

1. Introduction
Building systems that learn to perform tasks autonomously
has long been a goal in machine learning, robotics, computer
vision, and natural language processing. Reinforcement
learning (RL) has experienced immense success regarding
its applicability to wide range of fields, evolving from solv-
ing simple Markov Decision Processes with well-defined
state and action spaces (e.g., tabular RL (Howard, 1960))
to tackling complex, open-world tasks such as autonomous
driving, intricate manipulation with world models (Guan
et al., 2024), and even training advanced reasoning models
such as Deepseek-R1 (Guo et al., 2025).

However, deploying RL efficiently in real-world scenar-
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ios requires rapid adaptation to unforeseen changes in the
environment. For example, in object manipulation tasks,
adaptation may be necessary due to changes in hardware
structure (e.g., the number of fingers in a robotic gripper)
or object properties (e.g., weight or friction). While adapta-
tion to appearance variations has been widely studied (Finn
et al., 2017; Yang et al., 2024; Hansen et al., 2020b), rapid
adaptation to out-of-distribution physics remains an active
area of research (Eysenbach et al., 2020; Xu et al., 2023;
Lyu et al., 2024). Recent approaches frame cross-domain
adaptation of dynamics and morphology as a hybrid RL
problem, where policies are trained jointly on data from
both the source and target domains. We refer the readers
to the Appendix Section B for a further study of related
works literature. However, these methods require extensive
training before they can be effectively deployed in the target
domain, limiting their real-world practicality.

Our approach, instead, is formulated as a trust-region-based
constraint optimization objective, which aims to conserva-
tively update the policy, by the agreement of gradients of
source and target domain Q-functions. Initially, it prioritizes
the source gradients when the target Q-function gradients
are noisy, then gradually shifts more weight toward the tar-
get as learning progresses and the target gradients become
more reliable. Hence, our method avoids the need of re-
training from scratch, by applying soft constraints on the
learning process (i.e. restricting the policy updates), that
typically are needed to avoid noisy policy updates. We
evaluate our approach on established dynamics variations
and morphological adaptation benchmarks from (Lyu et al.,
2024; Xu et al., 2023), and we show results for online and
offline learning from the source domain. We compare our
formulation with the state-of-the-art, such as reward shap-
ing, importance sampling, filtering-based cross-adaptation
approaches and fine tuning, and obtain competitive perfor-
mance while having 3.5× faster runtime for adaptation as
compared to the state-of-the-art.

Our contributions can be summarized as follows: We for-
mulate cross-domain fine-tuning of RL policies as a trust-
region-based constrained optimization problem, enabling
conservative policy updates that mitigate the impact of noisy
gradients. Through extensive experiments across diverse
environments with dynamic shifts in both offline and online
settings, we demonstrate that fine-tuning across domains can
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achieve competitive performance while providing a 3.5×
speed-up compared to state-of-the-art approaches that re-
quire full policy retraining.

2. Preliminaries
The reinforcement learning (RL) problem can be formulated
as a Markov Decision Process (MDP), which can be spec-
ified by M = (S,A, P, r, γ), where S is the state space,
A is the action space, P denotes the transition dynamics,
r : S × A → R is the scalar reward signal, and γ ∈ [0, 1)
is the discount factor. The objective of RL is to find a policy
π(a|s;ϕ) that maximize the discounted cumulative return∑∞

t=0 γ
tr(st, at).

Similar to (Lyu et al., 2024), we define source domain by
MDP Msrc = (S,A, Psrc, r, γ) and a target domain us-
ing MDPMtar = (S,A, Ptar, r, γ), hence we assume that
state space and action space is shared, while only tran-
sition dynamics differ. We further assume that rewards
are bounded by a maximum rmax such that |r(s, a)| ≤
rmax,∀s, a ∈ S,A. We assume access to an expert
policy parameterized by (ϕ∗) pre-trained in source do-
main (π∗

src(a|s;ϕ∗)) along with its action-value function
Q∗

src(s, a; θ
∗) parameterized by θ∗ and replay buffer Dsrc

are available. Following PAR (Lyu et al., 2024), we
specify the normalized probability that a policy (π) en-
counters for state-action pair (s, a) in a domain M by
ρM(s, a) := (1 − γ)

∑∞
t=0 γ

tPπ
M,t(st)π(at|st), where

Pπ
M,t(st) is the probability that the policy π encounters

the state s at timestep t in the domainM.

3. DAFT: Domain Adaptive Fine-Tuning
Previous methods (Niu et al., 2022; Xu et al., 2023; Lyu
et al., 2024) formulate cross-domain adaptation as a max-
entropy RL conditioned on assuming unlimited access to the
source domain for co-training policy in source and target do-
main. This requires on-policy exploration in source domain
to collect transitions(s, a, r, s′), from state s to next-state s′

through action a obtaining reward r, that are similar to tran-
sitions in target domain. While such approaches are sample
efficient in target domain they still require large amount of
online training in source domain to collect similar transi-
tions, resulting in much longer compute time for adaptation,
which reduces their practicality especially in case of policy
deployed in real-world. Furthermore, every time when a do-
main gap is encountered, re-training is required for adapting
to the new domain. In our work, we ask: can we formulate
domain adaptation as fine tuning such that we can exploit
the pre-trained policy without retraining from scratch?
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Figure 1. Illustration of how KL-penalized optimization (Equation
2) corrects the gradient direction during fine tuning from domain
Msrc to Mtar with goal states as s∗src and s∗tar . Consider three
states at s1, s2, s3 collected by expert policy (πsrc) in source do-
main. When the Q-function of policy is imperfect, for example,
it is still learning, the KL-penalty β prefers the gradient direc-
tion ∇Q∗

src over ∇Qtar. While after a few iterations, when the
Q-function is confident, for instance, if var(Qtar(s3)) is low, KL-
penalty β prefers the gradient direction ∇Qtar.

3.1. Problem formulation

In case of naı̈vely implemented fine-tuning of actor-critic
approaches in a target domain, which is different from
source domain, previously learned policy and Q-functions
pre-trained under source domain needs to be unlearned be-
fore learning the new policy under target domain. Since, the
Q-function needs to be re-trained in target domain, and the
initial updates of the Q-function are noisy, which in-turn
could lead to generating out-of-training-distribution actions.
As a result, large number of interactions are required to
correct the behavior of the policy, that deteriorates sample
efficiency.

Intuition: The core idea of our approach is that when the
Q-function in the target domain (Qtar) is noisy (still learn-
ing), the policy should take conservative actions that remain
within the support of the expert Q-function (Q∗

src) from
the source domain. To achieve this, we formulate domain-
adaptive fine-tuning as a constrained optimization problem
(see Equation 1), where the constraint ensures that the policy
does not deviate significantly from the expert Q-function
(Q∗

src) on source data. The KL trust region (ϵ) regulates
the extent of deviation allowed from the expert Q-function
(Q∗

src) and can be dynamically adjusted based on the confi-
dence of the Q-function (Qtar) in the target domain.

In practice, we enforce this constraint using a soft KL
penalty (β) (see Equation 2), which simplifies the optimiza-
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tion by selecting β that balances the gradients of Q-functions
from the source and target domains, as illustrated in Figure
1. This intuition can be formally expressed by modifying
the maximum-entropy formulation of SAC (Haarnoja et al.,
2018), with our changes highlighted in blue (Overall algo-
rithm is presented in appendix section E).

π∗
tar =

argmax
π

Eat∼π, s′∼ρπ
Mtar

[∑
t

r(st, at) + αHπ(·|st)

]

s.t. Eρπ
Msrc

[
DKL

(
π(·|s′) || exp(Q

∗
src(s

′, π(·|s′)))
Z∗
src(s

′, π(·|s′))

)]
≤ ϵ.

(1)

Where, the Q∗
src(·, ·) is the action-value (Q) functions of

expert policy (π∗
src) pre-trained in source domain, ϵ is the

radius of the trust region and Z∗
src is a partition function

that normalizes the Q∗
src(·, ·).

This formulation allows the functional behavior captured
by Q-function of policy to fine tune gradually from expert
policy in target domain by relaxing the trust region ϵ. Note
that we condition the value function and not the behavioral
policy itself i.e. we match the values and not state between
source and target domain. This is advantageous when the
dynamics gap between source and target domain is large.
Moreover, the formulation does not require on-policy ex-
ploration in simulation assuming a pre-trained expert value
function (Q∗) and replay buffer (Dsrc) of data collected by
expert policy is sufficient. Furthermore, a tight trust region
initially (small ϵ) provides a strong bias towards adapting
actions that generate rewards similar to that generated by
expert policy. While, a relaxation of trust-region allows
the value in the target domain to dominate, and the en-
tropy encourages exploration in target domain. We base
our approach on soft actor critic (Haarnoja et al., 2018) and
specifically, we modify the policy update equation from
(Haarnoja et al., 2018) by adding a KL-constraint from
Equation 1 applied to the stochastic actor. Following SAC,
we can rewrite the objective from Equation 1 in the form of
simple multi-Q gradient using a KL-multiplier (β) which is
a hyper-parameter as is gradually decayed over time based
on exponential schedule. The resulting policy update rule
can written as (changes from SAC are marked in blue):

∇ϕJπ(ϕ) =

E(st,at)∼Dtar [∇ϕ log πϕ(at | st)−∇ϕQθ(st, πϕ(at|st))]
+βE(st,at)∼Dsrc [∇ϕ log πϕ(at | st)
−∇ϕ Q∗

θ∗(st, πϕ(at|st))]. (2)

4. Experiments
For evaluating our approach when the source domain is on-
line (i.e. training is performed using online RL). We follow
the domain adaptation benchmark used by simulation based
domain adaptation approaches (Lyu et al., 2024) and (Xu
et al., 2023). Four Mujoco environments (half-cheetah, hop-
per, walker, ant) are selected as source domains from Ope-
nAI Gym (Brockman, 2016). Target domain is simulated by
modifying their dynamics directly, and indirectly through
changed morphology creating eight evaluation scenarios,
two for each environment. The dynamics are modified by
limiting the rotation angle range of specific joints to simu-
late broken joint. While, morphology shifts are simulated by
modifying the size of specific limbs ensuring the state/action
space consistent across domains are retained.

We compare our approach (DAFT) to following simulator-
based and fine-tuning-based approaches: (i) Simulator
based: VGDF (Xu et al., 2023), a recent state-of-the-art
method that filters transitions in the source domain that
share similar value estimates as those in the target domain;
PAR (Lyu et al., 2024) utilizes reward shaping by penalizing
source domain rewards based on dynamics representation
mis-match. Both these approaches co-train the policy from
scratch on 106 steps in source domain (simulator) and 105

steps in target domain. (ii) Fine-tuning based: Naı̈ve Fine-
Tuning (FT) trains a SAC policy (Haarnoja et al., 2018) in
source domain for 2 million steps and continues training in
target domain for 105 steps. Simulator Guided Fine Tuning
(SGFT) (Yin et al., 2024) is a concurrent work that uses
reward shaping to add expected simulation reward to target
reward. Similar to FT, we train SAC for 2 million steps in
source domain and perform adaptation by training SGFT for
105 steps. We run all algorithms with the same four random
seeds. The implementation details are given in Appendix
(Section A). We do not compare with DARC (Eysenbach
et al., 2020) since it has already been outperformed by PAR
and VGDF.

The evaluation results are shown in Figure 2. It can be
seen that our approach (DAFT) outperforms FT and SGFT
in all the scenarios while being competitive to simulator
based approaches (PAR and VGDF). Note, all three (PAR,
DAFT and VGDF) are clear winner in 2 environments and
are competitive in the other 2 environments. FT does not
incorporate any difference when switching from source to
target domain, thus due to initial noisy gradients, it needs
to unlearn then again relearn the policy. On the contrary,
SGFT adds estimated simulation rewards to existing target
rewards which results in incorrect updates. While, PAR and
VGDF are competitive, they require retraining for adaptation
and hence take more time for training as shown in Figure
3. Where, the dynamics mis-match is smaller PAR wins
since it is easier to match actions (representations of next
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Figure 2. Adaptation performance comparison when the source domain is online. The curves depict the test performance of each algorithm
in the target domain under kinematic shifts and morphology shifts. The modification to the environment is specified in the parentheses of
the task name. The solid lines are the average returns over 4 different random seeds and the shaded region captures the standard deviation.
DAFT shows superior performance over FT and VGFT in all environments, while remaining competitive with PAR and VGDF, each
winning in 2 scenarios. Note that DAFT is significantly computationally efficient and does not require simulator at test-time adaptation.

states) on the contrary for larger dynamics mismatch it is
crucial to consider the value function. DAFT works better
in morphology adaptations where the horizon is limited.
While, it suffers for longer horizon update tasks such as
hopper, since pre-trained policy requires larger changes.

While we are competitive in terms of performance for adap-
tation, we possess significant advantages in terms of runtime
of adaptation. We benchmark all on Intel(R) Xeon(R) Gold
6226R with single NVIDIA GeForce RTX 3090. Our ap-
proach takes 1.25 hours to finish 105 steps for half-cheetah,
which is over 3.5× faster as compared to PAR, over 8×
faster than VGDF and 1.5× times slower than fine tuning.
This shows that our approach is highly practical, efficient
and no-match for simulator based approaches.

Further results for adaptation when the source domain is
offline and ablation studies are available in the appendix
sections D, C.

5. Conclusion
We propose domain adaptive fine-tuning (DAFT) for cross-
domain policy adaptation. Our approach provides an effec-
tive solution for rapid policy adaptation under domain shift
with dynamics gap by fine-tuning a pre-trained policy with-
out requiring retraining from scratch. By leveraging trust
region updates, we successfully mitigate issues of noisy gra-
dients and ensure stable policy adaptation. Our experiments
on the MuJoCo dynamics adaptation benchmark with on-
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Figure 3. Runtime performance of different methods for 105 steps
for adaptation. DAFT (ours) is over 3.5× faster than PAR and
over 8× times faster than VGDF, while still achieving competitive
performance.

line and offline RL settings show that our proposed method
outperforms existing state-of-the-art techniques, achieving
competitive performance with a significantly faster runtime
and no need for online access to a simulator. DAFT demon-
strates high potential for more efficient and practical adapta-
tion in real-world applications especially in those settings
that require fast update speeds such as continuous control
tasks.

Limitations and future work: Despite its effectiveness,
DAFT has two main limitations: (i) DAFT currently lacks
theoretical guarantees, which we leave for future work, and
(ii) Real-world experiments are not included in this study;
leaving sim-to-real transfer as an open challenge.
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A. Implementation details
Environments: To achieve a fair benchmark we use the environments provided by (Xu et al., 2023; Lyu et al., 2024) without
any modification. We refer readers to PAR (Lyu et al., 2024) for additional details and visualization of the adaptation
environments. We additionally create two environments to evaluate large dynamics changes and motivate the use of Value
function instead of state matching like PAR. Here, we modify the environment by inverting the action applied before
performing any step. This simulates incorrectly connected joint motor. For offline settings we use D4RL benchmark and use
medium dataset as proposed by (Xu et al., 2023).

Baselines: Our primary competitors are PAR (Lyu et al., 2024), VGDF (Xu et al., 2023), FT and SGFT (Yin et al., 2024).
For VGDF and PAR we utilize the code available from official github repository and run the code. We observe that VGDF
results are reproducible, while for PAR authors incorrectly evaluate on training environment in their code. Specifically, in
the main file they generate evaluation environment using deepcopy from source environment. In case of morphological
adaptations environment, the gym API ignores the custom XML file which creates a target environment similar to source
environment. For SGFT, the code is not released yet however their approach is straightforward to implement.

Hyper-parameters: Next we mention the hyper-parameter used for running the evaluation. For online settings we train
SAC in source environment for 2 million steps. We use the default hyper parameters from official repository. For SGFT, FT
and DAFT, the adaptation policy is exact copy of the original policy, we keep rest of the hyper-parameters such as learning
rate, same across the three approaches. For offline training we use CQL (Kumar et al., 2020) as baseline policy. This is used
to extract q-function from offline dataset compensating for Q-overestimation.

In table A, we iterate the hyper-parameters used by us DAFT and SGFT and FT. For PAR and VGDF, we precisely use the
hyper-parameters proposed by the authors in corresponding paper.

Table 1. Hyper-parameter values used in experiments for (DAFT,FT,SGFT).

Hyper-parameter Value

online experiments
Actor network (256, 256)
Critic network (256, 256)
Batch size 128
Learning rate 3× 10−4

Optimizer Adam
Discount factor 0.99
Replay buffer size 106

Warmup steps 104

Nonlinearity ReLU
Target update rate 5× 10−3

Temperature coefficient 0.2
Maximum log std 2
Minimum log std -20
kappa 0.99 only used for DAFT

offline experiments
policy eval start 40000
num epochs (pretraining for CQL) 2000
layer size 256
max path length 1000
batch size 256 (for pretraining), 128 for adaptation

B. Related work
Domain Adaptation in RL
Reinforcement learning policies can learn to accomplish tasks with minimal supervision but are highly sample inefficient.
To address this, numerous approaches have been developed for rapid online adaptation, enabling policies to be pre-trained in
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simulation and transferred to the real world. However, the inherent domain gap between simulation and reality remains a
fundamental challenge. Several factors contributing to this gap have been studied in the literature, including discrepancies in
state space and perception (Gamrian & Goldberg, 2019; Hansen et al., 2020a), variations in system dynamics (Eysenbach
et al., 2020; Liu et al., 2022a; Xu et al., 2023; Niu et al., 2022; Lyu et al., 2024), and differences in the action space of the
embodiment (Liu et al., 2022b; Zhang et al., 2020). In this work, we specifically focus on the gap arising from differences in
dynamics and state transitions.

Domain randomization was the focus of early works that try to learn a policy robust to domain shifts (Mehta et al., 2020;
Peng et al., 2018). Others have proposed to predict privileged information (e.g. dynamics parameters (Kumar et al., 2021))
of the simulator for faster adaptation. However, these approaches fail in the the out-of-training-distribution generalization.
Some recent methods model the adaptation of dynamics as system identification (Memmel et al., 2024; Xu et al., 2022) or
assume access to a differentiable simulator and regress for target dynamics parameters from rollouts (Freeman et al., 2021;
Hu et al., 2019). Here, once the dynamic parameters are identified, policies can be learned in the simulator with matched
target dynamics. We note however, having a differentiable simulator is not always possible in complex manipulation tasks.

(Eysenbach et al., 2020) investigate dynamics adaptation with limited online interaction in the target domain while assuming
access to a source domain with sufficient data. Specifically, this setting leverages a source domain simulator, and several
approaches have been proposed to address the domain gap (Liu et al., 2022a; Xu et al., 2023; Niu et al., 2022; Lyu et al.,
2024). These methods mitigate domain discrepancies through reward shaping (Eysenbach et al., 2020; Liu et al., 2022a; Lyu
et al., 2024), importance re-weighting of the action-value function (Niu et al., 2022), or selective augmentation of simulator
data from the source domain (Xu et al., 2023; Wen et al., 2024). DARC (Eysenbach et al., 2020) employs domain classifiers
to quantify domain discrepancy, using this measure to penalize rewards obtained from the source domain. (Liu et al., 2022a)
extend this idea to an offline setting, while PAR (Lyu et al., 2024) penalizes rewards based on representation mismatch.
H2O (Niu et al., 2022) applies importance re-weighting, leveraging domain classifiers to refine action-value estimation.
Additionally, (Xu et al., 2023) selectively transfers transitions from the source domain by evaluating differences in the value
function.

Offline RL and Fine-tuning in the context of RL
Simulators serve as cost-effective proxies for training sample-inefficient reinforcement learning policies. A common
approach involves fine-tuning a pre-trained simulation policy in the real world (Smith et al., 2022). In contrast, offline
reinforcement learning methods leverage experience replay datasets to train policies entirely offline, without simulation
(Kumar et al., 2020; Kostrikov et al., 2021). These methods demonstrate real-world policy deployment by initializing
policies and Q-functions from offline data and continuing training with standard reinforcement learning techniques. However,
they do not account for discrepancies between the source and target domains. Recent work has explored fine-tuning in
model-based offline reinforcement learning (Feng et al., 2023; Rafailov et al., 2023), but similarly does not address domain
mismatch. The closest related work to ours is a concurrent approach (Yin et al., 2024), which employs a simulator-guided
fine-tuning strategy for sim-to-real transfer by augmenting the reward with the expected simulator reward. However, like
other fine-tuning methods, it does not explicitly handle domain mismatch, leading to suboptimal performance in the presence
of domain gaps, as demonstrated by our experiments. In contrast, we show that conservative updates enable efficient
fine-tuning across domain discrepancies.

C. Results with Offline Source Domain
We next compare our approach when the source domain is offline dataset, this is slightly dis-advantageous to our approach
since the assumption of sufficient coverage of expert policy breaks. Following the benchmark proposed by (Xu et al.,
2023), we utilize the D4RL medium datasets (where the dataset is the replay buffer of a medium policy) (Fu et al., 2020) of
four environments (i.e., half-cheetah, walker, hopper, ant) for evaluation. Modifications in dynamics and morphology are
performed to create 8 evaluation scenarios as similar to online evaluation 4.

As a baseline we consider similar to online section (i) co-training based approaches VGDF+BC and PAR+BC and H2O.
while, VGDF+BC and PAR+BC require an additional behavior cloning term to compensate for overestimation of Q-function
which arises in offline domain. This limits the performance bounded by offline policy when dynamics mis-match is large,
and could lead to instability while learning policy. Furthermore, these approaches including H2O require retraining from
scratch which again limits practicality. In terms of fine tuning we compare with CQL+FT, where an offline CQL policy
(Kumar et al., 2020) is trained in source domain for 200 epochs followed by fine-tuning using SAC in target domain for 105

steps. For fair comparison with CQL+FT, we also fine-tune DAFT from pre-trained CQL policy. Following (Lyu et al.,
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Task Name CQL-0 CQL+SAC H2O VGDF+BC PAR+BC DAFT
Half-cheetah (broken back thigh) 1128±156 3967±204 5450±194 4834±250 5699±276 5600±133
Half-cheetah (no thighs) 361±29 1184±211 2863±209 3910±160 1843±85 4482±96
Hopper (broken joints) 155±19 498±73 2467±323 2785±75 2011±1306 1435±953
Hopper (big head) 399±5 496±53 1451±480 3060±60 495±104 480±160
Walker (broken right foot) 1453±412 1877±1040 3309±418 3000±388 3811±122 3324±462
Walker (no right thigh) 975±131 1262±363 2225±546 3293±306 2617±842 3475±415
Ant (broken hips) 1230±99 -1814±431 2704±253 1713±366 3303±175 2177±1232
Ant (short feet) 1839±137 -807±255 3892±85 3120±469 4925±138 1518±885

Table 2. Performance comparison when the source domain is offline, i.e., only static source domain datasets are available. We report
results (episode returns) on medium dataset from D4RL (Fu et al., 2020). The results are averaged over 4 varied random seeds. For DAFT,
we train CQL from the dataset to obtain the Q-function which is fine-tuned in target domain. Note this more challenging for DAFT since,
the baseline policy is not expert and state space is less explored. Still we are competitive with VDGF and PAR and clearly outperform fine
tuning. Furthermore, VGDF and PAR require additional behavioral cloning (BC) to adjust for overestimation of Q-function in offline RL.

2024) we further add CQL-0 as baseline, where CQL evaluated in target domain in zero-shot manner. Note, we train PAR
and SGFT, other results are taken from PAR. PAR and DAFT are trained in target domain for 105 time-steps.

We present the evaluation results in Table 2. It can be seen that naı̈ve fine-tuning from an offline policy performs significantly
worse, while DAFT using conservative updates shows competitive performance with PAR and VGDF even though the
assumption of well explored expert policy is invalidated. Similar to online evaluation, here again we can observe that for the
environments that require long horizon knowledge such hopper, the performance of DAFT is limited. Nevertheless, for
morphological changes, DAFT outperforms other baselines. Overall, DAFT shows competitive performance being faster.

D. Ablation studies
Multi-objective vs reward shaping vs single critic
In this section we compare our proposed formulation of learning stochastic actor from (Equation 1) with learning a single
critic (Equation 3) and reward shaping (where the source reward is penalized by difference in Q-function of source and
target, i.e. r = r − ∥Qtar(s, a) − Q∗

src(s, a)∥)∀(s, a, r) ∈ Dtar. For DAFT and single critic formulation we use same
β-schedule. The comparison results are shown in Figure 4. Note that, we consider fine-tuning setting (and not retraining
from scratch) similar to the online evaluation (Section 4), where all the approaches use same expert Q-function (Q∗

src(s, a))
and are initialized from same expert SAC policy trained in source environment for 2 million steps. It can be seen that
our proposed formulation outperforms the other formulations in all the environments, which justifies the selection of the
proposed stochastic actor formulation.

Parameter impact study As mentioned in Section 3, for implementation of the approach, we select a horizon (H) and
compute an averaged gradients of Q∗

src for this horizon, which stabilizes the gradient for few tasks such as walker and helps
in faster adaptation of the policy, on other tasks it does not show much influence. Here we select two environment, walker
and half-cheetah and select horizon. It can be seen from Figure 5 that for half-cheetah the effect of horizon is negligible,
while for walker, a longer horizon length=20 performs best. We consider horizon length as tuning parameter and empirically
select 5 for all scenarios.
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Figure 4. Comparison of alternative formulations, DAFT vs single critic vs reward shaping for cross-domain fine tuning of SAC policy
where the source domain is online. All approaches are fine-tuned for 105 steps. The stochastic actor formulation (Equation 2) outperforms
single critic (Equation 3) and reward reshaping in all environments.
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Figure 5. Effect of changing horizon on Q-values and episode returns. (left) Return values in the environment and (right) Q-values for
different horizons (h=1,5,20). For fewer tasks like walker, longer horizon reduces the variance while for other task such as half-cheetah it
does not impact.

E. Overall Algorithm

Algorithm 1 Domain Adaptive Fine Tuning (DAFT)
Input: Pretrained policy π∗

src, expert action-value function Q∗
src, and replay buffer Dsrc

Output: Fine-tuned policy in target domain πtar
Initialize policy from expert πtar ← π∗

src, ensemble of Q-functions Qi ← Qsrc +N (0, ω), and replay buffer Dtar ← ∅
for each iteration k do

for time step t = 1, . . . , T do
Rollout policy in target environmentMtar and collect transition (star, atar, rtar, s

′
tar)

Add transition to target dataset Dtar ← Dtar ∪ {(star, atar, rtar, s
′
tar)}

Sample a mini-batch Btar from Dtar
Sample a mini-batch Bsrc from Dsrc
Update target Q-functions using SAC policy iteration
Estimate the β
Update policy πtar using Equation 2;
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Connection with VGDF and H2O
We applied the KL-penalty directly to the actor, where the actor tries to balance the gradients of the two critics (refer
Equation 2). Alternatively, similar penalty can be applied to critic for learning a single critic, which can be written in the
form of following Q-learning objective:

JQ(θ) = E(s,a)∼Dtar

[
1
2

(
Qθ(st, at)− Q̂θ(s, a)

)2
]

+ β(s, a)E(s,a)∼Dsim

[
1
2

(
Qθ(st, at)− Q̂θ(s, a)

)2
]
. (3)

The policy can then be learned simply applying SAC-policy-update and using Q from aforementioned objective. Here,
we can estimate β from importance sampling using domain classifier, that results in H2O approach. Alternatively, we
can estimate beta through a hard filter resulting in formulation proposed by VGDF. However, updating Q-function using
Equation 3, for adaption can result in noisy or conflicting gradient updates resulting in sub-optimal performance as shown in
our experiments in Section D Figure 4.
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