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Abstract

In this work, we study the weighted empirical risk minimization (weighted ERM) schema, in
which an additional data-dependent weight function is incorporated when the empirical risk
function is being minimized. We show that under a general “balanceable” Bernstein condition,
one can design a weighted ERM estimator to achieve superior performance in certain sub-
regions over the one obtained from standard ERM, and the superiority manifests itself
through a data-dependent constant term in the error bound. These sub-regions correspond
to large-margin ones in classification settings and low-variance ones in heteroscedastic
regression settings, respectively. Our findings are supported by evidence from synthetic data
experiments.

1 Introduction

The empirical risk minimization (ERM) schema plays an important role in tackling modern machine learning
tasks. Given a set of samples Sn ≜ {zi ≜ (xi, yi)}ni=1 that are often assumed i.i.d., ERM estimates the
target hypothesis f within some hypothesis class F by minimizing the empirical risk based on Sn, that is,
f̂ ≜ arg minf∈F

1
n

∑
zi∈Sn

ℓ(f, zi), where ℓ is some loss function. The method is widely adopted due to its
ease of use and generalization power.

Let z ≜ (x, y) and f∗ ≜ arg minf∈F E[ℓ(f, z)], the excess risk is defined as:

Excess Risk ≜ Eℓ(f̂ ,z) − Eℓ(f∗, z).

Under suitable conditions, ERM achieves low excess risk with high probability. Specifically, it is known to
achieve a minimax optimal rate of O(n−1/2) for learning tasks under general settings (Vapnik & Chervonenkis,
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1974; Talagrand, 1994; Boucheron et al., 2005), and an O(n−1) fast rate in more restrictive ones (Koltchinskii
& Panchenko, 2000; Mendelson, 2002a; Bartlett et al., 2005; Boucheron et al., 2005), where matching lower
bounds have also been established (Massart & Nédélec, 2006; Zhivotovskiy & Hanneke, 2018).

More recently, alternative risk minimization schema that outperforms ERM on certain sub-regions has
been proposed in several works. Notably, Namkoong & Duchi (2017) introduces a distributionally robust
optimization schema that is provably superior to ERM in scenarios where ERM is susceptible to noise; e.g.,
when the loss is piecewise linear and the thus under/over-estimation of the slope has a sizable impact to
the solution. In Xu & Zeevi (2024), a carefully designed moment penalization function is introduced and
it achieves a superior rate than ERM within the large-variance hypothesis class. Bousquet & Zhivotovskiy
(2021) introduces a rejection option to achieve fast rate of convergence in the absence of margin conditions;
note that these conditions are typically required for establishing fast rate for ERM in settings absent of the
rejection option. The aforementioned studies point to different directions of improvement over the standard
ERM.

In this work, we leverage the problem-dependent structure to improve upon ERM, which provably outperforms
in “high confidence” regions. Specifically, instead of minimizing directly the empirical loss, a re-weighted
version based on some weight function ω(·) is considered, which leads to an estimator that minimizes the
weighted empirical risk of the following form:

f̂wERM ≜ arg minf∈F
1
n

∑n

i=1
ω(xi)ℓ(f ; zi). (1)

We show that such an estimator improves the conditional excessive risk, given by

Ez

(
ℓ(f̂ ; z) − ℓ(f∗; z)|{ω(x) > c}

)
,

with the conditioning region characterized by a level set associated with the data-dependent weight. Such an
improvement can be of interest to practitioners in settings akin to those considered in the selective learning
literature, where the focus is on model outcomes associated with selected sub-regions.

Our approach is inspired by an analysis of a Bernstein-type condition of the form Var[h(z)] ≤ BE[h(z)] for
all h in some function class H (e.g., Bartlett & Mendelson, 2006), which is often required for local Rademacher
complexity-based analysis (Bartlett et al., 2005). In particular, one way to derive the O(n−1) fast rate is
to leverage some variance-aware inequalities such as the Bernstein inequality (Boucheron et al., 2005) and
Talagrand’s inequality (Talagrand, 1994; Bartlett et al., 2005), which gives rise to intermediate results of the
form:

Ez[ℓ(f̂ ,z) − ℓ(f∗, z)] ≤ 1
n

∑
zi∈Sn

{ℓ(f̂ ,zi) − ℓ(f∗, zi)} + a

√
Var[ℓ(f̂ ,z) − ℓ(f∗, z)]

n
+ b

n
, (2)

for some problem-dependent constant a and b. Under a Bernstein-type condition, the variance term on the
right-hand side of inequality (2) is replaced by BEz[ℓ(f̂ ,z) − ℓ(f∗, z)]. The multiplier B is usually chosen in a
conservative way; for example, it is chosen as the inverse of the minimum margin present in the Massart noise
condition (Massart & Nédélec, 2006) for classification problems or the uniform upper bound of regression loss
in bounded regression settings (Boucheron et al., 2005; Bartlett et al., 2005).

On the other hand, a vanilla conservative choice of B in Var[h] ≤ BE[h] is not necessarily optimal. Under the
weighted ERM schema where a carefully designed weighted empirical risk in (1) is considered, the Bernstein
condition could be “balanced” as: Var[ω(x)h(x)] ≤ E[ω(x)h(x)]. Crucially, the constant B can be eliminated,
which subsequently leads to a tighter bound (up to some problem-dependent constant) in excess risk in
certain sub-regions. Specifically, within the context of classification and heteroscedastic bounded regression
settings, these regions can be characterized as the large-margin and the low-variance ones, respectively. More
generally, the conclusion is applicable to learning tasks whose loss function satisfies a Balanceable Bernstein
Condition when the weight function can be designed accordingly.

Contribution The major contribution of this paper can be summarized as follows.
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• We consider the weighted ERM schema and investigate its theoretical properties; in particular, we
show that it admits a tighter bound on excessive risk up to some problem-dependent constant,
conditional on specific sub-regions. The enhanced conditional excessive risk bound also implies an
improved unconditional excessive risk bound, provided that the noise satisfies certain conditions. See
Table 1 for a comparison.

• Empirically, we demonstrate that with a properly designed weight function, one can achieve superior
performance in selected regions, respectively for heteroscedastic regression and classification tasks.

• The proofs of the theorems rely on an alternative version of Theorem 3.3 from Bartlett et al. (2005),
which is based on a relaxed Bernstein-type condition that allows for an ε additive error. The
exact arguments and strategies adopted are technical tools that are of independent interest to the
community.

• As a by-product, the O(1/n) fast rate for learning the variance function σ2(x) derived in the regression
example (Theorem 4.6) improves over existing results in Zhang et al. (2023) that has an O(1/

√
n)

rate.

ERM Weighted-ERM
Classification
risk function ℓ(f ; z) ≜ 1{f(x) ̸= y} ω · ℓ(f ; z) ≜ ω̂(x)1{f(x) ̸= y}
general Setting Ez[ℓ(f̂ ; z) − ℓ(f∗; z)] ≤ ε

γ ⋄ Ez[ℓ(f̂ ; z) − ℓ(f∗; z)] ≤ ε
γ ◦

large margin region
R ≜ {ω∗(x) > c}

Ez[ℓ(f̂ ; z) − ℓ(f∗; z)|R] ≤ ε
γ

1
P(R) ⋄ Ez[ℓ(f̂ ; z) − ℓ(f∗; z)|R] ≤ ε

c
1

P(R) ◦

low-margin diminishing
(1 − P(R))c2 ≤ ε

Ez[ℓ(f̂ ; z) − ℓ(f∗; z)] ≤ ε
γ ⋄ Ez[ℓ(f̂ ; z) − ℓ(f∗; z)] ≤ ε

c ◦

Regression
risk function ℓ(f ; z) ≜ (f(x) − y)2 ω · ℓ(f ; z) ≜ (f(x) − y)2/σ̂2(x)
general Setting Ez[ℓ(f̂ ; z) − ℓ(f∗; z)] ≤ ε/γ2 ⋄ Ez[ℓ(f̂ ; z) − ℓ(f∗; z)] ≤ ε/γ2 ◦
low variance region
R ≜ {σ2∗(x) < 1/c}

Ez[ℓ(f̂ ; z) − ℓ(f∗; z)|R] ≤ ε
γ2

1
P(R) ∗ Ez[ℓ(f̂ ; z) − ℓ(f∗; z)|R] ≤ ε

γc
1

P(R) ◦

large-variance diminishing
(1 − P(R))c ≤ ε

Ez[ℓ(f̂ ; z) − ℓ(f∗; z)] ≤ ε
γ2 ∗ Ez[ℓ(f̂ ; z) − ℓ(f∗; z)] ≤ ε

γc ◦

Table 1: Comparison between existing results and ours. Let z ≜ (x, y), ⋄ represents results that are implied by
Massart & Nédélec (2006), where the excessive risk bound is minimax optimal, ∗ represents results that are implied
by Bartlett et al. (2005), ◦ represents results in this work. Throughout the table, all results are derived given sample
size Θ̃( 1

ε
). In classification task, f∗(x) is the Bayes optimal classifier and ω∗(x) is the margin function calculated as

2P[y = f∗(x)|x] − 1. ω̂(x) is the approximated margin and γ represents the minimum margin. For the regression
task, f∗(x) = E[y|x], σ2∗(x) = Var(y|x) and σ̂2(x) is an approximation of σ2∗(x). 1/γ is taken to be the maximum
possible variance. We denote P(·) as the probability mass of a set of events. For the general region, weighted ERM
recovers at least the same rate as ERM. For the large-margin region or low-variance region, weighted ERM improves
ERM by (c/γ) > 1 on the conditional excessive risk bound. In the case of classification we provide a lower bound
construction showing the tightness of the conditional risk (Theorem 4.4). The improved conditional excessive risk
of weighted-ERM also implies an improved original excessive risk under low-margin or large-variance diminishing
condition. To clarify, it is not necessary for the value of c to be ‘large.’ Instead, having c as a constant, such as 0.1, is
sufficient, especially when γ approaches a vanishing value, e.g., when γ is of order

√
ε.

2 Related Work

In this section, we provide a brief literature review of related work. On the theory front, we review some
representative results in standard ERM, under both the slow rate and the fast rate regimes; on the methodology
front, we establish connections to existing literature where Gaussian maximum likelihood estimation (MLE)
is performed in heteroscedastic regression settings, and note that MLE coincides with weighted ERM when
ℓ2 loss is used with the inverse variance function being the weight. Finally, given the connection between
the results established in this work and those in selective learning, we also briefly review results for the case
where a rejection option is allowed.
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Empirical risk minimization The combination of VC-tool and Rademacher complexity analysis (Vapnik
& Chervonenkis, 1974; Koltchinskii & Panchenko, 2000; Mendelson, 2002b; Boucheron et al., 2005; Bartlett
et al., 2005) constitutes one of the most widely-adopted frameworks in deriving risk bounds for ERM.
Under the “slow rate” regime, its generalization error bound is at the rate of O(n−1/2), and such rate can be
established using a uniform convergence argument (Vapnik & Chervonenkis, 1974; Talagrand, 1994; Boucheron
et al., 2005) over an “unrestricted” function class. On the other hand, fast rate can be achieved if one moves
away from an “arbitrary” hypothesis (Mendelson, 2002a; Boucheron et al., 2005; Bartlett et al., 2005). By
restricting to a subset of the function class that has small variance and considering the Rademacher averages
associated with this small subset (i.e., “localized”) as a complexity term, sharper bounds can be obtained
vis-à-vis the case where global averages are used. In particular, under a Bernstein-type condition (Massart &
Nédélec, 2006), fast rate up to O(n−1) can be obtained in well-specified (or realizable, equivalently) settings
where the optimal model lies within the hypothesis class. For binary classification, this condition can be
satisfied by imposing Massart or Tsybakov noise condition (Mammen & Tsybakov, 1999; Tsybakov, 2004;
Massart & Nédélec, 2006). The same fast rate can be obtained for bounded regression (Bartlett et al., 2005;
Massart & Nédélec, 2006) or learning problems whose loss function satisfies strong convexity and Lipschitz
condition (Klochkov & Zhivotovskiy, 2021), or when it is self-concordant (Bach, 2010) or exp-concave (Koren
& Levy, 2015).

Maximum likelihood estimation and weighted ERM The weighted empirical risk minimization has
been adopted to tackle several challenges in machine learning including distribution shifting (Cortes et al.,
2008; 2010; Ge et al., 2024), censored observation (Ausset et al., 2022) and reinforcement learning (Jiang &
Li, 2016; Xie et al., 2019; Min et al., 2021). In particular, in heteroscedastic regression settings where the
variance depends on the input, a negative Gaussian likelihood-based formulation coincides with weighted
ERM, when the latter uses ℓ2 loss and the inverse of the conditional variance as the weight. In particular,
in the view of weighted ERM, samples with higher conditional variance (and potentially more noisy) are
down-weighted and therefore contribute less to the overall empirical risk. The conditional variance can be
estimated using either parametric models (Daye et al., 2012; Zhang et al., 2023) or kernel methods (Cawley
et al., 2004). Despite the wide applicability of such a formulation (Kendall & Gal, 2017; Lakshminarayanan
et al., 2017; Shah et al., 2022; Seitzer et al., 2022), little has been done in comparing the sample efficiency
between estimators based on the weighted and those of the standard ERM. In this work, we aim to fill this
gap, by explicitly analyzing the sample efficiency in the weighted ERM case and juxtaposing its performance
to that in the standard ERM.

Reject option and selective risk Along a line of work that slightly deviates from the ERM is the learning
with rejection option; e.g., Chow’s reject option model (Chow, 1970). The model allows one to refrain from
making predictions on “hard” instances at the inference stage with some abstention cost; better precision is
obtained in exchange for lower coverage, and the selective risk is only evaluated on the covered subset. Such
a learning schema has applications in domains such as finance (Pidan & El-Yaniv, 2011) and health care
(Hanczar & Dougherty, 2008), and can be generalized to other tasks (Mozannar & Sontag, 2020). Extensive
work has been done to understand the trade-off between coverage ratio and precision (Herbei & Wegkamp,
2006; Bartlett & Wegkamp, 2008; Yuan & Wegkamp, 2010; El-Yaniv et al., 2010; Cortes et al., 2016), along
with the statistical properties (Bousquet & Zhivotovskiy, 2021; Zhang et al., 2024) associated with the
learning procedure. At the conceptual level, weighted ERM can be viewed as a “soft” counterpart to learning
with the rejection option. In particular, instead of adopting a hard “in-or-out” rule to improve selective risk,
performing weighted ERM can lead to similar benefit in a soft manner, with the weight typically coming from
plug-in estimates (Herbei & Wegkamp, 2006; Bartlett & Wegkamp, 2008; Franc et al., 2023). In practice, the
weight can be the estimated margin or the inverse variance function, in classification and regression settings,
respectively.

3 A Road Map

Notation We denote vectors by bold-faced letters (e.g., x) and scalar variables by lower-case regular
ones (e.g., y). Let (X ,P,B) be a probability space, where X denotes the sample space, P the probability
measure and B the Borel σ-field. The expectation with respect to the probability distribution of a random
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vector x ∈ X is denoted by Ex[·]; the subscript is omitted whenever there is no ambiguity in the respective
context. For a random vector z ≜ (x, y) defined on the product sample space Z ≜ X × Y (equipped with
the corresponding Borel σ-field), its probability measure is denoted by P̄. We use z ∼ D to denote that z is
sampled from data generative process (DGP) D. Throughout the remainder of this manuscript, we use xi
with a subscript i to denote the ith random sample drawn from X ; yi and zi are analogously defined. We
also denote W : X 7→ [0, c1] as a hypothesis classes with finite peudo-dimension dP < ∞. Finally, we use Θ̃(·)
and Õ(·) to denote counterparts of the standard Θ(·), O(·) notation while suppressing the poly-logarithmic
factors; the notation f ≳ g means f ≥ cg for some universal constant c, and ≲ is analogously defined. We
say g ≂ f if cg ≤ f ≤ c̄g for some universal constants c̄ and c.

Problem setup Consider a sequence of i.i.d. samples z1:n ≜ {zi = (xi, yi)}ni=1 drawn from sample space
Z, with xi’s being the input and yi’s the output; let f : X 7→ Y, f ∈ F and ℓ be some loss function that is
bounded and Lipschitz. In this study, we focus on analyzing the excess risk of the ERM and the weighted
ERM estimators (see definitions below) on certain sub-regions.
Definition 1 (Empirical risk and the ERM estimator). Given z1:n and f ∈ F , for loss function ℓ : F × Z →
[0, a], we define the empirical loss as

LERM(f ; z1:n) = 1
n

∑n

i=1
ℓ(f ; zi);

the ERM estimator is given by

f̂ERM ≜ arg min
f∈F

LERM = arg min
f∈F

1
n

∑n

i=1
ℓ(f ; zi). (3)

Definition 2 (Weighted empirical risk and the weighted ERM estimator). Given z1:n, f ∈ F and some
weight function ω ∈ W : X 7→ [0, c1], for loss function ℓ : F × Z 7→ [0, a], we define the weighted empirical
loss as

LwERM(f ; z1:n) = 1
n

∑n

i=1
ω(xi)ℓ(f ; zi);

the weighted ERM estimator is correspondingly given in the form of

f̂wERM ≜ arg min
f∈F

LwERM = arg min
f∈F

1
n

∑n

i=1
ω(xi)ℓ(f ; zi). (4)

We provide a brief overview of the main results established in Section 4. As briefly mentioned in Section 1,
under the weighted ERM schema, an improved bound can be derived by encapsulating the weight function
inside the appropriate terms of the Bernstein-type condition, namely,

Var[h] ≤ BE[h]︸ ︷︷ ︸
(vanilla Bernstein-type condition)

→ Var[ω(x)h(x)] ≤ E[ω(x)h(x)]︸ ︷︷ ︸
(balanceble Bernstein condition)

.

Such an “encapsulation” step does not alter the rate of O(n−1) in the risk bound; however, the constant on
which the bound depends will change, which then leads to a tighter bound for selected regions, as manifested
through an improved problem-dependent constant. This selected region is determined by the ratio B/(B′ω(x));
both B and B′ potentially depend on some γ that characterizes the uniform lower or upper bound of the
weight, depending on the setting (classification or regression). Finally, note that a Bernstein-type condition
can be satisfied by imposing some margin condition or boundedness, in classification setting with 0-1 loss and
heteroscedastic regression settings with ℓ2 loss, respectively.

To derive the desired risk bounds, we adopt the following road map and formalize the arguments in Section 4.

• We first establish the risk bounds of the weighted ERM estimator (in Theorem 4.1 for classification
and in Theorem 4.5 for regression, resp.), assuming that the weight function ω̂(x) used in the
estimation is sufficiently close to “true” one ω∗(x). Note that ω(·) coincides with the margin function
in the case of classification and the inverse of the variance function in the case of regression.
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• Subsequently in Theorem 4.3 (for classification) and Theorem 4.6 (for regression), we provide the
risk bound for ω̂(x), which shows that the sample complexity for estimating ω(x) is comparable
to that of learning the f∗(·). This justifies the aforementioned assumption on ω̂, in that such an
assumption can be operationalized without rendering the estimation “harder”.

• Finally, for the classification case, we additionally show that the established conditional excess risk
bounds for the weighted ERM estimator is tight, by providing a lower bound result that matches its
conditional (i.e., in sub-regions) excess risk upper bound. To contrast, the ERM estimator is provably
inferior to the weighted one in terms of the lower bound in such sub-regions, despite of its minimax
optimality in the entire region.
Note that the above result points to the fact that the weight function (i.e., the margin function)
we consider is optimal, as manifested by a minimax optimal conditional excessive risk bound by
adopting such a weight function.

Note that our results point to the possibility of leveraging weighted ERM to achieve superior performance in
certain regions, provided that the weight function is carefully designed and the region is chosen accordingly.
See also results presented in Section 5 based on synthetic data experiments that attests to our theoretical
claims, as well as how an estimate of the weight function can be readily obtained from data, and the weighted
ERM schema be operationalized in two steps.

4 Main Results

Before stating our main results that are applicable to a more general setting, we first present results for
two specific ones, namely, classification under margin condition (Section 4.1) and bounded heteroskedastic
regression (Section 4.2) settings. Our result suggests that weighted ERM can improve the standard ERM
error bound by a problem-dependent constant, in regions with high margin in the former and those with
low variance in the latter. In Section 4.3, we present our main results for a more general setting; specifically,
we show that a similar property for weighted ERM holds, as long as the loss function under consideration
satisfies a “balanceable” Bernstein type condition.

4.1 Classification with/without margin condition

We formalize the classification problem considered in this paper, which largely follows from the general setting
of Massart/benign label noise (Massart & Nédélec, 2006; Hanneke, 2009; Diakonikolas et al., 2019).

Let F ≜ {f : X 7→ {−1, 1}} be a hypothesis class with finite VC-dimension∗ dVC(F) < ∞, G ≜ {η : X 7→
[0, 1]} be a hypothesis class with finite pseudo-dimension† dP (G) < ∞, and W ≜ {ω : X 7→ [γ, 1]} be some
other hypothesis class with some fixed constant 0 ≤ γ ≤ 1.

The data generative process (DGP) for z ≜ (x, y) can be characterized as follows:

x ∈ X ; y|x =
{

1 with probability η∗(x)
−1 with probability 1 − η∗(x)

, where η∗(x) ≜ P(y = 1|x). (5)

For the family of DGP described in (5), η∗(x) captures the conditional probability. The label y can be
equivalently viewed as satisfying y|x ∼ 2Ber(η∗(x)) − 1, where Ber(p) denotes a Bernoulli random variable
with success rate p. Let f∗ be the target hypothesis or the Bayes optimal classifier, defined as

f∗(x) ≜ arg max
c∈{−1,1}

P(y = c|x),

∗The VC dimension of F = {f : X 7→ {−1, 1}} is the largest integer d such that SF (d) = 2, where SF (k) is the value of
the growth function, namely, the largest cardinality {(f(x1), f(x2), ..., f(xk)) : f ∈ F} among all x1, ..., xk ∈ X (Vapnik &
Chervonenkis, 1971).

†The pseudo-dimension of G = {g : X 7→ [l, u]} is the VC-dimension of the hypothesis class H = {h : X × R 7→ {−1, 1} | h(x, t) =
sign(g(x) − t), g ∈ G, t ∈ R, x ∈ X } (Pollard, 1990).
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that is, f∗(x) is the value of c ∈ {−1, 1} that maximizes the conditional probability, which also satisfies
f∗(x) = 21{η∗(x) ≥ 1

2 } − 1. Let ω∗ be the feature-dependent margin function given by ω∗(x) ≜ 2 P(y =
f∗(x)|x) − 1, and note that ω∗(x) ≡ |η∗(x) − 1/2|. Throughout the remainder of this subsection, we consider
the well-specified setting (Massart & Nédélec, 2006; Bousquet & Zhivotovskiy, 2021) by assuming f∗ ∈ F ,
η∗ ∈ G and ω∗ ∈ W.

We choose ℓ(f, z) = 1{f(x) ̸= y} as the loss function and propose to use the margin function ω∗(x) as
the weight to perform a weighted ERM; this leads to a weighted risk of the form ω∗(x)1{f(x) ̸= y}. In
practice, when ω∗(x) is not available, one can use its estimate while still achieving similar results under mild
assumptions.

We first give an informal overview of the results established. Typically, a standard margin condition (Massart
& Nédélec, 2006; Bousquet & Zhivotovskiy, 2021) requires the minimum margin to satisfy γ ≜ infx ω

∗(x) > 0.
For standard ERM, Bernstein-type condition (Bartlett et al., 2005) is satisfied in the form of:

Varz[1{y ̸= f(x)} − 1{y ̸= f∗(x)}] ≤ (1/γ) · Ez[(1{y ̸= f(x)} − 1{y ̸= f∗(x)})]

whereas in the case of weighted ERM, it is satisfied in the following form:

Varz[ω∗(x)(1{y ̸= f(x)} − 1{y ̸= f∗(x)})] ≤ Ez[ω∗(x)(1{y ̸= f(x)} − 1{y ̸= f∗(x)})]. (6)

Crucially, in the latter case, the 1/γ factor is removed, which subsequently leads to an improved bound. In
particular, Equation (6) does not require the margin condition γ > 0 (Massart & Nédélec, 2006), i.e., γ can
be zero; this suggests that even if the vanilla empirical risk does not satisfy the Bernstein condition, it is still
possible to utilize a weight function to establish a Bernstein-type condition. Theorem 4.1 formally states this
result.
Theorem 4.1 (Risk Bound for the case of Classification). Suppose that we have ω̂(·) ∈ W s.t. Ex[(ω̂(x) −
ω∗(x))2] ≤ ε is satisfied. Let Sn = {(xi, yi)}ni=1 be i.i.d. samples drawn according to the DGP described in
(5), and they are independent of the ones used for estimating ω̂. Let f̂wERM be the weighted ERM estimator as
defined in (4), with the weight substituted by ω̂(xi)’s. Then the following hold simultaneously with probability
at least 1 − δ for some ε > 0, δ > 0:

Ez[ω∗(x)(ℓ(f̂wERM; z) − ℓ(f∗; z))] ≤ ε, Ez[ω̂(x)(ℓ(f̂wERM; z) − ℓ(f∗; z))] ≤ ε, (7)

provided that the sample size n satisfies n ≳
dV C(F) log( 1

ε )+log( 1
δ )

ε .

The next theorem shows that there exists a DGP that conforms with the description in (5), such that when
the estimation is performed based on samples drawn from it, the risk of the weighted ERM estimator on some
sub-region can be arbitrarily close to zero, provided that the sample size grows commensurately; on the other
hand, the risk of the ERM estimator on the same region is bounded below by a constant, irrespective of the
sample size. Here the sub-region is characterized by a large-margin level set, and the risk on this sub-region
can be viewed as the selective risk.
Theorem 4.2. There exists a DGP that belongs to the DGP family satisfying (5), such that under the same
assumption as in Theorem 4.1, when the estimation is performed based on i.i.d. samples Sn = {(xi, yi)}ni=1
drawn from it, the following hold simultaneously for the ERM estimator (as per defined in (3)) and weighted
ERM estimator (as per defined in (4) with the weight function substituted by ω̂(xi)’s), with sample size
n = 64d log(d) log( 1

δ )
γε :

• with probability at least 0.1, Ex[1{f̂ERM ̸= f∗}|ω∗(x) > γ] ≥ 0.015;
• with probability at least 1 − δ, Ex[1{f̂wERM ̸= f∗}|ω∗(x) > γ] ≲ ε.

Remark 1 (On the bounds established). Some discussion of the implications of the bounds established in
Theorems 4.1 and 4.2 is provided next. First note that the low/high margin region can be characterized
through {x : ω(x) < c} (and {x : ω(x) > c}, resp.); the excess risk bound, given by Ez[1{f̂ ̸= y}−1{f∗ ≠ y}],
can be further derived for weighted ERM based on (7). This enables a direct comparison between the bound
of the weighted ERM and that of ERM, depending on the property of P(ω∗(x) ≤ c).

7
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• Improved bounds in the large-margin region. For any c ∈ [0, 1), given large-margin region
characterized by {x : ω∗(x) > c} with P(ω∗(x) > c) > 0 and Θ̃

( 1
ε

)
samples, the risk bound of an

ERM estimator (e.g., Massart & Nédélec, 2006, equation (7)) implies the following excess risk within
the region:

Ez[1{f̂ERM (x) ̸= y}−1{f∗(x) ̸= y}|ω∗(x) ≥ c] ≤ ε

γP(ω∗(x) > c) ;

for the weighted ERM estimator, it achieves

Ez[1{f̂wERM (x) ̸= y}−1{f∗(x) ̸= y}|ω∗(x) ≥ c] ≤ ε

cP(ω∗(x) > c) , (8)

which improves the ERM bound by a factor of (γ/c). In particular, in Theorem 4.2, a lower bound
construction for the conditional risk on the large-margin region is presented, to demonstrate that
there exists a scenario where the ERM estimator fails with constant probability, while the weighted
ERM one achieves standard PAC guarantee (Valiant, 1984). Note that under Chow’s rejection rule
(Chow, 1970) which optimally balances the trade-off between coverage and accuracy, the non-reject
region coincides precisely with the large-margin region described above.
These analyses establish the benefit of the weighted ERM procedure where data is weighed by the
margin function ω∗(x). In particular, its major advantage lies in the region where c is large compared
to γ, and such advantage vanishes as (γ/c) → 1. Later in Theorem 4.4, a pathological scenario
achieving a matching lower bound is presented, which implies the minimax optimality of the bound
presented in (8).

• Improved bounds under the “low-margin diminishing” condition. The low-margin dimin-
ishing condition holds when there exists c such that P(ω∗(x) ≤ c)c2 ≤ ε. One can view the set
{x|ω∗(x) ≤

√
ε} as the collection of x with “low margin”, whose corresponding y’s have high label

noise. The condition P(ω∗(x) ≤ c)c2 ≤ ε describes settings where the low margin set has diminishing
mass. Under such a condition, Equation (8) implies the following improved excessive risk bound:

Ez[1{f̂ ̸= y} − 1{f∗ ̸= y}] ≤ ε/c, (9)

which enjoys improvement of a factor γ/c when compared to the excessive risk of ERM. The condition
P(ω∗(x) ≤ c)c2 ≤ ε could be satisfied when c ≲

√
ε and P(ω∗(x) ≤ c) ≲ 0.1. The derivation is

presented in Appendix A.2.
• Fast rate with/without margin condition. Under standard margin condition γ > 0, based

on the Corollary 3 from Massart & Nédélec (2006), both ERM and weighted ERM achieves a
Ez[ω∗(x)(1{f̂ ̸= y} − 1{f∗ ̸= y})] ≤ ε excessive risk with Θ̃

( 1
ε

)
samples, which is the information-

theoretic optimality (Massart & Nédélec, 2006; Zhivotovskiy & Hanneke, 2018). Notably, Theorem 4.1
implies such a result given the fact that ω∗(x) ≥ γ.
When the standard margin condition is not satisfied, e.g., for cases x ∈ X with η∗(x) = 0.5, the
corresponding y effectively becomes a pure noise. In this case, a fast rate of O(1/n) cannot be
attained due to these “extremely noisy” data points. However, it is still possible to attain a fast rate
with a slight modification of the vanilla empirical risk. Specifically, in Theorem 2.1 of Bousquet &
Zhivotovskiy (2021) establishes risk bounds that enjoy a fast rate under Chow’s rejection option
framework (Chow, 1970), without requiring a margin condition. This is achieved by introducing
an “artificial” margin through the inclusion of a rejection option, which allows for the removal of
those “extremely noisy data points” during both the learning and inference processes. Similarly,
the weighted-ERM approach follows a similar principle by utilizing a weight function ω∗(x) to
down-weigh such extremely noisy data points with ω∗(x) = 0.

Both Theorems 4.1 and 4.2 require that the surrogate ω̂ be reasonably close to ω∗, and such a condition
is presented in the form of Ex[(ω̂(x) − ω∗(x))2] ≤ ε. One may wonder if the task of approximating ω∗ is
statistically more challenging than learning the classifier itself in terms of sample efficiency. Theorem 4.3
addresses this concern and suggests that under standard assumptions, the required condition holds with high
probability and the sample complexity of learning ω∗(·) is comparable to that of learning f∗(·).

8



Published in Transactions on Machine Learning Research (01/2025)

Theorem 4.3 (Risk bound for estimating ω∗). Given i.i.d. samples S′
n = {(xi, yi)}ni=1 drawn from the DGP

described in (5), let η̂ = arg minη∈G
1
n

∑
zi∈S′

n
(η(xi) − yi)2. Then the following holds with probability at least

1 − δ for some ε > 0, δ > 0:

Ex[(η̂(x) − η∗(x))2] ≤ ε,

provided that the sample size n satisfies n ≳
dP (G) log( 1

ε )+log( 1
δ )

ε . Further, let ω̂(x) ≡ |η̂(x) − 1/2|, and the
above result further implies that

Ex[(ω̂(x) − ω∗(x))2)] ≤ ε.

Remark 2. Both Theorems 4.1 and 4.2 effectively assume the availability of a sufficiently-well estimated
weight function ω̂(·), and that the subsequent weighted estimation procedure is carried out on samples Sn
independent of those used for obtaining ω̂(·). In practice, this can be operationalized via sample-splitting;
namely, one equally splits the training set into two halves at random, and uses one half for weight estimation
and the other half for obtaining f̂ . Such a procedure would increase the generalization error bound by a
factor of two, in exchange for the problem-dependent constant improvement in the large margin sub-region.

The following corollary can be derived by combining Theorems 4.1 and 4.3, which takes into account all the
randomness embedded in the training samples:
Corollary 1. Under the assumptions in Theorems 4.1 and 4.3, let ω̂ be the one defined in Theorem 4.3,
then the following hold simultaneously with probability at least 1 − 2δ for some ε > 0:

Ez[ω∗(x)(ℓ(f̂wERM; z) − ℓ(f∗; z))] ≤ ε, Ez[ω̂(x)(ℓ(f̂wERM; z) − ℓ(f∗; z))] ≤ ε. (10)

Next we present our lower bound results for the conditional excessive risk bound.
Theorem 4.4. There exists a set of DGPs that is in accordance with the description in (5), such that for
i.i.d. samples Sn = {(xi, yi)}ni drawn from (any) such DGPs with n ≂ 1

ε , the following inequality holds:

inf
f∈F

sup
D
cEz∼D[1{f(x) ̸= y}−1{f∗(x) ̸= y}, ω∗(x) ≥ c] ≥ ε.

Theorem 4.4 suggests that for all f ∈ F , there exists D where the following holds:

Ez∼D[1{f(x) ̸= y} − 1{f∗(x) ̸= y}|ω∗(x) ≥ c] ≥ ε

cP(ω∗(x) > c) ;

in other words, there exists a family of data generating process satisfying (5), such that the conditional
excessive risk of any estimator—irrespective of the learning procedure—cannot improve upon the bound
established in (8), in the absence of any additional assumptions. The theorem implies that the conditional
excessive risk bound of weighted ERM estimator in (8) is tight.

Selective inference in practice While the optimal weight function ω∗(x) is not available in practice,
Theorem 4.1 admits an ε-approximation of ω∗(x) in the PAC sense, that is, one can have control over the
selective risk of the weighted ERM estimator reasonably well using any “good” estimates of the margin
function. Note that using the plug-in estimate is a standard procedure adopted in the literature related to
selective classification (Herbei & Wegkamp, 2006), where users have the option to abstain from predicting
data with high uncertainty or low margin. This is pertinent in scenarios where prioritizing accuracy in the low
uncertainty region (conditional risk) takes precedence over accuracy across the entire domain (unconditional
risk). The result in Theorem 4.1 suggests the same, that by using a good estimate of the margin to re-weight
the empirical risk, one can improve the conditional risk at the inference stage.

4.2 Bounded heteroscedastic regression

The regression problem considered in this section is formalized next. Let y ∈ R be generated according to

y = f∗(x) +
√
σ2∗(x) · ξ, x ∈ X , (11)

9
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where f∗(x) ≜ E(y|x), σ2∗(x) ≜ Var(Y |x), and ξ ∈ (−c2, c2) is some bounded noise with zero mean and
unit variance. f∗(x) is effectively the target hypothesis.

Without loss of generality, let F ≜ {f : X 7→ [−1, 1]}, G ≜ {σ2 : X 7→ [c3, 1/γ]}, 0 < c3 < 1 be hypothesis
classes with finite pseudo-dimensions dP (F) < ∞ and dP (G) < ∞, respectively. Note that for the range of σ2,
we assume that c3 is bounded away from 0 and therefore the variance is non-vanishing; on the other hand, the
upper bound satisfies 1/γ ≥ 1 and thus we do not preclude scenarios where the variance dominates the mean
function, similar to the settings considered in Zhang et al. (2023). Throughout this subsection, we consider
the well-specified learning setting, namely, f∗(x) ∈ F , σ2∗(x) ∈ G. Additionally, let W ≜ {ω : X 7→ [γ, 1/c3]}
be some other hypothesis class for the weight function ω∗(x), which satisfies ω∗(x) ≡ 1/(σ2)∗(x)

To perform weighted ERM, we adopt the mean-squared-error loss given by ℓ(f, z) = (y − f(x))2, and a
data-dependent weight that coincides with the inverse of the variance function σ∗2(x); this leads to weighted
loss function of the form (y−f(x))2

σ2∗(x) . Note that in practice, σ2∗(x) is unavailable and one can replace it
with some estimate, while still achieving similar results, provided that the estimate approximates the truth
reasonably well.

We first give a high-level account of the results established. Let σ2∗(x) ≤ 1/γ be the maximum variance as
defined in Zhang et al. (2023), then the following holds (see derivation in the appendix):

Varz[(y − f(x))2 − (y − f∗(x))2] ≤ (8/γ) · Ez[(y − f(x))2 − (y − f∗(x))2]. (12)

The expression in (12) suggests that the Bernstein-type condition is satisfied with B = 4/γ; an analysis similar
to Corollary 3.7 in Bartlett et al. (2005) further leads to the following risk bound Ex[(f∗(x) − f̂ERM(x))2] =
O

( 1
γ2n

)
. For weighted ERM, σ∗(x) (or ω∗(x) ≡ 1/σ2∗(x), equivalently) is introduced to “balance” the

inequality in (12), resulting in the Bernstein-type condition to hold in the following form:

Varz

[
C(y − f(x))2

σ2∗(x) − C(y − f∗(x))2

σ2∗(x)

]
≤ Ez

[
C(y − f(x))2

σ2∗(x) − C(y − f∗(x))2

σ2∗(x)

]
, (13)

where C = 1/2(1 + 4/c3). Once again, leveraging the results in Bartlett et al. (2005) gives Ex[ 1
σ2∗(x) (f∗(x) −

f̂wERM(x))2] = O
( 1
γn

)
, which effectively removes the 1/γ factor. These statements are formally stated next.

Theorem 4.5. Suppose we have σ̂2 ∈ G s.t. Ex[(1/σ̂2(x) − 1/σ2∗(x))2] ≤ ε/c2
3. Given i.i.d samples

Sn = {(xi, yi)}ni=1 that are drawn according to the DGP and independent of those used for obtaining σ̂2,
let f̂wERM be the weighted ERM estimator defined in Equation (4) with the weight function substituted by
1/σ̂2(·); then the following holds simultaneously with probability at least 1 − δ for some ε > 0, δ > 0:

Ex

[
1

σ2∗(x) (f̂wERM(x) − f∗(x))2
]

≤ ε and Ex

[
1

σ̂2(x) (f̂wERM(x) − f∗(x))2
]

≤ ε,

provided that the sample size n satisfies n ≳
d(F)(log( 1

ε )+log(1/γ)−log(c3)+log( 1
δ ))

γεc2
3

.

Remark 3. The risk bounds in Theorem 4.5 could be made analogous to those in Theorem 4.1. A standard
analysis using techniques in Bartlett et al. (2005) implies that the ERM estimator achieves Ex

[
(f̂ERM(x) −

f∗(x))2]
≤ ε using Θ̃

( 1
γ2ε

)
samples whereas the weighted ERM one achieves Ex

[ 1
σ2∗(x) (f̂wERM(x)−f∗(x))2]

≤
ε with Θ̃

( 1
γε

)
samples. Similar to the conclusions in the classification task, weighted ERM achieves sample

efficiency at least comparable to ERM in the general region, and is superior in the small-variance region as
depicted by σ2∗(x) ≤ 1/c, with a problem-dependent constant γ/c improvement. Additionally, by using the
negative log-likelihood loss, the sample complexity of learning σ2∗(·) is comparable to that of learning f∗(·),
as presented next in Theorem 4.6.

Next we provide some guarantees for learning the σ2(x) function. Here we seek to obtain σ̂2 by minimizing
the negative log-likelihood loss, while restricting (µ, σ2) to be in the hypothesis class F̃ × G̃, F̃ ⊆ F , G̃ ⊆ G,
so that the normalized residual square is bounded: (f∗(x)−µ(x)+ρ·

√
σ2∗(x))2

σ2(x) ≤ 4c2
2, ρ ∈ (−c2, c2),∀x ∈ X .

10
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Theorem 4.6 (Risk bound for estimating σ2∗). Let S′
n = {(xi, yi)}ni=1 be i.i.d. samples drawn according to

the DGP in (11) and

(
µ̂, σ̂2)

≜ arg min(µ,σ2)∈F̃×G̃
1
n

∑
(xi,yi)∈S′

n

[
log(σ2(xi)) + (yi − µ(xi))2

σ2(xi)

]
,

Then for any ε > 0, δ > 0, the following holds with probability at least 1 − δ:

Ex

[(
1

σ̂2(x) − 1
σ2∗(x)

)2]
≤ ε,

provided that the sample size satisfies

n ≳
T1T 3

2
(
(dP (G) + dP (F)(T3 + T4 + T5)

)
c2

3ε
,

where T1 = (1 + c2
2 + 1/c2

3), T2 = (c2
2 + log2(1/γ)), T3 = log(1/c2

3 + c2
2/c

2
3 + c2

2/c
2
3γ), T4 = log( 1

ε ), T5 = log( 1
δ ).

Note that the PAC guarantee for learning σ̂2(x) has been studied in Zhang et al. (2023) which admits a
bound at the rate of Õ

( 1√
n

)
, whereas the bound in Theorem 4.6 is of the order Õ

( 1
n

)
. See Appendix A.9 for

a discussion that compares the two and the proof for the above theorem.

The following corollary combines Theorems 4.5 and 4.6 and takes into account all the randomness embedded
in the samples:
Corollary 2. Under the setting considered in Theorem 4.5 and Theorem 4.6, with σ̂2(x) be the one defined
in Theorem 4.6, the following hold simultaneously with probability at least 1 − 2δ:

Ex

[
1

σ2∗(x) (f̂(x) − f∗(x))2
]

≤ ε and Ex

[
1

σ̂2(x) (f̂(x) − f∗(x))2
]

≤ ε.

4.3 General case

Next, we generalize the classification and regression examples presented in Sections 4.1 and 4.2 above. Consider
hypothesis class F ≜ {f : X 7→ [−1, 1]} with complexity measure d(F) < ∞, and W ≜ {ω : X 7→ [γ, c1]} with
complexity measure d(W) < ∞, and c1 > 0, γ > 0‡. Assume that the target hypothesis f∗ ∈ F and the true
weight ω∗ ∈ W.

A balanceable Bernstein-type condition is given in the following assumption, together with some other technical
assumptions required for the loss function.
Assumption 1. Let D : F × F × X 7→ [0, b] be uniformly bounded function that captures the excess risk.
The following are assumed to hold for the loss function ℓ(·, ·):

• Lipschitzness and uniform boundedness.

∀z, f |ℓ(f, z) − ℓ(f∗, z)| ≤ a;
∀z, f1, f2 |ℓ(f1, z) − ℓ(f2, z)| ≤ L|f1 − f2|.

(14)

• Under semi-random noise label. Suppose the DGP satisfies semi-random noise label (Diakonikolas
et al., 2021; Pia et al., 2022) and the following are satisfied:

Ez[ℓ(f, z) − ℓ(f∗, z)] = Ex[ω∗(x)D(f∗(x), f(x))]
Ey[(ℓ(f, z) − ℓ(f∗, z))2] ≤ D(f∗(x), f(x))

(15)

‡Note that here we effectively assume that ω∗ is bounded away from zero to accommodate both the case of classification and
regression. However, note that in the case of classification, the assumption ω∗ being bounded away from zero is equivalent to
the margin condition from Massart & Nédélec (2006). The weighted ERM framework is actually agnostic to this condition and
allows ω∗ to be zero.

11
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• Balanceable Bernstein condition. Under the same semi-random noise label assumption for the
DGP, there exists a uniformly bounded ω(x) that the following holds:

Varz[ω(x)(ℓ(f, z) − ℓ(f∗, z))] ≤ Ez[ω(x)(ℓ(f, z) − ℓ(f∗, z))]. (16)

For (16), if one replaces ω∗ by its uniform lower bound, standard Bernstein-type condition Var[h(x)] ≤
BEx[h(x)] can be recovered with ω(x) = 1 and B = 1/γ. On the other hand, there exists ω(x) that balances
the ratio between Var[ω(x)h(x)] and E[ω(x)h(x)], such that Bernstein-type condition holds with an improved
multiplier. In particular, one can set ω(·) ≜ ω∗(·) so that B = 1, as in (6) and (13).
Remark 4 (Assumption 1 in classification and regression settings). We provide concrete examples for how
expressions in Assumption 1 manifest in classification and regression settings, respectively.

• For classification settings, let ℓ(f ; z) ≜ 1{f(x) ̸= y} and D(f∗, f̂ ,x) ≜ 1{f∗(x) ̸= f̂(x)}. It is easy
to verify that (14) is satisfied with L = 1, a = 1; (15) is satisfied with ω∗(x) ≜ |2η∗(x) − 1| (see
derivation in Appendix A.1); and (16) holds as established in (6)

• For regression settings, let ℓ(f ; z) ≜ (y − f(x))2 and D(f∗, f̂ ,x) ≜ σ2∗(x)
C (f∗(x) − f̂(x))2 for some

constant C. (14) is satisfied with a = 8 + (8c2
2/

√
γ), L = c2/

√
γ where b = 4/(Cγ), c1 = 1

2 ; (15) holds
with ω∗(x) ≜ C

σ2∗(x) ; and (16) holds as established in (13).

Theorem 4.7. Suppose Assumption 1 holds. Let f∗ ∈ F and ω∗ ∈ W, and suppose we have ω̂ ∈ W s.t.
Ex[(ω̂(x) − ω∗(x))2] ≤ ε

b . Given i.i.d. samples Sn = {(xi, yi)}ni=1 drawn from the data generative process, let
f̂wERM ≜ arg minf∈F

1
n

∑
zi∈Sn

ω̂(x)ℓ(f ; zi). Then for any ε > 0, δ > 0, the following holds simultaneously
with probability at least 1 − δ:

Ex[ω̂2(x)D(f∗, f̂wERM,x)] ≤ ε, Ex[ω∗2(x)D(f∗, f̂wERM,x)] ≤ ε, and Ex[ω̂(x)ω∗(x)D(f∗, f̂wERM,x)] ≤ ε,

as long as the sample size requirement is satisfied:

n ≳
c2

1a2(d(F) log( 1
ε
) + log(c1L) + log( 1

δ
))

ε
+

c1a log( 1
δ
)

ε
.

Remark 5. The proof of Theorem 4.7 is deferred to the appendix. A major hurdle in completing the proof
comes from the inaccessibility of ω∗(x) and thus one needs to use ω̂(x) instead; this is out of practical
consideration as one can only access an estimated version. To overcome this challenge, it suffices to require
Ex[(ω̂(x) − ω∗(x))2] ≤ ε/b, with which one can show the weighted empirical risk satisfies an ε additive error
version of the Bernstein type condition, namely, Var[h] ≤ BE[h] + ε. To this end, we prove an alternative
version of Theorem 3.3 in Bartlett et al. (2005) under this relaxed Bernstein-type condition, and show that
the weighted ERM achieves a fast rate in the generalization error bound.

5 Synthetic Data Experiments

We present results from synthetic data experiments to support our theoretical claims, respectively for
regression and classification settings. For both settings, we follow a two-step procedure, in which we first
perform ERM to obtain estimates for the mean and the weight, followed by a reweighting step. Subsequently,
we compare two sets of estimates—resp. from ERM and weighted ERM—in terms of their selective risk,
where the selective set is chosen over a range with varying coverage determined by the variance or the margin,
depending on the setting under consideration. For both experiments, the size of the training set is set at 2e4,
to ensure that the algorithm has access to adequate number of samples and circumvent any potential issues
due to lack of fit, although empirically the conclusion broadly holds even with much smaller sample sizes.

5.1 Experiments under regression settings

We consider regression settings in the presence of heteroscedasticity, similar to the ones used in Skafte et al.
(2019); Seitzer et al. (2022). The true data generating process is given by a univariate regression with x ∈ R
of the form

y = f∗(x) +
√
σ2∗(x) · ξ, E(ξ) = 0; Var(ξ) = 1.
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The mean f∗(x) ≜ x sin(x) is a sinusoidal function; the scale function of the additive noise ξ depends on the
value of x, and is given by (σ2)∗(x) ≜ (0.09)(1 + x2). The regressor x is sampled uniformly from [0, 10] and
the noise ξ is standard Gaussian. Figure 1a provides a visualization of the data resulting from this DGP.

(a) Visualization of the DGP and the estimates. The
true mean f∗(x) and the two-standard deviation
bands are in black dotted lines. The mean estimates
from ERM (blue) and wERM (orange) are in solid
lines, and the shaded area corresponds to the two-
standard deviation derived from the variance estimate
of the ERM step.

(b) Risk over the selective set with varying coverage α;
the solid lines correspond the risk on the test (sub)set
averaged over 10 runs of the experiment, and the
shaded area correspond to 1 standard deviation.

Figure 1: Regression setting: underlying true data, estimates from ERM and weighted ERM, and the selective risk

We consider the following estimation procedure using ℓ2 loss; f(x) and σ2(x) are both parametrized by
multi-layer perceptrons (MLP):

• An ERM step that gives rise to the mean and the variance estimates, that is,

f̂ERM(x) := arg min
f

n∑
i=1

(yi − f(xi))2 and σ̂2(x) := arg min
σ2

n∑
i=1

[
log σ2(x) + (yi − f̂ERM(xi))2

σ2(x)
]
;

• A reweighting step, with the weight given by the precision estimate from the ERM step:

f̂wERM(x) := arg min
f

n∑
i=1

ω(xi)
(
yi − f(xi)

)2 where ω(xi) := 1/σ̂2(xi).

Once f̂ERM(x) and f̂wERM(x) are obtained, on the test set, we consider evaluating their risk over a range of
selective set with varying coverage α ∈ [0, 1]. Concretely, at evaluation time, the selective risk is calculated as

Rα := E
[(
f⋆(x) − f(x)

)2 |
{
σ2(x) ≤ qα(σ2)

}]
,

where qα(σ2) is the α quantile of the variance over the entire domain; a low-coverage (i.e., small α) selective
set corresponds to the low-variance region. Empirically, the risk is obtained by substituting f by either f̂ERM
or f̂wERM for each test data point in the selective set then taking the average, with σ̂(x) coming from the
ERM step. The cut-off qα(σ2) is determined by the empirical quantile of the estimated σ2 on the validation
set.

Figure 1a presents the mean estimate from ERM (blue) and weighted ERM (orange) respectively, although the
quality of the fit is satisfactory for both cases and therefore they largely overlap with the truth and becomes
hard to distinguish, visually. Figure 1b displays the risk over the selective set with varying coverage α. As
it can be seen from the plot, weighted ERM has an advantage over the ERM estimate in the low-coverage
region, as manifested by a lower selective risk, and the advantage diminishes as the coverage α increases.
This is in accordance with the theoretical results established in Section 4.2.

As a remark, the practical implication for such results is that in certain scenarios (e.g., some finance
applications) where one takes actions only when there is high confidence and abstains otherwise (and therefore
being “selective”), a weighted ERM procedure can be leveraged to obtain more refined estimates for the
region of interest where actions would take place.
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5.2 Experiments under classification settings

For classification, we consider the following data-generating process for illustration purpose, in which
extremely noisy data points are present. The features xi ∈ R2 are sampled from class-conditional Gaussian
with equal covariance, that is P(ci = k) = pk; P(xi|ci = k) ∼ N (µk,Σ). Here we consider 4 “clusters” with
k ∈ {0, 0′, 1, 1′}, where p0′ = 0.5, p0 = 0.25, p1 = 0.20, p1′ = 0.05; µ0′ = (−10, 0)⊤,µ0 = (−3, 0)⊤,µ1 =
(3, 0)⊤,µ1′ = (12, 0)⊤, Σ = [ 2 0.5

0.5 2 ]. Let

ϕ∗(xi) ≜ P
(
ci ∈ {1, 1′} | xi

)
=

( ∑
k∈{1,1′}

pk · p(xi; µk,Σ)
)
/
( ∑

k∈{0,0′,1,1′}
pk · p(xi; µk,Σ)

)
,

where p(xi; µk,Σ) denotes the pdf corresponding to N (µk,Σ) evaluated at xi, and the equality follows from
Bayes rule. Set yinitial

i ≜ 1{ϕ∗(xi) > 1/2}. Further, we inject noise to the class labels for points that are in
cluster 0′, such that their final labels are flipped with probability pflip, that is:

yi = 1 − yinitial
i (w.p. pflip) if ci = 0′ otherwise yinitial

i .

It is worth noting that given that above-mentioned DGP, the theoretical decision boundary is linear;
additionally, the theoretical margin is given by ω∗(xi) ≜ |η∗(xi) − 1/2|, where η∗(xi) ≜ 1{ϕ∗(xi) > 1/2} if
ci ̸= 0′ otherwise pflip. In this setting, the flipping probability pflip is set at 0.49.

Similar to the case of regression, we consider the following procedure that entails two steps, using the
cross-entropy loss:

• An ERM step: we obtain the estimated margin ω̂(xi) = |η̂(xi) − 1/2| where η̂(xi) is the estimated
Bayes-optimal classifier, and a linear decision boundary that gives rise to the class labels f̂(xi)ERM.

• A reweighting step with the weight set at ŵ(xi), which then gives rise to an updated decision
boundary and the associated class label f̂(xi)wERM.

The selective risk is then evaluated as

Rα := E
[
1{f∗ ̸= f̂} |

{
ω(x) ≥ qα(ω)

}]
, f∗ := 1{η⋆ > 0.5}.

where qα(ω) is the α quantile of the margin over the entire domain; a low-coverage (i.e., small α) selective
set corresponds to the large-margin region. Empirically, the evaluation is done by averaging the risk on
the corresponding test (sub)set, and y is substituted by either f̂(xi)ERM or f̂(xi)wERM; the cut off qα(ω) is
empirically determined by the quantile of the estimated margin on the validation set.

(a) Visualization of the DGP. The top
panel displays the class labels after
injecting label noise, and the bottom
shows class labels based on the Bayes
optimal classifier, respectively

(b) Estimated class labels based on
ERM (top) and weighted ERM (bot-
tom), respectively

(c) Risk over the select set with vary-
ing coverage α. the solid lines corre-
spond the risk on the test (sub)set
averaged over 10 runs of the exper-
iment, and the shaded area corre-
sponds to 1 standard deviation.

Figure 2: Classification setting: underlying true data, estimates from ERM and weighted ERM and the selective risk
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Figure 2a provides a representative view of the data resulting from this DGP; Figure 2b displays the estimated
class labels from the ERM (top) and the weighted ERM (bottom) step, respectively. As it can be seen from
the figure, the latter largely aligns with the class labels dictated by the Bayes-optimal classifier, whereas the
former has a noticeable number of points near the decision boundary being mis-labeled. Figure 2c provides
a comparison of the selective risk for the two sets of estimates. In this specific setting, weighted ERM
dominates.

6 Discussion, Limitation, and Future Work

To conclude, this work investigates the generalization error bound of weighted ERM under the fast-rate
regime. We show that by additionally incorporating a carefully-designed weight function in each loss term,
estimators based on weighted ERM can achieve a tighter bound in selected regions by a problem-dependent
constant, when compared with the one from standard ERM. This finding leads to practical applications
where one can use plug-in estimates of the weight function to obtain superior performance in sub-regions
through a two-step procedure, as demonstrated in our synthetic data experiments.

It is worth noting that recent work Zhai et al. (2023) considers a generalized reweighting scheme where
samples are reweighted dynamically during training; in spirit, this is similar to the procedure considered
in our work, yet the two differ in the following aspects: (1) the starting point of Zhai et al. (2023) is the
generalization of distributional robust optimization (DRO) algorithms; in particular, under a DRO setting
where distributional shift is present yet the test distribution is “close” to the training one, at the conceptual
level, training should focus on the “hard” cases. In our work, on the contrary, the setting under consideration
can be made analogous to soft abstention, and thus the weight schema further upweights the “easy” cases.
(2) The result established in Zhai et al. (2023) states that the generalized reweighting procedure leads to
a solution that is close to the ERM one, in that the points they converge to are close; this is largely done
by analyzing the properties of the estimates between successive iterates. On the other hand, this work is
concerned with the statistical error bound of the weighted ERM estimator—in particular, its superiority over
the standard ERM one in the high-confidence region.

There are several limitations of this work and directions that could be further explored. Throughout the paper,
we consider well-specified settings. There are several difficulties in regards to the extension to mis-specified
settings where the target hypothesis can potentially live outside of the hypothesis class in question. Possible
extension includes exploring mis-specified settings with surrogate losses using tools developed in Awasthi et al.
(2022); Mao et al. (2023), and leveraging several recent results which show that fast rate could be achieved
under mis-specified setting via model selection aggregation (Tsybakov, 2003; Bousquet & Zhivotovskiy, 2021;
Kanade et al., 2022). Other recent work that touched upon this issue includes Puchkin & Zhivotovskiy
(2022), where to establish the desired results the authors require both the diameter of the hypothesis class
and the star number to be finite. Alternatively, tools that can work in specific setups may be introduced
to characterize the approximation error; e.g., if one considers a setting similar to that in Kohler & Langer
(2021), namely, the hypothesis class being a set of fully connected DNNs and the target hypothesis being
in the class of (p, C)-smooth functions, then the approximation error bound can be calibrated. The results
developed in this work can potentially be extended to these settings, which however requires more involved
analysis to handle various components (e.g., the approximation error of the weight function ω̂(x)) and very
specific assumptions on the exact setup.

Separately, our analysis is limited to Bernstein-type condition (Lee et al., 1996; Bartlett et al., 2005) of
the form Var[h] ≤ BE[h]. To study classification problems under Tsybakov noise condition (Mammen &
Tsybakov, 1999; Tsybakov, 2004) and regression with ℓp risk (Bartlett & Mendelson, 2006), a more generalized
form E[h2] ≤ B(E[h])β , β ∈ (0, 1] is required. Finally, for some other settings such as Offset Rademacher
Complexity (Liang et al., 2015) and “small-ball condition” (Mendelson, 2018), where the fast rate has been
established, we are optimistic they can also enjoy some problem-dependent constant improvement by exploring
the structure of semi-random noise label with a properly designed weight function.
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A Proofs and Discussions

In this section, we include proofs for the results established in Section 4 and the corresponding discussions.
We introduce additional notation and definitions that are used in the ensuing development.

Let [n] ≜ {1, · · · , n}. We use {x}i∈[n] ≜ x1:n to denote samples of x of size n; {z}i∈[n] ≡ z1:n = {(xi, yi)}ni=1
is analogously defined, and they are i.i.d. samples drawn from P̄. Given {z}i∈[n], we use P̄n to denote the
empirical measure. We use ∥ · ∥p to denote the ℓp norm of vectors and ∥ · ∥Lp

to denote the Lp norm of
random variables under P. The indicator function 1{x ∈ A} equals 1 when the condition x ∈ A is true and
0 otherwise. Denote a ∨ b = max(a, b) and a ∧ b = min(a, b). Let σ1, ..., σn be n independent Rademacher
random variables. For a function h : Z → R, define:

P̄nh ≜
1
n

n∑
i=1

h(zi), P̄h ≜ Ez∼P̄h(z).

For a family of functions H ≜ {h : Z → R} the Rademacher Complexity and Rademacher Average is defined
as:

RnH = Eσ1:n

[
sup
h∈H

1
n

n∑
i=1

σih(zi)
]
, RH = Ez1:n,σ1:n

[
sup
h∈H

1
n

n∑
i=1

σih(zi)
]

We further define the Local Rademacher Complexity and Local Rademacher Average with radius r as
Rn{h ∈ H,Pnh2 ≤ r} and R{h ∈ H,Ph2 ≤ r}.

Definition 3 (Star Hull; see also Bousquet et al. (2003); Bartlett et al. (2005)). The star hull of set of
functions F is defined as

∗F ≡ {αf : f ∈ F , α ∈ [0, 1]}

Definition 4 (Sub-Root Function (Bousquet et al., 2003; Bartlett et al., 2005)). A function ψ : R → R is
sub-root if

• ψ is non-decreasing

• ψ is non-negative

• ψ(r)/
√
r is non-increasing

And we say r∗ is a fixed point of ψ if ψ(r∗) = r∗.

The following definition for VC-class could be found in (Vapnik & Chervonenkis, 1971; Van Der Vaart et al.,
1996). We include them here for the sake of completeness.

Definition 5 (VC-dimension; Vapnik & Chervonenkis (1971)). The VC-dimension dV C(F) of a hypothesis
class F = {f : X 7→ {1,−1}} is the largest cardinality of any set S ⊆ X such that ∀S̄ ⊆ S, ∃f ∈ F :

f(x) =
{

1 if x ∈ S̄

−1 if x ∈ S \ S̄

Definition 6 (Pseudo-dimension; Pollard (1990)). The Pseudo-dimension dP (F) of a real-valued hypothesis
class G = {g : X 7→ [l, u]} is the VC-dimension of the hypothesis class

H = {h : X × R 7→ {−1, 1} | h(x, t) = sign(g(x) − t), g ∈ G, t ∈ R}.
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A.1 Derivation of Equation 6

The following derivation establishes the connection between Ez[ℓ(f ; z) − ℓ(f∗; z)] and Ex[ω∗(x)1{f ̸= f∗}],
which could be found in Boucheron et al. (2005). We include here for completeness.

Ez[ℓ(f ; z) − ℓ(f∗; z)]
=Ex,y[1{y ̸= f(x)} − 1{y ̸= f∗(x)}]
=Ex,y[P[y = f∗(x)]1{f∗(x) ̸= f(x)} + P[y ̸= f∗(x)]1{f∗(x) = f(x)} − P[y ̸= f∗(x)]] (17)
=Ex,y[P[y = f∗(x)]1{f∗(x) ̸= f(x)} − P[y ̸= f∗(x)]1{f∗(x) ̸= f(x)}]
=Ex,y[(P[y = f∗(x)] − P[y ̸= f∗(x)])1{f∗(x) ̸= f(x)}}]
=Ex[ω∗(x)1{f ̸= f∗}];

Next, we derive Equation 6:

Varx,y[ω∗(x)(1{y ̸= f(x)} − 1{y ̸= f∗(x)})]
≤Ex,y[ω∗2(x)(1{y ̸= f(x)} − 1{y ̸= f∗(x)})2]
=Ex[ω∗2(x)1{f∗(x) ̸= f(x)}]
=Ex,y[ω∗(x)(1{y ̸= f(x)} − 1{y ̸= f∗(x)})}]

A.2 Derivation of Equation 9

To see Equation 9, we first bound Ex[1{ω∗(x) ≥ c}ω∗(x)1{f ̸= f∗}]. By leveraging Equation (17) and
Ex,y[ω∗(x)(1{f ̸= y} − 1{f∗ ̸= y})] ≤ ε the follow inequality holds:

Ex,y[ω∗(x)(1{f ̸= y} − 1{f∗ ̸= y})] = Ex[ω∗2(x)1{f ̸= f∗}] ≤ ε (18)

which implies the following inequality:

Ex[1{ω∗(x) ≥ c}cω∗(x)1{f ̸= f∗}] ≤ Ex[1{ω∗(x) ≥ c}ω∗2(x)1{f ̸= f∗}] ≤ ε (19)

thus Ex[1{ω∗(x) ≥ c}ω∗(x)1{f ̸= f∗}] ≤ ε
c . In addition,

Ex[1{ω∗(x) < c}ω∗(x)1{f ̸= f∗}] (20)
=Ex[1{ω∗(x) < c}ω∗(x)1{f ̸= f∗}|ω∗(x) < c]P(ω∗(x) < c)
+Ex[1{ω∗(x) < c}ω∗(x)1{f ̸= f∗}|ω∗(x) ≥ c]P(ω∗(x) ≥ c)
=Ex[ω∗(x)1{f ̸= f∗}|ω∗(x) < c]P(ω∗(x) < c)
≤c · P(ω∗(x) < c)

Equation (19) and Equation (20) combined gives

Ex,y[1{f ̸= y} − 1{f∗ ̸= y}] = Ex[ω∗(x)1{f ̸= f∗}]
=Ex[1{ω∗(x) ≥ c}ω∗(x)1{f ̸= f∗}] + Ex[1{ω∗(x) < c}ω∗(x)1{f ̸= f∗}]

≤P(ω∗(x) < c)c+ ε

c
.

A.3 Derivation of Equation 12

Equation 12 is a standard result, we include the derivation here for the sake of completeness.

Varx,y[(y − f(x))2 − (y − f∗(x))2] = Varx,y[(f∗(x) − f(x))(f∗(x) + f(x) − 2f∗(x) − 2ξ
√
σ2∗(x))]

≤ Ex,ξ[(f∗(x) − f(x))2(f(x) − f∗(x) − 2ξ
√
σ2∗(x))2]

≤ Ex[(f∗(x) − f(x))2((f(x) − f∗(x))2 + 4σ2∗(x))]
= Ex[Ey[(f∗(x) − y)2 − (y − f(x))2]((f(x) − f∗(x))2 + 4σ2∗(x))]

≤ 8
γ
Ex,y[((f∗(x) − y)2 − (y − f(x))2)]
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A.4 Proof of Theorem 4.1

The proof readily follows from invoking Theorem 4.7 with ℓ(f ; z) ≜ 1{f(x ̸= y)}, ω∗(x) = |2η∗(x) − 1|,
D(f1, f2,x) = 1{f1 ≠ f2}. It can be easily verified that Assumption 1 is satisfied with L = 1, a = 1, b =
1, γ = inf

x
|2η∗(x) − 1|.

A.5 Proof of Theorem 4.3

Proof. Let R(η, zi) ≜ (η(xi) − yi)2. We define following function class:

H ≡ ∆ ◦R ◦ G ≡
{

∆R(η; η∗, z) = R(η; z) −R(η∗; z) : η ∈ G
}
.

which is a composite function of hypothesis class G, loss function R and the difference operation ∆. For
simplicity we let ∆R,η = ∆R(η; η∗, z) when there is no ambiguity.

By definition of η̂, we have P̄nR(η̂; z) ≤ P̄nR(η∗; z), also by definition of ∆
R,η̂

we have P̄n∆
R,η̂

≤ 0.

Next we bound P̄∆
R,η̂

− P̄n∆
R,η̂

. Since |y − f(x)| ∈ [0, 1], η(x) ∈ [0, 1], it can be easily verified that
Varx∼P[∆R,η] ≤ 2Ex∼P[∆R,η]. To invoke Theorem 3.3 in Bartlett et al. (2005), we need to find a subroot
function ψ(r) such that

ψ(r) ≥ 2EP̄n{∆
R,η̂

∈ H : E[h2] ≤ r}.

To this end, we show some analysis on the Local Rademacher Average ERn{∆
R,η̂

∈ H : E[h2] ≤ r}.

ERn(∆ ◦R ◦ G, r) =ESnσ1:n

[
sup

η∈G,Ex,y

[
∆2

R,̂η

]
≤r

1
n

n∑
i=1

σi∆R,η̂

]
.

The following analysis largely follows from the proof of Corollary 3.7 in Bartlett et al. (2005). Since ∆
R,̂g

is
uniformly bounded by 2, for any r ≥ ψ(r), Corollary 2.2 in Bartlett et al. (2005) implies that with probability
at least 1 − 1

n , {h ∈ ∗H : P̄h2 ≤ r} ⊆ {h ∈ ∗H : P̄nh2 ≤ 2r}. Let E ≜ {h ∈ ∗H : Ph2 ≤ r} ⊆ {h ∈ ∗H :
P̄nh2 ≤ 2r}, then the following holds:

ERn{∗H, P̄h2 ≤ r} ≤ P[E ]E[Rn{∗H, P̄h2 ≤ r}|E ] + P[Ec]E[Rn{∗H, P̄h2 ≤ r}|Ec]

≤ E[Rn{∗H, P̄nh2 ≤ 2r}] + 2
n
.

Since r∗ = ψ(r∗), r∗ satisfies the following

r∗ ≤ 20BERn{∗H, P̄nh2 ≤ 2r∗} + 22 logn
n

. (21)

Next we leverage Dudley’s entropy integral (Dudley, 2014) to upper bound ERn{∗H, P̄nh2 ≤ 2r∗}, using
the integral of covering number. Specifically, by applying the chaining bound, it follows from Theorem B.7
(Bartlett et al., 2005) that

E[Rn(∗H, P̄nh2 ≤ 2r∗)] ≤ const√
n

E
∫ √

2r∗

0

√
log N2(ε, ∗H,x1:n)dε, (22)

where const represents some universal constant. Next we bound the covering number log N2(ε,H,x1:n) by
log N2(ε,G,x1:n). We show that for all x1:n, any ε2-cover of G is a ε-cover of H. Specifically, let V ⊂ [0, 1]n

be an ε-cover of H on x1:n so that for all η ∈ G, ∃v1:n ∈ V so that
√

1
n

∑
i∈[n](η(xi) − vi)2 ≤ ε. Now we show
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that for any z1:n, the family of (vi − yi)2 − (η∗
i − yi)2, i ∈ [n] is an ε-cover for H, where η∗

i ≜ P(yi = 1|xi):√√√√ 1
n

∑
i∈[n]

((vi − yi)2 − (η∗ − yi)2 − ∆R,η)2 =
√√√√ 1
n

∑
i∈[n]

((vi − yi)2 − (η(xi) − yi)2)2

=
√√√√ 1
n

∑
i∈[n]

(vi − η(xi))2(vi + η(xi) − 2yi)2 ≤ 4ε.

Combine the above inequality with Corollary 3.7 from Bartlett et al. (2005), we have the following upper
bound on the entropy number of ∗H:

log N2(ε, ∗H,x1:n) ≤ log
{

N2

(
ε

2 ,H,x1:n

)(
⌈2
ε

⌉ + 1
)}

≤ log
{

N2

(
ε

2 ,G,x1:n

)(
⌈2
ε

⌉ + 1
)}

.

Next we bound const√
n
E

∫ √
2r∗

0
√

log N2(ε, ∗H,x1:n)dε from (22). Note that by Haussler’s covering number

bound (Haussler, 1995), the following inequality holds: log N2

(
ε
8 ,G,x1:n

)
≤ cdP log

(
1
ε

)
, we can therefore

derive the following inequalities:

const√
n

E
∫ √

2r∗

0

√
log N2(ε, ∗H,x1:n)dε ≤ const√

n
E

∫ √
2r∗

0

√
log N2

(
ε

2 ,H,x1:n

)(
⌈2
ε

⌉ + 1
)
dε

≤ const√
n

E
∫ √

2r∗

0

√
log N2

(
ε

8 ,G,x1:n

)(
⌈2
ε

⌉ + 1
)
dε

≤ const
√
dP (G)
n

∫ √
2r∗

0

√
log

(
1
ε

)
≤ const

√
dP (G)r∗ log(1/r∗)

n

≤ const
√
d2
P (G)
n2 + dP (G)r∗ log(n/edP (G))

n
,

where const represents some universal constants that may change from line to line. Together with (21) one
can solve for

r∗ ≲
dP (G) log( n

dP (G) )
n

.

Since P̄∆R,η ≤ ε, we have P|η̂ − η∗|2 ≤ ε, given that the following equality holds:

P̄∆R,η = Ez[R(η̂; f∗, z) −R(η∗; f∗, z)]
= Ex,y[(η̂(x) − y)2 − (η∗(x) − y)2]
= Ex[|η̂(x) − η∗(x)|2]. (as η∗(x) ≜ E[y])

Note that since
∣∣∣∣|η̂ − 1

2 | − |η∗ − 1
2 |

∣∣∣∣2
≤ |η̂ − η∗|2, the following readily follows:

Ex

[
(|η̂(x) − 1

2 | − |η∗(x) − 1
2 |)2

]
≤ ε. (23)

A.6 Proof of Theorem 4.4

Proof. The proof is by construction. We construct the full support of x to be X = X1 ∪ X2. For all x ∈ X1,
let ω∗(x) = |η∗(x) − 1

2 | ≥ c and x ∈ X2, let ω∗(x) = |η∗(x) − 1
2 | = 0. By decomposing the excessive risk we
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have:

Ex,y[1{f̂ ̸= y} − 1{f∗ ̸= y}] = Ex,y[1{f̂ ̸= y} − 1{f∗ ̸= y}|x ∈ X1] · P[x ∈ X2]
+ Ex,y[1{f̂ ̸= y} − 1{f∗ ̸= y}|x ∈ X2] · P[x ∈ X2]︸ ︷︷ ︸

=0,since for all x ∈ X2, P(y = 1|x) = P(y = −1|x)

.

The lower bound of term Ex,y[1{f̂ ≠ y} − 1{f∗ ̸= y}|x ∈ X1] ≥ 1
cn could be established by Theorem 4

in Massart & Nédélec (2006).

A.7 Proof of Theorem 4.2

Throughout this proof, we use superscript j to index the jth coordinate of a vector x (e.g., xj), and this is
to be distinguished from the subscript i that indexes the samples.

Proof. The proof is by construction. Let γ be the minimum margin. Let F = {1⊤sign(x − β)|β ∈ Rd},X ≡⋃d
j=1 Ej , Ej ≡ α · ej , α ∈ {[−2,−1] ∪ {−0.1} ∪ [1, 2] ∪ {0.1}}, j ∈ [d] where ej is j-th standard basis. Let

η∗(x) = 1
21{1⊤sign(x) ≥ 0}

{
1 +

{
1{∥x∥ = 0.1} + 1{∥x∥ ≥ 1}γ

}}
(24)

Note 1⊤sign(x − β) could be viewed as a composition class of the d-dimensional half-space and the interval
function, and its VC-dimension could be bounded as d log(d) (Vidyasagar, 2013). Consequently, the choice of
n implies that Ex[1{f̂wERM ̸= f∗}|ω∗(x) > γ] ≲ ε for any given ω̂ that satisfies Ex[(ω(x) − ω∗(x))2] ≤ ε .

Consider following data generative process:

j ∼ Unif{1, 2, ..., d}

α =


0.1, with prob γ

32
−0.1, with prob γ

32
Unif(1, 2), with prob 1 − 3γ

32
Unif(−2,−1), with prob γ

32

x = α · ej

y =
{

1, with prob η∗(x)
−1 with prob 1 − η∗(x)

Note that the following version of the Chernoff inequality will be applied multiple times in the proof:

P[|
m∑
i

Xi −mE[X]| ≥ ξmE[X]] ≤ 2e−ξ2mEX/3. (25)

By setting ξ = 0.5 in inequality (25) and taking a union bound over E1:d we have

P
[
∃j, s.t.,

∣∣∣∣|Ej ⋂
Sn| − 64 log d log(1/δ)

γε

∣∣∣∣ ≥ 32 log d log(1/δ)
γε

]
≤ 2de−5 log d log(1/δ) ≤ 2de−5 log(d/δ) ≤ δ. (26)

The inequality above implies that with probability at least 1 − δ, ∀j ∈ [d], we have

32d log(d) log(1/δ)
γε

≤ |Ej
⋂
Sn| ≤ 96d log(d) log(1/δ)

γε
. (27)

Next we show that for each j ∈ [d], for sufficiently small γ with constant probability, β̂jERM ̸= β∗. We first
present our argument for the case where d = 1. W.O.L.G, we focus on the case where X = X 1. Given
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x1
1:n, let x1

(−n1):(−1) ∪ x1
(1):(n2):(n2+n3) be an ordering of xn with x1

−i ≤ x1
−i+1 ≤ x1

−1 < 0 < x1
1 ≤ x1

n2
<

x1
n2+i < x1

n2+n3
< x1

n3
, where x(1):(n2) = 0.1 and n1 + n2 + n3 = n. Since 32 log(1/δ)

γε ≤ n ≤ 96 log(1/δ)
γε ,

by Chernoff inequality in (25) with ξ = 0.5 and picking τ = γ, we have log(1/δ)
ε ≤ n2 ≤ 3 log(1/δ)

ε and
τ32 log(1/δ)

γε ≤ τn3 ≤ τ96 log(1/δ)
γε that hold simultaneously with probability at least 1 − 2δ. Consider τ fraction

of positive samples: x(n2+1):(⌊τn3⌋). Given n2, by Lemma 2, we have ,

P
[ (n2+⌊τn3⌋)∑

i=n2+1
1{y(i) = f∗(x(i))} ≤ (1

2 + γ)(1 − ξ)τn3

]
≥ 0.2e−6ξ2τn3( 1

2 +γ). (28)

By inequality (28) with ξ = 3γ, we have that with probability at least 0.2e−
54γ2 log(d) log(1/δ)( 1

2 +γ)
ε ,

(n2+⌊τn3⌋)∑
i=n2+1

1{y(i) = f∗(x(i))} ≤ (1
2 + γ)(1 − 3γ)n3

=⇒
(n2+⌊τn3⌋)∑
i=n2+1

1{y(i) = f∗(x(i))} ≤ (1 + 2γ)(1 − 3γ)n3
2

(set γ < 1
12) =⇒

(n2+⌊τn3⌋)∑
i=n2+1

1{y(i) = f∗(x(i))} ≤ (1 − γ

2 )n3
2 .

Therefore,

n2+(⌊τn3⌋)∑
i=n2+1

1{y(i) = f∗(x(i))} +
n2∑
i=1

1{y(i) = f∗(x(i))}

≤ (1 − γ

2 )n3
2 + γn3

4 ≤ n3
2

≤
(n2+⌊τn3⌋)∑
i=n2+1

1{y(i) ̸= f∗(x(i))}.

(29)

It can be easily verified that inequality (29) implies that β̂jERM ≥ x(τn3). To ensure that

0.2e−
54γ2 log(d) log(1/δ)( 1

2 +γ)
ε ≥ 0.12,

it suffices to pick γ =
√

log(d) log(1/δ)
55ε . Since with probability 0.12 we have β̂jERM ≥ x(τn3) > 0.1, which implies

that Ex[1{f̂ERM ̸= f∗}|ω∗(x) > γ,x ∈ E1] ≥ 0.5. With markov inequality, we have with probability at least
0.1, 0.03 fraction of E1:d has β̂jERM > 0.1, which implies that Ex[1{f̂ERM ̸= f∗}|ω∗(x) > γ,x ∈ Ej ] ≥ 0.5.
We have with probability at least 0.1, Ex[1{f̂ERM ̸= f∗}|ω∗(x) > γ] ≥ 0.015.

A.8 Proof of Theorem 4.5

The proof readily follows from Theorem 4.7 with ℓ(f ; z) ≜ (y− f(x))2, ω∗(x) = C
σ2∗(x) and D(f∗(x), f̂(x)) =

σ2∗(x)
C (f∗ − f̂)2. It can be easily verified that Assumption 1 is satisfied with a = 8 + 8c2

2√
γ , b = 4

Cγ , L = c2√
γ .

A.9 Proof of Theorem 4.6 and discussion

Our analysis of learning σ̂2(x) is based on the following negative log-likelihood loss:

ℓNLL(σ2, f,z) ≜ log(σ2(x)) + (y − f(x))2

σ2(x) . (30)
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In particular, we seek to minimize risk of the form in Equation (30) while restricting f and σ2 to be in
hypothesis classes F̃ ⊆ F , G̃ ⊆ G that satisfy (y−f(x))2

σ2(x) ≤ 4c2
2, uniformly for all z = (x, y). For learning

σ2∗(x). For simplicity, we assume Eξ[(ξ2 − 1)2] being a constant.

Verification of Bernstein-type condition We show that the risk function in Equation (30) satisfies some
Bernstein-type condition. Since (y−f(x))2

σ2(x) ≤ 4c2
2, it then follows that |ℓNLL(σ2, f,z) − ℓNLL(σ2∗, f∗, z)| ≤

5c2
2 + 2 log( c2

γ ). In following analysis, we let C = 5c2
2 + 2 log( c2

γ ). The expectation term then satisfies:

Ez[ℓNLL(σ2, f,z) − ℓNLL(σ2∗, f∗, z)]

=Ex

[
(f(x) − f∗(x))2

σ2(x) − 1 + σ2∗(x)
σ2(x) − log

(σ2∗(x)
σ2(x)

)]
(31)

≥Ex,ξ

[
(f(x) − f∗(x))2

σ2(x) +
(σ2∗(x)
σ2(x) − 1

)2

2 · ξ4

max{ξ4,
(
ξ2 σ2∗(x)

σ2(x)
)2}

]
; (32)

the last inequality leverages the fact that for all t > 0

log(1
t
) ≥ 1 − t+ (t− 1)2

2 max(1, t) . (33)

For the variance term, the following holds:

Varz[(ℓNLL(σ2, f,z) − ℓNLL(σ2∗, f∗, z))]
= Ez[(ℓNLL(σ2, f,z) − ℓNLL(σ2∗, f∗, z))2] − Ez[(ℓNLL(σ2, f,z) − ℓNLL(σ2∗, f∗, z))]2

≤ Ex,ξ

[(
(f(x) − f∗(x))2

σ2(x) − ξ2 + ξ2σ2∗(x)
σ2(x) −

2ξ
√
σ2∗(x)(f(x) − f∗(x))

σ2(x) − log
(σ2∗(x)
σ2(x)

))2]
;

this can be further decomposed as

Ex,ξ

[(
(ξ2 − 1)

(
σ2∗(x)
σ2(x) − 1

)
−

2ξ
√
σ2∗(x)(f(x) − f∗(x))

σ2(x)

)2]
+ Ex

[(
(f(x) − f∗(x))2

σ2(x) − 1 + σ2∗(x)
σ2(x) − log

(σ2∗(x)
σ2(x)

))2]
+ 2Ex,ξ

[(
(f(x) − f∗(x))2

σ2(x) − 1 + σ2∗(x)
σ2(x) − log

(σ2∗(x)
σ2(x)

))
•(

(ξ2 − 1)
(
σ2∗(x)
σ2(x) − 1

)
−

2ξ
√
σ2∗(x)(f(x) − f∗(x))

σ2(x)

)]
≤ 2Ex,ξ

[(
(ξ2 − 1)2

(
σ2∗(x)
σ2(x) − 1

)2]
︸ ︷︷ ︸

Term I

+ 2Ex,ξ

[(
ξ
√
σ2∗(x)(f(x) − f∗(x))

σ2(x)

)2]
︸ ︷︷ ︸

Term II

+ CEz[ℓNLL(σ2, f,z) − ℓNLL(σ2∗, f∗, z)]︸ ︷︷ ︸
Term III

. (34)

Bounding Term I: Due to the fact that for all t > 0, max{2, 2t}(− log(t) − 1 + t) ≥ (t− 1)2, the following
holds:

Ex

[
2 max

{
1, σ

2∗(x)
σ2(x)

}(
− 1 + σ2∗(x)

σ2(x) − log
(σ2∗(x)
σ2(x)

))]
= Ex,ξ

[
2ξ2 max

{
1, σ

2∗(x)
σ2(x)

}(
− 1 + σ2∗(x)

σ2(x) − log
(σ2∗(x)
σ2(x)

))]
≥ Ex

[(
σ2∗(x)
σ2(x) − 1

)2]
.
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On the other hand, since for all f ∈ F̃ , σ2 ∈ G̃, (y−f(x))2

σ2(x) ≤ 4c2
2, we further have ξ2σ2∗(x)

σ2(x) ≤ 2c2
2 + 4/c2

3. Term
I could be bounded as:

2Ex,ξ

[(
(ξ2 − 1)2

(
σ2∗(x)
σ2(x) − 1

)2]
≤

(
4c2

2 + 4
c2

3

)
Ex,ξ

[
− 1 + σ2∗(x)

σ2(x) − log
(σ2∗(x)
σ2(x)

)]
.

Bounding Term II: Since for all f ∈ F̃ , σ2 ∈ G̃, (y−f(x))2

σ2(x) ≤ 4c2
2, we further have

√
ξσ2∗(x)
σ2(x) ≤ 2c2 + 2/c3.

Consequently, we have

2Ex,ξ

[(
ξ
√
σ2∗(x)(f(x) − f∗(x))

σ2(x)

)2]
≤

(
4c2

2 + 4
c2

3

)
Ex

[
(f(x) − f∗(x))2

σ2(x)

]
.

As a result, the following holds:

Varz[(ℓNLL(σ2, f,z) − ℓNLL(σ2∗, f∗, z))]

≲

(
C + c2

2 + 1
c2

3

)
Ez[ℓNLL(σ2, f,z) − ℓNLL(σ2∗, f∗, z)].

Next, we move on to the proof of the theorem statement.

Proof. Let B =
(
C + c2

2 + 1
c2

3

)
, the Bernstein constant. Define the following function class:

H ≡ ∆ ◦ L ◦ F̃ × G̃ ≡
{

∆ℓNLL(σ2, f ;σ2∗, f∗, z) = ℓNLL(σ2, f,z) − ℓNLL(σ2∗, f∗, z) : f ∈ F̃ , σ2 ∈ G̃
}

which is a composite function of hypothesis class F̃ × G̃, loss function L and the difference operation ∆. For
simplicity we let ∆ℓ,σ2,f = ∆ℓNLL(σ̂2, f̂ ;σ2∗, f∗, z) when there is no ambiguity. By definition of

(
f̂ , σ̂2

)
, we

have P̄nℓNLL(σ̂2, f̂ ,z) ≤ P̄nℓNLL(σ2∗, f∗, z) and therefore P̄n∆ℓ,σ2,f ≤ 0.

Next we bound P̄∆ℓ,σ2,f − P̄n∆ℓ,σ2,f . According to (34), we have Varz[∆ℓ,σ2,f ] ≤ BEz[∆ℓ,σ2,f ]. To invoke
Theorem 3.3 in Bartlett et al. (2005), we need to find a sub-root function ψ(r) such that

ψ(r) ≥ 2BEP̄n{∆ℓ,σ2,f ∈ H : E[h2] ≤ r}.

To find ψ(r), we show some analysis on the Local Rademacher Average ERn{∆ℓ,σ2,f ∈ H : E[h2] ≤ r}. Note
that

ERn(H, r) = ESnσ1:n

[
sup

f∈F̃,σ2∈G̃,Ex,y [∆ℓ,σ2,f ]≤r

1
n

n∑
i=1

σi∆ℓ,σ2,f

]
,

and we have h(x) ∈ [−C,C]. By leveraging some analysis from the proof in Corollary 3.7 in Bartlett et al.
(2005), we bound {h ∈ ∗H : P̄h2 ≤ r} using {h ∈ ∗H : P̄nh2 ≤ r} where the latter could be applied in the
entropy integral. Since ∆ℓ,σ2,f is uniformly bounded by 2C, for any r ≥ ψ(r), Corollary 2.2 in Bartlett et al.
(2005) implies that with probability at least 1 − 1

n , {h ∈ ∗H : P̄h2 ≤ r} ⊆ {h ∈ ∗H : P̄nh2 ≤ 2r}. Let E be
event that {h ∈ ∗H : P̄h2 ≤ r} ⊆ {h ∈ ∗H : P̄nh2 ≤ 2r} holds, then we have

ERn{∗H, P̄h2 ≤ r} ≤ P[E ]E[Rn{∗H, P̄h2 ≤ r}|E ] + P[Ec]E[Rn{∗H, P̄h2 ≤ r}|Ec]

≤ E[Rn{∗H, P̄nh2 ≤ 2r}] + 2C2

n
.

Since r∗ = ψ(r∗), r∗ satisfies

r∗ ≤ 20BCERn{∗H, P̄nh2 ≤ 2r∗} + 22C2 logn
n

. (35)
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Next we leverage the entropy integral (Dudley, 2014) to upper bound ERn{∗H, P̄nh2 ≤ 2r∗} using the
integral of covering number. Apply the chaining bound, it follows from Theorem B.7 (Bartlett et al., 2005)
that

E[Rn(∗H, P̄nh2 ≤ 2r∗)] ≤ const√
n

E
∫ √

2r∗

0

√
log N2(ε, ∗H,x1:n)dε, (36)

where const is some universal constant.

Next we bound the covering number log N2(ε, ∗H,x1:n) by log N2(ε, G̃,x1:n) + log N2(ε, F̃ ,x1:n). We show
that for all x1:n, the composition of an ε-cover of F̃ and an ε-cover of G̃ gives rise to a an ε-cover of
H. Specifically, let V ⊂ [c3,

1
γ ]n be an ε-cover of G̃ on x1:n so that for all σ2 ∈ G̃, ∃v1:n ∈ V so that√

1
n

∑
i∈[n](σ2(xi) − vi)2 ≤ ε

4c2
2/c3+1/γc3

, U ⊂ [−1, 1]n be an ε-cover of F̃ on x1:n so that for all f ∈ F̃ ,

∃u1:n ∈ U so that
√

1
n

∑
i∈[n](f(xi) − ui)2 ≤ ε√

1/c2
3(c2

2/γ+16)
. Next, we show that for any z1:n, the family of

(ui−yi)2

vi
− (f∗(xi)−yi)2

σ2∗(xi) + log
(

vi

σ2∗(xi)
)
, i ∈ [n] is an ε-cover for H

√√√√ 1
n

∑
i∈[n]

(
(ui − yi)2

vi
− (f∗(xi) − yi)2

σ2∗(xi)
+ log

( vi
σ2∗(xi)

)
− ∆ℓ,σ2,f

)2

=

√√√√ 1
n

∑
i∈[n]

(
(ui − yi)2

vi
− (f(xi) − yi)2

σ2(xi)
+ log

( vi
σ2(xi)

))2

=

√√√√ 1
n

∑
i∈[n]

(
(ui − yi)2

vi
− (f(xi) − yi)2

vi
+ (f(xi) − yi)2

vi
− (f(xi) − yi)2

σ2(xi)
+ log

( vi
σ2(xi)

))2

≤

√√√√ 1
n

∑
i∈[n]

(
(ui − f(xi))(ui + f(xi) − 2yi)

vi
+ (f(xi) − yi)2

σ2(xi)
· (σ2(xi) − vi)

vi
+ log

( vi
σ2(xi)

))2

=
√√√√ 8
n

∑
i∈[n]

1/c2
3(c2

2/γ + 16)(ui − f(xi))2 + (4c2
2/c3 + 1/γc3)2(vi − σ2(xi))2

≤8ε.

Clearly, above inequality implies that N2(ε,H,x1:n) ≤ N2

(
ε

4c2
2/c3+1/γc3

, G̃,x1:n

)
N2

(
ε√

1/c2
3(c2

2/γ+16)
, F̃ ,x1:n

)
.

Combining the above inequality with Corollary 3.7 from Bartlett et al. (2005) we can bound the entropy
number of ∗H:

log N2(ε, ∗H,x1:n) ≤ log
{

N2

(
ε

2 ,H,x1:n

)(
⌈2
ε

⌉ + 1
)}

≤ log
{

N2

(
ε

4c2
2/c3 + 1/γc3

, G̃,x1:n

)
N2

(
ε√

1/c2
3(c2

2/γ + 16)
, F̃ ,x1:n

)(
⌈2
ε

⌉ + 1
)}

.

Next we bound const√
n
E

∫ √
2r∗

0
√

log N2(ε, ∗H,x1:n)dε from (36). Note that

log
{

N2

(
ε

4c2
2/c3 + 1/γc3

, G̃,x1:n

)
N2

(
ε√

1/c2
3(c2

2/γ + 16)
, F̃ ,x1:n

)}
≤c(dP (G̃) + dP (F̃)) log

(
c2

2 + 1 + c2
2/γ

ε
· 1
c2

3

)
.
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Consequently,

const√
n

E
∫ √

2r∗

0

√
log N2(ε, ∗H,x1:n)dε

≤ const√
n

E
∫ √

2r∗

0

√
log N2

(
ε

2 ,H,x1:n

)(
⌈2
ε

⌉ + 1
)
dε

≤ const

√
(dP (G̃) + dP (F̃))

n

∫ √
2r∗

0

√
log

(
1
ε

)

≤ const

√
(dP (G̃) + dP (F̃))r∗ log(1/c2

3 + c2
2/c

2
3 + c2

2/c
2
3γ)/r∗)

n

≤ const

√
(dP (G̃) + dP (F̃))2

n2 + (dP (G̃) + dP (F̃))r∗ log((1/c2
3 + c2

2/c
2
3 + c2

2/c
2
3γ)n/e(dP (F̃) + dP (G̃)))

n
,

where const corresponds to some universal constant. Together with (35) one can solve for

r∗ ≲
B2C2(dP (G) + dP (F)) log((1/c2

3 + c2
2/c

2
3 + c2

2/c
2
3γ)n/(dP (G) + dP (F)))

n
.

Since P̄∆ℓNLL(σ̂2, f̂ ;σ2∗, f∗, z) = Ex

[
(f(x)−f∗(x))2

σ2(x) − 1 + σ2∗(x)
σ2(x) − log

(σ2∗(x)
σ2(x)

)]
≤ ε

1/c2
3
, one can leverage the

inequality log( 1
t ) ≥ 1 − t+ (t−1)2

2 max(1,t2) . to conclude that

Ex

[(
1

σ̂2(x)
− 1
σ2∗(x)

)2]
≤ ε.

This completes the proof.

Discussion Note that the risk bound of learning the variance function using NLL loss is also studied in
Zhang et al. (2023), wherein Theorem 1 suggests a rate of order Õ

( 1√
n

)
. On the other hand, the bound in

Theorem 4.6 of this work is of the order Õ
( 1
n

)
. Such improvement of learning σ2∗(x) might be of independent

interest. Compared to risk bounds in Zhang et al. (2023), the major improvement comes from an application
of the Local Rademacher Complexity (Bartlett et al., 2005) analysis under a Bernstein-type condition.

A.10 Proof of Theorem 4.7 and discussion

Proposition 1. Suppose Assumption 1 holds. Let f∗ ∈ F and ω∗ ∈ W, and suppose we have ω̂ ∈ W s.t.
Ex[(ω̂(x) − ω∗(x))2] ≤ ε

b . Given i.i.d. samples Sn = {(xi, yi)}ni=1 drawn from the data generative process, let
f̂ ≜ arg minf∈F

1
n

∑
zi∈Sn

ω̂(x)ℓ(f ; zi). Then for any ε > 0, δ > 0, the following holds simultaneously with
probability at least 1 − δ:

Ex[ω̂2(x)D(f∗(x), f̂(x))] ≤ ε, Ex[ω∗2(x)D(f∗(x), f̂(x))] ≤ ε, Ex[ω̂(x)ω∗(x)D(f∗(x), f̂(x))] ≤ ε,

as long as the sample size requirement is satisfied:

n ≳
c2

1a
2(d(F) log( 1

ε ) + log(L) + log(c1) + log( 1
δ ))

ε
+
c1a log( 1

δ )
ε

.

Proof. We start by defining the following function class:

H ≡ ∆ ◦ ω · ℓ ◦ F ≡
{

∆ω̂(x)ℓ(f ; f∗z) = ω̂(x)ℓ(f ; z) − ω̂(x)ℓ(f∗; z) : f ∈ F
}
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which is a composite function of hypothesis class F , loss function ℓ and the difference operation ∆.

To simplify the notation, we denote ∆ℓ,f = ∆ω̂(x)ℓ(f ; f∗, z) when there is no ambiguity. Due to the fact
that ω̂(x)ℓ(f̂ ; z) is the empirical minimizer, we have:

P̄nω̂(x)ℓ(f̂ ; z) ≤ P̄nω̂(x)ℓ(f∗; z),

and thus P̄n∆
ℓ,f̂

≤ 0. Leveraging such fact, next we show that P̄∆
ℓ,f̂

is small via an empirical process
argument. Note by assumption we have

P̄∆
ℓ,f̂

= Ex,y[ω̂(x)(ℓ(f̂ ,z) − ℓ(f∗, z))] = Ex[ω̂(x)ω∗(x)D(f∗(x), f̂(x))],

and

P̄∆2
ℓ,f̂

− (P̄∆
ℓ,f̂

)2

=Varz[ω̂(x)(ℓ(f̂ ,z) − ℓ(f∗, z))]
≤Ez[ω̂2(x)(ℓ(f̂ ,z) − ℓ(f∗, z))2]
≤Ex[ω̂2(x)D(f∗(x), f̂(x))].

Since Ex[(ω̂(x) − ω∗(x))2] ≤ ε
b , and D(f∗(x), f̂(x)) ≤ b we have Ex[(ω̂(x) − ω∗(x))2D(f∗(x), f̂(x))] ≤ ε,

which implies that Ex[ω̂2(x)D(f∗(x), f̂(x))] ≤ 2Ex[ω̂(x)ω∗(x)D(f∗(x), f̂(x))] + ε. To apply Lemma 1 next
we find a subroot function ψ(r) that

ψ(r) ≥ 2EP̄n{∆
ℓ,f̂

∈ H : E[h2] ≤ r}.

Note, we have h(x) ∈ [−c1a, c1a].

To find ψ(r), we first analyze on the Local Rademacher Average ERn{∆
ℓ,f̂

∈ H : E[h2] ≤ r}.

ERn(∆ ◦ ω · ℓ ◦ F , r) =ESnσ1:n

[
sup

f∈F,Ex,y [∆2
ℓ,f

]≤r

1
n

n∑
i=1

σi∆ℓ,f

]
.

By Lemma 3.4 from Bartlett et al. (2005), it suffices to choose ψ(r) ≜ 10c1aERn{∗H,Ph2 ≤ r} + 11c2
1a

2 logn
n .

The following analysis largely follows from the proof in Corollary 3.7 in Bartlett et al. (2005) which aims
to bound ERn{∗H, P̄h2 ≤ r} using ERn{∗H, P̄nh2 ≤ r} . Since ∆

ℓ,f̂
is uniformly bounded by 2c1a, for any

r ≥ ψ(r), Corollary 2.2 in Bartlett et al. (2005) implies that with probability at least 1 − 1
n , {h ∈ ∗H : P̄h2 ≤

r} ⊆ {h ∈ ∗H : P̄nh2 ≤ 2r}. Let E be event that {h ∈ ∗H : P̄h2 ≤ r} ⊆ {h ∈ ∗H : P̄nh2 ≤ 2r} holds, above
implies

ERn{∗H, P̄h2 ≤ r} ≤ P[E ]E[Rn{∗H, P̄h2 ≤ r}|E ] + P[Ec]E[Rn{∗H, P̄h2 ≤ r}|Ec]

≤ E[Rn{∗H, P̄nh2 ≤ 2r}] + 2c2
1a

2

n
.

Since r∗ = ψ(r∗), r∗ satisfies

r∗ ≤ 100c1aERn{∗H, P̄nh2 ≤ 2r∗} + 50c2
1a

2 logn
n

. (37)

Next we leverage Dudley’s chaining bound (Dudley, 2014) to upper bound ERn{∗H, P̄nh2 ≤ 2r∗} using the
integral of covering number.

Apply the chaining bound, it follows from Bartlett et al. (2005) Theorem B.7 that

E[Rn(∗H, P̄nh2 ≤ 2r∗)] ≤ const√
n

E
∫ √

2r∗

0

√
log N2(ε, ∗H,x1:n)dε, (38)
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where const is some universal constant. Next we bound the covering number log N2(ε,H,x1:n) by
log N2(ε,F ,x1:n). We show that for all x1:n, any ε/c1L-cover of F is a ε-cover of H. Specifically, let V ⊂
[−1, 1]n be an ε/Lc1-cover of F on x1:n so that for all f ∈ F , ∃v1:n ∈ V so that

√
1
n

∑
i∈[n](f(xi) − vi)2 ≤ ε

c1L
.

Now we show that for any z1:n, the family of ω̂(xi)(ℓ(vi, zi) − ℓ(f∗(xi), zi)), i ∈ [n] is an ε-cover for H:√√√√ 1
n

∑
i∈[n]

(
ω̂(xi)(ℓ(vi, zi) − ℓ(f∗(xi), zi)) − ∆ℓ,f

)2
=

√√√√ 1
n

∑
i∈[n]

(
ω̂(xi)(ℓ(vi, zi) − ℓ(f̂(xi), zi))

)2

≤

√√√√L2

n

∑
i∈[n]

ω̂2(xi)(vi − f∗(xi))2 ≤ 4ε.

Next, combining the above inequality with Corollary 3.7 from Bartlett et al. (2005), we have the following
inequality on the entropy number:

log N2(ε, ∗H,x1:n) ≤ log
{

N2

(
ε

2 ,H,x1:n

)(
⌈2
ε

⌉ + 1
)}

≤ log
{

N2

(
ε

8c1L
,F ,x1:n

)(
⌈2
ε

⌉ + 1
)}

.

Next we bound const√
n
E

∫ √
2r∗

0
√

log N2(ε, ∗H,x1:n)dε from (38). Note that by Haussler’s covering number

bound (Haussler, 1995), we have: log N2

(
ε

8c1L
,F ,x1:n

)
≤ cd log

(
c1L
ε

)
. Plugging such bound into the

entropy integral yields:

const√
n

E
∫ √

2r∗

0

√
log N2(ε, ∗H,x1:n)dε ≤ const√

n
E

∫ √
2r∗

0

√
log N2

(
ε

2 ,H,x1:n

)(
⌈2
ε

⌉ + 1
)
dε

≤ const√
n

E
∫ √

2r∗

0

√
log N2

(
ε

8 ,F ,x1:n

)(
⌈2
ε

⌉ + 1
)
dε

≤ const
√
d(F)
n

∫ √
2r∗

0

√
log

(
c1L

ε

)

≤ const
√
d(F)r∗ log(c1L/r∗)

n

≤ const
√
d2(F)
n2 + d(F)r∗ log(c1Ln/ed(F))

n
,

where const represents some universal constant. Together with (37), one can solve for

r∗ ≲
c2

1a
2d(F) log(c1Ln/d(F))

n
.

Since P̄n∆
ℓ,f̂

≤ 0, by Lemma 1 we have P̄∆
ℓ,f̂

≤ 2ε with probability at least 1 − δ where the randomness
comes from the training data Sn.

By assumption we have Ex[(ω̂(x) − ω∗(x))2] ≤ ε
b , and D(f∗(x), f̂(x)) ≤ b , with probability at least 1 − δ,

Ex[(ω̂(x) − ω∗(x))2D(f∗(x), f̂(x))] ≤ ε,

which implies that

Ex[ω∗2(x)D(f∗(x), f̂(x))] ≤ 2Ex[ω̂(x)ω∗(x)D(f∗(x), f̂(x))] + ε ≤ 3ε
Ex[ω̂2(x)D(f∗(x), f̂(x))] ≤ 2Ex[ω̂(x)ω∗(x)D(f∗(x), f̂(x))] + ε ≤ 3ε.
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It can be easily verified that

Ex[ω̂2(x)D(f∗(x), f̂(x))] ≤ 3ε =⇒ Ex[D(f∗(x), f̂(x))|ω̂(x) ≥ c] ≤ 3ε
c2P(ω̂(x) ≥ c) .

B Technical Lemmas

Lemma 1. Let F be a class of functions ranging in [a, b] and assume that there are some functional
T : H → R+ and some constant B such that for every h ∈ H, Var(h) ≤ T (h) ≤ BP[h] + ε. Let ψ be a
subroot function and r∗ be the fixed point of ψ. Assume the ψ satisfies, for any r ≥ r∗,

ψ(r) ≥ BERn{h ∈ H : T (h) ≤ r}.

Then with c1 = 704 and c2 = 26, for any K > 1 and every t > 1 with probability at least 1 − e−t,

∀h ∈ H, P̄[h] ≤ K

K − 1 P̄nh+ c1K

B
r∗ + t(11(b− a) + c2BK)

n
+ const · ε

Also with probability at least 1 − e−t,

∀h ∈ H, P̄n[h] ≤ K + 1
K

Ph+ c1K

B
r∗ + t(11(b− a) + c2BK)

n
+ const · ε

where Pf = Ex[h(x)] and P̄n = 1
n

∑n
i=1 h(xi).

Proof. The proof is similar to the proof of Theorem 3.3 from Bartlett et al. (2005) except that here we
are modifying some step so as to apply the argument under the condition T (h) ≤ BPh+ ε, instead of the
original condition T (h) ≤ BPf . We introduce notations and concepts: given class H, λ > 1 and r > 0, we let
w(h) = min{rλk, k ∈ N, rλk ≥ T (h)} and set

Gr =
{

r

w(h)h, h ∈ H
}
.

And similar to Bartlett et al. (2005) we define

V +
r = sup

g∈Gr

{Pg − Png}, V −
r = sup

g∈Gr

{Png − Pg}.

Next we modify the proof step of Lemma 3.8 from Bartlett et al. (2005). Suppose K > 1, λ > 0 and r > 0.
We aim to prove the following two claims:

if V +
r ≤ r

λBK
then ∀f ∈ F ,Pf ≤ K

K − 1Pnf + r

λBK
+ ε

K − 1 ; (39)

if V −
r ≤ r

λBK
then ∀f ∈ F ,Pnf ≤ K + 1

K
Pf + r

λBK
+ ε

K
. (40)

When T (h) < r, we use the same conclusion as the one in Lemma 3.8 in Bartlett et al. (2005):

P̄h ≤ P̄nh+ V +
r ≤ P̄nh+ r

λBK
.

In the case T (h) > r, we have w(h) = rλk with k > 0 and T (h) ∈ (rλk−1, rλk]. Moreover, g = h
λk ,

Pg ≤ Png + V +
r thus Ph

λk ≤ Pnh
λk + V +

r . Since T (h) > rλk−1, we have:

Ph ≤ Pnh+ λkV +
r < Pnh+ λT (h)V +

r

r
≤ Pnh+ Ph

K
+ ε

K

=⇒ Ph ≤ K

K − 1Pnh+ ε

K − 1 + r

λBK
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Let r ≥ r∗, applying Theorem 2.1 from Bartlett et al. (2005), we have for all 0 < δ ≤ 1, with probability at
least 1 − δ:

V +
r ≤ 2(1 + α)ERnGr +

√
2r log(1/δ)

n
+ (b− a)(1

3 + 1
α

) log(1/δ)
n

.

Let H(u, v) ≜ {h ∈ MH : u ≤ T (h) ≤ v} and define k to be the smallest integer that rλk+1 ≥ Bb+ ε. By
assumption we have T (h) ≤ BE[h]+ε, and ψ(r) be a sub-root function that ϕ(r) ≥ BERn{h ∈ H : T (h) ≤ r}
we have:

ERnGr ≤ ERnH(0, r) + E sup
h∈H(0,Bb+ε)

r

w(h)Rnh

≤ ERH(0, r) +
k∑
j=0

E sup
h∈H(rλj ,rλj+1)

r

w(h)Rnh = ERH(0, r) +
k∑
j=0

λ−jE sup
h∈H(rλj ,rλj+1)

Rnh

≤ ψ(r)
B

+ 1
B

k∑
j=0

λ−jψ(rλj+1).

Since ψ is a sub-root function, we have for all β ≥ 1, ψ(βr) ≤
√
βψ(r). Hence,

ERnGr ≤ 1
B

(1 +
√
λ

∞∑
j=0

λ−j/2).

Similar to Bartlett et al. (2005) we can setting λ = 4 to bound RHS by 5ψ(r)
B . Since r ≥ r∗ =⇒ ψ(r) ≤√

r/r∗ψ(r∗) =
√
rr∗, we have:

Vr+ ≤ 10(1 + α)
B

√
rr∗ +

√
2rx
n

+ (b− a)(1
3 + 1

α
) log(1/δ)

n
.

Next we set A = 10(1 +α)
√
r∗

B + 2 log(1/δ)
n and C = (b− a)(1/3 + 1/α) log(1/δ)/n so that V + r+ ≤ A

√
r+C.

It can be verified that r can be chosen such that V +
r ≤ r

λBK . The largest solution of A
√
r + C = r

λBK ,
denoted as r0. One can verify that r0 is no less than λ2A2B2K2 which is no less than r∗. Meanwhile
r0 ≤ (λBK)2A2 + 2λBKC, by the claims in (39) and (40), one can show that for all h ∈ H,

Ph ≤ K

K − 1Pnh+ λBKA2 + 2C + ε

K

= K

K − 1Ph+ λBK(100(1 + α2) r
∗

B2 + 20(1 + α)
B

√
2 log(1/δ)r∗

n
+ 2 log(1/δ)

n
)

+ (b− a)(1
3 + 1

α
) log(1/δ)

n
+ ε

K

Setting α = 1/10 use the fact that 2
√
uv ≤ u

α + αv completes the proof.

Next lemma is largely from Lemma 5.2 in Klein & Young (2015) and Zhang et al. (2024). We include the
proof here for completeness.
Lemma 2 (Chernoff type lower bound). Let X be the average of k independent, 0/1 random variables (r.v.).
For any ϵ ∈ (0, 1/2] and p ∈ (0, 1/2], assuming ϵpk ≥ 6, pk ≥ 6, ε ≤ 1

3 , we have:

• If each r.v. is 1 with probability p, then

P[X ≤ (1 − ϵ)p] ≥ 0.2e−6ϵ2pk.

• If each r.v. is 1 with probability p, then

P[X ≥ (1 + ϵ)p] ≥ 0.2e−6ϵ2pk.
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Proof. With Stirling’s approximation, with i! approximated by
√

2πi(i/e)ieλ with λ ∈ [1/(12i+ 1), 1/12i]
one can show: (

k

ℓ

)
≥ 1

e
√

2πℓ

(k
ℓ

)ℓ( k

k − ℓ

)k−ℓ
. (41)

Since P[X ≤ (1 − ϵ)p] =
∑(1−ε)p
i=0 P[X = i

k ], it suffices to provide a lower bound for
∑(1−ε)p
i=(1−2ε)p P[X = i

k ] ,

where P[X = i
k ] =

(
k

i

)
pi(1 − p)k−i (Klein & Young, 2015).

To this end, let ℓ = ⌊(1 − 2ϵ)pk⌋. Given the fact that εpk ≥ 6, we have (1 − 2ϵ)pk − 1 ≤ ℓ ≤ (1 − 2ϵ)pk. We
have

∑(1−ε)p
i=(1−2ε)p P[X = i

k ] is at least

εpkP[X = ℓ

k
] = εpk

e
√

2πℓ

(k
ℓ

)ℓ( k

k − ℓ

)k−ℓ
pℓ(1 − p)k−ℓ.

From Equation (41) we know that we need to bound A = 1
e ϵpk/

√
2πℓ and B =

(
k
ℓ

)ℓ( k
k−ℓ

)k−ℓ
pℓ(1 − p)k−ℓ.

For term A, since εpk ≥ 6, l ≤ (1 − 2ε)pk thus we need pk ≥ 9e−2ε

ε to get 2ε
√
pk

e
√

2π(1−2ε)
≥ e−ε2pk. Since ε ≤ 1

3 ,
it suffices to have pk ≥ 16. To bound B we need to show:(

k

ℓ

)ℓ (
k

k − l

)k−l

pl(1 − p)k−l ≥ e−4ε2pk.

Since
(
k
ℓ

)ℓ
pℓ ≥

(
1

(1−2ε)

)l
and (1 − p)k−l

(
k
k−l

)k−l
=

(
(1−p)k

k(1−p)+1+2εpk

)k−l
we have:

(1 − 2ε)ℓ
(

1 + 1 + 2εpk
k(1 − p)

)k−ℓ

≤ e− 4ε2p2k
1−p +2εpk−2εpk+4ε2pk+2 ≤ 7e4ε2pk.
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